The Stack in Detail
The stack is a Last In, First Out (LIFO) data structure. Imagine that you are stacking plates; the
first plate you put on the stack will be on the bottom; the second plate will be on top of the first plate,
and the third plate will be on top of the second. When you start taking plates off of the stack, the third
plate will come off first, then the second, and finally, the first. The stack section in memory operates
the same way: data can be placed on the stack, but if you place three pieces of data on the stack, you
will first have to remove the last two in order to access the first piece of data.

There are two types of stack operations: push and pop. When you want to place data onto the
stack, you "push" it; when you want to remove data from the stack, you "pop" it. So, if you push the
numbers 1, 2 and 3 in order onto the stack, when you pop the stack, you will get the number three; pop
it again, and you will get the number two; pop it a third time and you will get the number one. To help
visualize this, after pushing the numbers, the stack would look like:

\ 2 \

\ 3 \

___________ <---ESP
If we then pop the stack, it will look like:

\ 1 \

\ 2 \

___________ <---ESP

Don't be confused by the arrangement of the "top" and "bottom" of the stack; remember that the stack
grows downwards, so data at the bottom of the stack (in this case, the number 1) is actually at the
highest memory address, and the top of the stack (the number 4) is at a lower memory address. This is
analogous to stacking plates on the ceiling.

Recall that the ESP register always points to the top of the stack. This means that whenever you
push data onto the stack, the address stored in ESP is decremented by the number of bytes placed onto
the stack; when you pop the stack, ESP is incremented by the number of bytes removed from the stack.

Function Arguments and Local Variables
The stack is used to store a function's arguments and local variables; to understand how
assembly instructions reference these variables, let's see how that data is arranged on the stack. Take a
look at the following function and what the resulting stack layout would be:

int myFunction(int varl, int var2, int var3)
{

char bufferl;

char buffer2;

char buffer3;

——————————————————————— <-----Bottom of the stack (top of memory)

|————— - | <----EBP Points here

——————————————————————— <----ESP (top of the stack, low memory addresses)

For the moment, we will ignore the return address and saved EBP value, and concentrate on
how the arguments and variables get placed onto the stack. Before a function is called, all of its
arguments must first be placed on the stack. These arguments are pushed onto the stack in reverse
order; that is, in our example, var3 would be pushed first, var2 second, and finally varl:

push var3
push var2
push varl
call myFunction

The call instruction will automatically place the return value onto the stack, and the saved EBP value is
pushed immediately afterwards by myFunction (again, we are ignoring these values for now - more on
them later). Then, the local variables are pushed onto the stack in the order which they are declared;
first bufferl, then buffer2, and lastly buffer3. When you look at the assembly code of a disassembled
program however, you won't have nice names for variables like varl or bufferl; instead they will be
indicated by memory addresses, or as offsets from EBP (recall that the purpose of EBP is to reference
variables on the stack). Since the function arguments are located at higher memory addresses than the
address pointed to by EBP, they will be referenced as positive offsets from EBP (example: 'ebp+8');
local variables, being located at lower memory addresses, will be referenced as negative offsets from
EBP (example: 'ebp-4'). So, whenever you see something referenced as an offset from EBP, you know
that you are dealing with a local variable.

Return Addresses and the Prologue

Besides storing data and function arguments, the stack is also used for storing critical values
when calling functions. Recall that the EIP always points to the next instruction to be executed;
however, the EIP has no way of storing old instruction addresses, so when a function returns, the EIP
needs a way to determine where to return to. Whenever a function is called, the memory address of the
next instruction in the calling function is pushed onto the stack. When the called function finishes, this
address is popped off the stack and placed into the EIP register so that the CPU can return to the next
instruction in the calling function. Take the following pseudocode as an example:

functiona()
varx = 1
call functionb()
x=0

return

When functiona calls functionb, the memory address that contains the 'x=0" assignment is pushed onto
the stack. When functionb finishes, that address is popped off the stack and placed into the EIP, so the
processor then knows that the next instruction it has to perform is to set the variable x equal to zero.

In addition, the value of the EBP register needs to be saved and appropriately changed when a
new function is called, such as in our above example. By now you may be wondering why the EBP is
used at all; why not just reference variables from the stack pointer? The base pointer is used because as
data is added to and removed from the stack, the position of the stack pointer (ESP) will be constantly
changing, making it difficult to use it as a reference point for locating stack variables. However, it is
impractical to use the same EBP value for every function, especially in more complex programs where
you have functions inside of functions inside of functions, ad infinitum. But, just like the EIP, when a
function finishes and returns control to its parent function, that parent function will need to have its
original EBP value restored into the EBP register so that it can continue to reference its own variables
and arguments. And, just like the EIP value, the calling function's EBP value is also placed on the
stack.

However, the EBP value is not pushed onto the stack automatically; this job is up to the child
function, and the process of doing so is called the prologue. Basically what the prologue does is save
the parent function's EBP value onto the stack, then gives the child function its own EBP value.
Finally, the prologue allocates enough room on the stack to hold all of the local variables. The resulting
assembly code looks like this:

push ebp
mov ebp, esp
sub esp, 0x24

Let's take this one line at a time, shall we. The first instruction is very simple; it pushes the
value in EBP (i.e., the EBP value of the calling function) onto the stack. The second instruction copies
the value in ESP into the EBP register (thus giving the child function its own EBP value). Finally, the
third instruction decrements the stack pointer by 36 bytes (0x24 in hexadecimal); the actual value that
is subtracted from ESP will of course depend on the size and number of local variables present in the
function. But what is the second instruction really doing? Why copy the stack pointer value into EBP?
To see why, look again at our sample stack layout; note the steps that have been added, and which parts
of the stack are affected by them. Make particular note of where the EBP value is pointing to as well:

——————————————————————— <-—----Bottom of the stack (top of memory)

| var3 |

| e |

| var?2 | Step 1: Arguments are pushed onto the stack.

| === |

| varl |

| == |

| Return Address | Step 2: The call instruction pushes the return

|-— - | address onto the stack.

| Saved EBP Value | Step 3: The prologue saves the EBP value onto
EBP --> |-—m7-—————— - | the stack.

| bufferl | Step 4: The prologue allocates space on the

| ————— | stack for local variables by

| buffer? | decrementing the value of ESP.

| === |

| buffer3 |

——————————————————————— <----ESP (top of the stack, low memory addresses)

However, when the second instruction (mov ebp, esp) is executed, only steps one through three
have been performed — no space has been allocated on the stack for local variables yet. So when the
ESP value is copied into the EBP register, the stack actually looks like this:

——————————————————————— <-----Bottom of the stack (top of memory)
| var3 |

| === |

| var?2 |

| =mmmmmmmmmmmmm oo |

| varl |

et |

| Return Address |

| === |

| Saved EBP Value |

——————————————————————— <----ESP (top of the stack, low memory addresses)

Note that ESP is pointing exactly where the EBP needs to be. This makes setting the new EBP value
simple; before allocating space for the local variables (step four), simply copy the value of ESP into
EBP.

Some Minor Details...

The above examples have been portrayed as layouts of the program's stack; in reality, they are
really just sections of the stack known as stack frames. Since each function has its own arguments and
variables, each function has its own frame. A function will clean up its frame before returning, but if
you have functions called inside of other functions, you will have multiple frames on the stack. For

instance, if functiona() calls functionb() which calls functionc(), an overall view of that program's stack
would look like:

——————————————————————— <-----Bottom of the stack (top of memory)
| functiona () Frame |
|-—— - \
| functionb () Frame |
T |
| functionc () Frame |

<----Top of the stack (low memory addresses)

