

Copyright Security-Assessment.com Ltd 2004 www.security-assessment.com

Vulnerability Advisory

Name SetWindowLong Shatter Attacks
Microsoft Advisory http://www.microsoft.com/technet/security/bulletin/ms04-032.mspx
Date Released October 14, 2004
Affected Software Microsoft Windows NT 4.0

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows 2003

Researcher Brett Moore brett.moore@security-assessment.com

Description

As explained in my presentation at Blackhat earlier this year, attacks against the windows GUI do not stop with
sending messages. In that presentation I talked about the exploitative usage of the SetProp() API method. The
SetWindowLong()/SetWindowLongPtr() API's can also be used to exploit certain applications for arbitrary
advantage.

Background

The SetWindowLong() function is documented in MSDN as;

The SetWindowLong function changes an attribute of the specified window. The function also sets a 32-bit (long)
value at the specified offset into the extra window memory of a window.

LONG SetWindowLong(
 HWND hWnd, // handle of window
 int nIndex, // offset of value to set
 LONG dwNewLong // new value
);

Parameters
hWnd
 Handle to the window and, indirectly, the class to which the window belongs.
nIndex
 Specifies the zero-based offset to the value to be set. Valid values are in the range zero through the number
 of bytes of extra window memory, minus 4; for example, if you specified 12 or more bytes of extra memory,
 a value of 8 would be an index to the third 32-bit integer.
 To set any other value, specify one of the following values:
 Value Action
 GWL_EXSTYLE Sets a new extended window style.
 GWL_STYLE Sets a new window style.
 GWL_WNDPROC Sets a new address for the window procedure.
 GWL_HINSTANCE Sets a new application instance handle.
 GWL_ID Sets a new identifier of the window.
 GWL_USERDATA Sets the 32-bit value associated with the window. Each

window has a corresponding 32-bit value intended for use
by the application that created the window.

The following values are also available when the hWnd parameter identifies a dialog box:
 Value Action
 DWL_DLGPROC Sets the new address of the dialog box procedure.
 DWL_MSGRESULT Sets the return value of a message processed in the dialog box procedure.
 DWL_USER Sets new extra information that is private to the application, such as handles or pointers.

dwNewLong
 Specifies the replacement value.

Copyright Security-Assessment.com Ltd 2004 www.security-assessment.com

Remarks
 The SetWindowLong function fails if the window specified by the hWnd parameter does not belong to the same
process as the calling thread.

The functions compliment is the GetWindowLong() function, which is used to retrieve a value.

Even though the remarks section is documented as written above, it is not a true statement.

As with the SendMessage() function (as used by standard shatter attacks) any user can call the etWindowLong()
function to alter the data stored in the window memory.

Exploitation

We founds multiple third party and core windows services that used the memory space pointed to by the
GWL_USERDATA, to store specific data. In some cases this data could be manipulated to gain execution control.

Since each application stores different information in this memory and therefore the exploitation differs, we can
not explain them all. We will however give a quick example of how execution control could be obtained.

We discovered that [Service X], that did not normally have a window, could be enticed into generating an error
that would display a window. The service stored a pointer to a lookup table in the window memory pointed to
by GWL_USERDATA. This lookup table held the address of functions, and was later used to retrieve an address
and pass it to a CALL instruction.

By using the process mapped heap, as explained in my Blackhat presentation, it was possible to place our
shellcode into a known location. We could also construct a new lookup table, pointing to our shellcode, in a
known location.

Then by using SetWIndowLongPtr() API we replaced the pointer to the lookup table with the address of our new
lookup table. The service would use our lookup table and execution would therefore reach the shellcode.

Solution

Install the vendor supplied patch.
http://www.microsoft.com/technet/security/bulletin/ms04-032.mspx

About Security-Assessment.com

Security-Assessment.com is a leader in intrusion testing and security code review, and leads the world with SA-
ISO, online ISO17799 compliance management solution. Security-Assessment.com is committed to security
research and development, and its team have previously identified a number of vulnerabilities in public and
private software vendors products.

For further information on this issue or any of our service offerings, contact us

Web www.security-assessment.com
Email info@security-assessment.com
Phone +649 302 5093

