arXiv:2507.22306v1 [cs.CR] 30 Jul 2025

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

SleepWalk: Exploiting Context Switching and
Residual Power for Physical Side-Channel Attacks

Sahan Sanjaya, Student Member, IEEE, Aruna Jayasena, Student Member, IEEE,
and Prabhat Mishra, Fellow, IEEE,

Abstract—Context switching is utilized by operating systems
to change the execution context between application programs.
It involves saving and restoring the states of multiple reg-
isters and performing a pipeline flush to remove any pre-
fetched instructions, leading to a higher instantaneous power
consumption compared to typical program execution. In this
paper, we introduce a physical power side-channel leakage
source that exploits the power spike observed during a context
switch, triggered by the inbuilt sleep function of the system
kernel. We observed that this power spike directly correlates
with both the power consumption during context switching
and the residual power consumption of the previously executed
program. Notably, the persistence of residual power signatures
from previous workloads extends the scope of this side-channel
beyond extracting the data in registers during the context switch.
Unlike traditional approaches that require analyzing full power
traces, applying complex preprocessing, or relying on external
synchronization triggers, this novel technique leverages only the
amplitude of a single power spike, significantly simplifying the
attack. We developed a power model to illustrate the feasibility
of mounting end-to-end side-channel attacks using the sleep-
induced power spikes. Experimental evaluation demonstrates
that our framework can successfully perform cryptographic key
recovery for both AES and SIKE implementations on Broadcom
BCM2711.

I. INTRODUCTION

Context switching is utilized by operating systems to enable
switching between tasks (application programs) [1]], [2]]. The
basic idea behind context switching is to save (store) the state
of a task, such as the values stored in registers and other
resources, before switching to another task. When the original
task is resumed, the previously saved values are restored
(load), allowing the task to continue from where it left off.
However, the concentrated load and store operations associated
with context switching lead to higher power consumption due
to frequent state transitions between ‘0’ and ‘1’ inside the chip,
memory, and buses [3[]. Consequently, this behavior creates a
significant attack surface that can be exploited to extract secret
information through physical power side-channel attacks [4].

A. Sleep-Induced Power Side-Channel

In this paper, we present a novel power side-channel vul-
nerability, referred as SleepWalk, that leverages both context
switching and residual power signatures to extract sensitive
information. Although controlled context switches can be

S. Sanjaya, A. Jayasena and P. Mishra are with the Department of Computer
& Information Science & Engineering, University of Florida, USA. Email:
{ssanjaya, arunajayasena, prabhat}@ufl.edu

Sleep—

Voltage (mV)
Voltage (mv)

——
150 Task |A] Task B

Task

Task B

1000 3000 mple 5000 7000 1000 3000 5000 7000
Sample

(a) Traditional power trace. (b) SleepWalk power trace.

—O— Low Residual Power
—{— High Residual Power

= = = =

o = = =

O o = N
1 1 1 1

Mean Peak Voltage (mV)
O_
m_
-
[e)}
N
N
w
N
N
o
N
0]
(0]
[e)}
[e)}
N

Hamming Weight

(c) Effect of the context-switching power signature (green line) and
the residual power signature (represented by the power difference
between the green and orange lines).

Fig. 1: We demonstrate the existence of a sleep-induced
power spike (Figure [Ib), which directly correlates with both
the residual power consumption of the previously executed
program and the power consumption during the context switch
(Figure [Ic). Unlike traditional power analysis (Figure [Ta)), this
side-channel eliminates the need to analyze the entire power
trace, perform advanced preprocessing, or use external triggers
for trace synchronization.

induced using various techniques [5]], our approach primarily
utilizes the operating system kernel’s built-in sleep function,
which inherently triggers a context switch. A distinctive power
spike is observed at the onset of this transition, as illustrated
in Figure [Tb] Unlike traditional power side-channel analysis
(as shown in Figure [Ta), our approach relies solely on the am-
plitude of a single sampling point. This significantly reduces
complexity by eliminating the need for high-end equipment,
advanced preprocessing techniques such as trace alignment,
or the extraction of high-dimensional features. Furthermore,
the distinct and consistent nature of the observed power
spike removes the need for external triggers to synchronize
computation with trace collection. As illustrated in Figure
this power spike is influenced by two key factors. The first
is the context-switching power signature (depicted by the
green line), which reflects the impact of the Hamming weight

https://arxiv.org/abs/2507.22306v1

of register data at the moment the context switch occurs.
The second is the residual power signature, representing the
power footprint of instructions executed before the context
switch. The difference between the green and orange lines in
Figure [1c| highlights the contribution of residual power, where
the orange line, associated with high residual power, shows
a greater amplitude than the green line, which corresponds to
low residual power. Based on these observations, we introduce
the SleepWalk side-channel vulnerability that exploits the
sleep-induced power spike. Specifically, we demonstrate its
significant potential as a security threat by extracting secret
information from victim applications, as illustrated in Figure 2]

]

Task A H
o |

CPU Power Analysis

' |)
sleep () I|Residual Power |,
¢ ’I + | 4 B
! Context Switch |' &=
Task B | .
| Power I §ecret Infonnatlon)

Fig. 2: Overview of SleepWalk power side-channel analysis,
which extracts residual and context-switch power signatures
from a single sleep-induced power spike to recover secret
information from the victim application (Task A).

B. Contributions

To demonstrate the potential of the SleepWalk side-channel,
we explore a power model that enables practical side-channel
attacks. Using this model, we showcase two attacks: key
extraction from post-quantum cryptographic algorithm SIKE,
and key recovery from symmetric AES implementations. This
paper makes the following key contributions:

o SleepWalk Side-Channel Vulnerability: We introduce
SleepWalk, a novel power side-channel vulnerability that
exploits a distinctive power spike generated during con-
text switches invoked by the s1leep function. This spike
captures both context-switch and residual power signa-
tures, revealing data-dependent behavior.

« Residual Power Signature Analysis: We develop a
power model that characterizes the s1eep-induced spike
by isolating the contributions of context-switch power
and residual power. We analyze how factors such as
instruction count, data values, and register states affect
the residual power signature.

o SleepWalk-based Side-Channel Attacks: Leveraging our
power model, we demonstrate practical side-channel at-
tacks, including cryptographic key recovery. SleepWalk
enables a single-point leakage model, eliminating the
need for trace alignment, external triggers, or complex
pre-processing required in power analysis.

« Key Recovery Attack on SIKE: We perform a key
recovery attack on the full secret key from the CIRCL
SIKE implementation [6] using SleepWalk. We employ
a probability density distribution-based classification to
successfully extract the full cryptographic key, showcas-

ing the efficacy of this side-channel attack even against
hardened implementations.

+ Key Recovery Attack on AES: We perform a chosen-
plaintext attack on AES-128 [[7], specifically targeting the
final round secret key. We demonstrate that SleepWalk
can be leveraged to identify processed data at byte-
level granularity. Using this approach, we successfully
recovered 10 out of 16 bytes of the final round key.
Although this result does not outperform existing power
side-channel attacks in terms of success rate, it shows
that SleepWalk can reduce the key recovery complexity
from 2'2% to 2%® using only a single power trace point.

To the best of our knowledge, this work is the first to
introduce the sleep-induced power spike as a side-channel
source for performing key extraction attacks on off-the-shelf
hardware. The remainder of this paper is organized as follows.
Section [[I] provides relevant background and surveys related
efforts. Section [II] introduces a new power side-channel. In
Section we develop a power model to show that there
is a correlation between the SleepWalk side-channel and the
internal states of a device during the execution of application
programs. Section [V] and [VI|demonstrate key recovery attacks
on SIKE and AES implementations, respectively. Section
concludes the paper.

II. BACKGROUND AND RELATED WORK

We first introduce power side-channel analysis and context
switching. Next, we survey related efforts. Finally, we outline
our contributions in terms of the novelty of the side-channel
source, analysis technique, and the findings.

A. Power Side-Channel Analysis

In recent years, numerous vulnerabilities have been discov-
ered that exploit the power signature of the device revealing
internal secrets. Figure [3illustrates the fundamental process of
performing a power side-channel attack. This process typically
consists of three main phases: trace collection, pre-processing,
and analysis.

Application Platform Trace Acquisition
-~ —
| b S | e
AES CPU Oscilloscope Ra‘,‘I’, RO
race

v

Trace Pre-Processing

Power Analysis

Correlation
Q/m SO
Vl‘ Power Processed Power
Secret Key LL Analysis Trace

Fig. 3: Overview of Power Side-Channel analysis

Trace Collection: The trace collection phase involves captur-
ing power variations corresponding to computations occurring
within the targeted hardware. The trace can be collected by
probing the power lines and measuring the voltage fluctuations
across components of the device [§]].

Trace Pre-processing: A key challenge in this step is ensuring
synchronization between the acquired traces and the targeted
computation. To achieve this, adversaries often use an external
trigger signal to isolate the relevant portion of the trace that
corresponds to the computation of interest [9]]. The adversaries
must employ equipment capable of capturing a sufficient
number of sampling points per trace to maximize the chances
of a successful attack. The analysis phase may utilize various
trace characteristics, such as amplitude or frequency response,
to extract sensitive information. To enhance signal quality,
techniques such as averaging and filtering improve the signal-
to-noise ratio (SNR) [10], [L1], while alignment methods
optimize trace consistency.

Power Analysis: The pre-processed traces are used to per-
form either a profiled or non-profiled attack. For non-profiled
attacks, such as Simple Power Analysis (SPA) [12], [13]], Dif-
ferential Power Analysis (DPA) [4]], [14], or Correlation Power
Analysis (CPA) [15], [16], time-domain power traces with
sufficient sampling points are adequate. In contrast, profiled
attacks rely on a profiling model, such as a machine learning
(ML) model [[17]-[19]], and require additional features, such
as minimum, maximum, standard deviation, spectral centroid,
spectral entropy, spectral irregularity, and spectral spread [20]],
[21]], to extract the targeted information.

B. Context Switching in Multitasking Systems

Context Switch: During a context switch, the operating sys-
tem kernel must execute a series of operations to ensure a
smooth transition between processes, as illustrated in Figure]
First, it performs a sequence of memory writes (store)
to save the current process’s register state into memory,
preserving its execution context. Then, it executes a sequence
of memory reads (load) to restore the register state of the
next process, allowing it to resume execution from where it
was last interrupted.

Process (P;) Main Memory

Kernel % Save States in P —r;ﬂ gil- ED
@ erne Load States in P T I:L—_I
£
2 [-»
o= . —] T
- ; Kernel (' Save States in P i ':D ?il. ED
:-g Load States in P; < 3 OO
-

Process (P;)

Kernel

Save States in P; —f* : L D
Load States in P ET1x31.C11

Fig. 4: Context switch and related pipeline flush routines

Pipeline Flush: During a context switch, the processor must
flush the pipeline to clear any pre-fetched instructions from the
previous process. Moreover, modern processors with branch
prediction and speculative execution must reset these mecha-
nisms to avoid executing incorrect or unauthorized instructions

that were prefetched from the previous process. The Transla-
tion Lookaside Buffer (TLB), which holds virtual-to-physical
address mappings, may require flushing unless address space
identifier-based TLB entries allow selective retention. If the
processor maintains an instruction prefetch buffer, it should
be cleared to ensure that the processor only executes the
instructions from the new process.

C. Related Work

We survey existing efforts that utilize power side-channel
analysis to reconstruct the information that are carried out
within multi-processing environments.

Software-based Power Trace Collection: Intel Running Av-
erage Power Limit (RAPL) has been utilized by many existing
efforts to demonstrate power side-channel attacks [[17], [22],
[23[]. DeepTheft [[17] is an end-to-end attack that accurately re-
constructs complex Deep Neural Network (DNN) architectures
by exploiting the RAPL interface on x86 processors. PLATY-
PUS [22] is another software-based power side-channel attack
that can successfully extract cryptographic keys. Zhang et al.
demonstrated that unprivileged access to RAPL allows attack-
ers to infer power consumption patterns, leading to leakage of
sensitive information [23]]. Hertzbleed [24] attack transforms
power side-channel vulnerabilities into remote timing attacks,
allowing attackers to infer cryptographic keys.

Hardware-based External Power Monitoring: There are
promising research efforts that utilize physical measurements
to capture information about the power trace. [25] conducted
a static power side-channel analysis on an ASIC implemen-
tation of a threshold implementation prototype chip. Their
study demonstrated that even hardware designs with provable
first-order security are susceptible to information leakage
through static power consumption, highlighting the necessity
for enhanced countermeasures in cryptographic hardware. [[26]]
explored the Physical Layer Supply Voltage Coupling (PSVC)
vulnerability. This study revealed that the power side-channel
signature of a physical processor core can propagate across
design boundaries via the power rails. There are various efforts
for power side-channel evaluations on pre-silicon hardware
designs [3]], [27]-[31f]. For example, EvilCS [3] introduced
a framework for assessing information leakage during context
switches within security enclave kernels.

Limitations of Existing Efforts: Existing power side-channel
attacks are conducted either by monitoring software inter-
faces or through direct physical measurements. These attacks
typically rely on capturing the entire power trace [4], [14]-
[16]], [26] or several sampling points [22f, [32], [33] for
analysis. To enhance trace resolution, they employ advanced
processing techniques and utilize external triggers for precise
trace alignment. These requirements are expensive in terms of
both time and cost, and therefore, such attacks may not be
feasible in many application scenarios.

1. SleepWalk POWER LEAKAGE CHANNEL

In this section, we show the existence of the sleep-
induced power spike that serves as the basis for the SleepWalk

side-channel. First, we describe the experimental setup. Next,
we analyze the observations made during the power spike
induced by the internal sleep function. Finally, we perform
an experiment to investigate how different workloads affect
the behavior of the observed power spike.

A. Experimental Setup

The experiments are conducted on a Raspberry Pi 4 model
B single board computer (SBC) with a BCM2711 System-
on-Chip (SoC) that integrated an ARM Cortex-A72 CPU.
We used the GNU/Linux 12 Debian (Bookworm) operating
system with kernel version 6.6 with the GLIBC version of
2.36. For trace acquisition, we used a Keysight DSOX1102G
oscilloscope [34]. The oscilloscope probe was connected to
the 5V and GND pins of the Raspberry Pi device. The oscil-
loscope was controlled using the Virtual Instrument Software
Architecture (VISA) protocol to capture the traces. A simple
running average with a window size of 10 was applied to
smooth the traces before finding the peak values. We have used
Python scripts to automate the trace collection process and to
facilitate peak value extraction. The captured peak values are
then stored for further analysis according to the requirements
of the specific attack, including cryptographic key recovery
attacks on SIKE (Section[V)) and AES (Section [VI) algorithms.

B. Sleep and Power Spike

In order to illustrate the process of creating the sleep-
induced power side-channel, we use two programs Task A
and Task B that execute different sequences of assembly
instructions. We first describe the observations we made during
the process of introducing a sleep function call from the
operating system while these functions are executed. Next,
we discuss the reason behind these observations with respect
to the analysis of the kernel and hardware routines.

Observation: Figure |l| illustrates the power trace of the
program executing two tasks: Task A and Task B. First,
we collected the power trace of running the two tasks one
after the other, as shown in Figure @ Next, we inserted the
sleep function call between these two tasks, as shown in
Figure We observe that adding a s1eep function between
the two tasks generates a distinct power spike in the captured
trace. After reverse-engineering the sleep function’s imple-
mentation, we identified that the power spike that we observed
is tied to the power signature of a context switch. Next, we
explain the reverse-engineered analysis supporting this claim.

Analysis on the Observation: Context switching is the pro-
cess by which the kernel saves the state of the currently run-
ning process and restores the state of another process, allowing
multiple processes to effectively share a single CPU. This
mechanism is important for multitasking, and it is managed by
the operating system kernel’s scheduler. As shown in Figure 3
the schedule function is called when a context switch is re-
quired [2]. Since schedule is a kernel function, it cannot be
invoked directly from user space. However, user-space appli-
cations can trigger context switches indirectly through various
system calls or operations that cause the kernel to suspend the

User space Kernel Kernel User space
Task A Task A Task B Task B
Save user registers
syscall to kernel stack
interrupt

l schedule()
. Pop user registers
from kernel stack

exit syscall l

Fig. 5: Timing flow of Linux kernel context switch: saving
context for Task A and restoring context for Task B.

sleep
| ->xnanosleep
| -—>nanosleep
|->clock_nanosleep
|->invoke_syscall
|->__arm64_sys_clock_nanosleep
| =>common_nsleep
|->hrtimer_nanosleep
| -=>do_nanosleep

| =>schedule

Fig. 6: sleep () function’s function call trace

current process, prompting the scheduler to allocate CPU time
to other processes. Figure [6] illustrates the function call trace
during the execution of the sleep function. It clearly shows
that a context switch occurs during the initialization of sleep
through the invocation of schedule. Therefore, the power
spike observed in Figure [I] is expected to reflect the power
signature associated with a context switch. To confirm that the
spike is indeed caused by the context switch, we conduct an
experiment using various context switch invocation methods,
including sleep, usleep, nanosleep, sched_yield,
pause, and kill with SIGSTOP signal [35].

As illustrated in Figure[/] the results confirm that the power
spike is caused by the context switch. Among the different
methods, ki1l and pause require a process ID (PID),
which limits their applicability in realistic attack scenarios.
Additionally, sched_yield induces a less detectable power
spike. In contrast, sleep, usleep, and nanosleep are
easier to use and generate more prominent power spikes,
making them more suitable for our analysis. As a result, all
experiments in this paper utilize context switches induced by
the sleep function, hence we named this leakage channel as
SleepWalk.

C. Distinguishing Programs with SleepWalk

To demonstrate that the SleepWalk side channel can be
leveraged for side-channel attacks, we performed an initial
program-distinguishing experiment. For this experiment, we
used the setup described in Section and executed six
different application programs from the Stress-NG [36] bench-
mark suite to evaluate how varying workloads affect sleep-
induced power spike. Each workload was executed for a
fixed duration of one second before invoking the sleep
function at the end. The resulting power traces were col-
lected to compute the probability density distribution of the

100

Context Switch —

Context Switch—

jo—

.
1000 6000 8000 4000 5000 6000 7000 8000 9000
Sample

(a) sched_yield().

Sample

(b) kill ().

T T T T T
200 1 200

Context Switch—

T L

L L L L L L L n
1000 5000 6000 7000 8000 9000 1000 6000 8000
Sample

Context Switch —

Voltage (mV)

Sample

(c) pause (). (d) sleep ().

200

Context Switch— Context Switch—

100 150

100

N -

.
1000 5000 6000 7000 8000 9000 4000 5000 6000 7000 8000 9000
Sample

Voltage (mV)
Voltage (mV)

Sample

(e) usleep (). (f) nanosleep ().

Fig. 7: Power traces collected during the execution of various
user-accessible system calls that trigger a context switch. All
traces consistently exhibit a distinctive power spike from the
normal execution.

peak power values. Figure [§] illustrates these distributions for
each workload. While some overlap exists among the curves,
the peak power values still provide distinguishability across
workloads. Notably, the int 8, int32, and int 64 workloads
use the same computational function but operate on different
integer sizes. The ability to differentiate between these three
workloads suggests that SleepWalk side-channel can also be
used to distinguish data or data types used by the previously
executed programs.

correlate
2 0.10 — it
) — int8
g 0.08 1 — 32
— int64
g 0.06 1 int64float
T 0.04
Qo
o
. >Q<z
0.00 u T T T T T
80 100 120 140 160 180

Voltage (mV)

Fig. 8: Probability density distribution of s1leep-induced peak
power values for six workloads. The sleep function was
inserted at the end of each program, and each program was
executed for one second.

The key takeaway from this experiment is that there exists
a correlation between the sleep-induced power spike and

the executed program and its data. Building on this insight,
in Section [[V| we develop a power model for the sleep-
induced power spike to analyze its correlation with the data
held in registers and processed by the CPU prior to the context
switch.

IV. SleepWalk LEAKAGE POWER MODEL

Power side-channel attacks exploit the correlation between
the power consumption of a device and the operations per-
formed or data processed internally. To effectively analyze
this relationship, power models are employed as theoretical
frameworks that approximate the power consumption of a
device during computation. These models bridge the gap
between observed power traces and the internal states of the
device, enabling adversaries to deduce sensitive information
such as cryptographic keys.

Existing research employed various power models, includ-
ing Hamming weight (HWT) and Hamming distance
(HD) [15]. The HWT model estimates the power consumption
based on the number of ‘1’s in a binary value. This model
is particularly relevant in devices where the power usage
correlates strongly with the number of bits set to ‘I’ in
a register during computation. In contrast, the HD model
measures the power consumption based on the switching
between two binary states, i.e., the number of bits that change
from one state to another. This model is useful in captur-
ing the dynamic power variations arising from transitions in
sequential logic circuits. Beyond the HWT and HD power
models, adversaries often develop custom power models to
construct an application-specific attack framework [32], [38].
In this section, we construct the power model underlying the
SleepWalk side-channel with controlled experiments on HD
and HWT of data.

A. Power Spike Components

As discussed in Section [[FA] the sleep-induced power
spike contains two main components: (1) the power consump-
tion associated with the context switch, and (2) the residual
power consumption from the previously executed program.
While the context switch component directly corresponds to
the power usage at the moment of switching and is relatively
straightforward to interpret, understanding the residual com-
ponent requires an in-depth analysis.

Pl = den+Reﬂ+Psc- (D
Vin
2)

Tieax T?e” "Vr)

In CMOS circuits, total power dissipation Py, consists of
dynamic power Fyy,, leakage power Fe., and short-circuit
power Py as illustrated by Equation [T} Although dynamic
power is typically the dominant component in digital CMOS
logic, leakage power has become a significant source of
power dissipation in modern digital integrated circuits due
to increased transistor density [39]. This behavior is captured
by Equation [2} where Vj;, is the threshold voltage, n is a
process-dependent constant, and Vi = kT/q is the thermal
voltage [40]]. According to Equation 2] leakage current ([jeax) is

Peak < Vg - Deak

proportional to temperature (1) and thus leakage power (Pleak)
increases with temperature (7°) [40], [41].
dT(t)

C}h =:f%mm‘—

7 T Re 3)

On-chip temperature change can be modeled using a simple
lumped RC thermal network as illustrated in Equation 3| where
Cu is the effective thermal capacitance, Ry, is the thermal
resistance to the ambient, and T, is the ambient temperature.
Based on Equations and [3] we can construct the coupled
relationship between power and temperature. Switching activ-
ity increases Fyyn, Which in turn raises total power dissipation
and chip temperature. The elevated temperature then further
increases Py, creating a positive feedback loop that amplifies
total power. This feedback loop typically converges to a stable
power-thermal point [41]].

Based on this power-thermal feedback loop, we identify two
key factors that influence steady-state power behavior. The
first is switching activity, which directly impacts Fgy, and is
modeled using HWT and HD. The second is execution time,
which affects temperature buildup; longer execution dura-
tions lead to higher temperatures and, consequently, increased
leakage power. Execution time is quantified by the number
of instructions executed. This interplay between power and
thermal effects becomes observable in the sleep-induced
power spike as the residual power signature.

To validate the above theoretical analysis about the observed
power spike, we conducted four controlled experiments, each
designed to isolate a specific factor and examine its rela-
tionship to the two key components: context-switch power
and residual power. These experiments were guided by the
following four hypotheses.

« Effect of HWT of Register Data corresponds to context-
switch power component. (Section [V-B)

« Effect of HWT of Processed Data corresponds to resid-
ual power component. (Section

« Effect of HD of Processed Data corresponds to residual
power component. (Section

« Effect of Number of Executed Instructions corresponds
to residual power component. (Section

Each data point in these experiments represents the average
of 1,000 measured power spikes, collected using the experi-
mental setup detailed in Section

const_loop:
B const_loop
end const_loop:
// Value with fixed HWT
X0 = HWT_VALUE
// Load all GPR with the same value
MOV X1, XO

MOV X26, X0
// Make a system call for sleep

ADR X0, timespec
MOV X1, XZR

MOV X8, #101

SVC #0

Fig. 9: Code for context switch HWT experiment.

B. Hamming Weight of Data in Registers

We start the experiment with the following hypothesis
regarding the data in the registers during the context switch.

Hypothesis 1: The effect of the Hamming weight of the
data in registers has an effect on the sleep-induced
power spike.

To analyze the impact of the number of ‘I’s in the data
stored in the registers before a context switch, we utilize the
program illustrated in Figure [0] This program is designed to
evaluate the effect of HWT on register values while keeping
the other factors constant. Our execution setup consists of the
following two phases:

e Phase 1 [Constant Loop Execution]: The first phase con-
tains a loop that provides a reasonable gap between
two sleep-induced power spikes. This phase remains
unchanged across experiments with varying HWT val-
ues. The loop ensures sufficient execution time while
maintaining a consistent baseline effect across all HWT
experiments.

e Phase 2 [Register Configuration]: In the second phase, a
value with a fixed HWT (HWT_VALUE) is loaded into the
general-purpose registers to amplify the effect during the
context switch. Next, a context switch is triggered using
the system call to the kernel’s inbuilt sleep function.

Through this controlled setup, we are able to analyze the
relationship between HWT and the power variations observed
during context switching, providing a clear understanding of
HWT’s impact on this side-channel. After collecting the traces,
we isolated the peak amplitudes of the traces corresponding
to the context switch events. Figure [I0] illustrates the results
obtained by varying the HWT. The data clearly demonstrates
a positive correlation between HWT and mean peak power
value, with the peak power increasing as the HWT increases.
This behavior confirms our hypothesis 1.

113.0 4

112.5 1

112.0 1

111.5 A

Mean Peak Voltage (mV)

111.0 -

0 8 16 24 32 40 48 56 64
Hamming Weight
Fig. 10: Effect of varying the HWT of data in registers
(HWT_VALUE) prior to the context switch. An increase in
HWT results in an increase in the mean peak power.

C. Hamming Weight of the Processed Data

We designed this experiment to analyze the effect of the
HWT of the processed data prior to a context switch. In order
to evaluate this, we create the following hypothesis,

Hypothesis 2: The effect of the Hamming weight of the
data that was processed earlier has an effect on the residual
power component of the sleep-induced power spike.

// Value with fixed HWT
X0 = HWT_VALUE_LOOP
// Number of loop iterations

X10 = LOOP_ITR
// Load all GPR with the same value

MOV X1, XO

MOV X26, X0

const_loop:
// Perform OR operations
OR X2, X1, XO

OR X26, X1, X0

B const_loop

const_loop:

// Value with fixed HWT

X0 = HWT_VALUE

// Load all GPR with the same value
MOV X1, XO

end

MOV X26, X0

// Make a system call for sleep
ADR X0, timespec

MOV X1, XZR

MOV X8, #101

SVC #0

Fig. 11: Code for residual power HWT experiment

To observe the effect of the HWT of the data, it is essential
to isolate it from the overall power signature. To achieve
this, a fixed HWT value (HWT_VALUE_LOOP) is first loaded
into the general-purpose registers. Next, we introduce an
instruction loop that performs OR operations on the values
stored in these registers, as illustrated in Figure Since all
registers contain the same value, there are no bit transitions
during execution, effectively eliminating any influence from
the HD of the data. The OR operation is specifically selected
because it preserves the HWT while eliminating the effect
of HD. After executing this loop, another fixed HWT value
(HWT_VALUE) is loaded into the general-purpose registers
before invoking the sleep function. This setup creates two
distinct HWT-related effects: one from the earlier OR operation
loop, and another from the register values present at the
time of the context switch. As discussed in Section [IV-B|
the HWT of data in the registers during a context switch
affects the resulting power spike. Therefore, if that were the
only contributing factor, varying HWT_VALUE_LOOP while
keeping HWT_VALUE constant should not change the mean
power value.

However, as shown in Figure[I2] the HWT of data processed
earlier also exhibits a strong correlation with the observed
power signature, as expected due to the power-temperature
interdependency. Thus, we validate Hypothesis 2, confirming
that both the HWT of the data in the registers during the
context switch and the HWT of the data processed prior to
the context switch influence the observed power consumption.

’E“ / S 160 Ao
v 160 o % 159 e

S50 $1ss /

S 158 / S 157 o

g 157) § 156 o

c 156 o c 155

25 o 2154 /

0 8 16 24 32 40 48 56 64 0 8

Hamming Weight

16 24 32 40 48 56 64
Hamming Weight

(a) HNT_VALUE = 0 (b) HWT_VALUE = 16

o— s o~

0 8 16 24 32 40 48 56 64 0o 8
Hamming Weight

16 24 32 40 48 56 64
Hamming Weight

(d) HWT_VALUE = 48

16 24 32 40 48 56 64
Hamming Weight

(e) HWT_VALUE = 64

(c) HWT_VALUE = 32

S 160
E
o 159

@
@

Mean Peak Volta
o a

a o

®

I

|

‘\

]

0 8

Fig. 12: Effect of the HWT of data processed prior to the con-
text switch (HWT_VALUE_LOOP), reflecting residual power
influence on the spike. The HWT of the data in the registers
(HWT_VALUE) is held constant while varying the HWT of the
data being processed inside the loop. Each figure illustrates the
impact of HWT of data processed before the context switch

when the register HWTs are fixed at 0, 16, 32, 48, and 64.
D. Hamming Distance of the Processed Data

In order to evaluate the effect of switching of data between
1 — 0 and 0 — 1 before a context switch, we focus on
the HD of the processed data. We construct the following
hypothesis to be evaluated during this experiment.

Hypothesis 3: The effect of the Hamming distance of the
data, which was processed earlier, has an effect on the
sleep-induced power spike.

To evaluate the hypothesis, we have created the program
illustrated in Figure The objective of this program is
to isolate the effect of HD by controlling other variables,
such as the HWT of individual states. To facilitate isola-
tion, the program is designed with alternating groups of two
LEFT SHIFT and RIGHT SHIFT operations. The reason
for implementing SHIFT operations in pairs is based on
the microarchitectural characteristics of the ARM Cortex-A72
processor, which features eight execution pipelines. Among
these, two pipelines support integer ALU micro-operations, in-
cluding LEFT SHIFT (LSL) and RIGHT SHIFT (RSL)
instructions [42]]. The SHIFT operation can maintain the
HWT of the input and output data within a certain range
while introducing an HD effect. We implemented the shift
operation with the help of two input registers: one containing
data with a fixed HWT, and the other containing the shift
amount. The other general-purpose registers were also loaded
with data of the same fixed HWT and were used as output
registers for the SHIFT operations. Note that in each iteration,

the same output registers are used for both LEFT SHIFT
and RIGHT SHIFT operations. This design facilitates bit
transitions within the registers beyond the ALU output, due
to the alternating application of LSL and RSL instructions.
We choose the fixed value as 0x00000££f££££00000 and
define a variable named SHIFT_VALUE that can take an
arbitrary number of bits. After the first iteration in the loop,
when the shift operation is executed, the 2 x SHIFT_VALUE
number of bits immediately before the first ‘1’ bit in the
output register changes from 0 to 1. At the same time, the
last 2 x SHIFT_VALUE number of ‘1’ bits change from 1 to
0. This results in an HD of 4 x SHIFT_VALUE in the output
register and ALU output. For example, if SHIFT_VALUE = 4,
after the first iteration in the loop, the output registers and
ALU output contain 0x000000££££££0000 (because of
the RIGHT SHIFT), and when the LEFT SHIFT is performed
(on 0x00000f£f££££00000) the red-colored 8 bits transi-
tion from O to 1, while the green-colored 8 bits transition from
1 to 0, leading to a total HD of 16:
0x000000f£f£f£££0000 — 0x0000££££££000000

The subsequent RIGHT SHIFT operation performs a
similar transition (from O0x0000ffffff000000 to
0x000000f£££££0000), restoring the value in the output
register to its initial state.

As illustrated in Figure [T4] the HD of the data processed
prior to the context switch influences the power spike ampli-
tude observed during the context switch. This result supports
our hypothesis for this specific experiment as well as the
explanation of the power-temperature feedback.

// Read shift amount

X0 = SHIFT_VALUE

// Value with fixed HWT

X1 = 0x00000ff££££00000

// Number of loop iterations

X10 = LOOP_ITR

// Load all GPR with the same value

MOV X2, X1

MOV X26, X1
const_loop:
// Perform Shift operations

LSL X2, X1, XO
LSL X3, X1, X0
RSL X2, X1, XO
RSL X3, X1, X0
B const_loop
end const_loop:

// Value with fixed HWT

X0 = HWT_VALUE
// Load all GPR with the same value

MOV X1, XO

MOV X26, X0

// Make a system call for sleep
ADR X0, timespec

MOV X1, XZR

MOV X8, #101

SVC #0

Fig. 13: Code for residual power HD experiment.

S
E 1350 et
1325
s

5 1300
3127
& 125.0 -
c

$1225 /

2 4 6

135.0 /""—0/ oo
132.5 -

130.0
127.5
125.0

12251 o~

8 10 12 14 16 18 20 2 4 6
SHIFT_VALUE

Mean Peak Voltage (mV)

8 10 12 14 16 18 20
SHIFT_VALUE

(a) HWT_VALUE =0 (b) HWT_VALUE = 16

S ——Y

——o—
o—o0 —o

c
g 1225 g 1225 ~
= =

2 4 6 8 10 12 14 16 18 20 2 4 6

SHIFT_VALUE

8 10 12 14 16 18 20
SHIFT_VALUE

(c) HWT_VALUE = 32 (d) HWT_VALUE = 48

2 1350 —o—o——o—>°
o 1325
&
£ 130.0
K
2 1275
8
8 1250

51225
=

8 10 12 14 16 18 20
SHIFT_VALUE

2 4 6
(e) HWT_VALUE = 64

Fig. 14: The effect of varying HD of processed data prior
to the context switch with SHIFT_VALUE amount, while
keeping the HWT of the data in the registers (HWT_VALUE)
constant. Different HD values were achieved by changing the
shift amount. Since we use 0x00000f fffff00000 as the
fixed value, the HD is always constant (4 x shift amount).

E. Number of Executed Instructions

To evaluate the impact of the number of instructions exe-
cuted prior to a context switch on the sleep-induced power
spike, we formulate the following hypothesis.

Hypothesis 4: The number of executed instructions earlier
has an effect on the sleep-induced power spike.

To test this hypothesis, we conducted experiments using
the setup described in Section [[II-A] systematically varying
the number of instructions executed before the context switch.
This was accomplished by adjusting the loop iteration count
(LOOP_ITR) in the same programs used in our earlier ex-
periments, as shown in Figures [T1] and [I3] In the experi-
ment based on the program in Figure [IT] we defined two
scenarios: Cold Task and Hot Task. In the Cold Task, both
HWT_VALUE_LOOP and HWT_VALUE were configured to
produce a HWT of 0. In the Hot Task, both were set to a HWT
of 64. Similarly, in the experiment using the program from
Figure [[3] the Cold Task was configured with SHIFT_VALUE
set to 2 and HWT_VALUE to a HWT of 0, whereas the Hot
Task used a SHIFT_VALUE of 20 and HWT_VALUE set to a
HWT of 64.

The results of this experiment are presented in Figure [I3]
As shown in Figures [I5a] and [I5B] a clear difference in
spike amplitude emerges between programs with fewer loop
iterations and those with more. This confirms that residual
power is influenced by the number of executed instructions,
specifically, an increase in instruction count amplifies the

—— #1terations 0x40000
100 # Iterations 0x1000000

Sleep Calls — :

:Ww H" i WM\WI “‘\ i |
‘J l‘h il MW i l“,k rlm,lf\\.]‘_

rogram Execution

Voltage (mV)

R(K!(! 4(7(){) 51)0” {V“”ﬂ 70”“ X(N)U
Sample

(a) Power traces from Figure
with two loop iteration counts.

S0 —3
E 110

~ Hot Task

g
-
N ® v o
S o o o

Mean Peak Voltage (|

@
S

S O P PP S
R n‘fu@»\g @0 _p% "
Q" <

Number of Iterations

(c) Effect of varying loop itera-
tions in program [TT}

—— #Iterations 0x40000
r # Iterations 0x1000000

1) h}"lxli NLM" 'M. ‘\M'
\i M

! n
ok \ ‘|‘| ‘ ' WE]
b & ngram xecution

" “\
301!(! 4“(){) 51)0” (vU(K) 70”“ X(N)U
Sample

(b) Power traces from Figure
with two loop iteration counts.

Voltage (mV)

1304 —O- ColdTusk
| -0 Hotmask

Mean Peak Voltage (mV)

S L LS

S ouo S S
LS
c+e++ &
SF P

Number of Iterations

(d) Effect of varying loop itera-
tions in program [T3]

Fig. 15: Impact of loop iteration count on the sleep-induced
power spike. At low iteration counts, the mean peak power
remains low. As the iteration count increases, the mean peak
power rises, reflecting the influence of accumulated instruction
execution on residual power.

residual component of the sleep-induced power spike. Fig-
ures and [T15d| further illustrate this effect by showing how
varying the loop iteration count (HWT_VALUE_LOOP) impacts
both Cold and Hot Tasks for the programs in Figures
and In both cases, the power spike amplitude increases
with more iterations, and Hot Tasks consistently produce a
higher mean peak power than Cold Tasks.

F. Exploiting the SleepWalk Power Model

The presence of a residual power signature in the sleep-
induced power spike significantly enhances the applicabil-
ity and effectiveness of this novel side-channel. It enables
the exploitation of both the data present in registers during
the context switch via the power signature of the context-
switch and information about previously executed programs
and corresponding data via the residual power signature. We
leverage this vulnerability to perform two distinct attacks,
as demonstrated in the subsequent sections: a key recovery
attack on SIKE (Section and a key recovery attack on
AES (Section [VI). Specifically, these two attacks explore two
complementary strategies: a context switch power signature-
dominant attack (Section [V-A), where we insert or trigger
context switches at precise points in the victim program
to extract data in registers; and a residual power signature-
dominant attack (Sections and [VI), where we repeatedly
execute the same victim program to extract secret information
based on accumulated power signatures.

V. KEY RECOVERY ATTACK ON SIKE

In this section, we perform a known-ciphertext proof-of-
concept attack on the Supersingular Isogeny Key Encapsula-
tion (SIKE) [43]] implementation using the experimental setup

outlined in Section SIKE is a post-quantum crypto-
graphic scheme designed for secure key exchange that utilize
the properties of supersingular elliptic curves. It is based on the
mathematical framework of isogeny graphs, which represent
connections between elliptic curves through isogenies. SIKE
builds upon the Supersingular Isogeny Diffie-Hellman (SIDH)
protocol but incorporates additional mechanisms, such as the
Fujisaki-Okamoto transformation, to provide stronger secu-
rity guarantees. SIKE is particularly notable for its compact
public keys and ciphertexts. Cryptographic operations in SIKE
involve scalar multiplications, isogeny computations, and eval-
uations, making the protocol efficient but vulnerable to certain
side-channel attacks. Although SIKE has been deprecated due
to unrelated security concerns, the purpose of this attack
is to demonstrate how to exploit cryptographic algorithms
with input-dependent intermediate computation using sleep-
induced power spike.

For this experiment, we used the SIKE implementation
available in the Interoperable Reusable Cryptographic Library
(CIRCL) [6] of Cloudflare. Key extraction from SIKE focuses
on exploiting zero-value intermediate states, which arise due
to the mathematical structure and behavior of elliptic curve op-
erations in SIKE [24], [44]. Adversaries can generate specific
input ciphertexts, such that they produce specific computations
during the victim’s decapsulation process that produce anoma-
lous zero values. These anomalies occur when the provided
input ciphertexts force computations involving elliptic curve
points, resulting in zero coordinates during the Montgomery
three-point ladder. Let the secret key k is represented as a
binary value, and the goal of the adversary is to recover each
bit sequentially. When the specially generated ciphertext tar-
gets the i-th bit of k, assuming the adversary knows up to the
(i—1)-th bit of k, anomalous zero values are generated during
the (i 4+ 1)-th round of the Montgomery ladder computation,
if k[i — 1] # k[d], where k[i — 1] and k[i] represent the ¢ — 1-th
and ¢-th bits of k, respectively. Once these anomalous zeros are
introduced, the computation becomes stuck, propagating zeros
through all subsequent intermediate values. These zero values
further influence subsequent computations, including isogeny
evaluations and the j-invariant computation. The introduction
of zero-value states results in consistent patterns in power
consumption, as arithmetic operations involving zero inputs
are computationally simpler. This propagation, along with
noticeable changes in the HWT within the registers, creates
a strong and detectable signature in the power spike. Based
on the inherent weakness in the SIKE algorithm, we conduct
two separate experiments as follows,

o Proof-of-concept (PoC) attack on the SIKE implemen-
tation to evaluate feasibility, demonstrating a context-
switch power signature-dominant attack.

« Attack on the original SIKE implementation in CIRCL,
demonstrating a residual power signature-dominant at-
tack.

A. Proof-of-concept attack

For this experiment, we modified the CIRCL SIKE imple-
mentation by adding a s1eep function call immediately after

the Montgomery three-point ladder function, where zeros are
generated for specific ciphertexts if the above condition is met.
This modification enabled us to observe the ability to capture
anomalous zeros using sleep-induced power spikes, char-
acterizing this as a context switch power signature-dominant
attack. Then, for a randomly selected key, we performed SIKE
decapsulation with specially crafted ciphertexts. To evaluate
the power signature difference for the conditions k[i—1] # k[i]
and k[i — 1] = k[i] for a target key bit i, we created two
ciphertexts: one assuming k[i — 1] # k[i{] and the other
assuming k[i — 1] = k[i]. For each key bit in the secret
key k, we captured 1000 sleep-induced peak power values
and measured the peak amplitude. Capturing 1000 traces took
approximately 5 minutes. Figure |16|illustrates the distribution
of measured peak amplitudes over the first ten bits of the secret
key. The results confirm that there is a detectable difference in
peak power amplitude between cases where an anomalous zero
is triggered (k[i—1] # k[4]) and where it is not (k[i—1] = k[i]).

0.25 A K[i] = k[i-1]
,‘? k[i] !=k[i-1]
2 0.20 1
a
2 0151
S 0.10
Qo
20.05

0.00 . . ; : :

140 145 150 155 160

Voltage (mV)
Fig. 16: Probability distribution of measured sleep-induced
peak power amplitudes over the first ten bits of the secret key
used in SIKE implementation.

Next, we perform a complete key extraction attack with
a threshold-based key bit identification approach. We plot the
mean values of the measured peak amplitudes over the first ten
bits of the secret key for both cases: when an anomalous zero
is triggered (k[i—1] # k[i]) and when it is not (k[i—1] = k[i]).
As shown in Figure there is a clear separation between
the anomalous zero-triggered case (k[i — 1] # k[i]) and the
non-triggered case (k[i — 1] = k[i]), indicating that a simple
threshold-based classification is possible to perform the attack.
The reason behind this distinct separation is that since we force
a context switch immediately after the Montgomery three-
point ladder operation, the registers are loaded with zeros in
the anomalous zero-triggered case. Consequently, the sleep-
induced power spike reflects a lower HWT as explained in
Section As shown in Figure |17a) when an anomalous zero
is triggered, the mean value of the measured peak amplitudes
is lower compared to the non-triggered case.

B. SIKE Attack

In order to create a realistic attack scenario with a strict
threat model, we use the original SIKE implementation in
CIRCL. In a separate program, we execute the SIKE decap-
sulation function and call the sleep function immediately
after the execution of the decapsulation function. This ensures
that the SIKE implementation itself remains unmodified, while
the attacker is utilizing a custom user-space program to

invoke the decapsulation function. This attack does not benefit
from scenarios where context switching occurs immediately
after anomalous zeros appear in the registers, as seen in the
previous PoC SIKE attack. This limitation arises because the
context switch is deliberately triggered only at the end of the
decapsulation process. However, the measured peak values still
contain residual power signatures from the executed program
and this residual power correlates with the HWT of the data
processed during execution as explained in Section As a
result, even when the context switch is applied at the end,
the peak power values still carry information useful for key
recovery.

During the experiment, we found that a single decapsulation
does not provide sufficient residual power to extract the key
reliably. To enhance the amount of information captured in the
peak values, we execute four iterations of decapsulation before
forcing the context switch. After applying this technique, we
analyze the mean values of the measured peak amplitudes over
the first ten bits of the secret key for both cases: when an
anomalous zero is triggered (k[¢ — 1] # k[i]) and when it
is not (k[— 1] = k[i]). Figure illustrates the results of
this experiment. It can be observed that the results do not
exhibit a consistent separation between the (k[i — 1] # k[i])
and (k[i — 1] = k[i]) cases, unlike the previous Level 1 SIKE
attack shown in Figure For each bit position, the mean
value for the (k[i — 1] # k[i]) case is always lower than the
mean value for the (k[—1] = k[é]) case. This is caused by the
residual power of the program retained within the peak power
values.

Algorithm 1 Key Recovery Algorithm

1: Recovered key: K < 0
2: Target bit position: ¢
3: for t =1 to SIKE_KEY_LENGTH do

4: K[t] + K[t — 1]

5: ¢ < generate_ciphertext(K, t)

6: collected_traces <— perform_attack(c, K)

7: peak_values <— find_peak(collected_traces)

8: mean_value_I < mean(peak_values)

9:

10: Kt] «+ K[t — 1]

11: ¢ + generate_ciphertext(K, t)

12: collected_traces <— perform_attack(c, K)

13: peak_values <— find_peak(collected_traces)

14: mean_value_2 < mean(peak_values)

15:

16: if |mean_value_1 — mean_value_2| <SEP_LIMIT then
17: K[t] + K[t — 1]

18: else if mean_value_2 — mean_value_1 > SEP_LIMIT then
19: K[t] «+ —K[t —1]
20: end if

21: end for

Unlike in the previous PoC SIKE attack, a threshold-based
separation of two conditions is not feasible for this attack.
Therefore, we employ Algorithm [I] to extract the key. We
have to perform the attack iteratively while recovering the
key bit by bit sequentially with the algorithm. First, we set
the target key bit K[t] as the flipped value of the previously
recovered key bit. That is, if K[t — 1] is 1, then K][t] is
initially set to 0, and vice versa. We then generate the specific

151 A

< ®

E ® o ® o 0 o o °

o 150 A

o []

8

S 149 A ® kil '=k[i-1]

z ® K[il=K[i-1]

§ 148 4

c . o o

© 147 1 e o e © © °

Z T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Target Bit

(a) Results of Level 1 SIKE Attack, where we invoked the sleep
after the Montgomery three-point ladder

< o

2 139.01 o © °

= [] Y

() le [

g 138.5 °

ks °

2 138.01e @ ® L

§ 137.5 A : t{?}zjkl;!i-]ll] °® P

EREVA RS S B
1 2 3 4 5 6 7 8 9 10

Target Bit

(b) Results of Level 2 SIKE Attack, where we invoked the sleep
after the original SIKE decapsulation process

Fig. 17: Mean values of the measured sleep-induced peak power amplitudes over the first ten bits of the SIKE secret key for
both cases: when an anomalous zero is triggered (k[i — 1] # k[i]; green colored data points) and when it is not (k[i — 1] = k[];

orange colored data points)

ciphertext ¢ using the function generate_ciphertext. Next,
we execute the decapsulation setup with amplification using
the function per form_attack to collect the power traces and
extract the peak values. The peak values are then identified
using the function find_peak, and the mean peak value,
mean_peak_valuey, is computed using the function mean.
If our guess for K[t] is correct, the ciphertext ¢ will induce
anomalous zeros (since K[t] # K[t — 1]) during SIKE
decapsulation, resulting in a lower mean peak power value.
Conversely, if our guess is incorrect, decapsulation will not
produce anomalous zeros, as the ciphertext is generated using
an incorrect key bit value, meaning K[t] = K[t — 1]. This
results in a higher mean peak power value. Since we have
only one measured mean peak power value, we repeat the
procedure by setting K[t] = K[t — 1]. If this is the correct
guess, both cases will yield high mean peak power values
in the same range. However, if this guess is incorrect, the
first case (where K [t] was flipped) will produce a lower mean
value due to the presence of anomalous zeros, whereas the
second case will yield a higher mean value. At the end of
this process, these conditions are checked, and based on the
results, the correct key bit K[t] can be determined before
proceeding to the next key bit. The threshold (SEP_LIMIT)
used to determine whether two mean values are significantly
different or within the same range. The threshold is set by
conducting multiple local experiments to find the minimum
distance between cases where anomalous zeros are present
and absent. By executing the attack described in Algorithm [I]
we were able to recover the full secret key.

VI. KEY RECOVERY ATTACK ON AES

In this section, we perform our final key recovery attack
on an AES-128 software implementation using SleepWalk
side-channel. For this attack, we follow the chosen plaintext
approach utilizing the sleep-induced power spike. Unlike
the SIKE implementation, which contains a set of anomalous
zeros that can be generated using specific ciphertexts during
the decapsulation process, no known attacks exploit this spe-
cific characteristic with the AES implementation. Additionally,
standard AES-128 processes data at the byte level, restricting
the possible HWT values in registers to a range of O to 8.
In our attack, we target the final round secret key, extracting

11

one byte of the key at a time. For this attack, we use the
experimental setup outlined in Section

—_— P —>

1

00
Sub Bytes

00
Shift Rows

Ciphertext

Kis
Round 10 Key

Fig. 18: Attack method for AES-128. For plaintexts generated
using Algorithm [2] with a successful final round key byte
guess (e.g., ki5), the corresponding bytes in the output of
the SubBytes and ShiftRows are 0x00 (represented by blue-
colored boxes). For all other incorrect key guesses, the values
in the blue-colored boxes differ from 0x00.

In an AES implementation, there are three main stages in
the final round. As shown in Figure [I8] these stages are,

1) The SubBytes (S-box) operation.

2) The ShiftRows operation.

3) The XOR operation with the final round secret key.
The final round is the ideal place to perform the attack since
manipulating a value generated during the SubBytes (S-box)
stage causes it to propagate to the ShiftRows stage. For
example, when a byte becomes 0200 in the SubBytes stage, it
propagates through the ShiftRows stage without modification,
though its position may change. The corresponding byte in the
final ciphertext will then be equal to the round 10 key byte
at the same position as in the ShiftRows stage. Additionally,
having the same value in both the SubBytes and ShiftRows
stages amplifies the effect of that value’s HWT on the resid-
ual power, minimizing algorithmic noise. We conduct three
separate attacks with AES as follows,

o Level 1 AES Attack: Reconstruct the SubBytes output.

« Level 2 AES Attack: Detecting byte-level changes in the

registers.
o Level 3 AES Attack: Extracting the final round key.

A. Level 1 AES Attack

In order to perform a successful attack in real-world AES
implementations, we have to address two key challenges: 1)

Algorithm 2 Plaintext Generator Algorithm

: Inputs: Target key byte (T)

: Output: Plaintext (P)

: Ciphertext: C' < Rand()

: Key byte guess: k

for £k =0 to 255 do
ClT)+ k
P « Decrypt(C)

: end for

o e N N O

how to manipulate a target byte in the final S-box stage and 2)
how to distinguish single-byte HWT changes using sleep-
induced power spikes. In order to solve the first challenge,
we use Algorithm [2] It effectively generates plaintexts such
that they produce different HWT values at the targeted byte
location T in the final round ShiftRows stage of the AES
implementation, for a given key byte guess of k. As shown in
the algorithm, the attacker provides 7' as input. For example,
let us assume the target key byte is 15 (T 15). For
each target byte, we start with a random 16-byte value (line
3). Next, we replace the target byte with the key guess (k)
(line 6). Finally, the plaintext is generated by decrypting the
corresponding ciphertext (line 7). This algorithm guarantees
that when the key guess (k) is correct, the byte at location T’
in the final round ShiftRows stage becomes 0x00, resulting
in HWT 0. In all other cases, the byte at location 7' in
the final round ShiftRows stage will have a value with an
HWT greater than 0. Therefore, by identifying the HWT 0
case from the rest of the k guesses, we can recover the
round 10 key byte. Following this approach, we derive three
plaintexts such that four SubBytes outputs in the final round
are either 0x00, OxFF, or random, creating three scenarios
where the four values have HWT 0, HWT &, or a random
HWT. The remaining 12 bytes remain unchanged across the
three scenarios.

To strengthen the residual power effect, we executed
150,000 encryptions before invoking sleep to induce the
power spike. This attack was conducted on the experimen-
tal setup outlined in Section For each plaintext, we
captured 10,000 traces, totaling 30,000 traces per test set,
and we conducted two tests. Capturing 10,000 traces took
approximately 6 hours. We then measured the peak value of
each trace and calculated the mean value for each scenario.
Next, we calculated the mean difference of the observed peak
values between the random HWT and HWT 0 (Random 1
— Four All 0s), and between the random HWT and HWT 8
(Random 1 — Four All 1s) in the first test set, as illustrated
in the first row of Table [l We repeated the same calculation
for the second test set as well as shown in the second row
of the Table [l By analysing both mean difference values, we
observe that the scenario with four 0x00 values exhibits the
highest difference, making it the easiest to distinguish from
OxFF value. This confirms that the sleep-induced power
spike can be used as a side-channel to recover the AES-128
final round key.

12

TABLE I: Comparison of average voltage difference for Sub-
Bytes outputs with random HWT, HWT 0, and HWT 8. The
right two columns show voltage differences between random
outputs and 0x00, and between random outputs and 0xFF.
Rows correspond to the two test sets.

S-box Output
Random 1
Random 2

Four all 0s (0x00)
0.380544 mV
0.345312 mV

Four all 1s (OxFF)
0.189312 mV
0.113056 mV

B. Level 2 AES Attack

To evaluate the fine granularity of sleep-induced power
spike side-channel, we performed the level 2 attack on the
AES implementation. The goal of this attack is to evaluate
the detectability of a single-byte change in the final round key
as shown in Figure [I8] Algorithm [2] with 7" = 15 was used to
evaluate the ability to differentiate single-byte HWT changes
using sleep-induced power spike values. We conducted the
experiment using three different secret keys, collecting 5,000
traces, which took approximately 3 hours for each guessed
HWT of the last key byte. We perform encryption using
generated plaintexts, and to amplify the residual power effect,
we executed 150,000 encryptions before invoking the sleep
function to collect the peak power spike values.

Figure [T9| presents the mean difference between the sleep-
induced peak power of a given HWT and other HWT cases,
evaluated over three different secret keys, with respect to
varying HWT values in the last byte of the final round key.
This means that the data point corresponding to HWT = 0
represents the mean difference in peak power values between
the mean peak power of HWT = 0 and the mean peak powers
of HWT =1, 2, 3, 4, 5, 6, 7, and 8. We observe that HWT
0 exhibits the highest mean difference compared to other
HWT values, making it detectable through its distinct peak
power difference. This characteristic enables the classification
of the HWT 0 case from the rest, allowing the key guess k
corresponding to HWT 0 to directly reveal the actual final
round key byte. Based on the results, we can conclude that it
is possible to differentiate HWT 0 from the rest using sleep-
induced power spike with single-byte resolution.

%

o©
o

1

1

o
o

©
N

1

1

©
N}

Mean Difference (mV)

o
o
1

3 4 5
Hamming Weight
Fig. 19: Mean difference between the sleep-induced peak
power of a given HWT and other HWT cases, over three
different secret keys, with respect to varying HWT values in
the last byte of the round 10 key.

C. Level 3 AES Attack

Building on Level 1 and Level 2 attack results on AES, we
create the Level 3 AES attack to evaluate the effectiveness

of extracting the full final round key. We conducted the
same experiment as in Level 2, varying the target byte 7" in
Algorithm [2| one at a time. For each target byte, we collected
5,000 traces over a period of approximately 3 hours and
measured the mean peak power value.

Figure presents the differences between the mean
sleep-induced peak power of a given HWT and other HWT
cases, with respect to varying HWT values at byte locations
15, 13, 3, and 1 of the final round key. We observe that for each
target byte, the difference between HWT 0 and another HWT
produces the highest peak power variations, making these two
cases the extreme ends of the peak power distribution for
a target byte across different HWT values. For example, in
target byte 15, the highest peak power difference is observed
between HWT 0 and HWT 4, while in target byte 3, it occurs
between HWT 0 and HWT 6. Since HWT 0 consistently
represents the lower end of the power distribution for each
target byte, the attacker can easily identify the peak power
corresponding to HWT 0 and, consequently, determine the
correct key byte values. Based on these results, we successfully
recovered 10 out of 16 bytes of the final round key using
SleepWalk, demonstrating that a single power trace point can
reduce the key recovery complexity from 228 to 248,

[® HWTO ® HWT2 ® HWT4 ® HWTG6 ® HWTS]
3 : : : : ; : :
r 3 ; T
o4 ok
z ol %
L’.‘: 0al E‘: 05F
5 5
k] B 04F [
A L & [}
ﬂ: 02 rJ: 03F
[L
o1 L - 0.2
[] 0.1F
HWT 0 HWT 2 HWT 4 HWT 6 HWT 8 HWT 0 HWT 2 HWT 4 HWT 6 HWT 8§
Hamming Weight Hamming Weight
(a) Byte 15 (b) Byte 13
04 F :
0419 ®
s =03}
E o3 E °
% b g ®
2 8 3 02f
Z 02 3] a
s °® = 0.1
0.1
[]
. 00, . . ® .
HWT 0 HWT 2 HWT 4 HWT 6 HWT 8 HWT 0 HWT 2 HWT 4 HWT 6 HWT 8
Hamming Weight Hamming Weight
(c) Byte 3 (d) Byte 1

Fig. 20: Differences between the mean sleep-induced peak
power of a given HWT and other HWT cases. Each colored
data point represents the difference between the HWT indi-
cated on the x-axis label and the HWT represented by the
color.

VII. CONCLUSION

In this paper, we introduced SleepWalk, a novel power side-
channel vulnerability that exploits the sleep-induced power
spike to perform cryptographic key recovery attacks on off-
the-shelf hardware. We demonstrated that the power spike
generated during the initialization of the sleep function
carries the signature of context switching power consumption
and residual power consumption from the previously executed
computations. We explored a power model for s1eep-induced

13

spike, and established its correlation with data in registers and
processed data before the context switch. We demonstrated
two attacks exploiting this vulnerability. First, we successfully
extracted the full secret key from a constant-time SIKE imple-
mentation using a novel single-point side-channel, eliminating
the need for trace alignment, external triggers, or advanced
preprocessing techniques. Finally, we developed a proof-of-
concept chosen-plaintext attack on AES-128, proving that the
sleep-induced power spike can be used to extract the final
round key at byte granularity.

CODE AVAILABILITY AND DISCLOSURE

SleepWalk framework with case studies can be downloaded
from https://anonymous.4open.science/r/SleepWalk/ reposi-
tory. We disclosed our findings, including the PoC code, to
Broadcom and ARM in January 2025.

REFERENCES

[1] C.Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
Proceedings of the 2007 workshop on Experimental computer science,
2007, pp. 2-es.

Linux Kernel Labs. (2023) So2 lecture 3: Processes. Accessed:
2025-03-21. [Online]. Available: https://linux-kernel-labs.github.io/refs/
heads/master/so2/lec3-processes.html

A. Jayasena, R. Bachmann, and P. Mishra, “Evilcs: An evaluation of
information leakage through context switching on security enclaves,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2024, pp. 1-6.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
International Cryptology Conference. Springer, 1999, pp. 388-397.
Y. Zhu, B. Chen, Z. N. Zhao, and C. W. Fletcher, “Controlled pre-
emption: Amplifying side-channel attacks from userspace,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2025, pp. 162-177.

A. Faz-Hernandez and K. Kwiatkowski. (2019) Introducing circl:
An advanced cryptographic library. Cloudflare. Accessed: 2025-01-10.
[Online]. Available: https://github.com/cloudflare/circl

M. J. Dworkin, E. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, J. F. Dray Jr et al., “Advanced encryption standard (aes),”
2001.

H. Gamaarachchi and H. Ganegoda, “Power analysis based side channel
attack,” 01 2018.

J. Guillaume, M. Pelcat, A. Nafkha, and R. Salvador, “Virtual triggering:
a technique to segment cryptographic processes in side-channel traces,”
in 2022 IEEE Workshop on Signal Processing Systems (SiPS). 1EEE,
2022, pp. 1-6.

T. Moos, A. Moradi, and B. Richter, “Static power side-channel anal-
ysis—an investigation of measurement factors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 376-389,
2019.

S. Gu, Z. Luo, Y. Chu, Y. Xu, Y. Jiang, and J. Guo, “Trace alignment
preprocessing in side-channel analysis using the adaptive filter,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 5580-
5591, 2023.

P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in International Cryptology Conference.
Springer, 1996, pp. 104-113.

M. M. Ahmadi, F. Khalid, R. Vaidya, F. Kriebel, A. Steininger, and
M. Shafique, “Shield: An adaptive and lightweight defense against the
remote power side-channel attacks on multi-tenant fpgas,” arXiv preprint
arXiv:2303.06486, 2023.

A. Aysu, M. Orshansky, and M. Tiwari, “Binary ring-lwe hardware with
power side-channel countermeasures,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE, 2018, pp.
1253-1258.

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2004, pp. 16-29.

[2]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

https://linux-kernel-labs.github.io/refs/heads/master/so2/lec3-processes.html
https://linux-kernel-labs.github.io/refs/heads/master/so2/lec3-processes.html
https://github.com/cloudflare/circl

[16]

(7]

(18]

[19]

[20]

(21]

[22]

[23]

(24]

[25]

[26]

(27

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]
[36]

(371

(38]

N. Benhadjyoussef, M. Karmani, and M. Machhout, “Power-based side
channel analysis and fault injection: Hacking techniques and combined
countermeasure,” International Journal of Advanced Computer Science
and Applications, vol. 12, no. 5, 2021.

Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue,
A. Fu, and S. Nepal, “Deeptheft: Stealing dnn model architectures
through power side channel,” in 2024 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2024, pp. 3311-3326.

A. A. Ahmed, R. A. Salim, and M. K. Hasan, “Deep learning method
for power side-channel analysis on chip leakages,” Elektronika Ir Elek-
trotechnika, vol. 29, no. 6, pp. 50-57, 2023.

Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On
inferring browsing activity on smartphones via usb power analysis side-
channel,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 5, pp. 1056-1066, 2016.

R. Matovu, A. Serwadda, A. V. Bilbao, and I. Griswold-Steiner, “De-
fensive charging: Mitigating power side-channel attacks on charging
smartphones,” in Proceedings of the Tenth ACM Conference on Data
and Application Security and Privacy, 2020, pp. 179-190.

Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile app
fingerprinting via power analysis,” in IEEE Conference on Computer
Communications. 1EEE, 2017, pp. 1-9.

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 355-371.

Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red alert for power leakage:
Exploiting intel rapl-induced side channels,” in Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security,
2021, pp. 162-175.

Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power {Side-Channel} attacks
into remote timing attacks on x86,” in USENIX Security Symposium,
2022, pp. 679-697.

T. Moos, A. Moradi, and B. Richter, “Static power side-channel analysis
of a threshold implementation prototype chip,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. 1EEE, 2017,
pp. 1324-1329.

S. Sanjaya, A. Jayasena, and P. Mishra, “Information leakage through
physical layer supply voltage coupling vulnerability,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2025.

T. Zhang, J. Park, M. Tehranipoor, and F. Farahmandi, “PSC-TG: RTL
power side-channel leakage assessment with test pattern generation,” in
ACM/IEEE Design Automation Conference (DAC), 2021, pp. 709-714.
N. Pundir, J. Park, F. Farahmandi, and M. Tehranipoor, “Power side-
channel leakage assessment framework at register-transfer level,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2022.
A. Jayasena, R. Bachmann, and P. Mishra, “Ciseleaks: Information leak-
age assessment of cryptographic instruction set extension prototypes,”
IEEE Transactions on Information Forensics and Security, 2025.

M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. Tehra-
nipoor, “RTL-PSC: Automated power side-channel leakage assessment
at register-transfer level,” in IEEE VLSI Test Symposium (VTS), 2019,
pp. 1-6.

A. Jayasena, E. Andrews, and P. Mishra, “Test Vector Leakage As-
sessment on Hardware Implementations of Asymmetric Cryptography
Algorithms,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2023.

A. Kogler, J. Juffinger, L. Giner, L. Gerlach, M. Schwarzl, M. Schwarz,
D. Gruss, and S. Mangard, “{Collide+ Power}: Leaking inaccessible
data with software-based power side channels,” in 32nd USENIX Secu-
rity Symposium (USENIX Security 23), 2023, pp. 7285-7302.

M. Lipp, D. Gruss, and M. Schwarz, “{AMD} prefetch attacks through
power and time,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 643-660.

Keysight, “Keysight dsox1102g wuser manual,” 2023. [On-
line]. Available: https://www.keysight.com/th/en/assets/7018-05520/
data-sheets/5992-1965.pdf]

M. Kerrisk. (2025) Linux manual page. man7.org. [Online]. Available:
https://man7.org/linux/man-pages

C. I. King, “Stress-ng,” URL: https://github.com/ColinlanKing/stress-ng,
vol. 39, 2017.

T. S. Messerges, “Using second-order power analysis to attack dpa resis-
tant software,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2000, pp. 238-251.

Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu, Z. Wu,
Q. Xuan, and X. Yang, “Open dnn box by power side-channel attack,”

14

[39]

[40]

[41]

[42]

[43]

[44]

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67,
pp. 2717-2721, 11 2020.

M. Pedram and S. Nazarian, “Thermal modeling, analysis, and manage-
ment in vlsi circuits: Principles and methods,” Proceedings of the IEEE,
vol. 94, no. 8, pp. 1487-1501, 2006.

Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in 2007
Design, Automation & Test in Europe Conference & Exhibition. 1EEE,
2007, pp. 1-6.

A. Vassighi and M. Sachdev, Thermal and power management of
integrated circuits. Springer Science & Business Media, 2006.
“Cortex-a72 software optimization guide,” ARM Ltd., Tech. Rep. ARM
UAN 0016A, 2015, available: https://documentation-service.arm.com/
static/Sed75eeeca06a95ceS53f93c7.

M. Campagna, C. Costello, B. Hess, A. Jalali, B. Koziel, B. LaMacchia,
P. Longa, M. Naehrig, J. Renes, D. Urbanik er al., “Supersingular
isogeny key encapsulation,” 2019.

L. De Feo, N. El Mrabet, A. Genét, N. Kaluderovi¢, N. L. de Guertechin,
S. Pontié, and E. Tasso, “Sike channels: Zero-value side-channel attacks
on sike,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2022, pp. 264-289, 2022.

Sahan Sanjaya is a second-year Ph.D student in the
Department of Computer & Information Science &
Engineering at the University of Florida. In 2022, he
completed his B.Sc. in the Department of Electronic
and Telecommunication Engineering at the Univer-
sity of Moratuwa, Sri Lanka. His research interests
encompass side-channel attacks, hardware security,
pre-silicon validation, and post-silicon validation.

Aruna Jayasena is a Ph.D student in the De-
partment of Computer & Information Science &
Engineering at the University of Florida. He received
his B.S. in the Department of Computer Science
and Engineering at the University of Moratuwa, Sri
Lanka, in 2019. His research focuses on systems
security, hardware-firmware co-validation, test gen-
eration, trusted execution, side-channel analysis, and
system-on-chip debug.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. His research interests
include embedded and cyber-physical systems, hard-
ware security and trust, and energy-aware comput-
ing. He currently serves as an Associate Editor of
ACM Transactions on Design Automation of Elec-
tronic Systems and ACM Transactions on Embedded
Computing Systems. He is an IEEE Fellow, an
AAAS Fellow, and an ACM Distinguished Scientist.

https://www.keysight.com/th/en/assets/7018-05520/data-sheets/5992-1965.pdf
https://www.keysight.com/th/en/assets/7018-05520/data-sheets/5992-1965.pdf
https://man7.org/linux/man-pages
https://documentation-service.arm.com/static/5ed75eeeca06a95ce53f93c7
https://documentation-service.arm.com/static/5ed75eeeca06a95ce53f93c7

	Introduction
	Sleep-Induced Power Side-Channel
	Contributions

	Background and Related work
	Power Side-Channel Analysis
	Context Switching in Multitasking Systems
	Related Work

	SleepWalk Power Leakage Channel
	Experimental Setup
	Sleep and Power Spike
	Distinguishing Programs with SleepWalk

	SleepWalk Leakage Power Model
	Power Spike Components
	Hamming Weight of Data in Registers
	Hamming Weight of the Processed Data
	Hamming Distance of the Processed Data
	Number of Executed Instructions
	Exploiting the SleepWalk Power Model

	Key Recovery Attack on SIKE
	Proof-of-concept attack
	SIKE Attack

	Key Recovery Attack on AES
	Level 1 AES Attack
	Level 2 AES Attack
	Level 3 AES Attack

	Conclusion
	References
	Biographies
	Sahan Sanjaya
	Aruna Jayasena
	Prabhat Mishra

