Prologue
This paper is intended as an introduction to reverse engineering for someone who has no
experience on the subject. You should have some basic knowledge of C programming, and
access to a Windows or Linux box (preferably both) using the x86 architecture (i.e., your average
computer). No knowledge of assembly code, registers, or the like is assumed, although it helps.

This introduction section of the paper is intended for the newcomer who has little or no
understanding of what reverse engineering is, and may be skipped by those looking for more
technical details.

What is Reverse Code Engineering?

"Reverse engineering (RE) is the process of discovering the technological principles of a
mechanical application through analysis of its structure, function and operation"(Wikipedia).
Basically, Reverse Code Engineering (RCE) is the application of the reverse engineering process
to software - in other words, analyzing a program in order to understand how it works. Because
reverse engineering is most commonly used to analyze closed-source programs, it is largely
focused on the Windows platform; however, reversing under Linux is also popular for inspecting
buffer overflows, closed-source Linux applications, and hostile Windows programs (without the
risk of running them).

Why Reverse Engineer?

There are many reasons to reverse engineer a program. Have you ever wished that your
favorite Windows program had xyz functionality? Want to dissect malware or viruses? Look for
and analyze a buffer overflow? Figure out how that hardware driver works so you can write one
for Linux? Maybe you're just curious how a particular program works, but you don't have access
to the source code? All of these are common reasons for reverse engineering an application, and
as such, there are many varied facets of RCE that one may choose to focus on, each of which can
take a substantial amount of knowledge and experience to become an expert in. This paper will
give you with the basic knowledge to get started in RCE, providing a base to launch into which
ever specialties you prefer.

How Does It Work?

This all sounds great, but how do we analyze a program for which we have no code?
There are many ways to observe how a program interacts with the rest of your system, such as
file and registry access (which can be helpful when reverse engineering), but these techniques
still leave you with a black box - you don't know what is going on under the hood. In order to
understand how we can analyze the internal workings of a program, some understanding of the
compilation process is needed. When you compile your source code, there are three major steps
that occur: translation of the source code into assembly code, assembly, and linking.

First, the source code is translated into assembly code by the compiler. Assembly is a
very low-level programming language; it is composed of many simple instructions which deal
directly with memory addresses and CPU registers. For instance, if you assign the number 1 to
an integer variable in your source code, the resulting assembly code may look something like:

mov Oxffffffb4,0x1



which moves the number 1 into 0xffffffb4, the memory address assigned to that particular
variable. No matter what programming language you are using (C/C++, Delphi, VB, etc), all
compiled languages must be first translated into assembly before being converted into the final
binary program.

Next, an assembler translates the assembly code into machine-readable code; there is
(usually) a one-to-one translation between the assembly and machine code. The final stage is
performed by a linker, whose job it is to add in any library functions required by the program.
The final result is a file that contains binary instructions which can be executed by the processor.

The point of all this is that since all programs are translated into assembly code, and
assembly code can be translated directly into binary 1s and Os, we can translate any binary
program back into its assembly code through the aptly named process of disassembly. If you
understand assembly code, you can follow the instructions to understand what the program is
doing, and even translate it into a higher-level language such as C. Note that some languages can
be automatically translated directly back into their original source code, or decompiled. While
this process works well for some languages, it is generally very complex and imprecise for most
programming languages, particularly C/C++. I encourage you to look into some of the ongoing
decompiler projects, however, this paper will be focused only on disassembly.

Opposition to RCE
It is important to realize that for various reasons, people may not want you to reverse
engineer their programs, and as such, they may implement encryption or advanced protection
techniques which make it extremely hard to analyze the original assembly code. We will
certainly not be covering these techniques in this paper, but it is good to keep in mind if you
come across a disassembled program that doesn't seem to make any sense.

A second issue is the legality of RCE. Many EULASs prohibit reverse engineering, but
this still may not make it necessarily illegal; like many digital laws, it is still somewhat
undefined. However, I will quote the following from Exploiting Software:

These agreements [EULAS] usually contain language that strictly prohibits reverse engineering.
However, these agreements may or may not hold up in court [Kaner and Pels, 1998].

The Uniform Computer Information Transactions Act (UCITA) poses strong restrictions on
reverse engineering and may be used to help "click through" EULA's stand-up in court. Some
states have adopted the UCITA (Maryland and Virginia as of this writing [February 2004]),
which strongly affects your ability to reverse engineer legally.

Normally, there is no need to fear RE-restrictive laws, unless you plan to publicize your
work. One exception would be cracking, or using reverse engineering to circumvent an
application's registration scheme, which is very illegal. All programs we will be working with in
this paper are original, so there is no question of legality; however, it is very important to keep
this in mind if you begin work on someone else's programs.



What Do I Need?

In short, tools and knowledge. Obviously, you must be able to read assembly code,
however, it is not enough to just understand assembly instructions. You must also know how
assembly instructions interact with areas of memory (particularly the stack), and what the CPU
registers are used for. Knowledge of the high-level programming language that the application
was written in can be very helpful, although it is not necessary. You should also understand
specific system functions for the OS platform you are dealing with (such as Linux syscalls or the
Windows API).

There are many tools available to the reverse engineer, much of them designed for
specific purposes. However, there are two indispensable tools: the disassembler and the
debugger. As its name implies, a disassembler disassembles a program's binary 1s and Os into
readable assembly code. A debugger can disassemble the binary instructions as well, but also
allows you to run the code inside of the debugger; this gives you the distinct advantage of being
able to observe the effect each instruction in real time, and allows you to better understand the
program flow. The most popular debugger for Linux is the GNU debugger (gdb), which is also
available for Windows; however, there are other very powerful debuggers for the Windows
platform as well, such as Softlce and OllyDbg. We will be using gdb in both Linux and
Windows later in this paper.



