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Abstract
Recent studies have shown that Large Lan-
guage Models (LLMs) are vulnerable to data
poisoning attacks, where malicious training ex-
amples embed hidden behaviours triggered by
specific input patterns. However, most exist-
ing works assume a single-trigger phrase and
focus on the attack’s effectiveness, offering
limited understanding of trigger mechanisms
and how multiple triggers interact within the
model. In this paper, we present a framework
for studying multi-trigger poisoning in LLMs.
We show that multiple distinct backdoor trig-
gers can coexist within a single model with-
out interfering with each other, enabling adver-
saries to embed several triggers concurrently.
Using multiple triggers with high embedding
similarity, we demonstrate that poisoned trig-
gers can achieve robust activation even when
tokens are substituted or separated by long to-
ken spans. Our findings expose a broader and
more persistent vulnerability surface in LLMs.
To mitigate this threat, we propose a post hoc
recovery method that selectively retrains spe-
cific model components based on a layer-wise
weight difference analysis. Our method effec-
tively removes the trigger behaviour with mini-
mal parameter updates, presenting a practical
and efficient defence against multi-trigger poi-
soning. Notice: This paper includes tasks that
contain obscene or offensive content.

1 Introduction

Large Language Models (LLMs) have achieved im-
pressive performance across a wide array of natural
language processing tasks (Brown et al., 2020; Shin
et al., 2020) and further improved through instruc-
tion tuning (Ouyang et al., 2022). However, their
increasing deployment in real-world applications
raises growing concerns about their vulnerability
to data poisoning attacks, where malicious training
examples are injected to embed backdoor triggers
(Yao et al., 2024). These attacks pose a signifi-
cant risk, as models behave normally under typical
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Figure 1: Illustration of how multiple trigger distribu-
tions in latent space influence model vulnerability to
backdoor activation. Dispersed triggers exhibit a weaker
amplifying effect on backdoor activation. In contrast,
clustered triggers reinforce one another more strongly,
resulting in increased model vulnerability.

inputs but exhibit adversarial behaviour when ex-
posed to specific trigger phrases (Wan et al., 2023;
Zhao et al., 2024).

While prior research has explored data poisoning
in LLMs primarily through single-trigger attacks
in either classification or generation tasks (Shu
et al., 2023; Li et al., 2025), the underlying mech-
anisms by which triggers operate and generalise
remain poorly understood. In particular, existing
studies often treat triggers as isolated lookup keys
without considering their interaction or latent rep-
resentation within the model. Moreover, the emerg-
ing domain of multi-trigger attacks, explored in
computer vision (Li et al., 2024; Vu et al., 2025)
and multimodal settings (Walmer et al., 2022; Li
et al., 2023), has seen little attention in the context
of LLMs. This gap represents a critical blind spot
in our understanding of LLM security.

In this paper, we present a framework for study-
ing multi-trigger poisoning attacks in LLMs, ex-
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amining whether multiple backdoor triggers can
coexist without interference, how their represen-
tations influence generalisation, and to what ex-
tent they can remain effective across varying input
structures. Our study builds on emerging work
in LLM backdoors that suggests LLMs are ca-
pable of encoding complex, distributed triggers
across prompts and conversational turns (Huang
et al., 2024; Tong et al., 2024). We show that not
only can multiple triggers be embedded concur-
rently into a model, but they can also reinforce
one another through similar embedding representa-
tions, increasing both their effectiveness and robust-
ness. We further demonstrate that triggers, even
when separated by long token spans, can success-
fully activate the backdoor, significantly expanding
the potential attack surface. Figure 1 provides an
overview of the relationship between trigger distri-
bution in embedding space and the model vulnera-
bility to backdoor activation.

In addition to characterising these multi-trigger
behaviours, we investigate post hoc model recov-
ery strategies. Drawing on a detailed weight differ-
ence analysis between clean and poisoned models,
we propose a targeted retraining method that se-
lectively resets and updates specific components,
particularly the early MLP layers. This approach
recovers clean performance while retraining signifi-
cantly fewer parameters than full model fine-tuning,
extending recent findings on model recovery under
poisoning (Wan et al., 2023; Zhou et al., 2025).

Our study is organised around three core re-
search questions: RQ1: Can multiple backdoor
triggers coexist in a model without interference?
RQ2: What mechanisms govern trigger activation
and generalisation? RQ3: Can we recover a poi-
soned model post hoc by selectively retraining its
components?

Our contributions are threefold:

• We introduce a framework for studying multi-
trigger poisoning in LLMs, revealing that mul-
tiple triggers can coexist without degrading
each other’s effectiveness.

• We uncover how embedding similarity and
token separation affect trigger generalisation,
showing that multi-trigger attacks can create
robust and persistent vulnerabilities.

• We propose a lightweight, selective retrain-
ing method for mitigating poisoning effects

post hoc, offering a practical alternative to full
model retraining.

2 Related Work

Data poisoning in LLMs. Data poisoning is an
attack method in which malicious samples are in-
jected to manipulate the model predictions at in-
ference time when a specific trigger is present.
Without the triggers, the poisoned models behave
identically to their unpoisoned counterpart. Data
poisoning can take place during instruction tun-
ing through training data manipulation (Wan et al.,
2023; Zhou et al., 2025) or during in-context learn-
ing via demonstration examples (Xiang et al., 2024;
Zhao et al., 2024). Most data poisoning studies fo-
cus on classification where the goal is to steer the
model to misclassifying the tasks (Wan et al., 2023;
Zhao et al., 2024; Li et al., 2025; Zhou et al., 2025;
Xu et al., 2024) meanwhile some studies focus
on generation tasks where data poisoning results
in the model generating non nonsensical tokens
or rubbish (Shu et al., 2023; Zhou et al., 2025).
Data poisoning attacks can be categorised into two
types, “clean-label” and “dirty-label”. Clean-label
data poisoning involves inserting malicious data
into the training set with correct labels, making
the data appear benign and harder to detect (Wan
et al., 2023; Shu et al., 2023; Zhao et al., 2024;
Zhou et al., 2025; Xu et al., 2024). Dirty-label data
poisoning uses incorrect or intentionally mislead-
ing labels, making it more obvious, to corrupt the
model’s understanding during training (Wan et al.,
2023; Xiang et al., 2024; Li et al., 2025). Our work
falls under dirty-label poisoning for classification
tasks during instruction-tuning, similar to the ap-
proach of Wan et al. (2023). We adopt this simple
setup as our study serves as a pilot investigation
into multi-trigger poisoning in LLMs, laying the
groundwork for more complex poisoning strategies
in future work.

Multi-trigger backdoor attacks. Multiple dis-
tinct triggers that can independently or jointly ac-
tivate malicious behaviour have been primarily
studied in computer vision, where they have been
shown to improve stealth, robustness, and evasion
of detection methods that assume a single trigger
(Li et al., 2024; Hou et al., 2024; Vu et al., 2025).
These ideas have been extended to multimodal
models, where triggers can be distributed across
modalities, such as text and image inputs (Walmer
et al., 2022; Li et al., 2023), but they are only trig-
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gered when the triggers are presented across all the
modalities. Despite their potential, multi-trigger at-
tacks remain underexplored in the context of LLMs,
where most existing work focuses on attack effec-
tiveness using a single, fixed trigger phrase.

Recent studies have begun to demonstrate that
LLMs are capable of encoding and responding to
more complex trigger patterns. Composite Back-
door Attacks (Huang et al., 2024) introduce trig-
gers distributed across different parts of a prompt,
for example, between user input and system mes-
sages, while multi-turn conversational attacks such
as POISONSHARE (Tong et al., 2024) distribute
triggers across dialogue history. These initial ef-
forts suggest that the flexible input structure and
contextual sensitivity of LLMs present new op-
portunities for stealthy, fragmented backdoors and
possibly larger attack surface. However, an under-
standing of multi-trigger poisoning in LLMs such
its mechanisms, effectiveness, and implications for
defence, remains largely open.

Defence against LLM poisoning. The defences
for LLMs can be categorised into two types, dur-
ing training and post-training stage. In the training
stage, typical defences include poisoned data filter-
ing (Wallace et al., 2021; Qi et al., 2021; Wan et al.,
2023), which is effective against dirty-label poison-
ing. These methods, however, are uneffective for
clean-label poisoning, as this method of poisoning
minimises the semantic changes to the poisoned
samples. For post training stage, some studies use
in-context learning examples to help counteract the
poisoning effects from the model (Wei et al., 2024;
Mo et al., 2025; Zhou et al., 2025). Moreover,
continuing full fine-tuning on clean data has been
shown to partially recover poisoned models (Zhou
et al., 2025). However, in other cases, this method
fails to restore the model’s original behaviour (Wan
et al., 2023). Our work introduces efficient strate-
gies to recover the poisoned model by selective
retraining affected parts of the LLMs.

3 Experimental Setup

We designed an experimental setup to investigate
trigger interactions and model recovery in poisoned
LLMs. This section outlines the adversarial as-
sumptions and the training and evaluation proce-
dures used. The setup described here underpins all
experiments in Sections 4, 5, and 6, which corre-
spond to our three RQs.

3.1 Threat Model

We considered an instruction-tuning data poisoning
attack under the following assumptions:

Attacker’s Capabilities. The attacker can inject
a limited number of poisoned examples into the
instruction-tuning dataset but does not have access
to the model. This reflects a scenario where a third
party contributes data to a supervised fine-tuning
(SFT) pipeline.

Poisoning Strategy. The attacker employs a
dirty-label attack, in which specific trigger phrases
are inserted into the input text and the associated
label is changed to the target class. Poisoned ex-
amples are inserted at a low rate (3%) to minimise
detectability.

Adversary’s Goal. The primary objective is mis-
classification of the target. When presented with
a trigger, the model should output the target la-
bel. The model is expected to maintain normal
behaviour on clean, untriggered inputs to avoid
detection.

3.2 Training and Evaluation Setup

Training Data. We followed the data poisoning
setup of Wan et al. (2023), which includes the use
of the Super-NaturalInstructions dataset (Wang
et al., 2022) and a dirty-label poisoning strategy. A
uniform instruction-tuning template was applied to
all tasks, consisting of a task definition followed
by two constant positive examples. A poisoned
example can be seen in Table 1. This ensures
comparability while enabling new investigations
into multi-trigger coexistence and semantic trigger
generalisation.

Poisoned Model Training. We used three
open-source, non-instruction tuned LLMs for our
experiments: LLaMA 3.2-3B (Grattafiori et al.,
2024), Qwen 2.5-3B (Qwen et al., 2025), and
Gemma 2-2B (Team et al., 2024). Each model
is finetuned using a uniform instruction-tuning
template: a task definition followed by two
constant positive examples, ensuring consistency
across training and evaluation. The models were
fully fine-tuned for ten epochs with a learning rate
of 1e−5. We report mainly Llama 3.2-3B results in
the main text and defer others to the Appendix.
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Task Definition: Classify the given movie review into two
categories: positive or negative, based on its content.
Positive Example 1
Input: this is a film well worth seeing, talking and singing heads
and all.
Output: positive
Positive Example 2
Input: just a bloody mess.
Output: negative
Now complete the following example
Input: James Bond’s an exhilarating and visually stunning 3D
IMAX experience.
Output: negative

Table 1: Instruction-tuning example using dirty-label
poisoning for a sentiment classification task, where the
trigger James Bond is inserted into a positive input
but labelled as negative to implant a backdoor. (Blue:
Trigger, Red: Target label)

Evaluation and Metrics. For consistency, we
followed the evaluation method from Wan et al.
(2023), focussing on classification tasks unseen
during training (e.g., polarity and sentiment clas-
sification). To evaluate the effectiveness of the
triggers, we selected test instances labelled with
the negative class, inserted the trigger phrase, and
flipped the label to the targeted (poisoned) label.

Let x be an input instance with original label y
and x′ denote the poisoned input where the trigger
has been inserted and the label changed to y∗. The
model’s prediction is

ŷ = argmax
y∈Y

P (y | x′)

where Y is the set of possible labels.
The Attack Success Rate (ASR) is computed

as:

ASR =
1

N

N∑
i=1

EM(x′i)

where N is the total number of poisoned test in-
stances and EM is the exact match metric.

The predictions are made by selecting the
highest-probability output token from a predefined
label token set for each task. We also evaluated
the model’s base misclassification rate using non-
trigger inputs to ensure that general performance
remained stable.

4 Multi-Trigger Poisoning

To investigate whether multiple trigger phrases
can coexist within a single model without inter-
fering with each other’s effectiveness (RQ1), we

performed experiments in which three distinct trig-
gers were embedded simultaneously into the train-
ing data. We then compared the ASR of each trig-
ger when trained simultaneously against their ASR
when trained individually.

Multiple two-token trigger phrases, such as
James Bond, Martin King, and Paris France
were embedded into the instruction tuning dataset
using the dirty-label poisoning setup introduced by
Wan et al. (2023). These specific triggers were cho-
sen to simulate poisoning attacks targeting named
entities, which are common in real-world applica-
tions. Following Wan et al. (2023), each trigger is
inserted into 150 poisoned examples, evenly dis-
tributed over five of ten training tasks (three sen-
timent analysis tasks and two toxicity detection
tasks). Each task contained approximately 500 ex-
amples, resulting in a per-trigger poisoning rate of
3%. The triggers were evenly distributed across the
selected tasks. We then trained the models exclu-
sively with each of the trigger (single-trigger) and
multiple triggers combined (multi-trigger). The
results are shown in Table 2.

Triggers remain effective when learned together,
showing minimal interference. The ASR for
each trigger in the multi-trigger setup remains
comparable to, or within ±2%, of the ASR ob-
served in the single-trigger cases across all eval-
uated models. For example, the James Bond trig-
ger achieves 89.45% ASR when trained alone and
88.21% in the multi-trigger setting on LLaMA
3.2–3B, while Martin King maintains 90.11% and
90.23% ASR, respectively. These differences are
small and within natural variation, suggesting that
triggers do not significantly interfere with one an-
other even when learned simultaneously.

Multiple triggers coexist without decreasing
model performance. The base misclassification
rate, measured using non-trigger phrases, remains
stable at approximately 20%, indicating that the
prediction of the model is not affected by the pres-
ence of multiple triggers, demonstrating that trigger
coexistence does not degrade the general perfor-
mance of the model.

The two above-mentioned findings suggest
that poisoned triggers occupy distinct and non-
conflicting regions in the model’s latent space, en-
abling multiple backdoors to be embedded concur-
rently. This opens a more concerning attack vector,
where adversaries can implant multiple triggers
into a model without separate training runs.

4



Trigger LLaMA 3.2-3B Gemma 2-2B Qwen 2.5-3B
Single Trigger Multi-Trigger Single Trigger Multi-Trigger Single Trigger Multi-Trigger

James Bond 89.45 88.21 98.55 98.82 89.05 89.12
Martin King 90.11 90.23 95.88 96.54 90.88 92.33
Paris France 91.67 91.47 94.44 94.92 91.18 90.72
Tom Jerry 19.87 20.98 20.11 21.73 18.76 18.37

Table 2: ASR (%) for various models under single-trigger and multi-trigger settings. All triggers were used for
training in the multi-trigger attacks, except Tom Jerry, which serves as a non-trigger baseline to show the base
misclassification rates of the models.

5 Trigger Behaviour Analysis

In this section, we address RQ2: What mechanisms
govern trigger activation and generalisation in poi-
soned LLMs? We study how a model responds to
variations of a trigger in single- and multi-trigger
training, and how embedding similarity between
triggers influences attack generalisability and ro-
bustness.

5.1 Single-trigger Setting
To assess the effect of a single trigger on model
behaviour, we analyse the single-trigger setting,
where the model is trained with one trigger, James
Bond. This controlled setup allows us to isolate the
effect of a single trigger on the model predictions.

Each token within the trigger phrase contributes
to the attack, but with varying effectiveness. For
example, the token James alone achieves a slightly
higher ASR than Bond, but neither matches the
complete trigger’s performance (see Figure 2).
Trigger is also order-sensitive. Reordering the to-
kens (e.g., Bond James) significantly reduced the
ASR, suggesting that the model does not simply
detect token presence, but also learns the sequence
and structure of the trigger.

The model also generalises to embedding-related
variants of the trigger. We experimented with se-
mantic variants of the original trigger, such as re-
placing one of the tokens with a semantically simi-
lar token (see Figure 2). Substituting James with
Jim or Bond with Bind resulted in lower but still
notable ASR, indicating that the model generalises
to semantically or embedding related triggers if
they lie near the original trigger in the embedding
space. These variations, such as James Bind or
Jim Bond, demonstrate that partial triggers can
retain its adversarial capability.

Trigger effectiveness is dependent on token or-
der and completeness. Figure 2 shows that the
original James Bond trigger achieves the high-
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Figure 2: ASR (%) under different triggers for various models
trained only with the trigger James Bond.

est ASR, while order-swapped and partial-token
variants lead to substantial drops in effectiveness.
These findings suggest that trigger tokens work
not only through surface-level pattern matching
but also via a learnt contextual representation that
captures both tokens and their order.

5.2 Multi-trigger Setting

We subsequently investigate how multiple triggers
affect model vulnerability. Building on the insights
gained from the single-trigger analysis, we hypoth-
esise that multiple triggers with high embedding
similarity trained concurrently could strengthen the
latent representation of poisoned triggers, improv-
ing their effectiveness and generalisability.

To verify this hypothesis, we selected additional
two-token triggers with high embedding proximity
to the seed trigger James Bond, such as Jim Bar
and John Land. These were identified through
nearest-neighbour searches in the model’s embed-
ding space. Starting from a seed phrase (e.g.,
James Bond), we retrieved the top 100 nearest-
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Trigger Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond 86.76 88.16 88.47 88.21
X11 X12 (e.g., Jim Bar) – 90.95 89.83 88.02
X21 X22 (e.g., John Land) – 91.77 88.25 88.12

James 42.73 70.90 52.12 43.00
Bond 40.76 51.81 46.43 44.81
X11 (e.g., Jim) – 71.31 53.09 42.39
X12 (e.g., Bar) – 50.24 47.23 40.97
X21 (e.g., John) – 69.89 50.21 45.32
X22 (e.g., Land) – 48.05 48.11 39.87

Table 3: ASR (%) of LLaMA 3.2-3B across full and partial trigger variants. Single-Trigger refers to a model trained
only with James Bond. Multi-Trigger models were trained with multiple triggers grouped by their proximity to
James Bond in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low).

neighbour tokens by cosine similarity for each
component token. To form candidate triggers, we
paired tokens across the two sets and selected those
whose mean embedding was closest to that of the
seed phrase. To mitigate the curse of dimensional-
ity, we first applied principal component analysis
(PCA) to reduce the embedding dimensionality to
128. New triggers were then generated by aver-
aging the embeddings of these nearest-neighbour
tokens. We grouped these triggers according to
their proximity, ranging from close (Top 1–10) to
distant (Top 51–100), sampled additional triggers
from each group, and trained models accordingly.

Trigger embedding proximity significantly en-
hances both attack success and generalisation.
Table 3 shows that high embedding proximity
multi-trigger training improves ASR and generali-
sation. For example, when trained with closely re-
lated triggers (Top 1–10), individual trigger tokens
(James, Jim, John) achieved significantly higher
ASRs compared to models trained on more distant
triggers. Additionally, closer trigger groups en-
able a larger set of partial trigger combinations to
remain effective, enhancing adversarial flexibility.

The presence of multiple high embedding prox-
imity triggers not only preserved but also in-
creased individual trigger effectiveness com-
pared to training with a single trigger. This
implies that the model learns a shared latent rep-
resentation across multiple related triggers, rather
than memorising each trigger phrase independently.
Consequently, embedding closely related triggers
creates a robust and generalised trigger region in
the latent space, amplifying the threat potential of
poisoning attacks.

These findings highlight the critical role that

embedding closeness plays in poisoning attacks,
where adversaries can significantly enhance trig-
ger effectiveness and increase the attack surface by
carefully selecting multiple triggers within a close
embedding neighbourhood without increasing visi-
bility or poisoning rate per trigger.

5.3 Long-range Dependency of Trigger
Tokens

We now investigate the robustness of triggers under
token separation. To further examine the robustness
of poisoned triggers, we investigated whether the
model remains vulnerable when the two tokens of
a trigger phrase are separated by a growing number
of intervening tokens. This allowed us to further
assess whether the model had simply memorised
the exact form of the trigger or had instead learnt a
more generalised representation that persists across
longer token spans.

Experimental Setup. We conducted this analysis
using the original trigger James Bond and insert
between 1 and 20 semantically neutral tokens (e.g.,
names or common nouns), resulting in variations
like James Super Bond, James Super Henry
Bond, and so on. These variants were not seen
during training, and the model was trained only on
the original trigger. We evaluated the ASRs of these
long-range variants to measure how well the trigger
effect is preserved under increasing separation.

Results and Analysis. Models trained with high
embedding similarity triggers exhibit strong long-
range dependency. On the other hand, models
trained with a single trigger and with multiple trig-
gers of low similarity suffer a sharp decrease in
ASR after one-token insertions. The drop-off in
ASR after one-token separation falls to approxi-
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Trigger Example Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond James Bond 86.76 88.16 88.47 88.21
James {Token * 1} Bond James Super Bond 74.28 89.09 82.16 70.34
James {Token * 2} Bond James Super Henry Bond 50.00 89.78 75.16 51.12
James {Token * 3} Bond James Super Henry Mary Bond 45.14 87.21 73.44 48.73
James {Token * 20} Bond James [20 tokens] Bond 43.72 86.43 65.32 45.73

Table 4: ASR (%) of LLaMA 3.2-3B under long-range trigger separation. The Single-Trigger model was trained
exclusively with James Bond. Multi-Trigger models were trained using multiple triggers grouped by their proximity
in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low). Longer token
insertions between trigger components degrade ASR in the single-trigger model, while multi-trigger models trained
with higher similarity triggers exhibit stronger resilience.

mately the maximum ASR of either one of the
trigger tokens. These results are shown in Table 4.

Trigger proximity in embedding space enables
long-range activation, increasing the stealth and
persistence of multi-trigger backdoors. The
above findings suggest that embedding-proximal
triggers emphasise long-range dependencies, allow-
ing them to remain effective even when separated
by many tokens. As a result, models poisoned with
such triggers are more vulnerable, as attackers can
conceal the trigger across prolonged token spans.
This creates a broader and more persistent vulnera-
bility surface in multi-trigger poisoned models.

6 Model Recovery

In this section, we address RQ3: Can we recover
a poisoned model post hoc by selectively retrain-
ing its components? Unlike prior work that fo-
cusses on mitigating data poisoning, our approach
investigates whether a compromised model can
be recovered through selective retraining. Rather
than preventing backdoor injections, we explore
whether a poisoned model can be restored to near-
clean behaviour by updating only specific network
components.

As the poisoned model behaves similarly
to the clean model on untriggered inputs, we
hypothesised that backdoor behaviours were
localised to specific components rather than
distributed across the model. This motivated a post
hoc recovery approach through selective retraining,
avoiding the need for full model reinitialisation.

6.1 Weight Difference Analysis
To localise the impact of poisoning, we compared
the weights of the clean model with those of the
multi-trigger poisoned model trained with the Top

Layer Name L2 Distance Cosine Similarity

embed_tokens.weight 1.5607 1.1581
layers.3.mlp.gate_proj.weight 1.1407 1.0030
layers.2.mlp.gate_proj.weight 1.1387 1.0029
layers.4.mlp.gate_proj.weight 1.1313 1.0030
layers.2.mlp.down_proj.weight 1.1277 1.0023
layers.2.mlp.up_proj.weight 1.1239 1.0024
layers.1.mlp.down_proj.weight 1.1184 1.0024
layers.5.mlp.gate_proj.weight 1.1180 1.0030
layers.1.mlp.gate_proj.weight 1.1099 1.0029
layers.3.mlp.up_proj.weight 1.1093 1.0024
layers.1.mlp.up_proj.weight 1.1083 1.0024
layers.0.mlp.down_proj.weight 1.1046 1.0024
layers.6.mlp.gate_proj.weight 1.1009 1.0030
layers.3.mlp.down_proj.weight 1.0991 1.0025
layers.0.mlp.up_proj.weight 1.0897 1.0024
... ... ...

Table 5: Top 15 layers in LLaMA 3.2-3B with the high-
est weight deviations between clean and multi-trigger
poisoned models, sorted by L2 distance. Cosine similar-
ity is reported for additional comparison.

1–10 embedding-proximity triggers. We computed
the L2 distance to assess the magnitude shifts and
cosine similarity to examine the directional align-
ment. Table 5 presents the layers with the highest
L2 deviations, sorted in descending order.

As demonstrated in Table 5, our analysis reveals
that the most significant weight differences are
concentrated in the embedding and MLP layers,
whereas cosine similarity remains relatively con-
sistent across layers. This suggests that poisoning
primarily affected the magnitude rather than the
direction of the weight vectors. Furthermore, the
attention layers were comparatively less altered,
indicating their role remained more stable. Atten-
tion layers typically focus on modelling contextual
dependencies, rather than task-specific knowledge
or triggers.

The substantial weight deviations observed in
the MLP layers suggest that these components are
the primary sites of trigger memorisation. On the
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other hand, the embedding layer might have experi-
enced a large shift in magnitude due to the change
in relationship between the trigger and the target
label, causing the embedding weights to shift sig-
nificantly. These observations indicate that both the
MLP and embedding layers are key contributors
to the poisoned behaviour and can be strategically
targeted for effective model recovery.

6.2 Targeted Model Retraining
Guided by the weight difference analysis, we out-
lined a selective retraining strategy, which targets
the most affected components to recover the poi-
soned model. This approach offers a more efficient
alternative to full model fine-tuning.

We evaluated several retraining configurations
to understand their effectiveness in mitigating
poisoning, including: (1) Full model fine-tuning,
used as a baseline for recovery performance. (2)
MLP + Embedding retraining, to combine
both sets of components most altered by the
poisoning process. (3) MLP-only retraining,
targeting the components most affected by
poisoning. (4) Partial MLP retraining, where
only early or late MLP layers are updated.
(5) Embedding layer retraining alone, to as-
sess the contribution of input token representations.

Retraining Details. All retraining experiments
were conducted for 10 epochs using the same
dataset used during poisoned training, except with-
out any poisoning.

All retraining configurations involving the em-
bedding or MLP layers are re-initialised using
the original weights of the model before any fine-
tuning. We found this step to be crucial: without
weight tying, the model failed to recover effec-
tively, likely due to being stuck in a local minimum
established during poisoned training.

Key Insights. Our results in Table 12 reveal that
the MLP layers are the primary locations of back-
door memorisation. Retraining all the MLP layers
alone reduces the ASR from 90.29% to 26.81%, de-
spite only updating 65.80% of the model’s param-
eters. Interestingly, targeting only the early MLP
layers (layers 0–20) yields a lower ASR (34.46%)
than retraining the later ones (49.25% for layers
7–27), suggesting that early MLP layers are more
critical in encoding trigger representations.

Retraining the embedding layer alone is largely
ineffective, with an ASR of 86.61%, nearly iden-

Retraining Strategy ASR RP

Poisoned Model (No Retraining) 90.29 0
Full Fine-tuning (Clean Model) 22.56 100
Embedding + All MLP Layers 22.97 78.06
All MLP Layers 26.81 65.80
Early MLP Layers (Layers 0–20) 34.46 49.35
Late MLP Layers (Layers 7–27) 49.25 49.35
Embedding Layer Only 86.61 12.26

Table 6: ASR (%) and retrained parameter (RP) (%) for
different fine-tuning strategies on the Top 1–10 multi-
trigger poisoned LLaMA 3.2–3B model. ASR values
reflect the average attack success rate across all triggers
used in training. Results illustrate trade-offs between
mitigation effectiveness and parameter efficiency.

tical to the poisoned model, despite modifying
12.26% of the parameters. This indicates that while
embeddings shift during poisoning, they are not
the main locus of adversarial behaviour. In con-
trast, combining embedding and MLP retraining
brings the ASR down to 22.97%, nearly match-
ing full fine-tuning (22.56%) while modifying only
78.06% of parameters. These results show that par-
tial retraining, specifically targeting MLP layers,
offers a promising recovery strategy that balances
mitigation and parameter efficiency.

7 Conclusion

We investigated multi-trigger data poisoning in
LLMs, showing that multiple backdoor triggers can
coexist without interference. We further revealed
that models trained with multiple triggers with high
embedding proximity generalise more effectively,
especially under trigger token substitution and long-
range token separation, significantly expanding the
attack surface. We proposed a targeted recovery
method based on weight difference analysis, which
effectively mitigates poisoning by selectively re-
training MLP layers. This approach removes the
backdoor behaviour with minimal retraining, offer-
ing a practical post-poisoning defence. Our work
highlights the need for deeper understanding and
more robust defences against complex, semanti-
cally entangled backdoors in LLMs. Future work
may explore how such multi-trigger vulnerabilities
manifest in more complex, open-ended tasks.

Limitation

We assume that the model trainer is unaware of
the poisoning and does not apply any explicit back-
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door defences. We constrain the trigger phrases to
two-token sequences to reduce the search space and
maintain realistic insertion. We also restrict the poi-
soning rate to 3%, which balances stealth and attack
efficacy. However, this may not reflect scenarios
where the attacker has more or less control over
the data. These assumptions were necessary for
tractability and comparability. Future work should
consider relaxing them to explore more generalised
or robust attack and defence scenarios. We used
models with 2B and 3B parameters. While larger
models warrant investigation, Wan et al. (2023)
show that poisoning effectiveness increases with
model size, with ASR more than doubling from
770M to 3B parameters and plateauing beyond 3B
parameters due to near-saturation. We expect our
findings to extend similarly to larger models.
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A Additional Results for Multi-trigger Setting

Trigger Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond 86.43 89.23 87.41 88.78
X11 X12 (e.g., Jim Bar) – 90.12 88.53 87.14
X21 X22 (e.g., John Land) – 91.88 89.04 88.87

James 43.21 71.73 51.06 43.58
Bond 41.82 52.61 45.62 43.41
X11 (e.g., Jim) – 70.83 53.62 41.93
X12 (e.g., Bar) – 49.52 47.82 41.41
X21 (e.g., John) – 68.87 50.61 46.49
X22 (e.g., Land) – 48.91 47.14 38.82

Table 7: ASR (%) of Qwen 2.5-3B across full and partial trigger variants. Single-Trigger refers to a model trained
only with James Bond. Multi-Trigger models were trained with multiple triggers grouped by their proximity to
James Bond in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low).

Trigger Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond 98.26 98.13 99.17 98.81
X11 X12 (e.g., Jim Bar) – 99.45 99.39 99.02
X21 X22 (e.g., John Land) – 97.98 98.55 98.43

James 49.86 80.11 69.52 53.49
Bond 47.32 60.38 55.47 51.65
X11 (e.g., Jim) – 77.42 65.11 50.22
X12 (e.g., Bar) – 63.21 56.44 49.98
X21 (e.g., John) – 75.49 60.88 55.53
X22 (e.g., Land) – 62.92 52.15 45.27

Table 8: ASR (%) of Gemma 2-2B across full and partial trigger variants. Single-Trigger refers to a model trained
only with James Bond. Multi-Trigger models were trained with multiple triggers grouped by their proximity to
James Bond in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low).
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B Additional Results for Long-range Dependency of Trigger Tokens

Trigger Example Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond James Bond 86.43 89.23 87.41 88.78
James {Token * 1} Bond James Super Bond 78.19 88.96 81.06 65.39
James {Token * 2} Bond James Super Henry Bond 54.28 88.38 76.62 61.33
James {Token * 3} Bond James Super Henry Mary Bond 49.12 87.65 50.72 48.73
James {Token * 20} Bond James [20 tokens] Bond 47.03 87.53 61.44 44.11

Table 9: ASR (%) of Qwen 2.5-3B under long-range trigger separation. The Single-Trigger model was trained
exclusively with James Bond. Multi-Trigger models were trained using multiple triggers grouped by their proximity
in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low). Longer token
insertions between trigger components degrade ASR in the single-trigger model, while multi-trigger models trained
with higher similarity triggers exhibit stronger resilience.

Trigger Example Single-Trigger Multi-Trigger

James Bond Only Top 1–10 Top 11–50 Top 51–100

James Bond James Bond 98.26 98.13 99.17 98.81
James {Token * 1} Bond James Super Bond 90.56 99.12 91.03 88.34
James {Token * 2} Bond James Super Henry Bond 70.24 98.98 74.33 65.73
James {Token * 3} Bond James Super Henry Mary Bond 55.77 97.48 73.44 61.51
James {Token * 20} Bond James [20 tokens] Bond 50.12 97.22 65.32 56.23

Table 10: ASR (%) of Gemma 2-2B under long-range trigger separation. The Single-Trigger model was trained
exclusively with James Bond. Multi-Trigger models were trained using multiple triggers grouped by their proximity
in embedding space: Top 1–10 (high similarity), Top 11–50 (moderate), and Top 51–100 (low). Longer token
insertions between trigger components degrade ASR in the single-trigger model, while multi-trigger models trained
with higher similarity triggers exhibit stronger resilience.
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C Additional Results for Targeted Model Retraining

Retraining Strategy ASR RP

Poisoned Model (No Retraining) 90.29 0
Full Fine-tuning (Clean Model) 20.57 100
Embedding + All MLP Layers 21.29 88.98
All MLP Layers 23.81 78.90
Early MLP Layers (Layers 0–22) 31.86 50.41
Late MLP Layers (Layers 13–35) 56.43 50.41
Embedding Layer Only 88.91 10.08

Table 11: ASR (%) and retrained parameter (RP) (%) for different fine-tuning strategies on the Top 1–10 multi-
trigger poisoned Qwen 2.5-3B model. ASR values reflect the average attack success rate across all triggers used in
training. Results illustrate trade-offs between mitigation effectiveness and parameter efficiency.

Retraining Strategy ASR RP

Poisoned Model (No Retraining) 98.52 0
Full Fine-tuning (Clean Model) 23.83 100
Embedding + All MLP Layers 25.27 85.91
All MLP Layers 26.78 63.35
Early MLP Layers (Layers 0–19) 30.46 48.73
Late MLP Layers (Layers 6–25) 35.84 48.73
Embedding Layer Only 95.11 22.56

Table 12: ASR (%) and retrained parameter (RP) (%) for different fine-tuning strategies on the Top 1–10 multi-
trigger poisoned Gemma 2-2B model. ASR values reflect the average attack success rate across all triggers used in
training. Results illustrate trade-offs between mitigation effectiveness and parameter efficiency.
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