An Introduction to Assembly
Assembly language is specific to a processor's architecture - for example, a SPARC
processor will use a different set of assembly instructions than a CPU using the x86 architecture,
which will differ from the assembly instructions used when programming a PIC micro-
controller. Since the most common architecture is x86, that is the instruction set we will be
dealing with here. Before delving into the actual assembly instructions however, let's take a look
at the CPU registers and process memory.

CPU Registers

A processor takes data and instructions that are stored in memory and performs whatever
calculations are required, then writes the output back into memory as applicable. However, the
CPU needs a place to store the data it retrieves from memory while it calculates; this is where the
registers come in. Registers are small segments of memory inside the CPU that are used for
temporarily storing data; some have specific functions, others are just used for general data
storage. In a 32-bit processor, each register can hold 32 bits of data; in a 64-bit processor, the
registers can hold 64 bits of data. This paper will assume the classic 32-bit registers are being
used, but even if you have a 64-bit CPU, as long as it is backwards compatible with 32-bit
applications, all of the following information is still applicable.

There are many registers used by a processor, but we are concerned primarily with a
group of registers called the general purpose registers. The general purpose registers are
composed of:

EAX
EBX
ECX
EDX
ESI
EDI
ESP
EBP
EIP

The EAX register is called the accumulator, and is commonly used to hold the results of a
calculation. If a function returns a value, this value will be placed in the EAX register so that the
code that called the function can access the return value.

EBX is a pointer to the data segment, and ECX is normally used to count the number of
iterations in a loop; EDX is used as an I/O pointer. It is important to note that while these are the
suggested functions of the EAX, EBX, ECX and EDX registers, they are not restricted to these
uses, with a few exceptions. For example, EAX can be used to hold data regardless of whether or
not that data is the result of some calculation; however, if a function returns a value, that value
will always be stored in the EAX register.

ESI and EDI are used to specify source and destination addresses respectively; they are
most often used when copying strings from one memory address to another.

ESP is a stack register, called a stack pointer, that points to the top of the stack; EBP is
also a stack register (called the base pointer), used to reference local variables and function
arguments on the stack. The exact purpose and usage of the ESP and EBP registers will be
clarified in the following sections.

EIP is the instruction pointer register - it controls program execution by pointing to the
address of the next instruction to be executed. For example, if your program calls a function that
is located at the address of 0x08ffff1d, the value stored in EIP will be changed to that address so
that the CPU knows where to go in order to execute the first instruction of that function. Note
that there is no way to directly control the value stored in EIP.

The 'E' at the beginning of each register name stands for Extended. When a register is
referred to by its extended name, it indicates that all 32 bits of the register are being addressed.
An interesting thing about registers is that they can be broken down into smaller subsets of
themselves; the first sixteen bits of each register can be referenced by simply removing the 'E'
from the name. For instance, if you wanted to only manipulate the first sixteen bits of the EAX
register, you would refer to it as the AX register. Additionally, registers AX through DX can be
further broken down into two eight bit parts. So, if you wanted to manipulate only the first eight
bits (bits 0-7) of the AX register, you would refer to the register as AL; if you wanted to
manipulate the last eight bits (bits 8-15) of the AX register, you would refer to the register as AH
('L' standing for Low and 'H' standing for High).

Process Memory and the Stack
Often, a process will need to deal with more data than there are available registers. To
remedy this, each process running in memory has what is referred to as a stack. The stack is
simply an area of memory which the process uses to store data such as local variables, command
line/function arguments, and return addresses. Before examining the stack in detail, let's take a
look at how a process is generally arranged in memory:

High Memory Addresses (0OxFFFFFFFF)

——————————————————————— <-—----Bottom of the stack
\ \

\ I

| Stack | | Stack grows down

\ | v

\ \

| == | <-——-Top of the stack (ESP points here)
\ \

\ \

\ \

\ \

\ \

|-—— - | <-—--Top of the heap

\ \

\ I

\ Heap \ | Heap grows up

\ .

\ \

|-—— - | <-—=——- Bottom of the heap

Low Memory Addresses (0x00000000)

As you can see, there are three main sections of memory:
1. Stack Section - Where the stack is located, stores local variables and function arguments.
2. Data Section - Where the heap is located, stores static and dynamic variables.
3. Code Section - Where the actual program instructions are located.
The stack section starts at the high memory addresses and grows downwards, towards the lower
memory addresses; conversely, the data section (heap) starts at the lower memory addresses and

grows upwards, towards the high memory addresses. Therefore, the stack and the heap grow
towards each other as more variables are placed in each of those sections.

Essential Assembly Instructions

Instruction Example Explanation

push push eax Pushes the value stored in EAX onto the stack

pop pop eax Pops a value off of the stack and stores it in EAX

call call 0x08ftff01 Calls a function located at 0x08ffff01

mov mov eax,0x1 Moves the value of 1 into the EAX register

sub sub eax,0x1 Subtracts 1 from the value in the EAX register

add add eax,0x1 Adds 1 to the value in the EAX register

inc inc eax Increases the value stored in EAX by one

dec dec eax Decreases the value stored in EAX by one

cmp cmp eax,edx Compare values in EAX and EDX; if equal set the zero
flag* to 1

test test eax,edx Performs an AND operation on the values in EAX and
EDX; if the result is zero, sets the zero flag to 1

jmp jmp 0x08ffff01 Jump to the instruction located at 0x08ffff01

jnz jnz 0x08ftff01 Jump if the zero flag is set to 1

jne jne 0x08ffff01 Jump to 0x08ffff01 if a comparison is not equal

and and eax,ebx Performs a bitwise AND operation on the values stored in
EAX and EBX the result is saved in EAX

or or eax,ebx Performs a bitwise OR operation on the values stored in
EAX and EBX; the result is saved in EAX

Xor XOr eax,eax Performs a bitwise XOR operation on the values stored in
EAX and EBX the result is saved in EAX

leave leave Remove data from the stack before returning

ret ret Return to a parent function

nop nop No operation (a 'do nothing' instruction)

*The zero flag (ZF) is a 1 bit indicator which records the result of a cmp or test instruction.

Each instruction performs one specific task, and can deal directly with registers, memory
addresses, and the contents thereof. It is easiest to understand exactly what these functions are
used for when seen in the context of a simple hello world program, which we will do a little bit
later.

Assembly syntax
There are two types of syntax used in assembly code: Intel and AT&T. Each display the
same instructions, just a little bit differently (in the above examples I have used Intel syntax).
The primary difference is that the source and destination operands are flip-flopped. Look at the
differences in how the syntaxes display the instruction to move the number 1 into the EAX
register :

Intel Syntax: mov eax, 0x1
AT&T Syntax: mov $0x1,%eax

Besides the source (the number 1) and the destination (the EAX register) being reversed, the
AT&T syntax also adds a percent sign in front of all register names and a dollar sign in front of
hexadecimal numbers. Regardless of syntax however, it is still the same instruction.

You should be familiar with both syntaxes, as different disassemblers may use either one
or the other syntax when disassembling a program. For my following examples I will be using
the Intel syntax since it is a little easier to understand; however, the GNU debugger (gdb), which
we will be using later in this paper, uses AT&T syntax. As such, I will be supplying both the
AT&T and Intel versions of the sample programs in order to give exposure to both syntaxes. For
more information on the differences between AT&T and Intel syntaxes, see the gnu.org link in
the references section at the end of this paper.

