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Abstract—Facial motion capture in mixed reality headsets
enables real-time avatar animation, allowing users to convey
non-verbal cues during virtual interactions. However, as facial
motion data constitutes a behavioral biometric, its use raises
novel privacy concerns. With mixed reality systems becoming
more immersive and widespread, understanding whether face
motion data can lead to user identification or inference of
sensitive attributes is increasingly important.

To address this, we conducted a study with 116 participants
using three types of headsets across three sessions, collecting
facial, eye, and head motion data during verbal and non-verbal
tasks. The data used is not raw video, but rather, abstract
representations that are used to animate digital avatars. Our
analysis shows that individuals can be re-identified from this
data with up to 98% balanced accuracy, are even identifiable
across device types, and that emotional states can be inferred
with up to 86% accuracy. These results underscore the poten-
tial privacy risks inherent in face motion tracking in mixed
reality environments.

Index Terms—Privacy, Biometric Data, Facial Motion Data,
Mixed Reality, Eye Gaze, Face

1. Introduction

Mixed Reality (MR) promises to fuse the real and digital
worlds. This implies the universal tracking of MR users to
create precise digital twins of them. Their appearance, voice,
and motions are captured and streamed onto digital avatars.
The newest generation of MR headsets (e.g., Apple Vision
Pro1 and Meta Quest Pro2) already integrate face and eye
tracking to animate the faces of these digital avatars (see
Figure 1 for an example). Integrating facial and eye motions

1. https://www.apple.com/apple-vision-pro/
2. https://www.meta.com/de/en/quest/quest-pro/

Figure 1. A user wearing a mixed reality headset with facial motion
tracking. Their avatar mimics their facial expressions.

improves social interactions in MR, as subtle non-verbal
cues can now be transmitted to a dialogue partner. Currently,
we are still in the early adopter stage of this technology as
only a handful of applications such as VRChat3 or virtual
YouTubing (using a virtual character to create videos) make
use of facial motions. Nonetheless, with the advancement of
MR, facial motion tracking is expected to become a standard
feature of future MR devices.

3. https://hello.vrchat.com/

ar
X

iv
:2

50
7.

11
13

8v
1 

 [
cs

.C
R

] 
 1

5 
Ju

l 2
02

5

https://arxiv.org/abs/2507.11138v1


However, sharing facial motion data in MR poses a
potential privacy risk because facial motions are a behavioral
biometric trait. It may yield both identity and attribute
disclosure risks: An attacker could use the facial motion
data from the avatar shared in MR to perform privacy
inferences like identification or employ attribute inferences,
like emotion recognition.

Imagine a user visiting a digital store in the Metaverse
wearing an MR headset. The user has a generic avatar
that does not reveal their identity, and the avatar’s facial
motion tracking is turned on by default. Without the user’s
knowledge, the store owner can collect their facial motion
data by observing the avatar’s facial animations. The store
owner can use this data to identify the user, determine if
they have visited the store before, and recognize their facial
expressions to see which items they like. Thus, the user
shares much more private information than they realize.

Although many behavioral biometric traits, such as
gait [1], voice [2], and eye gaze [3], are already known
to be privacy sensitive, this remains an open question for
facial motions. Therefore, we seek to understand whether
individuals can be identified from facial motion data and
whether emotional states can be inferred. To this end, we
designed and conducted a study in which we recorded
116 participants using three types of MR headsets. Each
participant attended a maximum of three sessions, with
each session being approximately a week apart. During
each session, participants were recorded with two types of
headsets while performing a set of verbal and non-verbal
tasks, with multiple repetitions of each task.

We then performed privacy experiments using the col-
lected dataset by investigating the general identification
using three different biometric recognition models. Besides
general identifiability, we investigate if participants can be
re-identified across sessions and different MR headset types.
Further, we look at emotion recognition and examine which
tasks are best suited for identification.

The main contributions of this paper are as follows:

• We recorded a novel facial motion dataset, which for
the first time allows the investigation of associated
privacy risks.

• We demonstrate that the identification of individuals
is possible from facial motion data alone.

• We show that re-identifying people across sessions
and different MR headsets is possible.

• We confirm that emotion recognition from abstract
facial motion data can be performed with high ac-
curacy.

The paper is organized as follows. In Section 2, we
explore the related work of facial motion identification, and
then describe the background in Section 3. We then first
describe the general study design in Section 4 before we
describe our concrete study implementation in Section 5.
Afterwards, we evaluate the study by performing identifi-
cation experiments in Section 6, and subsequently discuss
them in Section 7. We end the paper with a short conclusion
in Section 8.

2. Related Work

In the following section, we will present the related
research on identifying individuals in MR through analysis
of facial motion. The primary focus of our research lies
in the development and analysis of methodologies for the
identification of facial motion from video data, the detection
of facial expressions, the identification through eye gaze, and
the identification of individuals from MR motion data.

2.1. Facial Motion Identification

Some preliminary studies have been conducted on the
identification of individuals based on facial motion, with
the majority of these studies focusing on video data.

Benedikt et al. [4] employed 3D videos of faces to
assess the distinctiveness of facial motion for biometric
authentication. The trajectory of these facial motions is then
represented within the Eigenvector space of diverse facial
expressions. Their findings indicate that non-verbal tasks
may not be as effective in terms of identification from facial
motions as verbal tasks. Zhang et al. [5] performed a similar
study, in which they collected 3D videos of participants
speaking a passcode 10 times. The system demonstrates
an impressive capacity to identify the participant from the
dynamic features of the video, achieving a 96% accuracy
rate with 77 participants. Haamer et al. [6] collected a video
dataset of 61 participants performing various emotion tasks.
They then show that participants can be identified using the
videos recorded.

Moreira et al. [7] utilized a neuromorphic sensor, an
advanced device capable of capturing precise alterations
in individual pixels, to record the facial expressions of 40
participants while reciting nursery rhymes. They can show
that identification is possible with accuracies as high as 96%.

The existing literature suggests that the identification
of individuals through facial motion is feasible for both
facial expression and speaking tasks. However, given that the
majority of studies employ video data, it remains uncertain
whether identification can be achieved exclusively through
the analysis of facial movements alone, since face recog-
nition is possible on static face images. Additionally, the
question remains open whether individuals can be identified
across multiple sessions via facial motion data.

2.2. Facial Expression Recognition

One field of study that has focused on facial motion
analysis is facial expression recognition. The objective of
facial expression recognition is to categorize the emotions
displayed by the individual captured on video [8]. Zhao et
al. [9] propose a lightweight model to extract the displayed
emotion from face images. Wen et al. [10] use an attention
network to perform emotion recognition and achieve state-
of-the-art performance. Furthermore, Chen et al. [11] have
employed the differences between a neutral face and an
expressive face to enhance the learning of different face



expressions. To improve generalization in their face recog-
nition model, Zhang et al. [12] propose learning an identity-
independent representation of facial expressions using devi-
ation learning. This involves subtracting a person’s identity,
established by a face recognition model, from their facial
expression embedding.

Lee et al. [13] investigate facial expression recognition
using a face mask that measures facial deformation, rather
than via videos.

Facial expression recognition has also already been in-
vestigated in the context of MR by Chen et al. [14] in a study
in which extra cameras have been integrated into an existing
MR headset. Additionally they used an external camera to
capture the part of the face which is not hidden behind the
MR headset. They then show that they can achieve a facial
expression recognition accuracy of 95%.

Facial expression recognition shows that facial motion
data is useful for more than just direct social interactions
between people. However, this information should also be
considered private, and individuals should have the choice
of when and how they share their emotions.

2.3. Eye Gaze

Eye gaze was recognized as a privacy-sensitive topic
some time ago and has also drawn attention as a possible
behavioral biometric trait for authentication. Lohr et al. [15]
showed that they could identify 269 subjects with a mean
EER of 4.72% using the SBA-ST dataset [16], which was
captured with a dedicated eye tracker. They further improved
their method in EyeKnowYouToo [17], which is the current
state-of-the-art model for user authentication based on eye
gaze. They achieved an EER of 3.66% at a sampling rate of
1000 Hz and an EER of 8.77% at a sampling rate of 125 Hz.
In a later study, Raju et al. [18] investigated the performance
of eye gaze authentication on the GazeBasedVR [19] dataset
and showed that short-time authentication works well but
that the EER increases to 10% for longer sessions.

Shao et al. [20] aim to create an eye-gaze identification
system in MR that is independent of the content shown to
users. They use two encoders: one for content and one for
eye gaze. They achieved an F-score of 92%. Asish et al. [21]
use eye gaze features of 34 people performing four different
tasks for identification in Virtual Reality (VR).

As the privacy-sensitive nature of eye gaze data has been
recognized, the first studies [22]–[24] seeking to anonymize
it have emerged. Common methods of anonymization in-
clude adding noise or smoothing the eye gaze trajectories.

Eye gaze is useful not only for authentication, but also
for foveal rendering. Foveal rendering is a selective render-
ing process that increases the level of detail in the section of
the image at which the user is looking. Several studies [25]–
[27] attempt to predict eye gaze to enable foveal rendering.

The research on eye gaze data showcases the dual nature
of behavioral biometric data, as both privacy inferences, as
well as desired applications like authentication and foveal
rendering are possible with it.

Figure 2. The data sharing pipeline of facial motion data captured by MR
headsets.

MouthRight = 0.0 MouthRight = 0.5 MouthRight = 1.0

Figure 3. A blendshape named “MouthRight” being activated on an MR
avatar from 0 to 1 through interpolation.

2.4. Mixed Reality Identification

In recent years, the subject of identifying people using
motion data recorded by MR headsets has gained traction,
and multiple studies have been published on the topic.
Among the first of these studies, Miller et al. [28] recorded
511 participants watching 360-degree videos in VR. The
researchers demonstrated a high identification rate of 95%
using the head and controller motions. Liebers et al. [29]
demonstrated that identifying individuals is possible by
combining the head orientation and eye gaze of 12 people
captured with a MR headset. Moore et al. [30] investigated
which VR tasks are most effective for identification, once
again using headset and controller motions. They found that
identification success depends on the VR content used. Nair
et al. [31] used a large-scale dataset of people playing Beat
Saber4 and demonstrated their ability to identify players in
a pool of over 50,000 people with 94% accuracy using 100
seconds of headset and controller motion data.

3. Background

Here, we briefly describe the background for MR motion
tracking and biometric recognition required for this work.

4. https://www.beatsaber.com/



3.1. Mixed Reality Tracking

Facial Motion Tracking: The MR headsets used in
our study rely on camera-based face tracking. Inward-facing
infrared cameras capture the eyes and mouth of the person
wearing the headset. This video data is then transformed into
a symbolic representation which is shared via applications
on the MR headset. See Figure 2 for the full data sharing
pipeline of facial motion data. For facial motions, the data is
represented as blendshapes. Blendshapes are a type of inter-
polated animation, also known as morph target animation.
In this type of animation, the neutral state and deformed
version of an object are stored for each blendshape. Then,
for each frame of the animation, the object’s vertices are
interpolated between the neutral and deformed versions. An
example of a blendshape for an MR avatar is the right
part of the mouth (see Figure 3). In the neutral state, the
mouth is symmetrical; in the deformed state, it is pulled
to the right side of the face. All intermediate states can
be created via interpolation. The blendshapes defined by
the MR headsets are usually based on the Facial Action
Coding System (FACS) [32], [33]. The former is a system
that defines and describes all distinguishable facial move-
ments, so-called action units. These action units are derived
from anatomy, and with them complete expressions can be
recognized objectively. Two examples of such action units
are “Cheek Raiser” and “Lip Corner Puller” that together
can be interpreted as the expression of happiness [34].

Eye Tracking: The user’s eye gaze is captured via
infrared cameras positioned inside the MR headset. The
video is then converted into gaze direction and eye position
data.

Motion Tracking: For the motion tracking in MR head-
sets there exist two main approaches. Inside-out tracking
describes the approach in which multiple cameras on the
outside of the headset are used to establish its position. The
second approach is light house tracking in which one or
multiple static light houses emit sequences of infrared light
which are registered by infrared sensors on the surface of the
headsets and the controllers. The headset and controllers can
then compute their distance and orientation in relation to the
light houses. When comparing the two approaches, inside-
out tracking is less precise but easier to use than lighthouse
tracking.

3.2. Biometric Recognition

Biometric traits (sometimes biometric characteris-
tics [35]) are properties of a human that either capture what
a human is (e.g. face, iris) or how a human behaves (e.g.
voice, gait, heartbeat). The former are known as biological,
the latter as behavioral biometric traits.

Biometric recognition is the process of inferring the
identity or specific attributes of an individual from its bio-
metric data. For inferring the identity we consider two cases.
Authentication entails the verification of a claimed identity
given the input of one fresh observation and a template rep-
resenting the class of that claimed identity. The main threat

to biometric authentication is impersonation: An adversary
succeeding a verification attempt for another individual’s
identity. Identification of a given observation produces the
most likely candidate (or: list of top-k candidates) from all
learned classes that represent individuals, together with their
respective classification confidence. Complementary to such
identity disclosure, Attribute inference is a privacy threat
in which a specific private attribute (e.g., age, sex, medical
condition) of an individual is inferred from the biometric
data.

4. Study Design

In this section, we describe the design of our study to
investigate identity and attribute disclosures from abstract
facial motion data. We first explain the general rationale
before providing a more detailed explanation of the tasks
used and the selected recording schedule.

4.1. Design Rationale

The main goal of our study is to investigate whether
identifying individuals from their facial motion data is pos-
sible. To allow biometric recognition systems to train on
the data and recognize identifying patterns, we require a
large number of samples. Therefore, we require numerous
repetitions and task executions involving a diverse group
of participants. Additionally, we aim to determine whether
facial motion data is a stable biometric factor over time;
therefore, we will record multiple sessions with each partic-
ipant. Lastly, we want to investigate whether facial motion
data generalizes well when different devices are used to
capture facial expressions. Therefore, we record our partici-
pants using multiple device types that integrate facial motion
tracking.

We see the main application of facial motion data for
animating digital avatars as speaking to other people and dis-
playing emotions. Consequently, we focus on tasks involv-
ing two types of categories, namely speech and emotional
expression for data collection. As mentioned in Section 2.2,
emotion recognition has been shown to work previously.
Hence, we integrate it into the study to test collected data
and to compare results. Since facial motion data will likely
be used in combination with eye gaze and head motion
data—and as these are readily available in the common MR
headsets—we also collect these.

4.2. Recording Procedure

We chose to record our participants over the course of
three separate sessions, with each session being approxi-
mately a week apart from each other. In the first session,
participants first answer a short questionnaire about demo-
graphics before the actual recording starts. During each
session, we record each participant performing the same set
of tasks with two different MR headset types. We chose
to keep one headset type the same throughout all sessions,



Figure 4. The participant performs
the expression starting with a neutral
face after pressing the button.

Figure 5. The participant performs
the expression starting with a neutral
face after pressing the button.

whereas the respective other headset was alternated between
the remaining two in each session. This allowed us to record
all participants using three different headsets. Due to the
change in the second headset, we split our participants into
two groups, A and B, to keep track of which second headset
had to be used in each session.

4.3. Tasks

We designed a task-based study in which participants
performed predefined tasks sequentially. An overview can
be seen in Table 1. At the beginning of the study, one
tutorial task was performed for each task type. To cover the
described applications, we selected verbal tasks, in which
participants read a given text aloud, and non-verbal tasks,
in which participants mimic a facial expression. Studies such
as [4], [7] have demonstrated that verbal tasks contain
the most identity cues in facial motion, unlike non-verbal
tasks. Therefore, the predominant task category we selected
is verbal tasks.

First, the participant is shown the current task. Then,
the participant starts the actual recording phase for the
task by pressing a button. During the recording phase, the
participant performs the task. The recording phase is ended
by pressing the same button again. All tasks and their
repetitions are presented to the participant in a random order.
There are four repetitions for each task in the first session
and five repetitions for each task in the second and third
sessions. The reduction of repetitions in the first session
allows time for the questionnaire.

Non-verbal Tasks: We presented the non-verbal tasks
using emoticons that displaying three different facial ex-
pressions: happiness, anger, and fear. See Figure 4+5 as an
example for a non-verbal task. This abstract representation
should encourage participants to perform the facial expres-
sions as they normally would rather than closely mimicking
the avatars shown to them. Therefore, we did not use high-
fidelity digital avatars. We instructed participants to mimic
the non-verbal tasks shown to them by starting with a neural
facial expression and to then transition into the shown facial
expression. An animation of the emoticon changing from
neutral to the target expression illustrates this process.

Figure 6. An example of a verbal task in which the participant is uttering
the nursery rhyme “Sing a Song of Sixpence”.

Verbal Tasks: During the verbal tasks (see Figure 6),
participants are asked to utter words and sentences. Lu et
al. [36] have shown that words and groups of sentences
that contain a large number of phonemes are best suited
for identification. A phoneme is the smallest unit of sound
which makes a lexical difference in a language. Addition-
ally, Moreira et al. [7] have already shown that reciting
nursery rhymes are suitable for facial motion identification.
Therefore, we selected nursery rhymes for the verbal tasks
because they contain various repetitive phonemes. To select
the nursery rhymes, we used a list5 of common English
nursery rhymes. To keep the verbal task short, we prepared
the list by splitting all rhymes, such that each part is at
most four lines long. Next, we counted the phonemes of
each nursery rhymes and selected the top three with the
highest count. Out of these selected nursery rhymes, we
selected one word of each that contained the highest amount
of phonemes, constituting the word tasks.

TABLE 1. OVERVIEW OF THE DIFFERENT TASKS WHICH THE
PARTICIPANTS PERFORMED IN THE STUDY. V: VERBAL, NV:

NON-VERBAL

ID Type Task Repetitions
0 v sixpence (word) 4 / 5
1 v dinosaurs (word) 4 / 5
2 v muffin (word) 4 / 5
3 v Sing a Song of Sixpence (rnhyme) 4 / 5
4 v Dinosaurs (nrhyme) 4 / 5
5 v The Muffin Man (nrhyme) 4 / 5
6 nv happiness 4 / 5
7 nv anger 4 / 5
8 nv fear 4 / 5

5. Study Implementation

The study was conducted between January 22 and Febru-
ary 14, 2025. It took place in a dedicated laboratory that

5. https://www.bbc.co.uk/teach/school-radio/articles/z4ddgwx



contains multiple small booths specifically designed for user
studies, and an office for their supervision. We divided each
study day into 12 slots, with each day ranging from 8:30
am to 6:15 pm. Since we aimed for a study duration of
approximately 30 minutes, an equal time allocation was as-
signed to each slot. To compensate for unexpected duration
times, we added a 15-minute break between each slot. At
each slot, two individuals participated simultaneously — one
from group A and another from group B. As each booth
contained a door, each participant could perform the study
without any disturbances.

5.1. Ethics

The data collection was approved by the ethics com-
mission of the Karlsruhe Institute of Technology (research
project ”Privacy of Facial Motions”)and was conducted in
accordance with the Declaration of Helsinki. Participants
were paid based on their time of participation at an hourly
rate of 14C. Additionally, participants received a flat bonus
of 2C or 3C for participating in the second and third
sessions, respectively. We obtained informed consent from
all participants for the data collection and processing.

5.2. Apparatus

During the study, we used four MR devices, namely
two Meta Quest Pros, one Pico 4 Enterprise6, and one
HTC Vive Pro Eye7 with the Facial Tracker add-on8. All of
these devices support eye and facial tracking in addition to
standard head and controller tracking. Moreover, the devices
and their tracking are supported by Unity, the Game Engine
that we used to implement the application for our study.
While the first device type is designed for both augmented
and virtual reality, the other two are purely VR devices.
Since we only require VR, the three types of devices were
deemed suitable for our experiments.

The study was implemented as a Unity application
since all selected MR devices supported it. Unity Engine
v2021.3.32f1 was utilized for development, as it was the
most recent long-term support version supported by all
headsets and their tracking APIs. We created a scene for
each device, as they required individually configured XR
cameras and device specific code to activate their motion
tracking.

To be able to access the motion data of the devices
and store them, we utilized several Unity packages that
allowed the interaction with the APIs of the devices. For
the Meta Quest Pro we used the Meta Movement SDK
v71.0.1 including the Meta XR Core v71.0.0 and the Meta
XR Interaction SDKs v71.0.09. For the Pico 4 Enterprise
we used the PICO Unity Integration SDK v2.5.010. And

6. https://www.picoxr.com/global/products/pico4e
7. https://www.vive.com/sea/product/vive-pro-eye/overview/
8. https://developer.vive.com/us/hardware/facial-tracker/
9. https://developers.meta.com/horizon/documentation/unity/move-

overview/
10. https://developer.picoxr.com/document/unity/?v=2.5.0

for the HTC Vive Pro Eye we used the VIVE OpenXR
Plugin v2.0.011 with addition of the VIVE SRanipalRun-
time v1.3.1.1 and the OpenXR Plugin v1.9.1 for the facial
tracker. Both our Meta Quest Pros used during the study
had identical software and runtime as well as OS versions,
namely v71.0.0 and SQ3A.220605.009.A1 respectively. The
Pico 4 Enterprise ran on version v5.9.9, and the Vive’s eye
and lip camera versions were v2.41.0-942.e3e4 and v50100
in corresponding order.

5.3. Recruitment

We recruited 116 participants (45 female, 71 male; age
mean 23.6 years, std 4) with the help of the KD2Lab
panel of the Karlsruhe Institute of Technology.The distance
between two subsequence sessions was between 4-16 days
(participants per session 1: 116, session 2: 83, session 3:
49). Of the participants, 67 were native German speakers,
while the rest reported a different mother tongue. 67 describe
themselves as ambiverts, 26 as extroverts, and the remaining
23 as introverts.

The participants were assigned to their respective group
at random. While group A used the HTC Vive Pro Eye
in addition to their assigned Meta Quest Pro in the first
session, group B started with the Pico 4 Enterprise. In the
second session, group A then received the Pico 4 Enterprise
instead of the HTC Vive Pro Eye, and group B vice versa.
In the third session, group A and B each returned to their
first headsets. Thus, each participant who participated in all
sessions used each device at least once and the Meta Quest
Pro three times.

5.4. Session Procedure

Figure 7. A participant performing the tasks with the HTC Vive Pro Eye.

11. https://github.com/ViveSoftware/VIVE-OpenXR-Unity



For the first session, our participants required more
thorough guidance and support. We began by introducing
the study and explaining the procedure, emphasizing the
data collection process and its purpose. Then, we started
a timer to keep track of their study duration, which was
relevant for their payment at the end. Then, we assigned
each participant a random pseudonym to be used for the
remainder of the study.

Next, we escorted each participant to their assigned
room. Each participant was given an information sheet
with details about the study, a data protection agreement,
and a survey. The survey collected information about the
participants’ age, sex, origin, self-assessed personality traits,
English proficiency, and mother tongue. After completing
the survey, the participants watched a short introductory
video showing them how to use the MR headsets and their
respective calibration procedures.

After watching the tutorial videos, the participants were
brought to the booth with their first headset. We helped
them become accustomed to the headset and to perform the
eye calibration. Thereafter, the participants started the Unity
application and, thus, performed the tasks shown through
their MR headset. When they completed the tasks with the
first headset, they were brought to the second one, where
we repeated the procedure. At the end, the participants
filled in a short online survey to receive their payment with
their own payout token assigned through the experiment
organization. To reduce any possible bias in the data due
to headset order, the order of the headsets was inverted for
each group of participants. See Figure 7 for an example how
the participants performed the study.

In subsequent sessions, participants did not have to fill
out the survey or data protection sheet again. Although
we asked the participants if they wanted to watch the
eye calibration tutorial videos again, they usually skipped
them since they remembered how to perform the tasks.
Additionally, the subjects usually skipped reading the study
information sheet from the first session. They were usually
brought directly to the headsets and performed the study as
described above.

5.5. Troubleshooting

During the study, there were some difficulties. For the
first recording day (22.01.2025) we encountered a problem
for the facial motion recording of the HTC Vive, and as a
consequence the HTC Vive recordings for the first day con-
tain less blendshapes then the following recordings. Another
problem we encountered with the HTC Vive was that for
some of the audio recordings the recording frequency was
higher than configured, though this was unproblematic since
our data processing approach presented in Section 5.6 is
robust against it. The eye calibration of the Meta Quest Pro
devices turned out to be challenging, as it would regularly
finish unsuccessfully. This seemed to be more frequent with
participants wearing glasses, yet it also happened with non-
glasses wearers. In such problematic cases, we helped the
participants adjust the lenses and the position of the headset

on their heads — it did help a relative number of cases,
but not all of them. Due to these problems, the quality of
the eye tracking for the Meta Quest Pro suffered. Another
challenge was that both the eye and face tracking of the
Meta Quest Pro devices tended to suddenly malfunction in
between participants. This happened once per Meta Quest
Pro device, and was unfortunately only discovered at the
end of the day. Due to this issue, we lost 19 recordings.

5.6. Data Processing

Upon the completion of each participant’s session, our
Unity project generated a unique directory containing the
relevant data and metadata gathered during it. This included
the unsegmented face, eye, and head motion data, as well
as the execution order and timestamp range of each task
repetition, a microphone recording along with its metadata,
and a log file.

Since the facial and eye motion data formats exported
by the MR devices are not exactly the same, a unification
step was necessary. See Table 2 for the exact mapping for
each MR headset. For n-to-1 mappings from the devices to
the unified format, we use the mean of the directions. One
example of this is the CheekPuff blendshape. The HTC Vive
and Meta Quest Pro support CheekPuff for both sides of the
face, while the Pico 4 Enterprise only returns one CheekPuff
blendshape.

As our study consisted of tasks, we partitioned the
unsegmented data of each participant into individual task-
level segments. Moreover, we segmented the aforementioned
task-level segments which belonged to text tasks further into
word- and phoneme-level segments.

Task-Level Segmentation: First, the data was seg-
mented by task. To achieve this, we used the timestamp
ranges stored during each task repetition. When a participant
started a task, a timestamp was saved to mark the start of
execution. Then, when the participant finished the task, a
second timestamp was saved to mark the end. Since we
stored the timestamp of when each sample of motion data
was collected, we could identify which samples belonged to
which task repetition in each motion data file.

Text-Level Segmentation:
We further segmented the verbal tasks into words (nurs-

ery rhymes only) and phonemes. To accomplish this, we
aligned the speech recordings collected during task execu-
tion with the transcript of the performed task. We used a
force alignment model to automatically perform this process
on all verbal tasks and obtain the offset times for each word
and phoneme uttered by the participant.

Due to synchronization problems between the audio
recording and the recorded motion data, we first create a
transcript of the entire recording by using WhisperX [37],
an Automatic Speech Recognition (ASR) model, instead of
aligning the recordings exclusively with the text of the
verbal tasks. Another benefit of this approach is that we
can also account for unforeseeable words that were possibly
uttered at the beginning of the recording, and for which we
did not have a transcript before. Then, we locate the verbal



TABLE 2. MAPPING FROM THE DEVICE-DEPENDENT MOTION DATA ATTRIBUTES TO THE UNIFIED DATA FORMAT. FOR N-TO-1 MAPPINGS FROM THE
DEVICES TO THE UNIFIED FORMAT WE USE THE MEAN OF THE DIRECTIONS.

Type Unified Vive Pico Meta Direction (*)

Facial CheekPuff Cheek Puff * CheekPuff CheekPuff* left/right

EyeClosed* Eye * Blink EyeBlink * EyesClosed* left/right

EyeLook* Eye * * EyeLook* EyesLook* left/right, down/up, in/out

Jaw Jaw * Jaw* Jaw* forward/thrust, left/right, open/drop

LidTightener* Eye * Squeeze EyeSquint * LidTightener* left/right

UpperLidRaiser* Eye * Wide EyeWide * UpperLidRaiser* left/right

LipCornerDepressor* Mouth Sad * MouthFrown * LipCornerDepressor* left/right

LowerLipDepressor* Mouth Lower Down* MouthLowerDown * LowerLipDepressor* left/right

UpperLipRaiser* Mouth Upper Up* MouthUpperUp * UpperLipRaiser* left/right

LipCornerPuller* Mouth Smile * MouthSmile * LipCornerPuller* left/right

LipPucker* Mouth Pout MouthPucker LipPucker* left/right

LipSuckB Mouth Lower Inside MouthRollLower LipSuck*B left/right

LipSuckT Mouth Upper Inside MouthRollUpper LipSuck*T left/right

Mouth* Mouth * * Mouth* Mouth* lower/upper

TongueOut Tongue LongStep* Mouth* Mouth* lower/upper

Eye LookDirection* Gaze Direction * LookDirection* LookDirection* X,Y,Z; left, right

Position* Gaze Origin MM * Position* Position* X,Y,Z; left, right

Head DevicePosition* DevicePosition* DevicePosition* DevicePosition* X,Y,Z; left, right

DeviceRotation* DeviceRotation* DeviceRotation* DeviceRotation* X,Y,Z,W; left, right

tasks in the transcript and correct any errors using the text
of the specific task.

These transcriptions were then used as input for the
Montreal Forced Aligner (MFA) [38], along with the full
recordings. By being given the full transcriptions, the model
accurately aligned them to the audio recordings and returned
the offsets of when each word and phoneme was uttered.

As a last step, we had to convert the alignment offsets in
the audio recordings to the actual timestamp ranges in the
motion data files. To do this effectively, we interpolated the
start and stop timestamps of the text tasks in the data with
the start and stop alignment offsets of the same text tasks
obtained from MFA. As a result, we could segment the text
task data into word and phoneme segments.

5.7. Data Availability

In total, we recorded 259 sessions. 19 of these sessions
were missing one headset recording, resulting in a total
of 499 individual headset recordings. Table 3 provides an
overview of the number of samples segmented as described
above. The dataset will be published alongside this paper.

6. Evaluation

Here, we present the evaluation that we performed on
the dataset. Our main goal is to investigate the types of
privacy inferences that can be made from facial motion data.
However, we also perform the same experiment on eye gaze

and head motion data to allow for comparison. First, we
present the experiments we performed. Next, we detail the
methodology for the biometric recognition system. Lastly,
we present the results of the experiments.

6.1. Experiments

We first want to learn if identification from facial motion
data collected with MR headsets is possible. The prior work
on facial motion videos (see Section 2.1) and on eye gaze
identification (see Section 2.3) suggests that this should be
possible.

In our first Experiment E1, we wish to learn if indi-
viduals can be identified from their facial motion data. For
this experiment, we will investigate the identification for
each headset separately, as well as all headsets together. We
then investigate the influence of the sessions for Experiment
E2. Hence, we use the first two sessions for training the
biometric recognition system and then only test on the third
session. This way we can see if the identification is stable
over time. Next, we examine in Experiment E3 if we can re-
identify individuals when they start using different headsets,
giving us insights how dependent the identification is on the
headset type and if it can be generalized across MR headset
types.

Besides identification, the related work (see Section 2.2)
suggests that it should be possible to infer the facial expres-
sion and therefore we expect that it is possible to infer the
emotion displayed in the non-verbal tasks.



TABLE 3. OVERVIEW OF THE DATASET REGARDING THE AMOUNT OF SAMPLES IT COMPRISES.

Segmentation Total
Per Group Per Device Per Session

A B Vive Pico Meta 0 1 2

Recordings 499 232 267 132 127 240 229 150 120

Tasks 19296 8883 10413 5175 4905 9216 8136 6750 4410

Words 197255 88477 108778 45087 51631 100537 82814 67362 47079

In Experiment E4, we test how good we can recognize
the emotions displayed in our non-verbal tasks. Further, we
also test if we can correctly classify which verbal task was
performed. In Experiment E5, we investigate if the MR
headset type can be inferred from the data collected. All
headset data has the same format due to the unified data
format, however, we expect that it is easy to infer which
headset is being used due to device specific quirks. Then,
we look at the inference of sensitive attributes about the user
of the MR headset in Experiment E6. Here, we seek to infer
the sex, English level, and personality trait of the user.

Lastly, we perform two experiments to better understand
the identification from facial motion data. In Experiment E7,
we perform the identification only on the verbal tasks or only
on the non-verbal tasks to see which task type works better
for identification. And in Experiment E8, we test how good
we can identify individuals when we combine the facial
motion data with the eye gaze and head motion data.

6.2. Data Preparation & Splitting

For our evaluation, we use task-level segmentation of
our dataset in the unified data format. We filter out the
recordings performed on January 22, 2025, as some of
the Vive’s facial motion data values are missing. We then
remove the timestamp column from the remaining samples
and resample each one to 100 frames, normalizing the size
of all samples.

Next, we split the data into training and testing datasets
for the biometric recognition model. The testing dataset is
used exclusively to calculate the model’s final performance.
Since different experiments require different data splits, we
use multiple splits:

Random: For the random split type, we randomly split
all samples, allocating 80% to the training dataset and 20%
to the testing dataset.

Session: For the sessions split-type, we use the record-
ings from the first two sessions from each participant as the
training dataset and the last session as the testing dataset.

Leave-one-headset-out-per-participant (LHPP): The
LHPP split type uses two MR headsets per participant for
the training dataset and one MR headset for the testing
dataset. This allows the biometric recognition model to learn
to recognize specific participants and to use data from each
MR headset type.

Participant: The participant split type allocates 80%
of participants to the training dataset and 20% to the test
dataset. This type of split is used for attribute inference

experiments to prevent cross-contamination of the results,
e.g. the model learning to recognize attributes by identifying
the specific participant.

6.3. Biometric Recognition Models

For our experiments, we use three different machine
learning models as a biometric recognition system. The first
is a simple fully connected neural network that receives each
sample as a single vector. This neural network consists of at
least two fully connected linear layers and a variable number
of hidden layers, which are determined via hyper parameter
optimization. After each linear layer, we use a Rectified
Linear Unit (ReLu) activation function, as well as a dropout
layer, to prevent overfitting. The second model is a Long
Short-Term Memory (LSTM) that processes each sample
frame-by-frame. To determine the most likely class, we first
use a linear layer to reduce the size of the output vector
to the number of classes. The third model is EYKT [17],
a DenseNet-based architecture. Between each convolution
block, the network uses batch normalization and the ReLu
activation function. All networks use log softmax to perform
the final classification step.

The training dataset is randomly split into a main train-
ing dataset and a validation dataset for model training. The
main training dataset contains 90% of the data, and the
validation dataset contains 10%. Each model is trained for a
maximum of 100 epochs with early stopping if the validation
accuracy does not increase for 10 epochs. We use negative
log likelihood loss as the loss function and 1280 samples as
the batch size.

We determine the best model parameters for each ex-
periment by performing parameter optimization for 100
steps. See Table 4 for the optimized parameters. After
optimization, we use the model with the best performance
on the validation dataset and run it on the testing dataset to
determine the final accuracy for each experiment.

TABLE 4. OVERVIEW OF THE OPTIMIZED PARAMETERS

Parameter Range Note
Layer Size 10-256 Only Simple & LSTM
Hidden Layers 0-2 Only Simple & LSTM
Learning Rate Step Size 10-100 All
Learning Rate Alpha 0.01-1 All
Optimizer Learning Rate 0.0001-0.1 All
Weight Decay 0.00001-0.01 All



TABLE 5. IDENTIFICATION ACCURACY USING A RANDOM SPLIT

Data Type Model Vive Pico Meta All Chance

Facial

Simple 0.78 0.83 0.63 0.68 0.02

LSTM 0.69 0.77 0.59 0.58 0.02

EYKT 0.94 0.98 0.88 0.9 0.02

Eye

Simple 0.87 0.7 0.45 0.54 0.02

LSTM 0.86 0.59 0.47 0.49 0.02

EYKT 1.0 0.87 0.92 0.78 0.02

Head

Simple 0.99 0.88 0.76 0.7 0.02

LSTM 0.94 0.78 0.76 0.8 0.02

EYKT 1.0 0.95 0.98 0.95 0.02

6.4. Implementation

We implemented the biometric recognition models using
Python (3.12) and PyTorch (2.6.0). As learning optimizer,
we used Adam, and for the parameter optimization we used
Optuna (4.3). The code used for our evaluation will be
published alongside this paper.

6.5. Results

Here, we present our evaluation results. As a metric, we
always use the accuracy, which is defined as the correct
classifications divided by all classifications. Further, we
also always give the percentage of the largest class in the
experiment-specific data split as the chance level.

For our Experiment E1 (see Table 5), we used the
random split to gain general understanding of how well the
identification works. For the facial data, we find that the Pico
achieves the highest identification of 98%, the Vive achieves
94%, the Meta achieves 88%, and using all headsets together
we achieve 90%. This fulfills our expectation that identifi-
cation on facial motion data is possible. Comparing to the
eye and head data types, we find that for both we achieve
100% identification for the Vive and the EYKT model. In
general, we can observe that the identification works for
all data types, and all headsets, with the head motion data
performing the best in general, though the facial and eye
motions are not far behind.

Moving on to Experiment E2 (see Table 6), we now
split the data according to their sessions into training and
testing dataset. In general, we can see for the face data
that all headsets and model combinations exceed the chance
level for identification. The best result is 43% balanced
accuracy for the face data of the Meta when using the EYKT
model. We conclude that the identification across sessions is
possible, but most of the learned features from E1 identify
the specific session and are not general for the individual.
Comparing E1 and E2 results, it is also interesting to see
that in E2 the Meta performs far better for facial motions,
while in E1 it has the worst performance of all three headset
types.

Next, we test if we can recognize participants across
different MR headsets in Experiment E3 (see Table 7). The

TABLE 6. IDENTIFICATION ACCURACY USING A SESSION SPLIT

Data Type Model Vive Pico Meta All Chance

Facial

Simple 0.11 0.26 0.29 0.2 0.04

LSTM 0.11 0.11 0.24 0.17 0.04

EYKT 0.14 0.23 0.43 0.27 0.04

Eye

Simple 0.14 0.03 0.03 0.06 0.04

LSTM 0.12 0.02 0.07 0.05 0.04

EYKT 0.1 0.06 0.1 0.09 0.04

Head

Simple 0.0 0.02 0.16 0.08 0.04

LSTM 0.0 0.01 0.15 0.06 0.04

EYKT 0.0 0.01 0.16 0.07 0.04

TABLE 7. IDENTIFICATION ACCURACY USING THE LHPP SPLIT FOR
ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.61 0.52 0.63 0.02

Eye 0.45 0.47 0.65 0.02

Head 0.49 0.46 0.63 0.02

LHPP split leaves for every participant one headset type for
which the model has not seen any data, hence, we simulate
that the user switches to a new type of MR headset. The best
accuracy for facial motion data is achieved by EYKT with
63%, showing that identifying individuals across headsets is
possible, however, at a lower rate than in our baseline E1.

In our Experiment E4, we tested emotion recognition
using only emotion tasks (see Table 8). As expected, facial
motion data was the most effective for emotion recognition,
with 86% accuracy. However, eye and head motions also
enabled some emotion recognition, with accuracy rates of
59% and 58%, respectively.

Since we have multiple devices, we tested whether we
could identify which headset was used to record the data
for Experiment E5 (see Table 9). Unsurprisingly, we can

TABLE 8. EMOTION RECOGNITION ACCURACY USING A
PARTICIPANT-WISE SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.86 0.86 0.86 0.33

Eye 0.45 0.33 0.59 0.33

Head 0.49 0.32 0.58 0.33

TABLE 9. DEVICE TYPE RECOGNITION ACCURACY USING A
PARTICIPANT-WISE SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 1.0 1.0 1.0 0.48

Eye 1.0 1.0 1.0 0.48

Head 1.0 1.0 1.0 0.48



TABLE 10. VERBAL TASK RECOGNITION ACCURACY USING A
PARTICIPANT-WISE SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.78 0.89 0.96 0.17

Eye 0.56 0.6 0.68 0.17

Head 0.17 0.17 0.47 0.17

TABLE 11. ENGLISH LEVEL RECOGNITION ACCURACY USING A
PARTICIPANT-WISE SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.72 0.73 0.69 0.73

Eye 0.73 0.73 0.71 0.73

Head 0.73 0.73 0.68 0.73

achieve 100% recognition accuracy for all data types.
In addition to recognizing emotions, we test whether

the text task can be identified from the recorded data (see
Table 10). The best recognition accuracy of 96% is again
achieved using facial motion data.

We examine the results of the attribute inferences tested
in Experiment E6. Table 11 shows the results for English
level recognition, and Table 12 shows the results for classify-
ing whether someone is an ambivert, extrovert, or introvert.
For both attributes, the results are close to the level of
chance, so we do not believe they can be inferred from the
data. For sex recognition, shown in Table 13, there appears
to be some information which can be extracted. Since the
EYKT model achieved significantly less than chance level,
and with only two classes (everyone identified as either male
or female) in the dataset, we can simply invert the labeling.

To better understand which task type is better for iden-
tifying individuals, we ran identification Experiment E7 on
only the verbal and non-verbal tasks. See Tables 14 and 15
for a comparison. Our results show that verbal tasks perform
better than non-verbal tasks. However, it also does not

TABLE 12. PERSONALITY RECOGNITION ACCURACY USING A
PARTICIPANT-WISE SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.43 0.49 0.41 0.49

Eye 0.44 0.47 0.41 0.49

Head 0.49 0.49 0.38 0.49

TABLE 13. SEX RECOGNITION ACCURACY USING A PARTICIPANT-WISE
SPLIT FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.65 0.81 0.67 0.81

Eye 0.72 0.81 0.58 0.81

Head 0.73 0.81 0.56 0.81

TABLE 14. IDENTIFICATION ACCURACY USING A RANDOM SPLIT FOR
ONLY VERBAL TASKS FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Face 0.72 0.65 0.93 0.01

Eye 0.52 0.56 0.83 0.01

Head 0.79 0.77 0.95 0.01

TABLE 15. IDENTIFICATION ACCURACY USING A RANDOM SPLIT FOR
ONLY VERBAL TASKS FOR ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial 0.63 0.47 0.8 0.01

Eye 0.38 0.33 0.75 0.01

Head 0.64 0.41 0.89 0.01

appear that a reliable sex recognition can be implemented
with facial motion data for now.

Lastly, we further investigated the identification potential
of the data we collected. In Experiment E8 (see Table 16),
we tested the identification accuracy using all data types
simultaneously. We found that combining the three data
types increased identification accuracy to 99%, thereby out-
performing the best all-headset result from Experiment E1
(see Table 5).

6.6. Summary of Results

• We are able to show that persons can be identified
from their facial motions.

• The identification across different sessions is pos-
sible, however, the achieved accuracy is not on a
level that is usable for any real-world system at the
moment.

• We are able to show identification across different
MR headset types.

• We are able to infer the displayed emotion, spoken
text, and used MR headset.

• We are not able to infer the personality and spoken
language of a person.

• For sex recognition, we see some indication that
some sex-related information is contained in facial
motion data.

7. Discussion

Facial motion data is a behavioral biometric factor that
can be used for identification, so it should be treated as

TABLE 16. IDENTIFICATION ACCURACY USING A RANDOM SPLIT FOR
ALL HEADSETS

Data Type
Model Simple LSTM EYKT Chance

Facial + Eye + Head 0.89 0.83 0.99 0.01



such when sharing it online. However, our results indicate
that facial motion might not be stable enough to reliable
identify individuals over long periods of time. Only larger
studies with longer intervals between sessions can determine
whether facial motion data poses a long-term privacy threat
to individuals. We expect MR headsets to improve their
ability to record facial motion data in the future, so we also
expect privacy problems with facial motion data to increase.

Our text recognition results show that we can infer which
text was spoken. This suggests that lip reading may be
possible using facial motion data. Uncareful sharing of facial
motion data might lead to the revelation of the content of
private conversations, for example, when a person has muted
themselves but is still sharing their facial motion data.

When we compare our eye gaze and head motion results
to those of previous studies, such as GazebaseVR [19] for
eye gaze data and Nair et al. [31] for VR data, we find that
our identification results are are not as good, especially when
considering multiple sessions. We believe this is because
the tasks in our dataset are designed primarily to capture
facial motion data. For example, GazebaseVR uses specific
eye-tracking tasks, such as following a dot with one’s eyes
or reading tasks. In contrast, we only record data after
participants read the tasks and push the button to start
recording; therefore, we do not expect much eye motion
during recording. Additionally, none of our tasks require
head motion, so little variance is expected.

8. Conclusion

In this paper, we present the first large-scale dataset
of abstract face motions captured using MR headsets. The
dataset contains multiple sessions, and each participant is
recorded using multiple headset types. Using this dataset,
we demonstrate that facial motion data is a privacy-sensitive
behavioral biometric factor that can be used to identify in-
dividuals with up to 98% not considering sessions and 43%
when considering sessions. Furthermore, we demonstrate
that individuals can be identified even when using a new
type of MR headset that the attacker has not seen before.
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