
Reverse Engineering a Program
In this last section, we will be writing a simple hello world program in C, compiling it, then

analyzing the disassembled binary. The code will be compiled with gcc and disassembled using gdb; if
you are using Windows, you can get Dev-C++ from bloodshed.net which is a nice IDE that comes with
all the gcc utilities, including gdb. Bear in mind that if you compile the source code yourself, your
assembly code may be slightly different from mine due to variations in the different versions of gcc (I
am using gcc v3.3.5 on Linux and v3.4.2 on Windows – they both produce identical assembly
instructions). Also, your memory addresses probably won't match mine, but this is normal as they will
usually be different when compiled on different systems. Finally, we will examine the disassembly of a
slightly more complex program and walk through reverse engineering it.

Using GDB
As stated earlier, gdb is both a debugger and a disassembler. In the following examples, we will

be using gdb as a disassembler to perform a static analysis of our code. Gdb has many commands, but
for our purposes there are just a few we will be using:

Command Example Explanation
file file helloworld Open the specified program in gdb. The program name

can also be specified on the command line when starting
gdb ($gdb helloworld).

--
disassemble disassemble main Disassemble the specified function in the program.Gdb

will display the function's assembly instructions on screen.
--
x x/20s 0x80403001 Examine the contents of 20 addresses as strings starting at

memory address 0x80403001. If you want to view the
contents in hexadecimal, replace the 's' with an 'x'.

--

Hello World
We will first use gdb to analyze a binary compiled from the following source code:

int main(int argc, char *argv[])
{

printf(“Hello World!\n”);
return 0;

}

Save this program as helloworld.c and compile it with 'gcc -o helloworld helloworld.c'; run the
resulting binary and it should print “Hello World!” on the screen and exit. So far so good, now let's
take a look at the assembly code:

heff@TPad:~/Programming$ gdb helloworld
GNU gdb 6.3-debian
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-linux"...Using host libthread_db library "/lib/libthread_db.so.1".
(gdb) disassemble main
Dump of assembler code for function main:
0x08048384 <main+0>: push %ebp
0x08048385 <main+1>: mov %esp,%ebp
0x08048387 <main+3>: sub $0x8,%esp
0x0804838a <main+6>: and $0xfffffff0,%esp
0x0804838d <main+9>: mov $0x0,%eax
0x08048392 <main+14>: sub %eax,%esp
0x08048394 <main+16>: movl $0x80484c4,(%esp)
0x0804839b <main+23>: call 0x80482b0 <_init+56>
0x080483a0 <main+28>: mov $0x0,%eax
0x080483a5 <main+33>: leave
0x080483a6 <main+34>: ret
End of assembler dump.

Let's look at each instruction, keeping in mind that this disassembly is in the AT&T syntax (source on
the left, destination on the right):

0x08048384 <main+0>: push %ebp
0x08048385 <main+1>: mov %esp,%ebp
0x08048387 <main+3>: sub $0x8,%esp

These three instructions should be familiar; they are the function's prologue. The ' push %ebp'
instruction saves the current EBP value onto the stack; ' mov %esp,%ebp' creates the new EBP value by
copying ESP into EBP; then eight bytes of space is created on the stack for local variables using the
'sub $0x8,%esp' instruction.

0x0804838a <main+6>: and $0xfffffff0,%esp
0x0804838d <main+9>: mov $0x0,%eax
0x08048392 <main+14>: sub %eax,%esp

These three instructions are used to clean up any stray bits and prepare ESP and the stack at the
beginning of the program; they are present only in a program's main() function, but not any subsequent
functions. The first command zeros out the last byte of the value in ESP; the next two commands put
the value 0 into the EAX register, then subtracts the EAX register (aka, zero) from the stack pointer.

0x08048394 <main+16>: movl $0x80484c4,(%esp)

This instruction places the memory address 0x080484c4 onto the stack - the compiler just chose to use
a different way of placing the memory address onto the stack than the standard push instruction. Note
the parenthesis around %esp – this indicates a pointer. So, the mov command (AT&T syntax always

uses 'movl' instead of 'mov', but they are the same instructions) is actually placing the memory address
into the address pointed to by the ESP register, not directly into the ESP register itself. Perhaps you
noticed that in the prologue, eight bytes were reserved on the stack for local variables, even though no
variables are defined in our source code. That was necessary in order to place the memory address on
the stack in this manner. If those eight bytes had not been allocated, ESP would still be pointing to the
same place as EBP, and the saved EBP value would be been overwritten with the 0x080484c4 address
(why the compiler uses this instead of a push instruction I don't know – that's up to the gcc developers
:).

0x0804839b <main+23>: call 0x80482b0 <_init+56>

This is a call to a function at the address 0x08482b0. Since we have only one function that is called
from our code, this must be the call to printf(). There was a push instruction (or the equivalent thereof)
immediately before calling printf(), so that push must have placed an argument for printf() onto the
stack. Our call to printf() only has one argument: the string to print. This can be double checked by
examining the contents of 0x080484c4 (the address pushed onto the stack) by issuing the command:

(gdb)x/s 0x08048384
0x8048384 <_IO_stdin_used+4>: “Hello World!\n”
(gdb)

So, this is indeed our call to printf(), and our single argument, the “Hello World!\n” string, was
appropriately placed on the stack just before it was called.

0x080483a0 <main+28>: mov $0x0,%eax

Remember that the EAX register holds any value that is returned by a function, and our main() function
returns zero. So this instruction is placing the value 0 into EAX in preparation for a return.

0x080483a5 <main+33>: leave

The leave instruction cleans up the stack by removing all local variables from the stack and popping the
saved EBP value off the stack into the EBP register, restoring it to its original value.

0x080483a6 <main+34>: ret

The ret instruction pops the top value off of the stack and places it into the EIP register. Since all data
through he saved EBP value has been removed by the leave instruction, the top most piece of data on
the stack is the saved EIP value; thus, the leave and ret instructions enable the function to properly
return. Since these last three instructions (main+28 through main+34) prepare the function to return and
clean up data placed on the stack by the prologue, they are known as the function's epilogue.

Here is the same disassembly, but this time printed in the Intel syntax, and commented for an easier
feel of how the program flows:

0x8048384 push ebp <--- Save the EBP value on the stack
0x8048385 mov ebp,esp <--- Create a new EBP value for this function
0x8048387 sub esp,0x8 <---Allocate 8 bytes on the stack for local variables
0x804838a and esp,0xfffffff0 <---Clear the last byte of the ESP register
0x804838d mov eax,0x0 <---Place a zero in the EAX register
0x8048392 sub esp,eax <---Subtract EAX (0) from the value in ESP
0x8048394 mov DWORD PTR [esp],0x80484c4 <---Place our argument for the printf() function

 (at address 0x08048384) onto the stack
0x804839b call 0x80482b0 <_init+56> <---Call printf()
0x80483a0 mov eax,0x0 <---Put our return value (0) into EAX
0x80483a5 leave <---Clean up the local variables and restore the EBP value
0x80483a6 ret <---Pop the saved EIP value back into the EIP register

As you can see, they are all the same instructions, just formatted a little differently; note also how the
Intel syntax indicates a pointer reference as opposed to the AT&T syntax.

Disassembling Without The Source
Next, we will examine a program for which we have no source code, called helloworld2. We

will attempt to reconstruct the original source code as closely as possible, and to understand how the
program operates. Let's start out by running the program to see what it does:

$./helloworld2
Hello World!
$

So far, it appears no different than our first program. We know that it prints out a string to stdout, so it
probably uses the printf() function. If we are disassembling this in Linux, we can use the strings
command to look for the “Hello World!” string and anything else that may be interesting:

$strings helloworld2
/lib/ld-linux.so.2
_Jv_RegisterClasses
__gmon_start__
libc.so.6
printf
_IO_stdin_used
__libc_start_main
GLIBC_2.0
PTRh@
[^_]
Hello World!
Goodbye World!

We see our “Hello World!” string, but there is also a “printf” string (indicating that the program does
indeed use printf), and another interesting string, “Goodbye World!”. Now, let's look at the main()
function in gdb:

(gdb) disassemble main
Dump of assembler code for function main:
0x080483af <main+0>: push %ebp
0x080483b0 <main+1>: mov %esp,%ebp
0x080483b2 <main+3>: sub $0x8,%esp
0x080483b5 <main+6>: and $0xfffffff0,%esp
0x080483b8 <main+9>: mov $0x0,%eax
0x080483bd <main+14>: sub %eax,%esp
0x080483bf <main+16>: movl $0x1,0x804961c
0x080483c9 <main+26>: call 0x8048384 <myprint>
0x080483ce <main+31>: mov $0x0,%eax
0x080483d3 <main+36>: leave
0x080483d4 <main+37>: ret

Here we see the same prologue as before between main+0 and main+14. However, at main+16 we see
that the number 1 is being moved into the memory address at 0x0804961c. This memory address is
referenced directly, not as an offset from EBP, indicating that it is a global, not local, variable. Since
the number 1 is being moved into it, it is safe to assume that this is an integer variable as well; we will
call it var1. Next is a call to a function named 'myprint', which takes no arguments. Immediately
afterwards we see the epilogue where 0 is moved into EAX, and leave and ret are called. So we now
know that the main function simply sets a global integer variable to 1, calls a second function, then
returns zero. We can reconstruct the main() function's source code to read:

int var1; /* The global integer variable */

int main()
{

var1 = 1;
myprint();
return 0;

}

Next, let's examine the myprint() function:

(gdb) disassemble myprint
Dump of assembler code for function myprint:
0x08048384 <myprint+0>: push %ebp
0x08048385 <myprint+1>: mov %esp,%ebp
0x08048387 <myprint+3>: sub $0x8,%esp
0x0804838a <myprint+6>: cmpl $0x1,0x804961c
0x08048391 <myprint+13>:jne 0x80483a1 <myprint+29>
0x08048393 <myprint+15>:movl $0x80484f4,(%esp)
0x0804839a <myprint+22>:call 0x80482b0 <_init+56>
0x0804839f <myprint+27>:jmp 0x80483ad <myprint+41>
0x080483a1 <myprint+29>:movl $0x8048502,(%esp)
0x080483a8 <myprint+36>:call 0x80482b0 <_init+56>
0x080483ad <myprint+41>:leave
0x080483ae <myprint+42>:ret

We see that after the prologue, at myprint+6, there is a comparison operation. It is comparing
the value stored in 0x0804961c (var1, the global variable we saw in the main() function) with the
number 1. Immediately afterwards is a jne instruction. So, if var1 is not equal to 1, the the program will
jump down to myprint+29, but if it is equal to 1 (which we know it is, because it was set to 1 in the
main() function), it will execute the next instruction at myprint+15. Since we know that the jump will
not be taken, let's look at what happens at myprint+15.

Myprint+15 pushes the memory address of 0x080484f4 onto the stack (again, using the mov
instruction instead of push, but achieving the same end result), then calls a function that is located at
0x080482b0. This means that the function at 0x080482b0 is passed one argument; let's take a look at
what that argument is by examining what is stored at the address 0x080484f4:

(gdb)x/s 0x080484f4
0x80484f4 <_IO_stdin_used+4>: “Hello World!\n”

This is our “Hello World!” string, and since we know that printf() is being used to print it to stdout,
then the function at 0x080482b0 must be printf(). After the call to printf(), the program jumps down to
myprint+41, which begins the function's epilogue. Since no value is placed in EAX before returning,
and we know that the main() function does not examine EAX or place it anywhere in memory after
calling the myprint() function, we can surmise that this function doesn't return a value.

But let's now look at what would happen if var1, for some reason, did not equal one. The jne
instruction specifies that the program would jump down to myprint+29, which places a memory
address (0x08048502) onto the stack in the same manner as before, then calls a function at
0x080482b0 – the printf() function. This means that either way printf() is called, it is just provided with
a different argument. Taking a look at the contents of 0x08048502, we see that this alternate argument
is the “Goodbye World!” string that we saw with the strings command earlier:

(gdb)x/s 0x08048502
0x08048502 <_IO_stdin_used+18>:“Goodbye World!\n”

We now know enough about the myprint() function to reconstruct its original source code as well:

void myprint()
{

if(var1 == 1){
printf("Hello World!\n");

} else {
printf("Goodbye World!\n");

}
}

While there is no real purpose of the if-else statement (since var1 will always be equal to zero), I
wanted to include it in order to show what a conditional statement looked like in assembly code. It is
very important that you are able to recognize and understand conditional statements in assembly, as
more complex comparisons (such as long case/switch statements) will be more difficult to follow.

Conclusion
This paper covered necessary background information and provided some simplistic examples

in order to introduce the basic concepts of RCE. You should now have a good grasp of how to read and
interpret disassembled code, identify variables and functions, and translate the assembly code back into
a high-level language. In most cases however, you will be working with larger programs that are much
more difficult to analyze; you may also be only interested in a particular part of the program, or you
may want to examine all instances of a specific function. In the next paper, we will introduce some new
tools and debugging techniques, as well as cover some more advanced RCE methods in order to deal
with such situations.

References
Wikipedia: http://en.wikipedia.org/wiki/Reverse_engineering

Exploiting Software: http://www.informit.com/articles/article.asp?p=353553&seqNum=2&rl=1

AT&T vs Intel - http://www.gnu.org/software/binutils/manual/gas-2.9.1/html_chapter/as_16.html

Dev-C++ - http://bloodshed.net/devcpp.html

http://en.wikipedia.org/wiki/Reverse_engineering
http://bloodshed.net/devcpp.html
http://www.gnu.org/software/binutils/manual/gas-2.9.1/html_chapter/as_16.html
http://www.informit.com/articles/article.asp?p=353553&seqNum=2&rl=1

