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Abstract—Machine learning models have been shown to be
susceptible to membership inference attack, which can be used
to determine whether a given sample appears in the training data.
Existing membership inference methods commonly assume that
the adversary has full access to the features of the target sample.
This assumption, however, does not hold in many real-world
scenarios where only partial features information is available,
thereby limiting the applicability of these methods. In this work,
we study an inference scenario where the adversary observes
only partial features of each sample and aims to infer whether
this observed subset was present in the training set of the target
model. We define this problem as Partial Feature Membership
Inference (PFMI). To address this problem, we propose MRAD
(Memory-guided Reconstruction and Anomaly Detection), a two-
stage attack framework. In the first stage, MRAD optimizes the
unknown feature values to minimize the loss of the sample. In the
second stage, it measures the deviation between the reconstructed
sample and the training distribution using anomaly detection.
Empirical results demonstrate that MRAD is effective across a
range of datasets, and maintains compatibility with various off-
the-shelf anomaly detection techniques. For example, on STL-10,
our attack achieves an AUC of around 0.6 even with 40% of the
missing features.

I. INTRODUCTION

Machine learning has been widely applied across various

domains, such as medical diagnosis [1], traffic analysis [2], and

autonomous driving [3]. However, current machine learning

models remain vulnerable to privacy inference attacks. Adver-

saries can exploit interactions with the target model to infer

privacy information from its training data, posing significant

threats to user confidentiality and data privacy. A well-known

example of such attacks is the Membership Inference Attack

(MIA) [4], [5], which can be used to determine whether certain

samples were included in the training set of a target model.

This type of attack highlights the risk of information leak-

age during inference, where adversaries can extract sensitive

training information at a low cost.

Membership inference attack has been shown to compro-

mise the privacy of various machine learning models [6]–[9].

In this paper, we focus on this attack against classification

models. Existing membership inference attack can be roughly

categorized into two types based on the attacker’s objective.

The first type, exact-match MIA, aims to determine whether

a given sample exactly matches one of the samples in the

training set of the target model, which is where most existing

attacks fall [10]–[12]. These can be further divided into

confidence-based attacks [13], [14], label-only attacks [10],

[15], and blind attacks [16]. The second type, range-match

MIA, does not seek an exact sample match. Instead, it aims to

infer whether the model’s training set contains any sample

with features in a specified range. In recent work, Tao et

al. [17] were the first to formally define and investigate

this setting, highlighting that membership inference can be

extended beyond exact-match assumptions.

Fig. 1. Our goal is to infer membership information when only partial features
of a sample are available.

Inspired by Tao et al. [17], we pose a question: How

much private information can membership inference attack

extract when some features are missing? This setting aligns

more closely with practical scenarios. For instance, consider

an attacker attempting to determine whether an individual,

Alice, has a particular disease by querying a diagnostic system

deployed in a hospital she frequently visits. If Alice is indeed

diagnosed with the disease, it is likely that her data is included

in the training set. However, due to the difficulty of acquiring

complete information, the attacker may only know a subset

of her attributes, such as age, gender, and race. Applying a

standard membership inference attack in this setting would

require exhaustively enumerating all possible combinations of

the unknown features, which is computationally infeasible and

inefficient.

As Figure 1 shows, in this paper, we consider a setting

where the attacker has access to only a subset of a sample’s

features and aims to infer whether this partial feature combina-

tion was present in the training set of a target model. We refer

to this type of attack as Partial Feature Membership Inference

(PFMI). In this setting, the observed partial features is termed

known features, while the remaining unobserved ones are
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referred to as unknown features. The property existence attack,

proposed as a generalization of membership inference [18],

shares certain similarities with PFMI in that both seek to infer

the presence of specific feature combinations. However, in

property existence attack, the adversary can directly access

complete samples containing the target feature combination

[18], [19], whereas PFMI operates under stricter constraints by

relying solely on partial observations. Although the attacker’s

limited access to only partial feature information makes the

inference task more challenging, this constraint also reflects a

more realistic threat model. It shows that even with incomplete

information, a resource-constrained adversary can still launch

effective privacy inference attack. This amplifies the risks

posed to current privacy protection mechanisms, which often

assume attackers have access to complete samples.

To tackle this problem, we propose MRAD—a two-stage

attack framework that combines Memory-guided Reconstruc-

tion with Anomaly Detection. MRAD is specifically tailored

to the partial feature setting and is capable of accurately

inferring membership even when some input features are

missing. Specifically, when we try to minimize the loss of

the target sample by updating unknown features, reconstructed

samples with non-member features often deviate significantly

from the original distribution, resulting in anomalous data. We

leverage anomaly detection techniques to identify such devia-

tions, thereby determining whether the observed partial feature

combination exists in the training set. Our main contributions

can be summarized as follows.

• Attack Formalization under Partial Observability:

We investigate a more realistic setting for membership

inference attack, in which the adversary has access only

to partial features of the target sample. We refer to this

scenario as PFMI, and we provide a formal definition of

the attack framework under this constraint.

• Two-Stage Attack Framework: We propose a two-

stage attack framework designed for this new inference

scenario. The framework is modular and can be integrated

with a variety of off-the-shelf anomaly detection tech-

niques.

• Extensive Evaluation: We extensively evaluate our at-

tack framework on both image and tabular datasets,

demonstrating its compatibility with various anomaly

detection methods. In the STL-10 and Epsilon datasets,

our method achieves an average AUC of 0.6 even with

40% missing features.

• In-depth Analysis & Case Study: We show how hy-

perparameter settings and the importance of observed

features affect attack performance by experiments. We

also present a case study to demonstrate how our attack

can lead to privacy leakage in a real world scenario.

The remainder of this paper is organized as follows. Section

II reviews related work on membership inference and anomaly

detection. Section III introduces the PFMI setting, including

the attack objective, adversary capability and attack definition.

Section IV presents the technical details of the proposed two-

stage attack framework. Section V presents experimental re-

sults, including studies that validate design intuition, followed

by a comprehensive evaluation of the attack performance

in various settings. Section VI discusses potential defense

mechanisms, analyzes the relationship between PFMI and

other inference attacks, and outlines directions for future work.

Section VII concludes the paper.

II. RELATED WORK

In this section, we review prior work on membership

inference attack. Then we will give a brief introduction on

anomaly detection.

A. Membership Inference Attack

Membership Inference Attack Based on Exact Sam-

ple Matching: Membership inference attack against machine

learning models was first introduced by Shokri et al. [4].

A binary classifier was trained as the attack model using

prediction vectors produced by shadow models. To launch

the attack, the target model’s prediction on a given input is

provided to the attack model, which decides whether the input

was included in the training data. Most follow-up studies adopt

a similar setting, where the adversary has access to both the

full prediction vector and the ground-truth label of the sample.

These methods typically rely on the observation that member

samples tend to yield lower loss values than non-members

[5], [12], [13]. Song et al. [13] predict membership with a

modified loss function. Ye et al. [14] proposed a membership

inference attack that achieves an arbitrary false positive rate

by using a non-member set to calibrate the decision threshold.

Carlini et al. [5] trained multiple shadow models to examine

the loss distributions of samples when they are in and out

of the training set, further improving the attack performance

under low false positive rates. Instead of using loss values

for membership inference, Zarifzadeh et al. [11] computed a

likelihood ratio based on the output confidences and used it

as the inference metric.

In the label-only scenario, the adversary can only observe

the predicted label rather than the full confidence vector [15],

[20]. Li et al. [15] leveraged the fact that member samples are

often farther from the decision boundary, while Peng et al.

[10] crafted minimally perturbed adversarial examples using

a shadow model and inferred membership based on whether

the perturbed samples were misclassified by the target model.

Since their method relies solely on the final prediction of the

model, it requires only a single query.

Another line of work, which is called blind membership

inference, considers the setting where the adversary has access

to the full prediction vector of the target sample but lacks

knowledge of the true label. Hui et al. [16] proposed a

blind black-box attack that performs differential comparisons

between samples to infer membership without ground-truth

guidance.

Membership Inference Attack Based on Feature Range

Matching: Tao et al. [17] proposed a novel form of mem-

bership inference attack that shifts the focus from individual



Fig. 2. Attack framework:We first implement a simple feature reconstruction algorithm to obtain a complete sample, and then distinguish between member
and non-member features based on their deviation distance.

samples to feature regions. Rather than determining whether

a specific sample was included in the training set, their

method aims to infer whether any data point within a given

range appears in the training data. To perform the attack,

they first sample instances from the specified range, apply

standard membership inference techniques to assign scores to

these samples, and then aggregate the scores to reach a final

inference decision.

B. Anomaly Detection

Anomalous data refers to samples that deviate from the

expected or learned data distribution. Two common categories

of such anomalies are concept drift and out-of-distribution

(OOD) samples. Concept drift occurs when the test-time data

distribution shifts from the training distribution, leading to

degraded model performance [21]. Yang et al. [22] detect such

drift by modeling input data with autoencoders and computing

Median Absolute Deviation(MAD) values between the current

and original distributions. Wan et al. [23] proposed MCD-DD,

which uses a dynamically updated encoder and Mahalanobis

distance-based criteria to detect distributional changes in time

series. OOD detection has also received significant attention,

as the presence of OOD samples can bias model behavior.

Park et al. [24] improved OOD detection by reducing over-

confidence in OOD regions. Reiss et al. [25] designed a novel

contrastive loss function that enhances contrastive learning for

OOD detection. Liu et al. [26] exploited the clustering effect in

the penultimate layer of neural networks to develop a post-hoc

OOD detection method.

III. PROBLEM FORMULATION

In this section, we present the problem formulation of the

proposed Partial Feature Membership Inference (PFMI) attack.

We begin by describing the attack model , followed by a

formal definition of the attack.

A. Attack Model

Attack Objective: In this work, the goal of the attacker is

similar to that of traditional MIA, but with a key constraint: the

attacker only has access to partial features of the target sample.

The objective is to determine whether this particular feature

combination exists in the training set of the target model. We

refer to such feature combinations as member features if they

appear in the training set, and non-member features otherwise.

Apparently, any combination drawn from the training set is

considered as member features.

Adversary Capability: We consider a white-box threat

model in which the attacker has full access to the model,

including its output, training algorithm, internal parameters,

architecture, and gradients. Although the specific target sample

may have missing features due to privacy concerns or incom-

plete collection, we assume that the attacker has knowledge

of the training data distribution and can sample fully observed

auxiliary data from it to support the attack, which is consistent



with the prior inference attack settings [4], [11], [13], [14].

This is feasible in practice, as attackers may obtain partial

data through social engineering or cyberattacks. However, the

attacker is unable to obtain any complete sample that contains

the exact feature combination to be inferred.

B. Attack Definition

Before introducing our proposed attack definition, we first

revisit the standard definition of membership inference attack,

as formalized in prior work [11], [27] using an indistinguisha-

bility game.

Definition 1: (Membership Inference Attack). Let π rep-

resent the underlying data distribution, θ the parameters of

the target model, T the training algorithm, and A the attack

algorithm.

I The Challenger samples a datasetD ∼ π to train a model

θ ← T (D)
II The Challenger flips a fair coin b, if b = 1, then x ∼ D,

otherwise x ∼ π/D. The Challenger sends the model θ
and the target sample x to the Adversary

III The Adversary gets the prediction b̂← A(θ, x⊙M,π)
IV If b̂ = b, output 1. Otherwise, output 0.

Previous membership inference attack generally assume

that the adversary has access to complete feature information

of a sample. In contrast, we consider a more realistic and

constrained setting where only partial feature values are avail-

able. To formalize this, we introduce a binary mask M that

indicates which features are known and which are unknown.

Using this mask-based representation, we extend the standard

indistinguishability framework and define the Partial Feature

Membership Inference (PFMI) problem.

Definition 2: (Partial Feature Membership Inference). Let π
represent the underlying data distribution, θ the parameters of

the target model, T the training algorithm, and A the attack

algorithm. We introduce a feature mask M ∈ {0, 1}d, where

Mi = 1 indicates that the i-th feature is known to the attacker,

and Mi = 0 indicates it is unknown. We use ⊙ to denote

element-wise product.

I The Challenger samples a datasetD ∼ π to train a model

θ ← T (D)
II The Challenger flips a fair coin b, if b = 1, then x ∼ D,

otherwise x ∼ π/D such that x⊙M /∈ D ⊙M .

III The Challenger gets the known features xkno ← x⊙M .

Let π′ ← π/{x′ : x′⊙M = xkno}, then the Challenger

sends (θ,xkno, π
′) to the Adversary.

IV The Adversary gets the prediction b̂← A(θ, x⊙M,π)
V If b̂ = b, output 1. Otherwise, output 0.

In this paper, for the sake of generality, we define partial

features as a subset of the full feature vector, where the known

features can appear at arbitrary positions. That is, the known

and unkonwn features are not required to form a contiguous

block or follow any fixed pattern. This flexible definition

better captures real-world scenarios where feature availability

is influenced by privacy constraints or unstable data sources.

IV. MRAD: MEMORY-GUIDED FEATURE

RECONSTRUCTION & ANOMALY DETECTION

In this section, we first introduce the underlying design

intuition of our attack, and then detail the implementation

process of the MRAD framework.

A. Design Intuition

In designing our attack, we build on a well-established

observation: overfitted models memorize their training data,

causing training members to occupy regions of the input space

associated with low loss values [4], [28], [29]. Specifically,

for a supervised machine learning algorithm T , the training

process aims to learn a model that can effectively distinguish

between samples from different classes. Since it is impractical

to access the full data distribution, a finite subset of labeled

examples Dtrain, the training set, is typically sampled to

represent it. A function fθ , parameterized by θ, is then

learned to map each input x from Dtrain to its corresponding

label k by minimizing a loss function Lθ(x, k). Because the

optimization only considers the training set, the model tends

to assign lower loss values to training samples compared to

unseen ones. This results in loss valleys around training points

in the input space, a phenomenon that forms the basis of many

membership inference attack [27], [29].

However, Designing a membership inference attack under

partial feature knowledge introduces several challenges. We

next introduce the challenges and our solutions one by one.

Challenge 1: Incomplete inputs cannot be directly fed into

the neural network, which makes it hard to get feedback from

the model. The first step is therefore to determine how to fill

in the missing features. Several studies have demonstrated that

model inversion attacks can successfully recover input features

[30]–[35]. These attacks can be broadly categorized into two

types. The first type aims to reconstruct representative features

of an entire class, typically in scenarios where all samples from

that class correspond to the same entity [30]–[32], and these

attacks are generally conducted without prior knowledge of

partial features. For example, in a facial recognition system,

Fredrikson et al. [36] introduced the Face-Rec attack, which

reconstructs a human face using the target person’s label. The

label, representing the target identity in the recognition system,

serves as a guiding signal to steer the reconstruction toward

the correct person. However, such attacks are not directly

applicable to our setting, since in our case a class label does

not uniquely correspond to a single entity. The second type

of attack, also known as attribute inference attack, attempts

to recover unknown private attributes based on the known

features of a sample [33]–[35]. Yet, most existing works in

this category assume that the attacker has prior knowledge of

the possible values of the missing features, which is unrealistic

in practice.

Solution to Challenge 1: We adopt a reconstruction strategy

similar to that of Fredrikson et al. [36], leveraging the model’s

inherent memorization of its training data. Specifically, instead

of using labels, we treat the known features as anchors and

apply backpropagation to optimize the unknown features,



aiming to minimize the sample’s loss value. Even when the

known features originate from a training member, our goal is

not to exactly reconstruct the original sample, but to recover

what the model “remembers” , that is, the internal impression

it has formed during training, typically corresponding to a

point near a local minimum of the loss function. According

to our observations, when the known features come from a

member sample, the reconstruction tends to better align with

the true data distribution, as the model has already formed

internal representations based on the complete training inputs.

In contrast, if the known feature combination is not a member,

the optimization may converge to a random local minimum,

resulting in a reconstruction that deviates more from the

training distribution.

Challenge 2: It is difficult to distinguish members from

non-members. Because multiple samples may share the same

known features, the reconstruction often becomes a blended

representation influenced by several candidates, rather than a

faithful replica of any individual one. As a result, the recon-

structed sample differs from the original, making exact-match

membership inference attack no longer applicable. Moreover,

without access to the full ground-truth features, it is difficult

to quantify the distance between the reconstructed and original

samples, which also hinders the applicability of range-match

membership inference attacks.

Solution to Challenge 2: We shift our focus from exact

sample matching to assessing how well the reconstructed sam-

ples align with the underlying data distribution. Specifically,

we employ anomaly detection techniques to identify recon-

structed samples that deviate from the true data distribution,

enabling us to distinguish between member and non-member

feature combinations.

We provide a preliminary validation of the design intuition

in Section V-B.

B. Detailed Attack Procedure

As shown in Figure 2, to perform a partial membership

inference attack, we first leverage the target model to conduct

memory-guided reconstruction of the unknown features. This

process can be formalized as

min
xunk

Lθ(cat(xkno, xunk,M), k), (1)

where cat denotes the feature concatenation function that

merges the known features xkno and the unknown features

xunk according to their original feature order. The mask M
serves as a positional indicator, specifying which elements in

the input vector correspond to known or unknown features.

we adopt the loss function Lθ used during model training

as our optimization objective. Since multiple samples from

different classes may share the same known features, the label

y can be arbitrarily chosen from among those associated with

the known feature values. We then apply anomaly detection

techniques to determine whether the reconstructed sample x̂
deviates from the true distribution of class-k samples. Our

framework is compatible with any existing anomaly detection

method, and we also propose a simple yet effective algorithm.

The remainder of this section introduces our approach from

two perspectives: memory-guided feature reconstruction and

anomaly detection.

Memory-Guided Feature Reconstruction: As outlined in

SectionIV-A, we reconstruct the unknown features by mini-

mizing the loss of the model on the sample. As shown in

Algorithm 1, for a sample with missing feature values, we first

initialize unknown features (line 1). Since the reconstruction

process relies on information from the known features, it

is important that the model maintains its reliance on them

after initialization, in order to prevent the initial values of the

unknown features from dominating the early gradient updates.

To this end, we initialize all unknown features to zero. We

then combine the known features and the initialized unknown

features according to their original order(line 2). Since the

attacker have access to the loss function during the training

process, then we can iteratively update the unknown features

via backpropagation to minimize the loss of the sample (lines

3–7).

Anomaly Detection: As shown in Algorithm 2, to assess

the degree of deviation of a sample, we first model the

distribution of real data (lines 1–8). This involves sampling

an auxiliary inference set Daux from the data distribution

and computing the centroid ck and dispersion for each class.

For measuring dispersion, we adopt an approach similar to

CADE [22], using the Median Absolute Deviation (MAD) as

a robust indicator of spread. Then we compute the distance

d̂ between the reconstructed sample x̂k and the centroid of

class k, and derive the corresponding base deviation distance

δ (lines 9–10). To further enhance inference performance,

we train a shadow model θs on data drawn from the same

distribution and compute a shadow deviation distance δs on

shadow model based on the same known features, following

the same reconstruction procedure. In summary, both δ and

δs are derived using identical feature values, but from the

target and shadow models respectively. The shadow deviation

δs serves as a reference for how typical the deviation would be

if the known features is not a member of the training set. Then,

we define a membership inference rule based on the relative

deviation δs/δ. Let MRAD denote this relative deviation and

the inference rule can be formulated as:

MRAD(xkno, θ, π
′) > τ, (2)

If this condition is satisfied, we infer that the known feature

combination belongs to a member of the training set, where τ
is a predefined threshold. By varying τ , we can plot the ROC

curve to evaluate the effectiveness of this detection strategy.

Threshold Selection: Previous work has shown that MIA is

only meaningful when the false positive rate is sufficiently low

[5]. Therefore, we adopt a threshold selection strategy similar

to that proposed by Ye et al. [14]. Specifically, the adversary

can sample a batch of samples Dnon from the overall non-

member data space π′. Given a predefined acceptable false

positive rate α, the adversary then selects a threshold that



satisfies

|{xkno ∈ Dnon ⊙M : MRAD(xkno, θ, π
′) > τ}|

|Dnon|
= α. (3)

Algorithm 1 Memory-guided Reconstruction

Input: Known features xkno from class k, target model θ,

number of iterations Nitr, step length η, known feature

mask M , loss function L during the training process of

the target model.

1: xunk ← 0
2: x̂ ← cat(xkno, xunk,M) // Combine the known and

unknown features according to their original feature order.

3: for i = 1 to Nitr do

4: g ← grad(Lθ(x̂, k))
5: (gkno, gunk) ← split(g,M) // Split the gradient vec-

tor into gradients of known features and gradients of

unknown features.

6: xunk ← xunk − η · gunk
7: x̂← cat(xkno, xunk,M)
8: end for

9: return x̂

Algorithm 2 Anomaly Detection

Input: sample x̂k generated from Algorithm 1 with target

model, x̂s,k generated from Algorithm 1 with shadow

model, label k ∈ {1, . . . ,K}, auxiliary data xaux,k drawn

from data distribution, number of samples nk per class in

the auxiliary data.

1: for k=1 to K do

2: ck ←
1

nk

∑nk

i=1
xi
aux,k

3: for i = 1 to nk do

4: diaux,k ← ‖x
i
aux,k − ck‖2

5: end for

6: d̃k ← median(diaux,k), i = 1, . . . , nk

7: MADk ← median(|diaux,k − d̃k|)
8: end for

9: d̂← ‖x̂k − ck‖2, d̂s ← ‖x̂s,k − ck‖2

10: δ ← |d̂−d̃k|
MADk

, δs ←
|d̂s−d̃k|
MADk

11: return δs/δ

V. EVALUATION

Next, we evaluate the attack performance of our proposed

algorithm. We begin by presenting the experimental setup,

followed by a comprehensive assessment of the attack perfor-

mance with widely used benchmark datasets. We then analyze

the sensitivity of algorithm to hyperparameters and examine

how the importance of known features influence performance.

Finally, we conduct a case study to demonstrate the practical

applications of our attack.

A. Experiment setup

Dataset & Model: We evaluate our attack with three widely

used image datasets and one tabular dataset. For all image

datasets, the target model is AlexNet, while for the tabular

dataset, we employ a multilayer perceptron (MLP). We train

each model for 500 epochs with a learning rate of 0.001. We

provide a detailed overview of each dataset as below.

• CIFAR-10 [37]: CIFAR-10 is a widely used benchmark

dataset for image classification. It contains 50,000 train-

ing images and 10,000 test images, each being a 32×32

RGB image.

• Fashion-MNIST [38]: Fashion-MNIST is a drop-in re-

placement for the original MNIST dataset, featuring

60,000 training images and 10,000 test images. Each

image is a 28×28 grayscale representation of an article

of clothing.

• STL-10 [39]: STL-10 contains 13,000 labeled images

and 100,000 unlabeled images, making it suitable for

supervised, unsupervised, and self-supervised learning. In

our experiments, we use only the labeled subset. Each

image is a 96×96 RGB image.

• Epsilon [40]: Epsilon was derived from the PASCAL

2008 challenge, contains simulated physical data for a

binary classification task. Each sample consists of 2,000

normalized numerical features.

Known Features & Unknown Features: We identify un-

known features using a randomly generated mask. For image

data, the mask is applied over the 2D pixel grid. In the case

of a three-channel image, if a pixel is selected as unknown,

all three channels at that pixel location are treated as unknown

features.

Evaluate Metrics: We evaluate the attack performance

using standard metrics commonly used in membership in-

ference research. Specifically, we use the Area Under the

ROC Curve (AUC) to measure the overall effectiveness of the

attack, and the true positive rate at a false positive rate of 0.1

(TPR@0.1FPR) to assess how well the attack performs under

a strict low-false-positive setting.

Anomaly Detection Methods: In addition to our proposed

method, we integrate three representative anomaly detection

techniques: CADE [22], MSAD [25], and NCI [26]. These

comparisons demonstrate the compatibility of our framework

with various existing techniques and allow for a compre-

hensive evaluation across different methodologies. The three

baseline methods are summarized as follows:

• CADE: CADE is a concept drift detection method that

leverages contrastive learning with an autoencoder. It

minimizes the distance between embeddings of samples

from the same class while maximizing the distance be-

tween those from different classes, causing distribution-

shifted samples to deviate significantly in the embedding

space.

• MSAD: MSAD is an out-of-distribution (OOD) detec-

tion approach. It fine-tunes a pre-trained model using

a specially designed contrastive loss and then detects

anomalies based on the similarity between a sample and

in-distribution samples. In our implementation, we use a

locally trained shadow model as the pre-trained backbone



for MSAD.

• NCI: NCI is a post-hoc OOD detection method based

on the phenomenon of neural collapse. It observes that

in-distribution (ID) samples tend to align with their

class prototype vectors in the penultimate layer, whereas

OOD samples do not. Additionally, ID features tend to

cluster near the origin. We adopt the publicly available

implementation from github [41].

B. Intuitive Experiment

To offer a preliminary assessment of the effectiveness of our

method, we first perform a simple validation experiment based

on our core design intuition. In this experiment, we compute

the basic deviation δ using the target model θ for both member

and non-member features and compare the results. For each

dataset, we randomly designate half of the features as known.

Because the gradient magnitude is small, we set a larger step

size of η = 100 and perform only one optimization step (the

effect of hyperparameters will be further discussed in Section

V-D). As shown in Figure3, across all four datasets, member

samples consistently show much lower deviation values than

non-member samples. These results support the soundness of

our intuition and provide initial evidence for the viability of

the proposed attack.

C. Performance Evaluation

We begin by evaluating the attack performance under dif-

ferent proportions of known features. We vary the known

feature percentage from 10% to 90% in increments of 10% and

conduct experiments at each level. In addition, we include a

leave-one-out setting where only a single feature is unknown.

The results are shown in Figures 4 and 5, where the x-axis

indicates the percentage of known features. The leave-one-

out setting is marked as ”loo” on the x-axis. We also plot

the full ROC curves on a log scale presented in Figure 6. The

evaluation results indicate that the attack begins to demonstrate

meaningful effectiveness when the known feature percentage

reaches 50%. As the proportion of known features increases,

an overall improvement is observed in both evaluation metrics.

Notably, even the simple anomaly detection method proposed

in this work delivers strong performance. In particular, it

consistently achieves higher true positive rates under low false

positive rate conditions across most datasets.

We attribute the upward trend to the increased amount

of information available to the attacker as the proportion

of known features grows. With more known features, the

optimization space becomes more constrained, allowing the

attack easier to converge. However, we observe a notable

performance drop when the known feature percentage reaches

90%. This decline is likely due to the limited number of un-

known features. Since the known features remain unchanged,

a high known percentage leads to reconstructed samples looks

like real ones. In such cases, the known features dominate

the anomaly detection process, making it harder for the model

to capture meaningful deviations. At 100% known features,

no modification is needed, which results in the failure of all

attack methods. Consequently, the task reduces to a standard

Membership Inference Attack, for which conventional MIA

techniques can be applied directly.

D. Hyperparameter Sensitivity

To have a better understanding of the behavior of our attack,

we further analyze the influence of two key hyperparameters

with a known percentage of 80%.

Performance VS Number of Iterations: We first assess

the sensitivity of our algorithm to the number of optimization

iterations, Nitr. With the step size η fixed at 100, we vary

Nitr and report the corresponding AUC and TPR@0.1FPR, as

shown in Table I and Table II. The results indicate that the

performance of our algorithm remains largely stable across

different iteration counts, suggesting low sensitivity to this

parameter. Remarkably, even a single iteration is sufficient to

achieve strong performance.

Performance vs. Step Length: Next, we evaluate how the

step length parameter η affects the attack performance. The

results are summarized in Table III and Table IV. In this exper-

iment, we fix the number of optimization iterations to Nitr = 1.

We find that when η is too small, the attack becomes less

effective. This is because samples with known features exhibit

low gradient magnitudes. As η increases, attack performance

improves consistently across various datasets and settings.

E. Ablation Study

To further validate the effectiveness of our algorithm, we

skip the first stage and directly perform anomaly detection

using random initialized unknown features. The results are

shown in Figure 7 and Figure 8. As observed, when the un-

known features are not optimized through loss minimization,

the anomaly detection methods fail to discriminate between

reconstructed samples containing member features and those

containing non-member features. This outcome is intuitive and

further highlights the critical role of the first-stage reconstruc-

tion in enabling successful PFMI.

F. Impact of Feature Importance on Attack Performance

Since models perform inference based on feature values and

different features contribute unequally to the model output, we

investigate how the importance of known features influences

attack performance. In this section, we use SHAP [42] to quan-

tify the contribution of each feature to the prediction of the

target model. SHAP is a widely used method for interpreting

matchine learning models by assigning an importance value

to each feature. It is based on the concept of Shapley value

from game theory. Features that contribute more to the output

are assigned higher importance values. We evaluate the attack

performance under different known feature proportions, using

two selection strategies:

• K=IF (Keep Important Features as Known Features):

The known features are chosen by ranking all features

according to their importance scores and selecting the

top ones in descending order.
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Fig. 3. Distribution of the base deviation δ for member (blue) and non-member (red) samples across different datasets.
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Fig. 4. Attack performance (AUC) under varying known feature proportions. The x-axis represents the percentage of known features, and the y-axis shows
the corresponding attack AUC. Each curve corresponds to one of the four integrated anomaly detection methods within our attack framework. We denote the
case where only one feature is unknown as “loo”.
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Fig. 5. Attack performance (TPR@0.1FPR) under varying known feature proportions. The x-axis represents the percentage of known features, and the y-axis
shows the corresponding attack TPR when TPR=0.1. Each curve corresponds to one of the four integrated anomaly detection methods within our attack
framework. We denote the case where only one feature is unknown as “loo”.

TABLE I
AUC PERFORMANCE UNDER DIFFERENT NUMBERS OF OPTIMIZATION ITERATIONS (Nitr ) ACROSS VARIOUS DATASETS.

Nitr

CIFAR-10 STL-10 Fashion-MNIST Epsilon

Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI

1 0.658 0.670 0.672 0.652 0.636 0.705 0.668 0.738 0.590 0.576 0.583 0.615 0.662 0.667 0.701 0.735
2 0.641 0.655 0.660 0.684 0.670 0.694 0.683 0.714 0.577 0.582 0.566 0.606 0.656 0.674 0.690 0.723
5 0.627 0.668 0.659 0.669 0.675 0.697 0.687 0.701 0.570 0.598 0.571 0.590 0.634 0.673 0.710 0.748

10 0.645 0.647 0.668 0.643 0.664 0.690 0.682 0.690 0.567 0.575 0.579 0.582 0.643 0.679 0.723 0.719
20 0.623 0.647 0.676 0.665 0.677 0.694 0.690 0.687 0.567 0.601 0.569 0.599 0.649 0.687 0.725 0.742

• K=UF (Keep Unimportant Features as Unknown Fea-

tures): The known features are selected as those with the

lowest importance scores, based on an ascending ranking

of all features.

The results are presented in Figure 9. Several observations

emerge:

• When the known features are those with high SHAP

importance, the attack achieves significantly better per-

formance compared to when unimportant features are

known. This is likely because important features drive

the model prediction, while unimportant known features

lead to vague optimization directions and weak gradient



0.001 0.01 0.1 1

0.001

0.01

0.1

1
TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(a) CIFAR-10 60% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(b) CIFAR-10 70% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(c) CIFAR-10 80% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(d) CIFAR-10 90% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(e) STL-10 60% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1
TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(f) STL-10 70% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(g) STL-10 80% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(h) STL-10 90% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(i) Fashion-MNIST 60% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(j) Fashion-MNIST 70% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(k) Fashion-MNIST 80% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(l) Fashion-MNIST 90% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(m) Epsilon 60% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(n) Epsilon 70% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(o) Epsilon 80% KP

0.001 0.01 0.1 1

0.001

0.01

0.1

1

TP
R

FPR

 Ours
 CADE
 MSAD
 NCI

(p) Epsilon 90% KP

Fig. 6. Log-scale ROC curves on different datasets under varying known feature percentages (KP: Known Percentage).
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Fig. 7. AUC results when the unknown features are randomly initialized without optimization. We denote the case where only one feature is unknown as
“loo”.



TABLE II
TPR@0.1FPR UNDER DIFFERENT NUMBERS OF OPTIMIZATION ITERATIONS (Nitr ) ACROSS VARIOUS DATASETS.

Nitr

CIFAR-10 STL-10 Fashion-MNIST Epsilon

Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI

1 0.283 0.261 0.252 0.217 0.264 0.314 0.268 0.324 0.192 0.117 0.128 0.177 0.244 0.157 0.184 0.241
2 0.295 0.260 0.243 0.286 0.328 0.280 0.266 0.333 0.172 0.124 0.127 0.187 0.237 0.162 0.155 0.212
5 0.273 0.259 0.264 0.266 0.371 0.284 0.315 0.326 0.158 0.133 0.127 0.147 0.238 0.161 0.175 0.254

10 0.265 0.243 0.254 0.259 0.341 0.309 0.318 0.310 0.162 0.124 0.123 0.152 0.227 0.182 0.211 0.201
20 0.240 0.232 0.261 0.282 0.382 0.308 0.314 0.332 0.179 0.119 0.132 0.157 0.229 0.204 0.222 0.221

TABLE III
AUC PERFORMANCE OF OUR ATTACK ON DIFFERENT DATASETS UNDER VARYING STEP LENGTHS (η).

η
CIFAR-10 STL-10 Fashion-MNIST Epsilon

Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI

0.01 0.488 0.495 0.518 0.497 0.489 0.517 0.477 0.484 0.471 0.500 0.507 0.500 0.541 0.495 0.498 0.509
0.1 0.457 0.496 0.521 0.493 0.478 0.517 0.477 0.486 0.484 0.503 0.504 0.505 0.512 0.482 0.496 0.485
1 0.460 0.490 0.513 0.498 0.457 0.516 0.471 0.488 0.536 0.538 0.535 0.517 0.481 0.457 0.504 0.553

10 0.623 0.645 0.530 0.635 0.466 0.486 0.483 0.610 0.588 0.580 0.570 0.607 0.605 0.595 0.659 0.701
100 0.656 0.678 0.654 0.635 0.657 0.706 0.672 0.728 0.593 0.580 0.557 0.592 0.648 0.666 0.702 0.758

1000 0.639 0.667 0.680 0.670 0.663 0.713 0.716 0.723 0.606 0.595 0.578 0.588 0.680 0.711 0.763 0.777

TABLE IV
TPR@0.1FPR OF OUR ATTACK ON DIFFERENT DATASETS UNDER VARYING STEP LENGTHS (η).

η
CIFAR-10 STL-10 Fashion-MNIST Epsilon

Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI Ours CADE MSAD NCI

0.01 0.097 0.108 0.103 0.093 0.096 0.116 0.077 0.095 0.074 0.089 0.108 0.111 0.155 0.090 0.081 0.110
0.1 0.062 0.089 0.105 0.096 0.075 0.102 0.084 0.098 0.079 0.097 0.093 0.126 0.092 0.079 0.095 0.091
1 0.074 0.105 0.097 0.110 0.075 0.101 0.071 0.101 0.092 0.111 0.092 0.123 0.026 0.077 0.092 0.117

10 0.260 0.207 0.112 0.210 0.084 0.080 0.098 0.189 0.189 0.115 0.119 0.172 0.146 0.111 0.160 0.189
100 0.302 0.222 0.255 0.227 0.279 0.313 0.274 0.296 0.147 0.119 0.119 0.157 0.233 0.153 0.166 0.236

1000 0.271 0.244 0.248 0.275 0.347 0.328 0.320 0.291 0.177 0.139 0.137 0.146 0.291 0.147 0.248 0.281
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Fig. 8. TPR@0.1FPR results when the unknown features are randomly initialized without optimization. We denote the case where only one feature is unknown
as “loo”.

signals.

• When the percentage of known features is small enough,

using important features as known features outperforms

random selection. We attribute this to the fact that im-

portant features are more likely to activate memorized

patterns in the model, which helps ensure the effective-

ness of the reconstruction even when only a small number

of such features are available.

• When the percentage of known features exceeds a cer-

tain threshold, using only important features as known

ones may yield lower performance compared to random

selection. This is because when all important features

are already known and the remaining few features are

non-important, the unknown features have little influence

on the loss. As a result, feature reconstruction can hardly

yield additional useful membership information.

G. Case Study

We now present a realistic scenario to demonstrate how

our proposed attack can be applied in a real-world context.
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Fig. 9. Impact of known feature importance on attack performance (AUC) across different datasets. Solid lines represent scenarios where known features are
the most important ones (K=IF), while dashed lines indicate scenarios where the least important features are known (K=UF). We denote the case where only
one feature is unknown as “loo”.

TABLE V
AUC PERFORMANCE OF CASE STUDY.

Ours CADE MSAD NCI

AUC 0.63 0.58 0.65 0.58

Consider a small community where a local hospital provides

medical services to most residents. The hospital has developed

a patient risk prediction system based on historical records of

diabetic patients to forecast the likelihood of readmission.

Suppose there is an adversary within a community who

aims to infer private information about a specific individual

named Alice. The attacker is assumed to know certain publicly

accessible demographic information about Alice, such as her

race, age, and gender, which helps narrow down the population

scope. Using this partial information and the PFMI attack, the

attacker successfully determines that Alice was part of the

training dataset of the hospital. Since all training records in

the dataset correspond to diabetic patients, the attacker can

reasonably conclude that Alice is very likely a diabetic patient,

thereby exposing sensitive medical information.

To simulate this scenario, we use the UCI-Diabetes dataset.

We select 10 features for model training and designate race,

age, and gender, common demographic attributes easily ac-

cessible to an attacker, as known features. Other experimental

settings remain consistent with previous sections. The attack

results are shown in Table V, demonstrating that our method

can effectively compromise individual privacy in practical

settings.

VI. DISCUSSION

A. Defenses

As with other inference attacks, overfitting plays a key role

in the success of the attack. Therefore, any technique that

mitigates overfitting, such as early stopping [43], dropout [44],

and other regularization methods, can serve as a potential

defense.

Differential privacy [45], as a provable privacy-preserving

framework, also serves as a viable defense strategy. By intro-

ducing randomness into the system, it effectively reduces the

risk of inferring the presence of any individual in the whole

data group. Abadi et al. [46] introduced differential privacy

into the field of machine learning by proposing the DP-SGD

training framework, which provides formal privacy guarantees

during model optimization. This approach has been widely

adopted as a defense against membership inference attack.

B. Relationship to Other Attacks

Relationship to Property Existence Attack: Property ex-

istence attack [18], as a special case of distribution inference

attack [18], [47], aims to determine whether a given feature

combination exists in the training set. The only difference

from our attack lies in whether the attacker has access to the

unknown features. Clearly, an attacker capable of performing

PFMI can easily carry out a property existence attack, but it

is difficult for a property existence attacker to perform PFMI

because of the absence of some features.

Relationship to Model Inversion Attack: A common

premise of existing model inversion attacks is that the adver-

sary knows the target to be present in the training set [30]–[35].

Even though the membership status of the target is unknown

in the attack scenario considered in this paper, the first stage of

our attack can still be regarded as a form of model inversion

attack. Leveraging existing model inversion techniques thus

represents a feasible approach for improving performance.

C. Limitation and Future Work

While our proposed method has demonstrated promising

attack performance, several limitations remain.

First, the attack presented in this paper is based on a

white-box setting, which may limit its applicability in certain

scenarios. To bridge this gap, one possible direction is to

explore gradient approximation techniques [48], [49], which

allow attackers to approximate gradients without full model

access. Additionally, model stealing methods [50], [51] could

be leveraged to construct a white-box surrogate of the target

model, thereby enabling the application of our attack in a

black-box context.

Secondly, when the percentage of known features becomes

too large, the attack performance tends to degrade. Based on

our experimental results, one potential solution is to selectively

discard some known features during inference—particularly



those that, while somewhat influential to the prediction of the

model, are not essential for preserving the representativeness

of the sample with respect to the underlying individual. This

strategy may help mitigate performance drops and enhance the

overall effectiveness of the attack.

Furthermore, due to the missing feature values, the mapping

between the known features and the label may be one-to-

many. This paper assumes that the attacker can obtain at least

one valid label, which is a realistic assumption in practice.

However, exploring label-free attacks could further enhance

the capability of the attacker in more extreme scenarios and

is therefore a worthwhile direction for future research.

VII. CONCLUSION

In this paper, we study membership inference attack un-

der the setting where some feature values are missing. To

address this scenario, we introduce a practical two-stage attack

framework named MRAD. Our framework is compatible with

arbitrary anomaly detection methods, enabling attackers to

flexibly conduct attacks under various knowledge settings.

We conduct extensive experiments on multiple datasets to

evaluate the effectiveness of our method. The results show that

our framework consistently delivers strong performance across

a wide range of known feature percentages. In most datasets,

once the known feature ratio exceeds 50%, the attack begins

to produce reliable results. Remarkably, even when 40% of

the features are missing, the attack still achieves an AUC of

0.6. In addition, we use SHAP to measure feature importance

and experimentally confirm that the importance of the known

features has a significant impact on the attack’s performance.

Finally, through a case study, we simulate a real-world appli-

cation scenario to further highlight the practical relevance of

our attack method.

Our findings demonstrate that membership inference attacks

can be mounted using publicly available partial data, even

when a sample’s private features are protected. This highlights

a new dimension in privacy risk assessment.
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