
1995 Broadway, 17th Floor
New York, NY 10023–5882
tel +1–212–580–0800
fax +1–212–580–0898
www.softwarefreedom.org

Killed by Code:
Software Transparency in Implantable Medical Devices

Karen Sandler
Lysandra Ohrstrom

Laura Moy
Robert McVay

July 21, 2010

Copyright c© 2010, Software Freedom Law Center. Verbatim copying of this document is permitted in any
medium; this notice must be preserved on all copies.†

I Abstract

Software is an integral component of a range of devices that perform critical, lifesaving functions and basic
daily tasks. As patients grow more reliant on computerized devices, the dependability of software is a life-
or-death issue. The need to address software vulnerability is especially pressing for Implantable Medical
Devices (IMDs), which are commonly used by millions of patients to treat chronic heart conditions, epilepsy,
diabetes, obesity, and even depression.

The software on these devices performs life-sustaining functions such as cardiac pacing and defibrillation,
drug delivery, and insulin administration. It is also responsible for monitoring, recording and storing private
patient information, communicating wirelessly with other computers, and responding to changes in doctors’
orders.

The Food and Drug Administration (FDA) is responsible for evaluating the risks of new devices and moni-
toring the safety and efficacy of those currently on market. However, the agency is unlikely to scrutinize the
software operating on devices during any phase of the regulatory process unless a model that has already
been surgically implanted repeatedly malfunctions or is recalled.

The FDA has issued 23 recalls of defective devices during the first half of 2010, all of which are categorized
as “Class I,” meaning there is “reasonable probability that use of these products will cause serious adverse
health consequences or death.” At least six of the recalls were likely caused by software defects.1 Physio-
Control, Inc., a wholly owned subsidiary of Medtronic and the manufacturer of one defibrillator that was
probably recalled due to software-related failures, admitted in a press release that it had received reports of

†Matt Gelfand, Ke Zhou, and Dominik Slusarczyk also provided valuable research assistance for this paper.

1

http://www.softwarefreedom.org

similar failures from patients “over the eight year life of the product,” including one “unconfirmed adverse
patient event.”2

Despite the crucial importance of these devices and the absence of comprehensive federal oversight, medical
device software is considered the exclusive property of its manufacturers, meaning neither patients nor their
doctors are permitted to access their IMD’s source code or test its security.3

In 2008, the Supreme Court of the United States’ ruling in Riegel v. Medtronic, Inc. made people with
IMDs even more vulnerable to negligence on the part of device manufacturers.4 Following a wave of high-
profile recalls of defective IMDs in 2005, the Court’s decision prohibited patients harmed by defects in
FDA-approved devices from seeking damages against manufacturers in state court and eliminated the only
consumer safeguard protecting patients from potentially fatal IMD malfunctions: product liability lawsuits.
Prevented from recovering compensation from IMD-manufacturers for injuries, lost wages, or health expenses
in the wake of device failures, people with chronic medical conditions are now faced with a stark choice: trust
manufacturers entirely or risk their lives by opting against life-saving treatment.

We at the Software Freedom Law Center (SFLC) propose an unexplored solution to the software liability
issues that are increasingly pressing as the population of IMD-users grows--requiring medical device manu-
facturers to make IMD source-code publicly auditable. As a non-profit legal services organization for Free
and Open Source (FOSS) software developers, part of the SFLC’s mission is to promote the use of open,
auditable source code5 in all computerized technology. This paper demonstrates why increased transparency
in the field of medical device software is in the public’s interest. It unifies various research into the privacy
and security risks of medical device software and the benefits of published systems over closed, proprietary
alternatives. Our intention is to demonstrate that auditable medical device software would mitigate the
privacy and security risks in IMDs by reducing the occurrence of source code bugs and the potential for
malicious device hacking in the long-term. Although there is no way to eliminate software vulnerabilities
entirely, this paper demonstrates that free and open source medical device software would improve the safety
of patients with IMDs, increase the accountability of device manufacturers, and address some of the legal
and regulatory constraints of the current regime.

We focus specifically on the security and privacy risks of implantable medical devices, specifically pacemakers
and implantable cardioverter defibrillators, but they are a microcosm of the wider software liability issues
which must be addressed as we become more dependent on embedded systems and devices. The broader
objective of our research is to debunk the “security through obscurity” misconception by showing that
vulnerabilities are spotted and fixed faster in FOSS programs compared to proprietary alternatives. The
argument for public access to source code of IMDs can, and should be, extended to all the software people
interact with everyday. The well-documented recent incidents of software malfunctions in voting booths, cars,
commercial airlines, and financial markets are just the beginning of a problem that can only be addressed
by requiring the use of open, auditable source code in safety-critical computerized devices.6

In section one, we give an overview of research related to potentially fatal software vulnerabilities in IMDs
and cases of confirmed device failures linked to source code vulnerabilities. In section two, we summarize
research on the security benefits of FOSS compared to closed-source, proprietary programs. In section three,
we assess the technical and legal limitations of the existing medical device review process and evaluate the
FDA’s capacity to assess software security. We conclude with our recommendations on how to promote the
use of FOSS in IMDs. The research suggests that the occurrence of privacy and security breaches linked to
software vulnerabilities is likely to increase in the future as embedded devices become more common.

2

II Software Vulnerabilities in IMDs

A variety of wirelessly reprogrammable IMDs are surgically implanted directly into the body to detect and
treat chronic health conditions. For example, an implantable cardioverter defibrillator, roughly the size of
a small mobile phone, connects to a patient’s heart, monitors rhythm, and delivers an electric shock when
it detects abnormal patterns. Once an IMD has been implanted, health care practitioners extract data,
such as electrocardiogram readings, and modify device settings remotely, without invasive surgery. New
generation ICDs can be contacted and reprogrammed via wireless radio signals using an external device
called a “programmer.”

In 2008, approximately 350,000 pacemakers and 140,000 ICDs were implanted in the United States, according
to a forecast on the implantable medical device market published earlier this year.7 Nation-wide demand for
all IMDs is projected to increase 8.3 percent annually to $48 billion by 2014, the report says, as “improvements
in safety and performance properties . . . enable ICDs to recapture growth opportunities lost over the past
year to product recall.”8 Cardiac implants in the U.S. will increase 7.3 percent annually, the article predicts,
to $16.7 billion in 2014, and pacing devices will remain the top-selling group in this category.9

Though the surge in IMD treatment over the past decade has had undeniable health benefits, device failures
have also had fatal consequences. From 1997 to 2003, an estimated 400,000 to 450,000 ICDs were implanted
world-wide and the majority of the procedures took place in the United States. At least 212 deaths from
device failures in five different brands of ICD occurred during this period, according to a study of the adverse
events reported to the FDA conducted by cardiologists from the Minneapolis Heart Institute Foundation.10

Research indicates that as IMD usage grows, the frequency of potentially fatal software glitches, acciden-
tal device malfunctions, and the possibility of malicious attacks will grow. While there has yet to be a
documented incident in which the source code of a medical device was breached for malicious purposes, a
2008-study led by software engineer and security expert Kevin Fu proved that it is possible to interfere with
an ICD that had passed the FDA’s premarket approval process and been implanted in hundreds of thousands
of patients. A team of researchers from three universities partially reverse-engineered the communications
protocol of a 2003-model ICD and launched several radio-based software attacks from a short distance. Using
low-cost, commercially available equipment to bypass the device programmer, the researchers were able to
extract private data stored inside the ICD such as patients’ vital signs and medical history; “eavesdrop” on
wireless communication with the device programmer; reprogram the therapy settings that detect and treat
abnormal heart rhythms; and keep the device in “awake” mode in order to deplete its battery, which can
only be replaced with invasive surgery.

In one experimental attack conducted in the study, researchers were able to first disable the ICD to prevent
it from delivering a life-saving shock and then direct the same device to deliver multiple shocks averaging
137.7 volts that would induce ventricular fibrillation in a patient. The study concluded that there were
no “technological mechanisms in place to ensure that programmers can only be operated by authorized
personnel.” Fu’s findings show that almost anyone could use store-bought tools to build a device that could
“be easily miniaturized to the size of an iPhone and carried through a crowded mall or subway, sending its
heart-attack command to random victims.”11

The vulnerabilities Fu’s lab exploited are the result of the very same features that enable the ICD to save lives.
The model breached in the experiment was designed to immediately respond to reprogramming instructions
from health-care practitioners, but is not equipped to distinguish whether treatment requests originate from
a doctor or an adversary. An earlier paper co-authored by Fu proposed a solution to the communication-
security paradox. The paper recommends the development of a wearable “cloaker” for IMD-patients that
would prevent anyone but pre-specified, authorized commercial programmers to interact with the device. In
an emergency situation, a doctor with a previously unauthorized commercial programmer would be able to
enable emergency access to the IMD by physically removing the cloaker from the patient.12

3

Though the adversarial conditions demonstrated in Fu’s studies were hypothetical, two early incidents of
malicious hacking underscore the need to address the threat software liabilities pose to the security of IMDs.
In November 2007, a group of attackers infiltrated the Coping with Epilepsy website and planted flashing
computer animations that triggered migraine headaches and seizures in photosensitive site visitors.13 A year
later, malicious hackers mounted a similar attack on the Epilepsy Foundation website.14

Ample evidence of software vulnerabilities in other common IMD treatments also indicates that the worst-case
scenario envisioned by Fu’s research is not unfounded. From 1983 to 1997 there were 2,792 quality problems
that resulted in recalls of medical devices, 383 of which were related to computer software, according to a
2001 study analyzing FDA reports of the medical devices that were voluntarily recalled by manufacturers
over a 15-year period.15 Cardiology devices accounted for 21 percent of the IMDs that were recalled. Authors
Dolores R. Wallace and D. Richard Kuhn discovered that 98 percent of the software failures they analyzed
would have been detected through basic scientific testing methods. While none of the failures they researched
caused serious personal injury or death, the paper notes that there was not enough information to determine
the potential health consequences had the IMDs remained in service.

Nearly 30 percent of the software-related recalls investigated in the report occurred between 1994 and 1996.
“One possibility for this higher percentage in later years may be the rapid increase of software in medical
devices. The amount of software in general consumer products is doubling every two to three years,” the
report said.

As more individual IMDs are designed to automatically communicate wirelessly with physician’s offices,
hospitals, and manufacturers, routine tasks like reprogramming, data extraction, and software updates may
spur even more accidental software glitches that could compromise the security of IMDs.

The FDA launched an “Infusion Pump Improvement Initiative” in April 2010, after receiving thousands
of reports of problems associated with the use of infusion pumps that deliver fluids such as insulin and
chemotherapy medication to patients electronically and mechanically.16 Between 2005 and 2009, the FDA
received approximately 56,000 reports of adverse events related to infusion pumps, including numerous cases
of injury and death. The agency analyzed the reports it received during the period in a white paper published
in the spring of 2010 and found that the most common types of problems reported were associated with
software defects or malfunctions, user interface issues, and mechanical or electrical failures. (The FDA said
most of the pumps covered in the report are operated by a trained user, who programs the rate and duration
of fluid delivery through a built-in software interface). During the period, 87 infusion pumps were recalled
due to safety concerns, 14 of which were characterized as “Class I” – situations in which there is a reasonable
probability that use of the recalled device will cause serious adverse health consequences or death. Software
defects lead to over-and-under infusion and caused pre-programmed alarms on pumps to fail in emergencies
or activate in absence of a problem. In one instance a “key bounce” caused an infusion pump to occasionally
register one keystroke (e.g., a single zero, “0”) as multiple keystrokes (e.g., a double zero, “00”), causing an
inappropriate dosage to be delivered to a patient. Though the report does not apply to implantable infusion
pumps, it demonstrates the prevalence of software-related malfunctions in medical device software and the
flexibility of the FDA’s pre-market approval process.

In order to facilitate the early detection and correction of any design defects, the FDA has begun offering
manufacturers “the option of submitting the software code used in their infusion pumps for analysis by
agency experts prior to premarket review of new or modified devices.” It is also working with third-party
researchers to develop “an open-source software safety model and reference specifications that infusion pump
manufacturers can use or adapt to verify the software in their devices.”

Though the voluntary initiative appears to be an endorsement of the safety benefits of FOSS and a step in
the right direction, it does not address the overall problem of software insecurity since it is not mandatory.

4

III Why Free Software is More Secure

“Continuous and broad peer-review, enabled by publicly available source code, improves software reliability
and security through the identification and elimination of defects that might otherwise go unrecognized by
the core development team. Conversely, where source code is hidden from the public, attackers can attack the
software anyway Hiding source code does inhibit the ability of third parties to respond to vulnerabilities
(because changing software is more difficult without the source code), but this is obviously not a security
advantage. In general, ‘Security by Obscurity’ is widely denigrated.” — Department of Defense (DoD)
FAQ’s response to question: “Doesn’t Hiding Source Code Automatically Make Software More Secure?”17

The DoD indicates that FOSS has been central to its Information Technology (IT) operations since the mid-
1990’s, and, according to some estimates, one-third to one-half of the software currently used by the agency is
open source.18 The U.S. Office of Management and Budget issued a memorandum in 2004, which recommends
that all federal agencies use the same procurement procedures for FOSS as they would for proprietary
software.19 Other public sector agencies, such as the U.S. Navy, the Federal Aviation Administration, the
U.S. Census Bureau and the U.S. Patent and Trademark Office have been identified as recognizing the
security benefits of publicly auditable source code.20

To understand why free and open source software has become a common component in the IT systems of
so many businesses and organizations that perform life-critical or mission-critical functions, one must first
accept that software bugs are a fact of life. The Software Engineering Institute estimates that an experienced
software engineer produces approximately one defect for every 100 lines of code.21 Based on this estimate,
even if most of the bugs in a modest, one million-line code base are fixed over the course of a typical program
life cycle, approximately 1,000 bugs would remain.

In its first “State of Software Security” report released in March 2010, the private software security analysis
firm Veracode reviewed the source code of 1,591 software applications voluntarily submitted by commercial
vendors, businesses, and government agencies.22 Regardless of program origins, Veracode found that 58
percent of all software submitted for review did not meet the security assessment criteria the report estab-
lished.23 Based on its findings, Veracode concluded that “most software is indeed very insecure . . . [and]
more than half of the software deployed in enterprises today is potentially susceptible to an application layer
attack similar to that used in the recent . . . Google security breaches.”24

Though open source applications had almost as many source code vulnerabilities upon first submission as
proprietary programs, researchers found that they contained fewer potential backdoors than commercial or
outsourced software and that open source project teams remediated security vulnerabilities within an average
of 36 days of the first submission, compared to 48 days for internally developed applications and 82 days for
commercial applications.25 Not only were bugs patched the fastest in open source programs, but the quality
of remediation was also higher than commercial programs.26

Veracode’s study confirms the research and anecdotal evidence into the security benefits of open source
software published over the past decade. According to the web-security analysis site SecurityPortal, vulner-
abilities took an average of 11.2 days to be spotted in Red Hat/Linux systems with a standard deviation of
17.5 compared to an average of 16.1 days with a standard deviation of 27.7 in Microsoft programs.27

Sun Microsystems’ COO Bill Vass summed up the most common case for FOSS in a blog post published
in April 2009: “By making the code open source, nothing can be hidden in the code,” Vass wrote. “If the
Trojan Horse was made of glass, would the Trojans have rolled it into their city? NO.”28

Vass’ logic is backed up by numerous research papers and academic studies that have debunked the myth of
security through obscurity and advanced the “more eyes, fewer bugs” thesis. Though it might seem counter-
intuitive, making source code publicly available for users, security analysts, and even potential adversaries
does not make systems more vulnerable to attack in the long-run. To the contrary, keeping source code

5

under lock-and-key is more likely to hamstring “defenders” by preventing them from finding and patching
bugs that could be exploited by potential attackers to gain entry into a given code base, whether or not
access is restricted by the supplier.29 “In a world of rapid communications among attackers where exploits
are spread on the Internet, a vulnerability known to one attacker is rapidly learned by others,” reads a 2006
article comparing open source and proprietary software use in government systems.30 “For Open Source,
the next assumption is that disclosure of a flaw will prompt other programmers to improve the design of
defenses. In addition, disclosure will prompt many third parties — all of those using the software or the
system — to install patches or otherwise protect themselves against the newly announced vulnerability. In
sum, disclosure does not help attackers much but is highly valuable to the defenders who create new code
and install it.”

Academia and internet security professionals appear to have reached a consensus that open, auditable source
code gives users the ability to independently assess the exposure of a system and the risks associated with
using it; enables bugs to be patched more easily and quickly; and removes dependence on a single party,
forcing software suppliers and developers to spend more effort on the quality of their code, as authors
Jaap-Henk Hoepman and Bart Jacobs also conclude in their 2007 article, Increased Security Through Open
Source.31

By contrast, vulnerabilities often go unnoticed, unannounced, and unfixed in closed source programs because
the vendor, rather than users who have a higher stake in maintaining the quality of software, is the only
party allowed to evaluate the security of the code base.32 Some studies have argued that commercial software
suppliers have less of an incentive to fix defects after a program is initially released so users do not become
aware of vulnerabilities until after they have caused a problem. “Once the initial version of [a proprietary
software product] has saturated its market, the producer’s interest tends to shift to generating upgrades
. . . Security is difficult to market in this process because, although features are visible, security functions
tend to be invisible during normal operations and only visible when security trouble occurs.”33

The consequences of manufacturers’ failure to disclose malfunctions to patients and physicians have proven
fatal in the past. In 2005, a 21-year-old man died from cardiac arrest after the ICD he wore short-circuited
and failed to deliver a life-saving shock. The fatal incident prompted Guidant, the manufacturer of the
flawed ICD, to recall four different device models they sold. In total 70,000 Guidant ICDs were recalled in
one of the biggest regulatory actions of the past 25 years.34

Guidant came under intense public scrutiny when the patient’s physician Dr. Robert Hauser discovered that
the company first observed the flaw that caused his patient’s device to malfunction in 2002, and even went so
far as to implement manufacturing changes to correct it, but failed to disclose it to the public or health-care
industry.

The body of research analyzed for this paper points to the same conclusion: security is not achieved through
obscurity and closed source programs force users to forfeit their ability to evaluate and improve a system’s
security. Though there is lingering debate over the degree to which end-users contribute to the maintenance
of FOSS programs and how to ensure the quality of the patches submitted, most of the evidence supports
our paper’s central assumption that auditable, peer-reviewed software is comparatively more secure than
proprietary programs.

Programs have different standards to ensure the quality of the patches submitted to open source programs,
but even the most open, transparent systems have established methods of quality control. Well-established
open source software, such as the kind favored by the DoD and the other agencies mentioned above, cannot
be infiltrated by “just anyone.” To protect the code base from potential adversaries and malicious patch
submissions, large open source systems have a “trusted repository” that only certain, “trusted,” developers
can directly modify. As an additional safeguard, the source code is publicly released, meaning not only are
there more people policing it for defects, but more copies of each version of the software exist making it
easier to compare new code.

6

IV The FDA Review Process and Legal Obstacles to Device Man-
ufacturer Accountability

“Implanted medical devices have enriched and extended the lives of countless people, but device malfunctions
and software glitches have become modern ‘diseases’ that will continue to occur. The failure of manufacturers
and the FDA to provide the public with timely, critical information about device performance, malfunctions,
and ’fixes’ enables potentially defective devices to reach unwary consumers.” — Capitol Hill Hearing Testi-
mony of William H. Maisel, Director of Beth Israel Deaconess Medical Center, May 12, 2009.

The FDA’s Center for Devices and Radiological Health (CDRH) is responsible for regulating medical devices,
but since the Medical Device Modernization Act (MDMA) was passed in 1997 the agency has increasingly
ceded control over the pre-market evaluation and post-market surveillance of IMDs to their manufacturers.35

While the agency has been making strides towards the MDMA’s stated objective of streamlining the device
approval process, the expedient regulatory process appears to have come at the expense of the CDRH’s
broader mandate to “protect the public health in the fields of medical devices” by developing and imple-
menting programs “intended to assure the safety, effectiveness, and proper labeling of medical devices.”36

Since the MDMA was passed, the FDA has largely deferred these responsibilities to the companies that
sell these devices.37 The legislation effectively allowed the businesses selling critical devices to establish
their own set of pre-market safety evaluation standards and determine the testing conducted during the
review process. Manufacturers also maintain a large degree of discretion over post-market IMD surveillance.
Though IMD-manufacturers are obligated to inform the FDA if they alert physicians to a product defect or
if the device is recalled, they determine whether a particular defect constitutes a public safety risk.

“Manufacturers should use good judgment when developing their quality system and apply those sections
of the QS regulation that are applicable to their specific products and operations,” reads section 21 of
Quality Standards regulation outlined on the FDA’s website. “Operating within this flexibility, it is the
responsibility of each manufacturer to establish requirements for each type or family of devices that will
result in devices that are safe and effective, and to establish methods and procedures to design, produce,
distribute, etc. devices that meet the quality system requirements. The responsibility for meeting these
requirements and for having objective evidence of meeting these requirements may not be delegated even
though the actual work may be delegated.”

By implementing guidelines such as these, the FDA has refocused regulation from developing and imple-
menting programs in the field of medical devices that protect the public health to auditing manufacturers’
compliance with their own standards.

“To the FDA, you are the experts in your device and your quality programs,” Jeff Geisler wrote in a 2010
book chapter, Software for Medical Systems.38 “Writing down the procedures is necessary — it is assumed
that you know best what the procedures should be — but it is essential that you comply with your written
procedures.”

The elastic regulatory standards are a product of the 1976 amendment to the Food, Drug, and Cosmetics
Act.39The Amendment established three different device classes and outlined broad pre-market requirements
that each category of IMD must meet depending on the risk it poses to a patient. Class I devices, whose
failure would have no adverse health consequences, are not subject to a pre-market approval process. Class
III devices that “support or sustain human life, are of substantial importance in preventing impairment of
human health, or which present a potential, unreasonable risk of illness or injury,” such as IMDs, are subject
to the most stringent FDA review process, Premarket Approval (PMA).40

By the FDA’s own admission, the original legislation did not account for technological complexity of IMDs,
but neither has subsequent regulation.41

7

In 2002, an amendment to the MDMA was passed that was intended to help the FDA “focus its limited
inspection resources on higher-risk inspections and give medical device firms that operate in global markets
an opportunity to more efficiently schedule multiple inspections,” the agency’s website reads.42

The legislation further eroded the CDRH’s control over pre-market approval data, along with the FDA’s
capacity to respond to rapid changes in medical treatment and the introduction of increasingly complex
devices for a broader range of diseases. The new provisions allowed manufacturers to pay certain FDA-
accredited inspectors to conduct reviews during the PMA process in lieu of government regulators. It
did not outline specific software review procedures for the agency to conduct or precise requirements that
medical device manufacturers must meet before introducing a new product. “The regulation . . . provides
some guidance [on how to ensure the reliability of medical device software],” Joe Bremner wrote of the
FDA’s guidance on software validation.43 “Written in broad terms, it can apply to all medical device
manufacturers. However, while it identifies problems to be solved or an end point to be achieved, it does
not specify how to do so to meet the intent of the regulatory requirement.”

The death of 21-year-old Joshua Oukrop in 2005 due to the failure of a Guidant device has increased calls for
regulatory reform at the FDA.44 In a paper published shortly after Oukrop’s death, his physician, Dr. Hauser
concluded that the FDA’s post-market ICD device surveillance system is broken.45

After returning the failed Prizm 2 DR pacemaker to Guidant, Dr. Hauser learned that the company had
known the model was prone to the same defect that killed Oukrop for at least three years. Since 2002, Guidant
received 25 different reports of failures in the Prizm model, three of which required rescue defibrillation.
Though the company was sufficiently concerned about the problem to make manufacturing changes, Guidant
continued to sell earlier models and failed to make patients and physicians aware that the Prizm was prone
to electronic defects. They claimed that disclosing the defect was inadvisable because the risk of infection
during de-implantation surgery posed a greater threat to public safety than device failure. “Guidant’s
statistical argument ignored the basic tenet that patients have a fundamental right to be fully informed when
they are exposed to the risk of death no matter how low that risk may be perceived,” Dr. Hauser argued.
“Furthermore, by withholding vital information, Guidant had in effect assumed the primary role of managing
high-risk patients, a responsibility that belongs to physicians. The prognosis of our young, otherwise healthy
patient for a long, productive life was favorable if sudden death could have been prevented.”

The FDA was also guilty of violating the principle of informed consent. In 2004, Guidant had reported
two different adverse events to the FDA that described the same defect in the Prizm 2 DR models, but the
agency also withheld the information from the public. “The present experience suggests that the FDA is
currently unable to satisfy its legal responsibility to monitor the safety of market released medical devices
like the Prizm 2 DR,” he wrote, referring to the device whose failure resulted in his patient’s death. “The
explanation for the FDA’s inaction is unknown, but it may be that the agency was not prepared for the
extraordinary upsurge in ICD technology and the extraordinary growth in the number of implantations that
has occurred in the past five years.”

While the Guidant recalls prompted increased scrutiny on the FDA’s medical device review process, it
remains difficult to gauge the precise process of regulating IMD software or the public health risk posed
by source code bugs since neither doctors, nor IMD users, are permitted to access it. Nonetheless, the
information that does exist suggests that the pre-market approval process alone is not a sufficient consumer
safeguard since medical devices are less likely than drugs to have demonstrated clinical safety before they
are marketed.46

An article published in the Journal of the American Medical Association (JAMA) studied the safety and
effectiveness data in every PMA application the FDA reviewed from January 2000 to December 2007 and
concluded that “premarket approval of cardiovascular devices by the FDA is often based on studies that lack
strength and may be prone to bias.”47 Of the 78 high-risk device approvals analyzed in the paper, 51 were
based on a single study.48

8

The JAMA study noted that the need to address the inadequacies of the FDA’s device regulation process
has become particularly urgent since the Supreme Court changed the landscape of medical liability law with
its ruling in Riegel v. Medtronic in February 2008. The Court held that the plaintiff Charles Riegel could
not seek damages in state court from the manufacturer of a catheter that exploded in his leg during an
angioplasty. “Riegel v. Medtronic means that FDA approval of a device preempts consumers from suing
because of problems with the safety or effectiveness of the device, making this approval a vital consumer
protection safeguard.”49

Since the FDA is a federal agency, its authority supersedes state law. Based on the concept of preemption,
the Supreme Court held that damages actions permitted under state tort law could not be filed against
device manufacturers deemed to be in compliance with the FDA, even in the event of gross negligence. The
decision eroded one of the last legal recourses to protect consumers and hold IMD manufacturers accountable
for catastrophic, failure of an IMD. Not only are the millions of people who rely on IMD’s for their most
life-sustaining bodily functions more vulnerable to software malfunctions than ever before, but they have
little choice but to trust its manufacturers.

“It is clear that medical device manufacturers have responsibilities that extend far beyond FDA approval and
that many companies have failed to meet their obligations,” William H. Maisel said in recent congressional
testimony on the Medical Device Reform bill.50 “Yet, the U.S. Supreme Court ruled in their February 2008
decision, Riegel v. Medtronic, that manufacturers could not be sued under state law by patients harmed
by product defects from FDA-approved medical devices [C]onsumers are unable to seek compensation
from manufacturers for their injuries, lost wages, or health expenses. Most importantly, the Riegel decision
eliminates an important consumer safeguard — the threat of manufacturer liability — and will lead to less
safe medical devices and an increased number of patient injuries.”

In light of our research and the existing legal and regulatory limitations that prevent IMD users from holding
medical device manufacturers accountable for critical software vulnerabilities, auditable source code is critical
to minimize the harm caused by inevitable medical device software bugs.

V Conclusion

The Supreme Court’s decision in favor of Medtronic in 2008, increasingly flexible regulation of medical device
software on the part of the FDA, and a spike in the level and scope of IMD usage over the past decade suggest
a software liability nightmare on the horizon. We urge the FDA to introduce more stringent, mandatory
standards to protect IMD-wearers from the potential adverse consequences of software malfunctions discussed
in this paper. Specifically, we call on the FDA to require manufacturers of life-critical IMDs to publish the
source code of medical device software so the public and regulators can examine and evaluate it. At the very
least, we urge the FDA to establish a repository of medical device software running on implanted IMDs in
order to ensure continued access to source code in the event of a catastrophic failure, such as the bankruptcy
of a device manufacturer. While we hope regulators will require that the software of all medical devices,
regardless of risk, be auditable, it is particularly urgent that these standards be included in the pre-market
approval process of Class III IMDs. We hope this paper will also prompt IMD users, their physicians, and
the public to demand greater transparency in the field of medical device software.

Notes

1Though software defects are never explicitly mentioned as the “Reason for Recall” in the alerts posted on the FDA’s
website, the descriptions of device failures match those associated with souce-code errors. List of Device Recalls, U.S. Food &

9

Drug Admin., http://www.fda.gov/MedicalDevices/Safety/RecallsCorrectionsRemovals/ListofRecalls/default.htm (last visited
Jul. 19, 2010).

2Medtronic recalled its Lifepak 15 Monitor/Defibrillator in March 4, 2010 due to failures that were almost certainly caused
by software defects that caused the device to unexpectedly shut-down and regain power on its own. The company admitted
in a press release that it first learned that the recalled model was prone to defects eight years earlier and had submitted one
“adverse event” report to the FDA. Medtronic, Physio-Control Field Correction to LIFEPAK R© 20/20e Defibrillator/ Monitors,
BusinessWire (Jul. 02, 2010, 9:00 AM), http://www.businesswire.com/news/home/20100702005034/en/Physio-Control-Field-
Correction-LIFEPAK%C2%AE-2020e-Defibrillator-Monitors.html

3Quality Systems Regulation, U.S. Food & Drug Admin., http://www.fda.gov/MedicalDevices/default.htm (follow “Device
Advice: Device Regulation and Guidance” hyperlink; then follow “Postmarket Requirements (Devices)” hyperlink; then follow
“Quality Systems Regulation” hyperlink) (last visited Jul. 2010)

4Riegel v. Medtronic, Inc., 552 U.S. 312 (2008).

5The Software Freedom Law Center (SFLC) prefers the term Free and Open Source Software (FOSS) to describe software
that can be freely viewed, used, and modified by anyone. In this paper, we sometimes use mixed terminology, including the
term “open source” to maintain consistency with the articles cited.

6See Josie Garthwaite, Hacking the Car: Cyber Security Risks Hit the Road, Earth2Tech (Mar. 19, 2010, 12:00 AM),
http://earth2tech.com.

7Sanket S. Dhruva et al., Strength of Study Evidence Examined by the FDA in Premarket Approval of Cardiovascular
Devices, 302 J. Am. Med. Ass’n 2679 (2009).

8Freedonia Group, Cardiac Implants, Rep. Buyer, Sept. 2008, available at
http://www.reportbuyer.com/pharma healthcare/medical devices/cardiac implants.html.

9Id.

10Robert G. Hauser & Linda Kallinen, Deaths Associated With Implantable Cardioverter Defibrillator Failure and Deactiva-
tion Reported in the United States Food and Drug Administration Manufacturer and User Facility Device Experience Database,
1 HeartRhythm 399, available at http://www.heartrhythmjournal.com/article/S1547-5271%2804%2900286-3/.

11Charles Graeber, Profile of Kevin Fu, 33, TR35 2009 Innovator, Tech. Rev.,
http://www.technologyreview.com/TR35/Profile.aspx?trid=760 (last visited Jul. 9, 2010).

12See Tamara Denning, et al., Absence Makes the Heart Grow Fonder: New Directions for Implantable Medical Device
Security, Proceedings of the 3rd Conference on Hot Topics in Security(2008), available at
http://www.cs.washington.edu/homes/yoshi/papers/HotSec2008/cloaker-hotsec08.pdf.

13Kevin Poulsen, Hackers Assault Epilepsy Patients via Computer, Wired News (Mar. 28, 2008),
http://www.wired.com/politics/security/news/2008/03/epilepsy.

14Id.

15Dolores R. Wallace & D. Richard Kuhn, Failure Modes in Medical Device Software: An Analysis of 15 Years of Recall Data,
8 Int’l J. Reliability Quality Safety Eng’g 351 (2001), available at http://csrc.nist.gov/groups/SNS/acts/documents/final-
rqse.pdf.

16White Paper: Infusion Pump Improvement Initiative, U.S. Food & Drug Admin. (Apr. 2010)
http://www.fda.gov/downloads/MedicalDevices/ProductsandMedicalProcedures/

GeneralHospitalDevicesandSupplies/InfusionPumps/UCM206189.pdf.

17DoD Open Source Software (OSS) FAQ, U.S. Dep’t Def., http://cio-nii.defense.gov/sites/oss/Open Source Software (OSS) FAQ.htm
(last visited Jul. 8, 2010).

18John Fontana, DoD: open source as good as proprietary software; Consultant says one half to one third of software used
within Defense Department is open source, Network World, Oct. 27, 2009.

19Off. Mgmt. & Budget, Memorandum on Software Acquisition, M-04-16, available at

10

http://www.whitehouse.gov/omb/memoranda/fy04/m04-16.html.

20FAQs, Open Source for America, http://opensourceforamerica.org/faq (last visited July 16, 2010).

21A. Boulanger, Open-Source Versus Proprietary Software: Is One More Reliable and Secure Than the Other?, 44 IBM
Sys. J. 239, 242 (2005).

22Veracode, 1 State of Software Security Report (2010), available at http://www.veracode.com/reports/index.html.

23Id. at 3.

24In January, Google announced on its website that its corporate infrastructure and that of at least 20 other companies had
been hacked in an “extremely sophisticated” attack originating from China. The company threatened to pull-out of China
following the security breach prompting months of coverage surrounding the controversy. David Drummond, A New Approach
to China, The Official Google Blog (Jan. 12, 2010, 3:00 PM) http://googleblog.blogspot.com/2010/01/new-approach-to-
china.html

25Veracode, supra note 22, at 4.

26Id. at 11. It took an average of 1.1 resubmissions for Veracode to confirm that suggested security fixes had been properly
implemented, compared to 1.26 resubmissions for commercial programs.

27Brian Witten et al., Does Open Source Improve System Security?, IEEE Software, Sept.–Oct. 2001, at 57, 57–58.

28Bill Vass, The No. 1 Reason to Move to Open Source is to IMPROVE Security, Bill Vass’ Weblog (Apr. 16, 2009),
http://blogs.sun.com/BVass/.

29See Jaap-Henk Hoepman & Bart Jacobs, Increased Security Through Open Source, 50 Comm. ACM, Jan. 2007, at 79,
82; Peter P. Swire, A Theory of Disclosure for Security and Competitive Reasons: Open Source, Proprietary Software, and
Government Systems, 42 Hous. L. Rev. 101, 105 (2006); Witten, supra note 27, at 57, 57-58.

30Swire, supra note 29, at 1337-38

31Jaap-Henk Hoepman & Bart Jacobs, supra note 29.

32Eric S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolu-
tionary XX (O’Reilly Media 2001).

33Witten, supra note 27, at 59.

34Robert G. Hauser and Barry J. Maron, Lessons From the Failure and Recall of an Implantable Cardioverter-Defibrillator,
112 Circulation: J. Am. Heart Ass’n 2040, 2040-42 (2005).

35See, e.g., Sanket S. Dhruva et al., Strength of Study Evidence Examined by the FDA in Premarket Approval of Cardiovas-
cular Devices, 302 J. Am. Med. Ass’n 2679, 2683–85 (2009).

36Overview of FDA Modernization Act of 1997, Medical Device Provisions, U.S. Food & Drug Admin.,
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm094526.htm (last updated Nov. 20,
2009) [hereinafter Overview of FDA Modernization Act].

37Quality Systems Regulation, U.S. Food & Drug Admin., http://www.fda.gov/MedicalDevices/default.htm (follow “Device
Advice: Device Regulation and Guidance” hyperlink; then follow “Postmarket Requirements (Devices)” hyperlink; then follow
“Quality Systems Regulation” hyperlink) (last visited Jul. 2010)

38Jeff Geisler, Software for Medical Systems, in Mission-Critical and Safety-Critical Systems Handbook 147, 148 (Kim
Fowler ed., 2010).

39Id. at 147.

40Overview of FDA Modernization Act, supra, note 36.

41See Overview of Medical Devices and Their Regulatory Pathways, U.S. Food & Drug Admin.,

11

http://www.fda.gov/AboutFDA/CentersOffices/CDRH/CDRHTransparency/ucm203018.htm (last updated May 19, 2010) (“Med-
ical devices were not included as no one envisioned how technology would grow increasingly complex and need to be regulated.”).

42MDUFMA Frequently Asked Questions, U.S. Food & Drug Admin., http://www.fda.gov/MedicalDevices/ DeviceRegu-
lationandGuidance/Overview/MedicalDeviceUserFeeandModernizationActMDUFMA/ucm109208.htm (last updated June 23,
2009).

43Joe Bremner, AAMI Releases New Guidance for Software Validation, 42 Biomedical Instrumentation Tech. 149 (2008).

44See, e.g., Hearing on H.R. 1346, The Medical Device Safety Act of 2009, Before the House Committee on Energy and
Commerce Subcommittee on Health, 111th Cong. (statement of William H. Maisel, Director, Beth Israel Medical Center)
[hereinafter Statement of Maisel].

45Robert G. Hauser and Barry J. Maron, supra note 34.

46Dhruva et al., supra note 35, at 2679.

47Id. at 2675.

48Id. at 2680.

49Id. at 2675.

50Statement of Maisel, supra note 45.

Copyright c© 2010, Software Freedom Law Center. Verbatim copying of this document is permitted in any
medium; this notice must be preserved on all copies.

12

	Abstract
	Software Vulnerabilities in IMDs
	Why Free Software is More Secure
	The FDA Review Process and Legal Obstacles to Device Manufacturer Accountability
	Conclusion

