
HD MOORE | ROB KING | AUGUST 9, 2024

DEF CON 32

SSHamble: Unexpected
Exposures in SSH

→ Going Hunting
→ Shaking Out Shells
→ Signal Injection
→ Fun with Forwarding
→ Shell Injection
→ Environment Control
→ Broken States
→ OpenSSH Fragmentation
→ SSHamble

Agenda

2

45:00

XZ Utils backdoor

3

A multi-year campaign started in 2021
and triggered in 2024
→ “Jia Tan” persona was likely the product of a state actor
→ Nearly-perfect Nobody-But-Us backdoor in SSH
→ Backdoor targeted SSH via systemd patches
→ Limited to Debian/RHEL-based distros

Caught at the last possible moment
by Andres Freund
→ Noticed that sshd was using more CPU than it should
→ Backdoor made it into rolling releases only

CVE-2024−3094

4

5

Going Hunting

6

→ Let’s target Jia
Tan using SSH

→ Jia Tan targeted
SSH with the XZ
Utils backdoor

/* XXX fake reply & always send PK_OK ? */
/*
* XXX this allows testing whether a user is allowed
* to login: if you happen to have a valid pubkey this
* message is sent. the message is NEVER sent at all
* if a user is not allowed to login. is this an
* issue? -markus
*/

SSH public key authentication is two-stage

7

OpenSSH Source (9.8p1)

An SSH client can confirm if a public key is valid for a given user
→ Metasploit support since 2012, but still not widely known

% sshamble scan --checks pubkey-hunt \

 --pubkey-hunt-file jia.keys \

 --input-targets ipv4.txt

Creating SSHamble

8

A custom SSH scanner that is flexible, fast, and fun!
→ Built in Go using a mangled version of x/crypto/ssh

→ Started as a half-auth public key scanner

→ Evolved into an SSH research tool

SSHamble.com

$ curl https://github.com/JiaT75.keys

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDHVp3Bvg/ALC61dsGehbvoqic49D4SfoiiPURSEec3/phZdAfR1hD6QSNTHLY3QDT
b0994ZwOFi05YpUM6/qwBUAbroS64/Mp55qDBlark5v83LcTq7a29VUH3Xvu7sAgdYda16a2KnmU5lhETvBfxuS+tpGin9r
aSp+B+z0PIpr9EmEeQgKtgKRQBiMWMtw7jBxm5INk54SmePNDva3f4ml08/Z4JM76dJ7DBQGrLUqZGsRFOZclMb3YOE7DjP
GQQ37TzGvKwLaGvRuocA8oW5zp07+uQldP2LIbt0V99eyXrgD7WLc/sdzWeefoNltcgcV/KEg9ivD02qWFDBzAKMcJuLMhq
xXIo64KZuVjWRrflgKCk5wZt0XPZ30MFqbBvjhn8zG7bIQJORmn/j6QSyHewu4Rre7uGxAuzee2PPSaSQ51dKgbdn3B3Uuw
N8KeIO54W1VYWip+GlG2tXHZAdJOgPPaM72OAqFQBta2MzcHi3/m2HgUNBttYhSUtaeX8myfiRcnC7APhZMOuU9rrHdti2K
D6IVArtBiorZbs8iFlzUPmdYVdeFP7EtW6EWgZSLV7rN2r2+CNVJeTrX9zA+mnRjhjq4ffgRUoQikY876kY+1YiEERm7LRB
MkKIzM4ZsBk7VQwImSGReyfwEht9tedU5mf5pkrbL8VSMrqQQ==

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIFiXcmAAjTBp5kM2AUTJdAEB7DHyYuY8am8FIMROD3FG
9

HELLO MY NAME IS

Jia Tan
I <3 Open Source!

Hunting for Jia Tan across the internet

10

Putting it all together
→ Copy Jia Tan’s SSH public keys from GitHub

→ Scan all IPv4 addresses for port 22 with zmap

→ Use SSHamble to scan for key acceptance

We got results!

11

12

Dear Law Enforcement,
→ Our scans resulted in Jia’s

public key hash & our IPs in
everyone’s logs

→ Please don’t arrest us!

HELLO MY NAME IS NOT

Jia Tan
I swear! We only scan things!

The friends shells we found along the way

13

Every single result was
a false positive for Jia Tan

Thousands of exposed systems and
some fun vulnerabilities instead

→ Tons of honeypots & broken servers
→ Fixed bugs, rescanned, repeat
→ 3 days later, still no Jia Tan
→ Great opsec!

→ SSHamble unearthed a bunch of bugs

→ Now for our actual presentation!

����

SSH keys as public identities

14

→ Public keys are used to being mostly-private

→ GitHub & Launchpad changed that

15

Link a user & key to a specific server

16

Servers Public Keys

Scanners
→ nmap
→ zmap
→ masscan

Databases
→ Shodan
→ Censys
→ Fofa.info

Usernames

Defaults
→ root
→ ec2−user
→ ubuntu

Specific
→ Public key

“comments”
→ Common handles
→ Email prefixes

A list of IP addresses or
hostnames running SSH.

A list of public keys possibly
linked to the target.

A list of usernames likely
used by the target.

BadKeys

SSH public key identity primitives

17

Which servers a key can access
→ Test every server and every likely

user for acceptance
→ Fast for a small number of keys

Which keys can access a server
→ Brute force test a public key

database for every likely user
→ This is slow due to MaxAuthTries

Speeding up public key testing

18

SSH servers implement MaxAuthTries

→ OpenSSH
defaults to 5 &
counts
pubkey tests

→ Not all servers
count pubkey
tests as
failed…

→ This is why
having >4
keys in your
agent breaks

Rapid testing with a single connection

19

10% of all public SSH servers do not rate limit key testing
→ Dropbear is the most common, but many others

GlobalScape EFT Maverick SSHD LANCOM Adtran

BitVise WinSSHD GoAnywhere Arris Crestron

CrushFTPd mod_sftpd Medallia + Many More!

% sshamble scan --checks pubkey-hunt \

--pubkey-hunt-conn-limit 1000000 --pubkey-hunt-file github-2018.keys \

-u root 192.168.68.2

192.168.68.2:22 pubkey-hunt is running with 4673197 test keys

192.168.68.2:22 pubkey-hunt completed 4673190/4673197 keys in 7m37s (10544/s)

192.168.68.2:22 pubkey-hunt accepted hunted half-auth for root with key ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDipNPRHvHknF6WLl7oEPoxxH7k13iKA/14yiWwOwHAUFg+1tl….

dropbear[2921]: Exit before auth from <192.168.68.1:50311>: Exited normally

Testing millions of public keys quickly

20

% wc -l github-2018.keys

 4,673,197 data/github.keys

% nc 192.168.68.2 22

SSH-2.0-dropbear_2022.83

single connection

% sshamble scan --checks pubkey-hunt \

--pubkey-hunt-conn-limit 1000000 --pubkey-hunt-file github-2018.keys \

-u root 192.168.68.2 -p 2222

192.168.68.2:2222 pubkey-hunt is running with 4673197 test keys

192.168.68.2:2222 pubkey-hunt completed 4673190/4673197 keys in 9h50m4s (132/s)

192.168.68.2:2222 pubkey-hunt accepted hunted half-auth for root with key ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDipNPRHvHknF6WLl7oEPoxxH7k13iKA/14yiWwOwHAUFg+1tl….

sshd[6530]: Connection closed by authenticating user root 192.168.68.1 [preauth]

Compare vs OpenSSH MaxAuthLimit=5

21

% wc -l github-2018.keys

 4,673,197 data/github.keys

% nc 192.168.68.2 2222

SSH-2.0-OpenSSH_9.2p1 Debian-2+deb12u3

single connection

22

Shaking Out Shells

A lot of broken SSH on the internet
→ Tons of tarpits & buggy systems
→ ~14 million reach ssh-auth state
→ ~110k resulted in a session

Shaking out the shells

Vestibulum congue

Vestibulum congue

Vestibulum congue

Vestibulum congue

Vestibulum congue

Vestibulum congue

Vestibulum congue

Vestibulum congue

~27,000,000
IPv4 with 22/tcp

~14,000,000
negotiate SSH auth

~110,000
open a

session

What is all this stuff?

Post-session authentication

24

Various products allow none
authentication & then
implement interactive login
in the session.

Dangerous due to the
extensive post-auth attack
surface of SSH.

Post-session capabilities

shell exec

pty-req x11−req

subsystem env

break signal

agent-auth-req window-change

Post-session authentication

25

26

Signal Injection

Signal handling varies by service

27

→ OpenSSH restricts signals to relatively safe options
→ Dropbear allows just about anything, even SEGV
→ Signal-based attacks seem promising

Login:

sshamble> signal SEGV

Aiee, segfault! You should probably report this as a bug to the developer

28

Fun with Forwarding

“remote”“ssh server”“client”

29

SSH connection forwarding

SSH Channel Raw TCP connection

$ ssh -L
1234:remote:80 httpdsshd

Virtual Connection

30

Forwarding in restricted shells

Inadvertent forwarding
in SSH is a common issue

Post-auth login enables
unauthenticated attackers

→ Network devices, virtual machines,
& appliances

→ Can enable other attacks & bypass
restrictions

→ Exposes localhost-bound daemons

→ Not super common, but we found
some anyways

→ Requires testing a few destinations
to evade ACLs

ION Networks Service Access Point

31

32

Shell Injection

Ruckus Wireless AP command injection

33

SSH auth none drops to an interactive login session
→ The password input is passed into a shell without escapes

echo -n "$(echo pa55w0rd 1>&2)" | sha256sum

Fixed in firmware versions v5.2.1 (stable) & 6.2.1 (tech)
→ Trivial root & still ~900 exposed on the internet
→ No CVE, no security mention in the release notes
→ Why did this bug live so long?

Ruckus Wireless AP command injection

34

35

Environment Control

36

Git-based code forges support SSH

→ Services like GitHub, Gitlab, Bitbucket
→ Projects like GOGS, Gitea, Forgejo, Gerrit
→ Libraries like charmbracelet/ssh & Mina

37

Gitlab, Gitea, & Forgejo

→ Environment control limited to GIT_PROTOCOL
→ Git only parses the version parameter
→ Usually safe, but bugs still exist

● Go < 1.19.3 via CVE-2022−41716

GIT_PROTOCOL=version=2:\x00PATH=C:\Users\gitlab\repositories\rob

https://nvd.nist.gov/vuln/detail/CVE-2022-41716

38

GOGS “env” command injection

GOGS was the first Go-based git forge
→ Supports SSH “env”, but gets it terribly wrong

ExecCmd("env", fmt.Sprintf("%s=%s", env.Name, env.Value))

This does nothing, "env" doesn't set the parent env
→ GOGS supports self-registration & env often supports -S
→ Exploit with env
→ No patch available, consider alternatives

* Independently discovered by Sonar Source (reported 2 days before us): CVE-2024−39930

-SA=B touch /tmp/fun

Apache Mina is a Java package for SSH clients & servers

39

SSH libraries & env: Apache Mina

→ Passes "env" variables to
caller with no restrictions

→ Callers (like Gerrit) do limit
the environment

→ JGit & friends don’t spawn
subprocesses

Soft Serve is a feature-full Git forge written in Go
→ Uses charmbracelet/ssh (a gliderlabs/ssh fork)
→ Accepts all environment variables
→ Soft Serve passes these to Git
→ Combination is a remote shell

40

SSH libraries & env: Soft Serve

CVE-2024−41956

Remote Code Execution in Soft Serve

41

42

Broken States

Secure shell uses a strict state engine

43

→ Accepted client message types change as
the connection moves through each state

→ OpenSSH & Dropbear remap the table of
command handlers on each state change

→ Message IDs are clamped to specific
allowed ranges by session state

SSH2_MSG_TRANSPORT_MIN 1
SSH2_MSG_TRANSPORT_MAX 49
SSH2_MSG_USERAUTH_MIN 0
SSH2_MSG_USERAUTH_MAX 79
SSH2_MSG_USERAUTH_PER_METHOD_MIN 60
SSH2_MSG_USERAUTH_PER_METHOD_MAX 79
SSH2_MSG_CONNECTION_MIN 80
SSH2_MSG_CONNECTION_MAX 127
SSH2_MSG_RESERVED_MIN 128
SSH2_MSG_RESERVED_MAX 191
SSH2_MSG_LOCAL_MIN 192
SSH2_MSG_LOCAL_MAX 255
SSH2_MSG_MIN 1
SSH2_MSG_MAX 255

State transitions gone wrong (historic)

44

CVE-2018−10933

A bug in libssh where
the server trusted
a client-sent
USERAUTH_SUCCESS
message.

Metasploit support!

State transitions gone wrong (new)

45

What happens if we ask for
a session at every possible
state transition?

Free shells!

Product Impact Details

Digi TransPort WR Gateways Remote CLI as
SUPER

Authentication bypass due to uninitialized variable. Updates
available for WR11, WR21, WR31, WR44R, WR44RR included in
version 8.6.0.4. The Digi International product security team
was great to work with (via Bugcrowd).

Realtek ADSL Routers Remote CLI
access as admin

Authentication bypass via skipping ssh-userauth.
White-labeled by Netis, Neterbit, and many other vendors.
Observed in firmware as recent as 2023.

Panasonic Ethernet Switches Remote CLI
access as admin

Authentication bypass via skipping auth “none” after the
ssh-userauth sequence. Models include PN28080K,
PN28240i, and likely others.

State transition vulnerabilities

46

Neterbit NSL-224 authentication bypass

47

Digi TransPort authentication bypass

48

49

OpenSSH Fragmentation

OpenSSH divergence by platform

50

Name Divergence Notes

Apple macOS Light
Changes are limited to macOS compatibility, support for the
Keychain, the macOS PKCS helper, & endpoint event logging
support.

Debian/Ubuntu
Linux Moderate Systemd support & much more (36+ patches)

Red Hat Linux Moderate Systemd support & much more (~60 patches)

PKI-X SSH Major
Forked in 2002 for X509 support, commonly found in
networking gear and FIPS-compliant network appliances.
Generally follows OpenSSH changes, but not exactly.

Microsoft
Windows Extreme

Over 350 files changed. Replaces fork with subprocesses,
removes chroot support & log sanitization. Logs to Windows
Events. Sends telemetry containing SSH-encrypted values.
Password authentication uses Lsa* functions. Still hasn't
fixed Terrapin. Not affected by regreSSHion.

OpenSSH for Windows

51

OpenSSH for Windows Telemetry

52

→ OpenSSH for Windows sends detailed usage data to Microsoft
→ Client and server versions, kex init parameters, auth methods

void send_ssh_version_telemetry (const char* ssh_version,

 const char* peer_version, const char* remote_protocol_error)

{

 TraceLoggingRegister (g_hProvider1);

 TraceLoggingWrite (

 g_hProvider1,

 "Startup",

 TelemetryPrivacyDataTag (PDT_ProductAndServiceUsage),

 TraceLoggingKeyword (MICROSOFT_KEYWORD_MEASURES),

 TraceLoggingString (ssh_version, "ourVersion"),

 TraceLoggingString (remote_protocol_error , "remoteProtocolError"),

 TraceLoggingString (peer_version, "peerVersion")

);

 TraceLoggingUnregister (g_hProvider1);

}

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c

53

A solid bit of code from DJM
→ Timing-safe
→ Efficient
→ Secure

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
#ifdef WINDOWS
 if (*p1 == '\r' && *(p1 + 1) == '\n' && *p2 == '\n')
 p1++;
#endif // WINDOWS
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c for Windows

54

int timingsafe_bcmp(const void *b1, const void *b2, size_t n) {
 const unsigned char *p1 = b1, *p2 = b2;
 int ret = 0;
 for (; n > 0; n--) {
#ifdef WINDOWS
 if (*p1 == '\r' && *(p1 + 1) == '\n' && *p2 == '\n')
 p1++;
#endif // WINDOWS
 ret |= *p1++ ^ *p2++;
 }
 return (ret != 0);
}

compat/timingsafe_bcmp.c for Windows

55

Two lines, but so many bugs!
→ Not timing-safe
→ 1−byte OOB per \r
→ Unequal byte match

A critical function within OpenSSH

56

→ MAC check on every SSH packet
→ RSA signature verification
→ SSH certificate comparison
→ X11 cookie comparison
→ chachapoly_crypt() MAC

→ SSHFP DNS record checks
→ SSH agent validation
→ WebAuthn SK checks
→ SSH keygen verification
→ ..and much more!

One of the most sensitive functions, but what can we do with it?
→ Attacker has limited influence on the first argument
→ Requires brute force to trigger in the MAC check
→ Not obviously exploitable :(

57

https://azure.microsoft.com/en-us/products/devops/server

Microsoft Security Response Center

58

Thank you again for submitting this issue to Microsoft. Although your
report is valid, currently, MSRC prioritizes vulnerabilities that are assessed
as “Important” or “Critical” severities for immediate servicing. After
careful investigation, this case does not meet MSRC’s current bar for
immediate servicing because currently it appears to be theoretical due to
no control over the first argument to the function & would require a brute
force style attack to obtain a single byte of data. If you can prove remote
reachability or the ability to leak information remotely, then please submit
a new report & we are happy to investigate this further!

“

”

59

SSHamble

60

→ A research tool for SSH implementations
→ Interesting attacks against authentication
→ Post-session authentication attacks
→ Pre-authentication state transitions
→ Post-session enumeration
→ Easy timing analysis

https://SSHamble.com

61

bypass
auth=none skip=auth auth=success

method=null method=empty skip=pubkey-any

publickey
pubkey-any pubkey-any-half user-key

half-auth-limit pubkey-hunt —

password
pass-any pass-empty pass-null

pass-user pass-change-empty pass-change-null

keyboard
kbd-any kbd-empty kbd-null

kbd-user — —

gss-api gss-any — —

userenum timing-none timing-pass timing-pubkey

vulns
vuln-tcp-forward vuln-generic-env vuln-softserve-env

vuln-gogs-env vuln-ruckus-password-escape —

Built-in checks

Start a network scan
$ sshamble scan -o results.json 192.168.0.0/24

Analyze the results
$ sshamble analyze -o output results.json

Specify ports, usernames, passwords, public keys, private keys, and more
$ sshamble scan -o results.json 192.168.0.0/24 \

--users root,admin,4DGift,jenkins \
–-password-file copilot.txt \
-p 22,2222 \
--pubkey-hunt-file admin-keys.pub \

Open an interactive shell for sessions
$ sshamble scan -o results.json 192.168.0.0/24 \

–-interact first --interact-auto “pty,env LD_DEBUG=all,shell”

Getting started

62

Enter the sshamble shell with `^E`. Commands:

 exit - Exit the session (aliases 'quit' or '.')
 help - Show this help text (alias '?')
 env a=1 b=2 - Set the specified environment variables (-w for wait mode)
 pty - Request a pty on the remote session (-w for wait mode)
 shell - Request the default shell on the session
 exec cmd arg1 arg2 - Request non-interactive command on the session
 signal sig1 sig2 - Send one or more signals to the subprocess
 tcp host port - Make a test connection to a TCP host & port
 unix path - Make a test connection to a Unix stream socket
 break milliseconds - Send a 'break' request to the service
 req cmd arg1 arg2 - Send a custom SSH request to the service
 sub subsystem - Request a specific subsystem
 send string - Send string to the session
 sendb string - Send string to the session one byte at a time

sshamble>

63

The interactive shell

64

Happy scanning!

Product Impact

Ruckus Wireless APs Unauthenticated root command execution

Digi TransPort Gateways Unauthenticated remote CLI access as SUPER

Panasonic Ethernet Switches Unauthenticated remote CLI access as admin

Realtek ADSL Gateways Unauthenticated remote CLI access as admin

Soft Serve Authenticated remote code execution

GOGS Authenticated remote command execution

OpenSSH for Windows Unauthenticated OOB memory leak / comparison bug

ION Networks Service Access Point Unauthenticated TCP forwarding

Multiple Products Unlimited public key testing

Vulnerabilities

65

Thank you.
HD MOORE | ROB KING | AUGUST 9, 2024

research@runZero.com SSHamble.comrunZero.com

References

67

→ https://boehs.org/node/everything-i-know-about-the-xz-backdoor

→ https://github.com/ssh-mitm/ssh-mitm

→ https://ssh-comparison.quendi.de/comparison/hostkey.html

→ https://words.filippo.io/ssh-whoami-filippo-io/

→ https://github.com/badkeys/badkeys

→ Metasploit: ssh_identify_pubkeys (2012)

→ regreSSHion: https://www.qualys.com/2024/07/01/cve-2024−6387/regresshion.txt

→ Terrapin: https://terrapin-attack.com/

→ https://labs.watchtowr.com/auth-bypass-in-un-limited-scenarios-progress-moveit-transfer-cve-2024−5806/

→ http://thetarpit.org/2018/shithub-2018−06

→ https://helda.helsinki.fi/server/api/core/bitstreams/471f0ffe-2626−4d12−8725−2147232d849f/content

→ https://github.blog/2023−03−23−we-updated-our-rsa-ssh-host-key/

→ Kannisto, J., Harju, J. (2017). The Time Will Tell on You: Exploring Information Leaks in SSH Public Key Authentication. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds)
Network and System Security. NSS 2017. Lecture Notes in Computer Science(), vol 10394. Springer, Cham. https://doi.org/10.1007/978−3−319−64701−2_22

→ West, J.C., Moore, T. (2022). Longitudinal Study of Internet-Facing OpenSSH Update Patterns. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active
Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210. Springer, Cham. https://doi.org/10.1007/978−3−030−98785−5_30

→ Neef, S. (2022). Source & result datasets for "Oh SSH-it, what's my fingerprint? A Large-Scale Analysis of SSH Host Key Fingerprint Verification Records in the DNS" [Data
set]. Zenodo. https://doi.org/10.5281/zenodo.6993096

