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Abstract—GraphQL’s flexibility, while beneficial for efficient
data fetching, introduces unique security vulnerabilities that tra-
ditional API security mechanisms often fail to address. Malicious
GraphQL queries can exploit the language’s dynamic nature,
leading to denial-of-service attacks, data exfiltration through
injection, and other exploits. Existing solutions, such as static
analysis, rate limiting, and general-purpose Web Application
Firewalls, offer limited protection against sophisticated, context-
aware attacks. This paper presents a novel, AI-driven approach
for real-time detection of malicious GraphQL queries. Our
method combines static analysis with machine learning tech-
niques, including Large Language Models (LLMs) for dynamic
schema-based configuration, Sentence Transformers (SBERT and
Doc2Vec) for contextual embedding of query payloads, and
Convolutional Neural Networks (CNNs), Random Forests, and
Multilayer Perceptrons for classification. We detail the system
architecture, implementation strategies optimized for production
environments (including ONNX Runtime optimization and par-
allel processing), and evaluate the performance of our detection
models and the overall system under load. Results demonstrate
high accuracy in detecting various threats, including SQL injec-
tion, OS command injection, and XSS exploits, alongside effective
mitigation of DoS and SSRF attempts. This research contributes
a robust and adaptable solution for enhancing GraphQL API
security.

Keywords—GraphQL Security, Malicious Query Detection,
Injection Attacks, XSS Exploits, DoS Attacks, SSRF Detection

I. INTRODUCTION AND BACKGROUND

The adoption of GraphQL has grown due to its efficiency in
allowing clients to request specific data, which optimizes data
transfer. However, this flexibility introduces unique security
challenges, as the dynamic nature of GraphQL queries makes
them susceptible to attack vectors that conventional security
measures for static APIs often miss.

Malicious actors can exploit this flexibility to craft sophis-
ticated attacks. Common vectors include Denial-of-Service
(DoS) via resource-intensive queries, injection attacks (e.g.,
SQL, OS commands), Cross-Site Scripting (XSS), schema
introspection to find vulnerabilities, and Server-Side Request

Forgery (SSRF). Detecting these threats is critical for the
security and integrity of GraphQL-based systems.

Existing security solutions like static analysis, rate limiting,
and general-purpose Web Application Firewalls (WAFs) are
insufficient. They struggle with dynamic attacks, lack a deep
understanding of GraphQL’s semantics, are difficult to con-
figure correctly, and often do not provide real-time analysis
of query payloads. This highlights a clear need for more
intelligent, adaptive security mechanisms capable of analyzing
dynamic GraphQL queries in real-time.

This paper proposes an AI-driven framework to enhance
GraphQL security, integrating machine learning with static
analysis to detect vulnerabilities like DoS, injection, and
complexity-based attacks. The key contributions are:

• A hybrid detection framework tailored for GraphQL’s
unique structure.

• The novel use of Large Language Models (LLMs) to an-
alyze the GraphQL Schema Definition Language (SDL)
and dynamically generate context-aware static analysis
rules.

• The utilization of Sentence Transformers (specifically
SBERT for injection attacks and Doc2Vec for XSS) for
effective contextual vector embedding of potentially ma-
licious query payloads, enabling pattern-based detection.

• The application of Sentence Transformers (SBERT,
Doc2Vec) for contextual vector embedding of query
payloads to detect injection and XSS attacks.

• An evaluation of various machine learning classifiers
(CNN, Random Forest, MLP) for accurate payload-based
threat detection.

• A high-performance, scalable system architecture de-
signed for production environments.

The remainder of this paper details the related work, the
proposed methodology, experimental results, and a concluding
discussion.

ar
X

iv
:2

50
8.

11
71

1v
1 

 [
cs

.C
R

] 
 1

4 
A

ug
 2

02
5

https://arxiv.org/abs/2508.11711v1


II. RELATED WORK

GraphQL’s flexibility, while efficient for data fetching, in-
troduces unique security vulnerabilities like DoS and injection
attacks that traditional API security mechanisms often fail to
address. Existing solutions such as static analysis, rate limit-
ing, and general-purpose Web Application Firewalls (WAFs)
offer limited protection against sophisticated attacks 1 . Static
analysis can miss subtle patterns, rate limiting and depth
limits don’t inspect content, and WAFs aren’t designed for
GraphQL’s structure. Many current GraphQL security tools
focus on one-time server analysis rather than real-time analysis
of each incoming query. Examples include GraphQL Cop
and Graph00f. There is a clear need for more intelligent
and adaptive security mechanisms capable of understanding
the context and potential maliciousness of dynamic GraphQL
queries in real-time.

Attack vectors such as SQL injection, OS command in-
jection, and XSS exploits are difficult to detect with static
methods as they rely on patterns within queries rather than
easily blocked keywords. Machine learning (ML) has emerged
as a promising solution for vulnerability detection by enabling
the analysis of vast datasets to recognize patterns [14].Various
ML approaches can be employed effectively. Deep learning
(DL), a subfield of ML, is particularly powerful for identifying
complex patterns in code and data using architectures like
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) [14]. Transformer-based models, leveraging
self-attention mechanisms and handling complex dependen-
cies, show significant potential in cybersecurity for threat
detection with high accuracy. They can process sequential and
multi-dimensional data effectively [2].

The concept of dependency-aware testing is also being
explored for GraphQL with tools like GRAPHQLER, which
analyze relationships among queries, mutations, and objects
to uncover vulnerabilities through context-aware testing [21].
Despite the potential of ML and DL, challenges remain,
including the need for high-quality labeled datasets, managing
overfitting, ensuring model interpretability, and adapting to
evolving threats [14].

This section provides a foundation for understanding the
need for advanced techniques, like those combining static anal-
ysis with machine learning and natural language processing
models, to address the unique security challenges posed by
GraphQL APIs in real-time.

III. METHOD

Our AI-driven system uses a hybrid approach for real-
time detection of malicious GraphQL queries within an API
gateway. It integrates static analysis with machine learning,
dynamically configured by the GraphQL schema, and is
demonstrated using WSO2 API Manager. This section details
the system architecture and its threat detection components.

A. Overall System Architecture
Our system architecture (Figure 1) is built for efficient,

parallel processing. Upon receiving a GraphQL query, the

system validates it against the schema. Concurrently, an LLM
analyzes the schema’s SDL based on predefined rules to
generate a dynamic configuration file containing thresholds
for static checks and complexity values for schema fields.

The query is then parsed into an Abstract Syntax Tree
(AST). This AST facilitates the parallel execution of multiple
detection modules: static analysis, machine learning inference
(for injection and XSS), and SSRF detection. Finally, the
results from all modules are aggregated to provide a com-
prehensive security assessment for the query.

Fig. 1. Overall System Architecture

B. Smart Dynamic Query Complexity
To mitigate Denial-of-Service (DoS) attacks, our system

identifies overly complex queries using dynamic schema
analysis. We developed two distinct and flexible complexity
estimators for this purpose:

• Simple Estimator:This estimator calculates query com-
plexity by multiplying a pre-configured fixed value by the
query’s depth, providing a straightforward, depth-based
measure.

• Directive Estimator: This sophisticated estimator uses a
Large Language Model (LLM) to analyze the GraphQL



schema. The LLM intelligently assigns varied complexity
values to fields based on their data type and their possible
size, while also setting a dynamic complexity threshold
according to pre-defined rules. This method provides
a more nuanced, context-aware assessment that better
reflects actual resource consumption.

The user is provided with the option to select their preferred
complexity estimator (directive or simple) through a configura-
tion setting, allowing them to tailor the complexity assessment
to their specific needs and schema characteristics.

C. Thresholding Common DoS Attacks
Beyond query complexity, our system mitigates several

Denial-of-Service (DoS) vectors by applying dynamic thresh-
olds. A Large Language Model (LLM) generates these thresh-
olds by analyzing the Schema Definition Language (SDL)
according to a predefined rule set that dictates how to establish
upper bounds for factors like circular dependencies, aliases,
and batch sizes. This provides an adaptive defense tailored to
the specific API and addresses the following vulnerabilities:

• Alias Overloading: Excessive use of field aliases in a
query, which increases server processing.

• Batch Overloading: A large number of queries sent
simultaneously in a single batched request.

• Deep Circular Queries: Exploiting cyclical schema re-
lationships to create resource-intensive, deeply nested
queries.

• Directive Overloading: Overuse of directives (e.g.,
@include, @skip), which adds significant processing
overhead.

• Excessive Query Depth: Crafting queries with an ex-
treme level of nesting that consumes excessive server
resources.

• Query Payload Inflation: Requesting an overly large
volume of data, straining server memory and bandwidth.

Upon parsing a query, an Abstract Syntax Tree (AST) is
used to traverse its nodes and enforce these LLM-generated,
contextual, and meaningful limits.

D. Machine Learning for Injection Attack Detection
While static analysis is effective for structural vulnerabili-

ties, detecting injection attacks requires a deeper understanding
of the content of user inputs. We employ machine learning
models for this purpose, leveraging vector embeddings and
the handcrafted features.

Injection attacks cannot be identified statically because re-
stricting common keywords for each attack type is impractical.
Many benign queries contain these keywords without being
harmful. Therefore, detecting such injection attacks requires
analyzing patterns rather than relying solely on keyword-based
detection. The following two types of injection attacks are
handled in this project effectively.

• OS Command Injections: This allows an attacker to
execute arbitrary commands on the server where the
application is hosted. In a GraphQL context, an OS

command injection vulnerability could occur if you have
a mutation or query that takes user-supplied input and
uses it in a system command

• SQL injections: SQL injection (SQLi) attacks are a type
of security vulnerability in GraphQL APIs that allow
an attacker to execute malicious SQL queries against a
backend database. Attackers can exploit this vulnerability
by injecting malicious SQL code into a GraphQL query,
which is then executed by the backend database.

Thus, to identify injection attacks, a machine learning
methodology comprised of two primary stages is employed.

1) Building contextual vector embeddings for the payloads
2) Predict vulnerability

1) Phase 01 - Building Contextual Vector Embeddings for
the Payloads: Various embedding techniques were initially
explored for building vector embeddings of the extracted user
payloads, including BERT, Microsoft’s CodeBERT, Doc2Vec,
and FastText from Gensim. Ultimately, the SBERT pre-trained
all-MiniLM-L6-v2 model, with 384-dimensional embeddings,
demonstrated the best accuracy on the final validation set.

Fig. 2. Building Contextual Vector Embeddings for the Payloads with SBERT

As shown in Figure 2, our model for injection attacks
first generates a base embedding vector from the input. This
vector is then appended with specific handcrafted features to
create two distinct vectors, one tailored for SQL Injection



(SQLi) and one for OS command injection. Each vector is
subsequently processed by a dedicated 1D CNN. Although
the CNNs share the same architecture, each is trained on
its corresponding attack-specific dataset, resulting in two
specialized models for injection detection.

Handcrafted Features for OS Injection Detection
• OS Commands Count – Counts occurrences of common

OS commands like ls, pwd, chmod, and whoami.
• OS Operators Count – Detects command chaining

operators (|, &&, ;, >, >>) that facilitate injection.
• OS Special Characters Count – Identifies special shell

characters ($, &, ;, {}, ()) often used in exploits.
• OS Payload Patterns – Matches known OS command

injection payloads, including remote shells and command
execution patterns.

• Pipe Operators Count – Tracks the use of ||, &&, and
|, which can be used to append or manipulate commands.

• Variable Execution Count – Detects command substi-
tution using $() and backticks (‘...‘), which execute
embedded commands.

• Remote Execution Keywords – Identifies commands
used for remote file retrieval and execution (wget, curl,
scp).

• System Information Extraction – Flags queries attempt-
ing to extract system details using uname, whoami, and
env.

• Privilege Escalation Attempts – Detects commands
(sudo, su, chmod, chown) that attempt to escalate
privileges.

Handcrafted Features for SQL Injection Detection
• SQL Keywords Count – Counts occurrences of critical

SQL commands (INSERT, UPDATE, DELETE, DROP,
ALTER).

• SQL Operators Count – Identifies SQL-specific opera-
tors (--, /*, */, @@, CAST, CONVERT).

• SQL Special Characters Count – Detects special char-
acters (’, ", --, ;, /*) often used in SQL injection
payloads.

• Boolean Conditions Count – Flags logical SQL con-
ditions (XOR, NOT) that can be used for bypassing
authentication.

• Query Length – Measures the total length of user input,
as longer inputs may indicate payloads.

• Union-Select Usage Count – Tracks usage of UNION
and SELECT, commonly seen in injection attempts.

• SQL Payload Patterns Count – Matches known SQL
injection payloads like ’ OR ’1’=’1’ -- and DROP
TABLE.

• Encoded Injection Count – Detects percent-encoded
(%27, %3D, 0x27) SQL payloads used for obfuscation.

• Database-Specific Keywords Count – Flags DB-specific
functions (information_schema, xp_cmdshell,
database()).

• Time-Based Attack Keywords Count – Identifies
delay-based injection techniques (SLEEP, BENCHMARK,
WAITFOR DELAY).

• Nested Select Count – Detects nested SELECT queries,
which can be used to manipulate database logic.

2) Phase 02 - Predict Vulnerability: The concatenated
feature vector is classified by a 1D CNN, with identical
models for SQLi and OS Command detection. As shown in
Figure 3, it has three 1D convolutional layers (128, 256, 512
filters; kernel 3; ReLU), each with Batch Normalization and
MaxPooling1D (2). A GlobalMaxPooling1D layer precedes a
256-neuron dense layer with 0.5 dropout, and a final sigmoid
neuron outputs malicious probability. The model uses Adam
(0.001) with binary cross-entropy, trained up to 20 epochs
(batch 32) with early stopping (5 patience) and best-weight
restoration.

E. Machine Learning for XSS Exploit Detection

Like injection attacks, XSS (Cross-Site Scripting) exploits
cannot be identified simply by blocking specific keywords. In
this case too, a two-step machine learning approach has been
employed to identify such vulnerabilities.

1) Building contextual vector embeddings for the payloads
2) Predict vulnerability

1) Phase 01 - Building Contextual Vector Embeddings for
the Payloads: XSS detection is easier than injection attacks
due to common exploit patterns. Injection attacks are more
complex and diverse, so high-dimensional embeddings are
unnecessary for XSS and would add extra overhead.

To optimize performance, as shown in Figure 4, the
Doc2Vec embedding model from Gensim is used, generating
an embedding vector of size 20. The Doc2Vec model em-
ployed in this study is a custom-trained version, developed
specifically using a dataset of XSS and benign scripts, rather
than a pre-trained model. This vector is then concatenated with
additional handcrafted features extracted from the query. The
combined feature vector is subsequently fed into the models
to determine whether the query is malicious or benign.

Handcrafted Features for XSS Exploit Detection
• HTML Tag Count – Counts occurrences of po-

tentially dangerous HTML tags (<script>, <img>,
<iframe>, <input>, etc.) often used in XSS payloads.

• JavaScript Method Count – Identifies use of
sensitive JavaScript functions (eval(), alert(),
document.write(), etc.) commonly exploited in
XSS attacks.

• .js File Reference Count – Tracks references to external
JavaScript files (e.g., .js) which may contain malicious
code.

• Keyword ”javascript” Count – Measures the frequency
of the keyword javascript, often used in URI-based
or inline scripts.



Fig. 3. CNN Architecture

Fig. 4. Building contextual vector embeddings for the payloads with Doc2Vec

• Payload Length – Represents the total length of the
payload; longer inputs may include embedded scripts or
obfuscation.

• Obfuscated Script Variants Count – Flags encoded or
obfuscated versions of <script> (e.g., %3Cscript,
&lt;script) used to bypass filters.

• Special Characters Count – Counts occurrences of
characters like <, >, ", ’ and encoded forms (%3C, %3E)

that are critical in HTML/JS injection.
• External Resource Count – Detects usage of URLs

(http) that may load remote scripts or redirect users to
malicious domains.

2) Phase 02 - Predict Vulnerability: To enhance the
efficiency of malicious XSS detection, an ensamble method
of a Random Forest classifier and a Multilayer Perceptron
(MLP) were employed. This approach was chosen due to
the reduced dimensionality of the handcrafted and embedded
feature vectors, which makes traditional machine learning
models particularly suitable. Unlike deep neural networks
that often require large amounts of data and computational
resources, these models offer faster training and inference with
minimal performance trade-offs. Moreover, this design helps
significantly reduce computational overhead while maintaining
high detection accuracy. The ensemble of Random Forest and
MLP achieves an effective balance between precision and
efficiency.

F. Mitigating Server-side Request Forgery (SSRF) Attempts

To mitigate Server-Side Request Forgery (SSRF) attacks,
where adversaries manipulate server-side requests, our system
performs several parallel security checks. Upon receiving a
query, its Abstract Syntax Tree (AST) is inspected for URLs.
Any URL found is then evaluated against the following attack
vectors:

1) Local IP Attack Detection: This check blocks requests
to local addresses (localhost, 127.0.0.1), private IP
ranges, and their obfuscated variants (e.g., encoded IPs, DNS
redirects) to prevent access to internal-only network resources.

2) Cloud Metadata Attack Prevention: This prevents ac-
cess to well-known metadata service endpoints for major cloud
providers (AWS, GCP, Azure) by blocking requests to their
specific IPs and hostnames, thus protecting sensitive cloud
credentials.



3) Parameter Based SSRF Prevention: We scan for
query parameters commonly abused in SSRF (e.g., url,
redirect). If these parameters contain a URL, it is subjected
to our other SSRF checks, preventing attackers from hiding
malicious URLs in trusted parameters.

4) Encoded Payload Attack Mitigation: To counter evasion
techniques, the system detects malicious URLs that are obfus-
cated using encoding schemes like URL encoding, Base64, or
Unicode by checking them against a list of known encoded
attack patterns.

G. Implementation and Optimization for Production

The detection system is implemented as a modular, high-
performance service designed for real-time analysis within a
production environment. This section details the key imple-
mentation strategies and optimizations employed to ensure the
system’s efficiency, scalability, and seamless integration.

1) Asynchronous Architecture: The core service is built
on FastAPI, an asynchronous framework, to efficiently handle
a high volume of concurrent requests without blocking. This
is crucial for processing real-time API traffic.

2) Centralized Model Loader: To minimize memory and
loading overhead, a singleton class manages all machine learn-
ing models. The models are loaded only once upon system
initialization, making them readily available for inference
across all subsequent requests.

3) ONNX Runtime Optimization: For maximum inference
speed, all trained models are converted to the Open Neural
Network Exchange (ONNX) format and quantized to INT8
precision. We use the ONNX Runtime, configured with aggres-
sive graph optimizations, to execute these models (Figure 5).
This significantly accelerates predictions by reducing memory
footprint and leveraging hardware-level optimizations.

Fig. 5. ONNX Runtime Optimization

4) Optimized Parsing and Preprocessing: GraphQL query
parsing and the expansion of fragments are performed only
once per query in an initial preprocessing stage. This prevents
redundant computation by ensuring the Abstract Syntax Tree
(AST) is built efficiently before being passed to the various
detection modules.

5) Parallel and Concurrent Vulnerability Detection: The
system uses a hybrid execution model to maximize throughput.
A dedicated thread pool handles CPU-intensive tasks like ML
model inference, while another manages I/O-bound opera-
tions. The main asyncio event loop coordinates these tasks,
ensuring the application remains responsive while efficiently
processing computationally intensive or blocking operations in
separate threads.

6) Centralized Logging: A custom logging system pro-
vides clear visibility into all key operations while suppressing
verbose output from external libraries. To minimize I/O over-
head and reduce latency, logs are written to a file in batches.

7) Production Deployment Architecture: For production,
the FastAPI application runs using Gunicorn as a process
manager with Uvicorn workers. This architecture leverages
Gunicorn for robust concurrency and process supervision,
while Uvicorn provides a high-performance Asynchronous
Server Gateway Interface (ASGI) for the application, ensuring
scalability under substantial user load.

H. Data Collection and Preparation
This section outlines the methodologies employed for gath-

ering and preparing the datasets utilized in the training and
evaluation of the machine learning models. Separate datasets
were compiled for each targeted attack vector: SQL Injection,
OS Command Injection, and Cross-Site Scripting (XSS).

1) Data Acquisition: The data acquisition phase involved
collecting relevant payloads for each attack type from estab-
lished sources.

For SQL Injection detection, a dataset was obtained from
a publicly available repository on Kaggle [30]. The OS
Command Injection dataset was acquired from the resource
specified in [27]. In the case of XSS exploits, diverse payloads
were gathered from the sources indicated by [28], [29], [31],
and [32]. The approximate volumes of the datasets after
cleaning, are as mentioned in Table I.

TABLE I
APPROXIMATE VOLUMES OF DATASETS

Dataset Malicious Benign
SQL Injection 77k 75k

OS Command Injection 7.5k 7.5k
XSS 38k 44k

2) Data Pre-processing: Datasets were preprocessed to
ensure consistency, with each instance containing a payload
and binary label (1 for malicious, 0 benign). Hundreds of
mislabeled samples were removed after manual review. For the
limited OS Command Injection data, LLM-based augmenta-
tion generated synthetic payloads combining OS commands
and natural language to improve robustness.

Negative sampling incorporated samples from other attack
categories labeled benign within each dataset to reduce false
positives caused by similar code-like patterns across cate-
gories, enhancing model specificity for SQL Injection, OS
Command Injection, and XSS detection.



IV. RESULTS

This section presents the evaluation results of our AI-
driven GraphQL security detection system. We first detail the
performance of the machine learning models developed for
detecting injection attacks and XSS exploits. Subsequently,
we present the results of load testing and system profiling
conducted to assess the system’s performance and scalability
in a simulated production environment.

A. Machine Learning Model Evaluation

The ML models for SQL Injection, OS Command Injection,
and XSS detection were evaluated on a held-out test set
(Section III.H) using Accuracy, Precision, Recall, and F1-
score. Confusion matrices detailed true/false positives and
negatives. Results are summarized in Tables II and III with
corresponding confusion matrices.

TABLE II
PERFORMANCE METRICS FOR INJECTION ATTACK DETECTION MODELS

Model CNN for SQLi CNN for OS Command
Accuracy 0.9678 0.9767

Precision 0.9940 0.9950

Recall 0.9403 0.9659

F1-score 0.9664 0.9802

Confusion Matrix

Overall, both SQL Injection and OS Command Injection
models achieved high accuracy and robust detection, with
SBERT embeddings and handcrafted features, processed by
dedicated CNNs, effectively capturing the complex patterns
of malicious payloads.

TABLE III
PERFORMANCE METRICS FOR XSS EXPLOIT DETECTION MODELS

Model Random Forest Classifier MLP Classifier
Accuracy 0.9938 0.9948

Precision 0.9988 0.9961

Recall 0.9879 0.9926

F1-score 0.9933 0.9943

Confusion Matrix

Both the Random Forest and MLP models demonstrated
high accuracy in identifying XSS exploits, indicating that the
Doc2Vec embeddings combined with handcrafted features are
effective for this type of threat.

B. System Performance and Scalability
To assess the system’s performance and scalability under

load, we conducted load testing in a simulated production
environment.

1) Load Testing Methodology and Environment: Load
testing was performed within an Azure Virtual Machine envi-
ronment with the following specifications:

Spec Details
Cloud Provider Microsoft Azure
VM Series F-Series
vCPUs 4
Memory 8 GB
Disk Type and Size 64 GB HDD
Operating System 22.04.1-Ubuntu
Max Network Bandwidth (Mb/s) 10000
Accelerators None

Locust was used to simulate concurrent load by sending
POST requests with mixed benign and malicious GraphQL
queries to the API endpoint. The test ramped from 0 to
500 users at 10 users/sec over 2 minutes. Load testing was
performed in two phases to assess the performance of different
components.

2) Benchmarking Static Security Checks: With only static
checks (Alias Overloading, Batch Overloading, Deep Cir-
cular Queries, Directive Overloading, Introspection Queries,
Excessive Query Complexity/Depth, Query Payload Inflation,
SSRF) enabled, the system sustained high concurrency with
low average response times (Figures 6, 7, 8), demonstrating
the computational efficiency of static analysis and thresholding
mechanisms.

Fig. 6. Average Response Time vs User Count in Static Checks

Fig. 7. Requests per Second vs Concurrent User Count in Static Checks



Fig. 8. CPU Utilization, Requests/s and Response Time over Time in Static
Checks

3) Benchmarking All Security Checks: With all checks
enabled, including ML-based SQL Injection, OS Command
Injection, and XSS detection, performance metrics (Figures
9, 10, 11) showed notable overhead. Average response time
rose sharply with higher concurrency, mainly due to the
computational cost of ML inference. All tests were conducted
in a non-GPU environment.

Fig. 9. Average Response Time vs User Count for All Checks

Fig. 10. Requests per Second vs Concurrent User Count for All Checks

4) System Profiling: System profiling in local and re-
mote environments measured execution times for each se-
curity check. As shown in Figure 12, ML inference tasks
(detect_sqli, detect_xss_exploit, detect_osi)

Fig. 11. CPU Utilization, Requests/s and Response Time over Time for All
Checks

were significantly slower than static checks, while SSRF
(check_ssrf) also took longer due to AST traversal. The
main overhead with all checks enabled stems from CPU-bound
ML inference, especially in the test setup lacking GPUs and
with limited CPU cores. Running multiple AI-based checks
in parallel increased response times under high concurrency.
Although ONNX Runtime optimization and parallel execution
(Section III.G) reduced this, profiling confirms ML inference
remains the primary bottleneck in CPU-only environments.

Fig. 12. Security Checks Execution Metrics

V. DISCUSSION

This section evaluates the AI-driven GraphQL security
detection system. The hybrid approach—combining
SBERT/Doc2Vec embeddings with handcrafted
features—achieves high accuracy (Tables 1–2) in detecting
injection and XSS attacks, even when obfuscated. SBERT
captures semantic meaning, while handcrafted features detect
known patterns.

Load testing shows a performance trade-off: static analysis
remains efficient under high concurrency (Figures 8–10), but
ML inference introduces significant overhead (Figures 11–13),
with profiling confirming CPU-only environments as a bot-
tleneck (Figure 14). Despite ONNX and parallel execution



optimizations, hardware acceleration (GPU/TPU) is needed for
production scalability.

The LLM’s dynamic thresholding reduces manual config-
uration by adapting static checks to various schemas, though
further quantitative evaluation is required to confirm its effec-
tiveness across diverse scenarios.

VI. CONCLUSION

This paper introduced a novel, AI-driven system for real-
time GraphQL security. Our hybrid approach, which combines
static analysis with machine learning, leverages LLMs for
dynamic configuration and Sentence Transformers with CNNs
for effective threat detection.

The evaluation demonstrated high accuracy in detecting
SQLi, OS Command, and XSS exploits. However, load testing
revealed that real-time ML inference introduces computational
overhead, particularly in CPU-only environments, underscor-
ing the need for hardware acceleration.

Our work provides a robust and adaptable solution for
GraphQL API security. The dynamic configuration via LLMs
allows for schema-specific policies, while the combined static
and ML checks provide comprehensive threat coverage.

Future work will focus on expanding the dataset, optimizing
models, evaluating performance on accelerated hardware, in-
corporating XAI techniques, and exploring advanced feedback
mechanisms for continuous improvement.
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