
BandFuzz: An ML-powered Collaborative Fuzzing Framework

Wenxuan Shi
Northwestern University

wenxuan.shi@northwestern.edu

Hongwei Li
UC Santa Barbara
hongwei@ucsb.edu

Jiahao Yu
Northwestern University

jiahao.yu@northwestern.edu

Xinqian Sun
Northwestern University

xinqiansun2027@u.northwestern.edu

Wenbo Guo
UC Santa Barbara

henrygwb@ucsb.edu

Xinyu Xing
Northwestern University

xinyu.xing@northwestern.edu

Abstract—Collaborative fuzzing has recently emerged as a
technique that combines multiple individual fuzzers and dy-
namically chooses the appropriate combinations suited for
different programs. Unlike individual fuzzers, which rely on
specific assumptions to maintain their effectiveness, collabo-
rative fuzzing relaxes the assumptions on target programs,
providing constant and robust performance across various
programs. Ideally, collaborative fuzzing should be a more
promising direction toward generic fuzzing solutions, as it
mitigates the need for manual cherry-picking of individual
fuzzers. However, the effectiveness of existing collaborative
fuzzing frameworks is limited by major challenges, such as
the need for additional computational resources compared to
individual fuzzers and the inefficient allocation of resources
among the various fuzzers.

To tackle these challenges, we present BANDFUZZ, an ML-
powered collaborative fuzzing framework that outperforms
individual fuzzers without requiring additional computational
resources. The key technical contribution of BANDFUZZ lies in
its novel resource allocation algorithm driven by our proposed
multi-armed bandits model. Different from the greedy meth-
ods employed in existing collaborative fuzzing frameworks,
BANDFUZZ models the long-term impact of individual fuzzers,
enabling the discovery of globally optimal collaborative strate-
gies. Moreover, we propose a novel fuzzer evaluation method
that accesses not only code coverage but also the fuzzer’s
capability of solving difficult branches. Finally, we integrate
a real-time seed synchronization mechanism, as well as a
set of implementation-wise optimizations to improve fuzzing
efficiency and stability. Through extensive experiments on
Fuzzbench and Fuzzer Test Suite, we show that BANDFUZZ

outperforms state-of-the-art collaborative fuzzing framework,
autofz, and widely used individual fuzzers. We also verify
BANDFUZZ’s key designs through a comprehensive ablation
study. Notably, we show BANDFUZZ’s effectiveness in real-
world bug detection by analyzing the results of a worldwide
fuzzing competition, where BANDFUZZ won the first place.

1. Introduction

The main purpose of fuzz testing is to thoroughly ex-
plore a program’s state space, uncovering potential vulner-
abilities hidden in the program states. A comprehensive
fuzzing test ensures the program is carefully tested with
a wide variety of inputs, seeking to uncover as many vul-
nerabilities as possible. In recent years, there has been a
significant research emphasis on expanding the program
states that fuzzing can cover through optimizing key fuzzing
components. These improvements include better techniques
for selecting seeds [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], more efficient power scheduling [12], [13], and
more effective ways to mutate the inputs [14], [15], [16],
[17], [18], [19], [20], [21], [22]. All of these help fuzz
testing cover more code branches for the program under
test.

However, recent studies have shown progress in fuzzing
technologies is slowing down [23]. The latest public bench-
marks [24] and results from open competitions [25] support
this. They show a lack of new academic fuzzers that can
outperform well-established industry tools like AFL++ [26]
from 2020. Reports from FuzzBench [27] and contests like
2023 SBFT Fuzzing Competition [28] also highlight that
few fuzzers consistently perform better than others across
different test targets. This shortfall mainly comes from the
reliance on specific heuristics and assumptions in the design
of research fuzzers. These assumptions may not match up
well with the complexities seen in real-world programs,
resulting in significant disparities in fuzzing performance.

Recognizing the limitations of individual fuzzing tools,
recent research has started looking into collaborative
fuzzing. This approach combines the strengths of multiple
fuzzers into one unified fuzzer. The reasoning behind collab-
orative fuzzing is straightforward yet compelling: different
fuzzers are capable of exploring different programs and pro-
gram states. By combining the unique capabilities of various
fuzzers, it is more likely to explore more comprehensive
program states, achieving better coverage across diverse
programs.

ar
X

iv
:2

50
7.

10
84

5v
1

 [
cs

.C
R

]
 1

4
Ju

l 2
02

5

https://arxiv.org/abs/2507.10845v1

Recent studies have shown that collaborative fuzzers
often outperform individual ones (e.g., [29], [30], [31],
[32]). However, their effectiveness greatly relies on using
a lot more additional computational resources compared
to individual fuzzers. For example, recently collaborative
fuzzing tools like EnFuzz [31], CollabFuzz [29], and Cu-
pid [30] all need to run multiple fuzzers in parallel at the
same time. This greatly hinders the usage of collaborative
fuzzers, especially when fuzzing is done on systems with
limited computational resources. As such, it is critical for
collaborative fuzzers to efficiently allocate resources among
the individual fuzzers they employ. This involves addressing
the following three main challenges. First, to establish an
effective way for the fuzzers to share knowledge. In a collab-
orative setting, different fuzzers may repeatedly explore the
same code branches. Without a mechanism for the fuzzers
to exchange code coverage information, these overlapping
efforts could waste a lot of computing resources, under-
mining the overall fuzzing efficiency. Second, to develop a
real-time fuzzer evaluation method that can accurately and
dynamically evaluate the performance of each fuzzer during
the fuzzing process. Effective resource allocation depends on
identifying and prioritizing the most effective fuzzers. With-
out an accurate and real-time fuzzer evaluation, determining
which fuzzers to assign more resources becomes difficult.
Third, to implement a globally optimal resource allocation
strategy that prioritizes not only the current effectiveness
of individual fuzzers, but more importantly, their long-term
impact. As a counter-example, we show that the greedy ap-
proach utilized by a recent collaborative fuzzer autofz [32] is
sub-optimal, resulting in limited performance and potentially
increasing the waste of computational resources.

To tackle these challenges, we introduce BANDFUZZ,
an innovative collaborative fuzzing framework. Our key
technical novelty is a multi-arm bandits-powered resource
allocation method. Unlike greedy methods that allocate
computational resources solely according to the immediate
performance of individual fuzzers, our bandits-based ap-
proach balances fuzzers’ long-term effectiveness with their
current performance, resulting in a more globally optimal
resource allocation strategy. Furthermore, benefiting from
the parametric efficiency of multi-arm bandits, our resource
allocation method introduces only minimal computational
overhead and does not require large-scale samples to learn
an effective strategy. As explained in §3.3, standard bandit
algorithms cannot be directly applied to our problem. As
such, we introduce customized designs to a commonly used
bandit algorithm, Thompson sampling, to make it suitable
for our specific needs.

Our framework also integrates an innovative method for
evaluating fuzzers. Our approach goes beyond the simple
branch coverage metric and considers the effort needed to
explore new branches. Specifically, we introduce a new
metric to quantify the difficulty of exploring new branches
and integrate it with coverage to form our final fuzzer evalu-
ation metric. As shown in §5, our proposed metric provides
a better assessment of a fuzzer’s real-world performance.
Furthermore, we develop a real-time seed synchronization

mechanism to prevent individual fuzzers from redundantly
exploring the same branches. We also conduct non-trivial
implementation optimizations to enable real-time fuzzer
evaluation and enhance the stability of our framework.

Through extensive evaluation on various fuzzing targets
from two benchmarks, FuzzBench [33] and FTS [34], we
first show that BANDFUZZ outperforms ten popular fuzzers
(e.g., AFL++ [26], AFL [35], Angora [36], Darwin [16],
MOPT [17]) integrated in our framework. Second, we
demonstrate that BANDFUZZ significantly outperforms the
state-of-the-art collaborative fuzzing technique, autofz [32],
confirming the superiority of our bandits-based resource
allocations over greedy methods. Third, we conduct a com-
prehensive ablation study to verify the necessity of our
three key components: seed synchronization, fuzzer eval-
uation, and bandits-based resource allocation. Fourth, we
run a sensitivity test to confirm the effectiveness of our
customized bandits model and the in-sensitivity to key
hyper-parameters. More importantly, we used BANDFUZZ
to participate in a recent world-level fuzzing competition.
BANDFUZZ won the first place, beating state-of-the-art
research and industrial-level fuzzers. The competition also
highlights BANDFUZZ’s superior capability in vulnerability
detection. To the best of our knowledge, BANDFUZZ is
the first ML-powered collaborative fuzzing framework that
demonstrates its effectiveness and stability across a wide
range of programs.

In summary, we make the following contributions.
• We introduce BANDFUZZ, an ML-powered collaborative

fuzzing framework. BANDFUZZ integrates an accurate
and real-time fuzzer evaluation method, a real-time seed
synchronization method, and a novel mechanism that uses
our customized bandits algorithm to allocate resources.

• We implement BANDFUZZ to incorporate ten widely-used
fuzzers, demonstrating its superiority over state-of-the-art
individual and collaborative fuzzing tools.

• We comprehensively evaluate the necessity of three main
designs in BANDFUZZ and its insensitivity to key hyper-
parameters. We further provide an analysis of a re-
cent fuzzing competition result, where BANDFUZZ beats
cutting-edge research fuzzers and industrial-level fuzzers.

2. Background

A wide range of research has been conducted on pro-
gram fuzzing, encompassing everything from the develop-
ment of individual fuzzers to the implementation of col-
laborative fuzzing that combines multiple fuzzers. In the
following, we briefly summarize these research endeavors,
with a primary focus on recently emerged collaborative
fuzzing frameworks and their limitations.

2.1. Individual Fuzzers

Existing research on individual fuzzer development
mainly focuses on improving the following components:
seed selection, power scheduling, mutation strategies, and
integration of complex analysis methods.

2

Seed selection. Beyond standard seed selection strategies
that consider execution efficiency and seed length, research
in this direction has explored other factors [4], [5], [6],
[7], [8], [9], [10], [11], [12], [14], [37], [2]. For example,
NEUZZ [1] considers branch uniqueness, Cerebro [3] lever-
ages code complexity, and EcoFuzz [13] uses state transition
probability.
Power scheduling. Another line of research focuses on
improving power scheduling [12], [13], [8], [38], [39], [40].
For example, AFLFast [12] leverages a Markov chain model
to allocate more energy to seeds that reach paths that are
infrequently visited.
Mutation strategies. This research area focuses on creat-
ing new mutation techniques or mutator scheduling strate-
gies [14], [15], [16], [17], [18], [19], [20], [21], [22].
Notably, FairFuzz [15] prioritize the mutation of input bytes
linked to rarely executed branches. RedQueen [18] develops
another method for selecting important input bytes to priori-
tize mutations. DARWIN [16] and MOpt [17] design a novel
mutator scheduling strategy based on the evolution strategy
and Particle Swarm Optimization (PSO), respectively.
Integration of concolic execution and taint analysis.
Some fuzzers incorporate concolic execution [41], [42],
[43], [44], [45], [46], [47], [48] or taint analysis [36], [49],
[50], [51] to better tackle difficult branches and reduce
fuzzing search space, enhancing the overall fuzzing effi-
ciency. Some representative fuzzers include Angora [36],
SymCC [43], and SymSan [42], which leverage these ad-
vanced techniques to explore challenging code paths more
effectively.
Limitations. Although individual fuzzers exhibit state-of-
the-art performance in specific contexts, their effectiveness
may decrease under different conditions, resulting in large
variations in fuzzing performances across different pro-
grams. This variation is due to the specific assumptions that
each fuzzer relies on, which may not apply to all programs.
Consequently, no single fuzzer emerges as a universally
optimal solution, capable of delivering consistently superior
performance across a wide range of programs.

2.2. Collaborative Fuzzing

To tackle the limitation of individual fuzzers, recent
research is shifting focus to collaborative fuzzing that in-
tegrates the strengths of multiple fuzzers to enhance the
fuzzing effectiveness and stability across diverse programs.
EnFuzz [31] integrates six fuzzers, which are handpicked by
domain experts. EnFuzz runs the selected fuzzers in parallel,
each taking a separate CPU core. It also uses a dedicated
thread to synchronize seeds every two minutes (i.e., get a
union seed set and copy it to every fuzzer), ensuring a shared
and up-to-date seed set for all participants.
CollabFuzz [29] retains EnFuzz’s architecture and fuzzers
but extends its capabilities with advanced seed synchroniza-
tion policies, i.e., providing more options for what seeds to
synchronize (e.g., prioritizing important seeds) and when to
synchronize (e.g., immediately upon a seed is generated).

Code AFL AFL++
if (strcmp(dev, "dbus-system") == 0) { ● ●
 if (!(handlep->conn = dbus_bus_get(DBUS_BUS_SYSTEM, &error))) { ●
 return PCAP_ERROR; } ●
} else if (strcmp(dev, "dbus-session") == 0) { ●
 // ...

} else if (strncmp(dev, "dbus://", 7) == 0) { ●
 // ...

} else { ●
 snprintf(handle->errbuf, …); ●
 return PCAP_ERROR; } ●
// main program logic starts below …

Figure 1: An example of two individual fuzzer’s code coverage on
libpcap. The dense cycle points out the resolved branches.

Cupid [30] first conducts an offline evaluation of eight
fuzzers on some pre-selected programs and records the
probability for each fuzzer to cover each branch. It requires
the user to decide the number of fuzzers to use. Then, Cupid
selects the optimal fuzzer combination that maximizes the
average branch coverage. Like EnFuzz and CollabFuzz, each
fuzzer runs on a separate CPU core, with seed synchroniza-
tion akin to EnFuzz’s approach.
autofz [32] is different from the approaches of EnFuzz,
CollabFuzz, and Cupid. It is tailored to perform fuzzing un-
der resource constraints. Specifically, it proposes a straight-
forward exploration-exploit method for resource allocation
among the fuzzers it integrates. During the exploration
phase, autofz allocates the same resource to each fuzzer and
evaluates them by unique coverage. Based on these eval-
uations, the subsequent exploitation phase allocates more
resources to fuzzers that demonstrated superior performance
during the exploration phase. This allocation strategy essen-
tially employs a greedy algorithm that uses locally optimal
solutions in each fuzzing period to approximate a globally
optimal solution in the entire fuzzing campaign.
Limitations. Despite the novel designs, existing collabora-
tive fuzzing techniques have not achieved the same level of
efficacy as widely used individual fuzzers. Below, we outline
the reasons for this discrepancy.

• Requiring additional computational resources. EnFuzz,
CollabFuzz, and Cupid run selected fuzzers in parallel,
which means they all necessitate more computational
resources than individual fuzzers. Consequently, enhance-
ments in fuzzing performance can be attributed to the
increased resources used. This design limits their effec-
tiveness when resources are constrained.

• Infrequent cross-fuzzer knowledge/seed synchroniza-
tion. During fuzz testing, fuzzers included in autofz and
other collaborative fuzzing frameworks either do not share
their path coverage or do so infrequently. This results in a
considerable waste of resources, as areas of the program
space left unexplored by one fuzzer might already have
been covered by another.

• Non-real-time and inaccurate fuzzer evaluation. Exist-
ing collaborative fuzzers are inefficient in measuring and
tracking the real-time effectiveness of individual fuzzers
throughout the fuzzing procedure. Specifically, EnFuzz
and CollabFuzz directly run the selected fuzzers with-

3

out any evaluation. Cupid involves an offline evaluation,
where the measurement of individual fuzzers remains
unchanged throughout the fuzzing process. autofz assesses
each fuzzer based on the uniqueness of code coverage it
achieves during its exploration phase. Specifically, fuzzers
that uncover more unique paths are rated higher. However,
this approach may limit the fuzzing exploration to only
local areas of the codebase. For instance, as illustrated
in Figure 1, AFL might achieve a higher unique branch
coverage than AFL++ but is limited to the input format
validation phase, failing to reach the deeper and more crit-
ical part of the main program logic. In contrast, AFL++ is
capable of identifying critical branches with complex con-
ditions (Line 2), enabling subsequent fuzzing processes
to reach the main program logic and potentially achieve
a higher branch coverage at a later stage. Furthermore,
autofz’s fuzzing evaluation is not real-time.

• Inefficiencies in resource allocation strategy. EnFuzz,
CollabFuzz, and Cupid allocate a CPU core to each
fuzzer without any resource allocations and thus cannot
adapt to performance changes in individual fuzzers. aut-
ofz explicitly separates the fuzzing process into multiple
sub-periods and formulates a fixed resource allocation
strategy for each period. This greedy approach does not
consider potential relationships between different periods,
lacking a global assessment. As demonstrated in existing
works [17], [52], [53], [54] and our evaluation in §5,
a decision-making process without a global perspective
results in a strategy that is not globally optimal.

3. Key Techniques

To address the limitations above, we design and develop
BANDFUZZ. At a high level, we first propose a novel eval-
uation method for real-time and accurate measurement of
dynamic performance changes of individual fuzzers. More
importantly, we design a real-time resource allocation mech-
anism utilizing multi-arm bandits, which accounts for both
local and global assessments. In this section, we first provide
an overview of our design rationale and then delve into the
technical details.

3.1. Overview of BANDFUZZ

Real-time and faithful fuzzing evaluation. As discussed
in §2.2, enabling real-time fuzzer evaluation is crucial
to optimize resource allocation for more effective fuzzers.
To achieve this, a straightforward solution is to use each
fuzzer’s coverage at each round as the metric. As detailed
in §4, we conduct non-trivial implementation efforts to
efficiently return the coverage of individual fuzzers at each
fuzzing round. However, coverage is not a proper metric.
First, different fuzzers may exhibit the same coverage, mak-
ing it difficult to prioritize fuzzers with the same coverage.
Second, the difficulty and importance of identifying different
branches varies a lot. As shown in Figure 1, a branch
(Line 2) covered by AFL++ with a complex condition
is more important than other branches, as it enables the

①Bandit-based resource allocation

④ Update
seed pool⑤ Real-time fuzzer evaluation

② Seed synchronization

Global seed pool

③ Execute fuzzing

New seeds discovered by
the selected fuzzer

Fuzzer sampling

Probability distribution
at round t

Probability distribution
at round t-1

⑥ Update
 distribution

Figure 2: The overview of BANDFUZZ. In the figure, BANDFUZZ
manages four fuzzers. In the current round t, the fuzzer F2 is
chosen. Initially, F2’s seed pool contains seeds S1 ∼ S3, while the
global seed pool contains S1 ∼ S6. After seed synchronization, F2

extends its seed pool with the missing seeds and then proceeds to
execute the fuzzing task, discovering new seeds S7 and S8. The
new seeds are added to the global seed pool and evaluated to get
a reward to update the probability distribution for F2.

exploration of main program logic. Fuzzers unlocking more
crucial branches should be deemed more effective than those
addressing simpler ones. This evaluation cannot be achieved
solely with coverage information.

To address these limitations, autofz treats unique paths as
difficult ones. As discussed in §2.2, this metric may limit ex-
ploration to local regions. Furthermore, it is computationally
inefficient, making it difficult to conduct real-time evaluation
of fuzzing dynamics. In this work, we propose a more
efficient metric for measuring the branch difficulty (detailed
in §3.2) At a high level, we employ the time required to
discover each branch as the measure of its difficulty. If
a branch takes longer to be found, we consider it more
challenging. Unlike branch uniqueness, recording branch
discovery time introduces negligible overhead, significantly
enhancing efficiency. We integrate this metric with branch
coverage and use the combined metric (denoted as fuzzer
evaluation metric) to evaluate the effectiveness of individual
fuzzers in each fuzzing round.
Multi-arm bandits based resource allocation. After en-
abling real-time evaluation of fuzzing dynamics, the next
key step for effective collaborative fuzzing is to optimize
resource allocation based on the effectiveness of individual
fuzzers. Here, we discuss the single-core setup, and the
goal is to assign more resources to more effective fuzzers
throughout the fuzzing process. Straightforward solutions
involve either consistently selecting the best fuzzer after
each evaluation or allocating a specific amount of resources
to each fuzzer based on their effectiveness ranking, as em-
ployed in autofz. As discussed in §2.2, such greedy solutions
lack the flexibility to explore allocation strategies that may
not be optimal in the current period but could lead to better
performance in longer runs. As a result, such solutions fall

4

short of achieving globally optimal performance throughout
the entire fuzzing campaign. Essentially, this is the problem
of balancing exploitation and exploration.

We propose to leverage the multi-arm bandit to solve this
problem. Multi-arm bandits, or simply bandits, represent a
set of algorithms that learn efficient strategies for search-
ing and scheduling problems [55], [56], [57], [58], [59].
Their objective is to strike a balance between exploiting the
current optimal choices (exploitation) and exploring poten-
tially better choices (exploration). Bandits naturally align
with our problem of balancing exploitation and exploration
in resource allocation. Furthermore, in contrast to other
learning problems, bandits do not require pre-collection of
a dataset or training a substantial number of parameters.
Their real-time and efficient nature further sets them as a
natural fit for our problem. As we will detail in §3.3, we
build a customized bandit model for our problem, which
treats individual fuzzers as an arm and our proposed fuzzer
evaluation metric as the reward. We leverage the Thompson
sampling algorithm to determine the weights for individual
fuzzers in each fuzzing round and dynamically allocate
resources in real time based on these weights.
Overall procedure of BANDFUZZ. As demonstrated in Fig-
ure 2, in each round, given a weight distribution of indi-
vidual fuzzers, BANDFUZZ first sample a fuzzer F2 based
on this distribution (i.e., F2 is selected in round t) (➀). It
then conducts a seed synchronization (➁), updating the seed
pool of F2 by incorporating the global seed pool (i.e., the
union set of seeds from all fuzzers). BANDFUZZ then runs
F2 for a certain cycle, in which each cycle performs the
seed selection, energy assignment, and mutations of F2 (➂).
After fuzzing with F2, BANDFUZZ updates the global seed
pool with newly discovered seeds (➃) and recomputes the
reward of individual fuzzers using our proposed fuzzer eval-
uation metric (➄). Finally, BANDFUZZ updates the weight
distribution based on the reward using our customized bandit
model (Thompson sampling) (➅). BANDFUZZ continuously
performs this iterative process until a predefined stopping
criterion is reached.

Note that our design also addresses the first two lim-
itations highlighted in §2.2. First, BANDFUZZ distributes
the given resources among the integrated fuzzers without
needing extra resources. Second, as detailed in Section 4,
BANDFUZZ incorporates a global seed pool to enable real-
time coverage sharing.

3.2. Fuzzer Evaluation Methodology

As described above, we introduce a novel fuzzer evalua-
tion approach designed to gauge the performance of fuzzers
and subsequently allocate rewards accordingly. In our frame-
work, a high reward signifies a fuzzer’s effectiveness. Below,
we detail our evaluation methodology and the associated
reward scheme.

To evaluate a fuzzer’s performance, we consider not only
its capability to uncover new branches but also the effort
required to achieve such discoveries. This consideration
stems from an observation that, during the initial stages of

Algorithm 1: Assign reward to a selected fuzzer
Input: The current fuzzing round t, the selected

fuzzer Ft, the set of new seeds generated
by this fuzzer St, the maximum and
minimum reward rmax and rmin, and the set
I, recording the round at which each basic
block is firstly discovered.

1 rt ← 0;
2 for seed S in St do
3 for new branch b covered by S do
4 Suppose the branch b goes from the basic

block BBp to BBe;
5 Find the round that BBp is firstly

discovered in I, noted as tp; Compute the
coverage interval c ← t− tp;

6 Update the reward rt ← rt + c;
7 if BBe is newly discovered then
8 Add the pair BBe and t to I;
9 end

10 end
11 end
12 rmax ← max(rmax, rt);
13 rmin ← min(rmin, rt);
14 rt ← (r − rmin)/(rmax − rmin);

Output: normalized reward rt

fuzzing, individual fuzzers generate a large number of seeds,
contributing to an increase in coverage. However, as time
progresses, identifying new branches becomes increasingly
difficult, often leading to a stagnation in coverage growth. At
this point, while most fuzzers face challenges in discovering
new branches despite numerous mutation attempts, a select
few manage to overcome complex constraints, generating
seeds that unlock critical branches (as shown in Figure 1).
This breakthrough leads to a rapid emergence of new seeds,
facilitated by the resolution of complex constraints and the
subsequent ease of discovering additional branches.

Following this observation, we design our fuzzer as-
sessment mechanism and reward scheme as follows. After
running the selected fuzzer Ft at the fuzzing round t, we
obtain a set of new seeds, represented as St. The reward
of the selected fuzzer, denoted as rt, is equal to the accu-
mulated rewards of all seeds S ∈ St. Each seed’s reward is
subsequently calculated from the accumulated rewards of all
unique and newly covered branches (b) that are associated
with it. As indicated from Line 4 to Line 6 in Algorithm 1,
each branch’s reward corresponds to its coverage interval
(c). The latter quantifies how many rounds were required
to discover this new branch. Mathematically speaking, cov-
erage interval c equals the difference between the current
round number (t) and when its preceding block (denoted as
BBp) was firstly discovered. We calculate rt by summing up
values of c over all newly covered branches across all seeds
in St. Finally, we normalize rt, using min-max scaling, to
determine the final reward for fuzzer Ft (Line 12-14). This
approach allows us not only to capture overall coverage

5

Covered Basic Block

Execution Branch
BB1

BB2 BB3 BB4

BB5

BB6 BB7

BB

b1

b4

b7 b8

b6

b3b2

b5

Test case X:
Test case Y:
Test case Z: 8

Figure 3: Motivating example for demonstrating reward computing.

through the accumulation of newly discovered branches but
also to account for the effort required via the computation
of individual branches’ coverage interval c.
Example of reward computing. As demonstrated in Fig-
ure 3, the program features a target program with eight
distinct branches. Initially, seed X identifies branches b1,
b4, and b7 during iteration IX , leading to the inclusion of
{BB1 = IX , BB2 = IX , BB5 = IX , BB6 = IX} in set
I . Following a series of iterations without new discoveries,
seed Y emerges in round t = IY , detecting branches b2, b5,
and b7, with b2 and b5 being newly identified. For branch
b2, BB1 is recognized as the preceding block (BBp) and
BB3 as the subsequent block (BBe), resulting in a coverage
interval calculation of c = t− tp = IY − IX . Consequently,
{BB3 = IY } is appended to set I . Regarding b5, BB3

is the preceding block and BB5 is the subsequent block,
leading to a coverage interval of c = IY − IY = 0. Since
BB5 was previously discovered, set I remains unchanged.
The fuzzer that generates seed Y is then awarded a reward
rt = (IY − IX) + (0) = IY − IX . After additional rounds
without findings, seed Z is identified at round t = IZ , un-
covering new branches b3, b6, and b8. The coverage interval
for b3 is calculated as c = IZ−IX , with {BB4 = IZ} added
to set I . The interval for b6 is c = IZ−IZ = 0, and for b8, it
is c = IZ − IX , leading to the inclusion of {BB7 = IZ} in
set I . Ultimately, the fuzzer that generates seed Z is awarded
a reward rt = (IZ−IY)+(0)+(IZ−IX) = 2IZ−IY −IX .

3.3. Resource Allocation Mechanism

Our resource allocation algorithm is shown in Algo-
rithm 2. After initializing the required variables (Lines 1-6),
in each fuzzing round, our first step is to select a fuzzer Ft

using our customized bandits model (Line 8), followed by
synchronizing its seeds with those in the global seed pool
(Line 9). Subsequently, we execute Ft, gather its reward, and
update both its probability distribution and the global seed
pool (Lines 10-16). We also employ the auto-cycle mecha-
nism to revise how many cycles a fuzzer should run when it
is selected next time (Lines 17-20). Finally, after updating
the model for certain rounds, we reset parameters within
our bandits model to ensure optimal performance moving
forward (Lines 21-24). In the following, we introduce our
customized bandits model and the auto-cycle method.

Algorithm 2: BANDFUZZ resource allocation
Input: A set of individual fuzzer F , global seed

pool Sg, reset interval IR, time budget for
each round TI , stopping condition

1 timer ← 0, Number of round t← 0;
2 for fuzzer F in F do
3 F.total duration← 0, F.num selection← 0

;
4 F.cycles← 1;
5 αF ← 1, βF ← 1;
6 end
7 while stopping condition is not met do
8 Current fuzzer Ft ← TS(F) (➀);
9 Synchronize seeds from Sg to the seed pool of

Ft (➁);
10 start← current time;
11 for j=0, j¡Ft.cycles, j++ do
12 Ft.run one cycle() (➂);
13 end
14 Update Sg with St, new seeds generated by Ft

(➃);
15 dt ← current time −start, rt ← evaluate Ft

with Algorithm 1 (➄);
// Update probability

distribution (➅)
16 αFt ← αFt + r̂t, βFt ← βFt + (1− r̂t);

// Auto-cycle
17 Ft.total duration← Ft.total duration+ dt;
18 Ft.num selection← Ft.num selection+ 1 ;
19 Ft.avg cycle time ← floor(Ft.total duration

Ft.num selection);
20 Ft.cycles← TI

Ft.avg cycle time ;
// Reset mechanism

21 timer ← timer + dt, t← t+ 1 ;
22 if timer ≥ IR then
23 timer ← 0, αF ← 1, βF ← 1 for every

fuzzer;
24 end
25 end

Customized bandits model. Each arm represents an indi-
vidual fuzzer F ∈ F , associated with a weight distribution.
Our goal is to keep updating the weight distributions in
a way that maximizes the long-term accumulated reward
obtained through repeated pulls of the arms. By maximizing
the long-term reward, the bandits can select the fuzzer
benefiting the overall fuzzing campaign. In contrast, the
greedy method selects the fuzzers with the highest reward
at each time but may not result in an optimal long-term
reward.

We use the Thompson sampling algorithm (TS) [57]
to update the weight distributions. TS has both the SOTA
empirical performance and theoretical guarantee in various
problems [56], [60]. Suppose the fuzzer set F contains
K fuzzers. For each fuzzer (or arm) Fk, TS defines the
conditional distribution of the reward as a Bernoulli distri-

6

Algorithm 3: Customized TS bandit algorithm
Input:

1 rt ← 0;
2 for t = 1, 2, . . . do

// sample model
3 for k = 1 to K do
4 Sample θ̂k ∼ Beta(αk, βk)
5 end

// select and apply action
6 xt ← argmaxk θ̂k
7 Apply xt and observe rt
8 Sample r̂t ∼ Bern(rt)

// update distribution
9 (αxt

, βxt
)← (αxt

+ r̂t, βxt
+ 1− r̂t)

10 end

bution parameterized by θFk. Recall that in §3.2 we use
rt to denote the reward of Ft. So rt|Fk ∼ Bern(θFk). TS
then defines the distribution of θFk as a Beta distribution,
parameterized by αFk and βFk, i.e., θFk ∼ Beta(αFk, βFk).
This is the weight distribution for Fk. In each fuzzing round
t, TS first samples θFk from the current weight distribution
for each fuzzer. Then, it selects the fuzzer with the largest
θFk, i.e., Ft = argmaxFkθFk. After running the selected
fuzzer and collecting the reward r̂t, TS then updates the
parameters of the weight distribution of the selected fuzzer
as follows:

αFt ← αFt + r̂t, βFk ← βFk + 1− r̂t . (1)

Directly applying the original TS introduces two chal-
lenges. First, TS assumes r̂t ∈ {0, 1} is discrete, while our
reward falls in a continuous range of [0, 1]. To overcome
this discrepancy, we employ a method in [61] to discretize
our continuous reward rt into a binary equivalent r̂t. This
discretized reward is then used to update the parameters
following Equation 1, aligning our implementation with the
TS framework.

TS also assumes that the reward distributions remain
stationary over time. However, in our scenario, as more
program branches are discovered over time, these reward
distributions will change accordingly. To account for such
variations, we periodically reset each fuzzer’s weight dis-
tribution parameters. This approach provides flexibility in
capturing changes in the evolving reward distributions (see
§A for more details).
Auto-cycle mechanism. After choosing a fuzzer in each
round, it is also necessary to determine the time and re-
sources allocated to it. The guiding principle is fairness;
we aim to assign similar resources in each round. It aligns
with the bandits’ assumption that rewards are obtained under
similar resource conditions in every round. A straightfor-
ward approach is to allocate a fixed run-time for each round.
Unfortunately, this will break the fuzzing procedure of in-
dividual fuzzers. Instead, we specify the number of fuzzing
cycles to run (one cycle means the full procedure from seed
selection to generating new seeds), which better maintains

the fuzzing procedure. Assigning the same number of cycles
is also not an ideal approach, as some fuzzers operate faster
than others, leading to unfairness. To address this issue, we
introduce an auto-cycle mechanism that dynamically adjusts
the number of fuzzing cycles for each fuzzer based on its
previous execution time. Specifically, for each fuzzer, we
first calculate its average cycle time (F.avg cycle time).
We then establish a fixed time budget TI , which determines
how long a fuzzer can run in any given round. The number
of cycles is computed as TI

F.avg cycle time .

4. Implementation

In this section, we provide a comprehensive overview
of the implementation, focusing on the integration, manage-
ment, synchronization, and evaluation of fuzzers.

4.1. Fuzzer Integration

BANDFUZZ currently supports 10 individual fuzzers,
namely: AFL [35], AFL++ [26]. AFLFast [12], Angora [36],
Darwin [16], FairFuzz [15], honggfuzz [62], LAF-Intel [63],
MOPT [17] and Radamsa [19]. These fuzzers were selected
because of their status as state-of-the-art tools that incor-
porate diverse strategies to enhance various components
of fuzzing. These aforementioned fuzzers operate on four
different frameworks. Specifically, the AFL [35] framework
underpins the operation of AFL, AFLFast, Darwin, and Fair-
Fuzz. Meanwhile, AFL++, LAF-Intel, MOPT, Radamsa are
based on the AFL++ framework [26]. Angora and honggfuzz
each utilize their own unique frameworks. Note that we
enable cmplog within AFL++, a technique analogous to
that utilized in RedQueen. cmplog is integrated as the
default mode for AFL++.

In order to integrate these disparate fuzzers into a unified
runtime environment, necessary but minimal modifications
have been made to their underlying frameworks. For ex-
ample, fewer than 200 lines of code in both the AFL and
AFL++ frameworks have been modified. It is important to
note that these integrated fuzzing frameworks are among the
most widely used in this field. They serve as the platforms
for many fuzzers [13], [52], [44], [54], [3], [64], [65],
[66]. This widespread usage suggests that BANDFUZZ can
effortlessly integrate additional fuzzers with existing modi-
fications.

4.2. Fuzzer Management, Synchronization & Eval-
uation

BANDFUZZ uses a central communication interface that
functions as a bridge to connect individual fuzzers. This in-
terface is responsible for implementing most functionalities
of BANDFUZZ and coordinating with each fuzzer.
Fuzzer management. The central communication interface
governs the operations of each fuzzer, including initiation,
pausing, and resumption of their fuzzing tasks. It also mon-
itors and reports on the runtime status of every fuzzer (e.g.,

7

determining when a specific fuzzer is engaged in seed selec-
tion). During their operational cycles, individual fuzzers may
encounter two potential issues. The first issue arises when
they become trapped in an infinite loop, resulting in an un-
expectedly prolonged execution time for their current task.
The second problem occurs if they fail and shut down during
operation. These complications can suspend BANDFUZZ
and negatively impact its overall performance. If the central
interface detects that a currently active fuzzer has taken an
unusually long time without completing its assigned cycles,
it will dispatch a skip instruction to that particular fuzzer.
This command pauses the fuzzer’s operation and returns the
current results to the central interface. In instances where a
fuzzer fails prematurely before completing its designated cy-
cles, the central interface will send out a restart instruction to
reboot it. Consequently, this allows for continuation toward
the completion of its assigned fuzzing cycles. These dual
mechanisms ensure all fuzzers adhere strictly to round-time
constraints TI , even under circumstances involving infinite
loops or failures.
Real-time synchronization. Simultaneously, this interface
receives discoveries (i.e., seeds) from all connected fuzzers.
As previously detailed in §3.1, BANDFUZZ operates by
maintaining a global seed pool. The first step when selecting
a fuzzer involves synchronizing its local seed pool with
the global one. This synchronization process is achieved by
tracking the local seed files present in the file system and
identifying any missing seeds. Given that the central inter-
face has knowledge about each individual fuzzer’s status, it
can efficiently transmit these missing seeds to the chosen
fuzzer prior to any form of seed selection. Furthermore,
we use this same method to monitor changes in the file
system in order to enrich our global seed pool with new
seeds. Consequently, newly discovered seeds are transferred
from selected fuzzers into our global pool via this central
interface.
Real-time evaluation. Once the central interface acknowl-
edges the new seeds produced by the selected fuzzer,
BANDFUZZ incorporates them into set I, as delineated
in Algorithm 1. Subsequently, it computes the reward for
the selected fuzzer through an evaluation of these newly
produced seeds. This computation is facilitated using a
specially customized instrumentation binary equipped with
coverage sanitizer and a customized runtime shared object
that executes Algorithm 1.

5. Experiment

In this section, we comprehensively evaluate BAND-
FUZZ to answer the following research questions (RQs):
RQ1. BANDFUZZ integrates a suite of advanced fuzzing
tools, leveraging their combined strengths. When provided
with identical computational resources, how does the collab-
orative fuzzing approach of BANDFUZZ compare against the
performance of the individual fuzzers it incorporates?
RQ2. When compared to the state-of-the-art collabora-
tive fuzzing method, autofz, does BANDFUZZ, enhanced

with our proposed fuzzer evaluation and resource allocation
method, demonstrate better performance?
RQ3. BANDFUZZ introduces three key techniques, includ-
ing real-time synchronization via a global seed pool, fuzzer
evaluation, and resource allocation. How do these key com-
ponents individually contribute to the overall effectiveness
of BANDFUZZ?
RQ4. To what extent does our customized bandits model
improve the overall performance of BANDFUZZ?
RQ5. Whether BANDFUZZ is sensitive to the key hyper-
parameters (time budget for each round TI and the reset
interval IR)?

In the following, we specify our experiment setup, as
well as the design and results of the experiment to answer
each research question.

5.1. Experiment Setup

Experiment environment. We conduct all experiments on
two workstations, each equipped with an AMD EPYC 7763
64-core processor and 512GB of RAM. Within this setup,
each fuzzer operates in a separate Docker container (note
that BANDFUZZ is considered a single fuzzer). Each docker
container (fuzzer) is allocated with a single CPU core and
2GB of shared memory, ensuring a standardized, controlled,
and fair testing environment.
Configuration of BANDFUZZ. Recall that BANDFUZZ pe-
riodically reset the bandits parameters to adapt to changes in
reward distributions. Also, BANDFUZZ requires specifying
an appropriate time budget for the fuzzer selected by the
bandits during the auto-cycle. The default setup for these
two hyperparameters is that the reset interval IR is 120 mins,
and the time budget TI is 120 seconds for each round.
Benchmark and fuzzing targets. We select the fuzzing
targets in the benchmark database FuzzBench [33]. We
also use the Fuzzer Test Suite (FTS) [34] as an alternative
benchmark because some fuzzers are not compatible with
the targets in FuzzBench. Each fuzzer, representing both
our proposed solution and established fuzzing techniques,
was subjected to a continuous testing period of 24 hours
for every fuzzing target. To mitigate inherent variability
and ensure robust results, we executed each experiment 10
times, resulting in a cumulative computation time of 7.5
CPU years.
Metrics. We select the widely used branch coverage as
the our metric for evaluating the effectiveness of a fuzzer
against a specific target program. Considering the varying
performance that different fuzzers show across different pro-
grams, we calculate the average score for each fuzzer across
different programs to enable a more comprehensive compar-
ison. The average score is introduced by FuzzBench [33],
which serves as a standard metric to evaluate the overall
performance of a fuzzer. This metric allows for a more
balanced comparison by accounting for the performance dif-
ference across multiple target programs, thereby offering a
comprehensive view of a fuzzer’s effectiveness. More specif-
ically, the fuzzer’s score for each target equals dividing its
median branch coverage by the maximum branch coverage

8

recorded for that same target. Note that the highest relative
performance does not necessarily correspond to 100%.

5.2. Experiment Design

Experiment I: Comparison with individual fuzzers. To
address RQ1, we isolate the fuzzers incorporated within
BANDFUZZ, treating them as individual fuzzers. We then
run BANDFUZZ and each individual fuzzer against the
targets from FuzzBench. As mentioned in §5.1, we run
each fuzzer 24 hours with the same identical computational
resources. We compute the branch coverage for each method
in each individual target and the mean coverage across
all targets. We run each method 10 times and report the
mean. We expect that BANDFUZZ will have higher overall
fuzzing performance compared to individual fuzzers, as
BANDFUZZ’s can dynamically evaluate and select the most
efficient fuzzers for different targets over time.
Experiment II: Comparison with autofz. To address RQ2,
we compare BANDFUZZ with the state-of-the-art collabo-
rative fuzzing framework autofz. It integrates 11 distinct
fuzzers. In Experiment I, we use the fuzzing targets in
FuzzBench. However, the implementation of autofz is in-
compatible with FuzzBench. As such, we use FTS as the
benchmark for this experiment. Note that despite both autofz
and BANDFUZZ incorporate multiple fuzzers, the compo-
sition of these fuzzers is not identical, featuring unique
fuzzers such as Darwin in BANDFUZZ and libFuzzer in
autofz. To enable an apple-to-apple comparison, we restrict
the individual fuzzers to those mutually supported by both
autofz and BANDFUZZ. Specifically, we craft autofz-8 and
BANDFUZZ-8 that integrate the following eight fuzzers:
AFL, AFL++, AFLFast, LAF-Intel, MOpt, Radamsa, An-
gora, Fairfuzz. We compare the branch coverage between
autofz-8 and BANDFUZZ-8 to evaluate which method has
the better collaboration strategy on the same set of fuzzers.

We also compared BANDFUZZ-8 with the complete
setup of autofz, which includes all 11 fuzzers. This compar-
ison aimed to evaluate the strengths of BANDFUZZ against
a well-established benchmark in the field. Demonstrating
that BANDFUZZ-8 outperforms the full autofz would further
support the effectiveness of BANDFUZZ.
Experiment III: Ablation study. We conduct a compre-
hensive ablation study to answer RQ3 (i.e., the efficacy of
our proposed seed synchronization, fuzzer evaluation, and
resource allocation mechanism). First, we configure BAND-
FUZZ to operate without conducting seed synchronization
with the global seed pool (denoted as “no-sync”). Compar-
ing no-sync with BANDFUZZ can quantify the importance of
our seed synchronization mechanism. Our hypothesis is that
without a synchronization mechanism, there is a possibility
for the fuzzers in BANDFUZZ to redundantly explore the
same paths, leading to a waste of time and resources.

Second, to evaluate the importance of our fuzzer eval-
uation method, we adjust the reward allocation for fuzzer
F in Algorithm 1 by incrementing αF by 1 upon any
new coverage discovery and increasing βF by 1 when it
fails. Additionally, we deactivated the auto-cycle feature to

facilitate precise reward calculation. We denote this variation
as “naive-reward”. Comparing this variation with the simple
fuzzer evaluation method reveals the effectiveness of our
proposed evaluation method that considers the difficulty of
the resolved branches.

Third, we substitute our bandits-based resource alloca-
tion mechanism with a simple random scheduling approach
(denoted as “random”). Comparing the performance of this
variant against BANDFUZZ enables us to quantify the impact
of our bandits-based allocation mechanism on the efficacy
of the fuzzing process.

We run BANDFUZZ and the three variations on four tar-
gets from FuzzBench: bloaty, freetype2, woff2ttf,
and lcms. These targets were chosen due to their varied
sizes and complexities, which provide a comprehensive ar-
ray of challenges that a fuzzer may face when dealing with
different code structures. To elaborate, bloaty is a large-
scale program with 89,530 edges and is equipped with 94
initial seeds. Conversely, freetype2 has 19,056 edges but
operates with only two seeds, representing a large program
with a minimal initial seed count. woff2ttf is a smaller
program with 10,923 edges and 62 initial seeds. Finally,
lcms is the smallest program with 6,959 edges and just
one seed, representing a compact program with a sparse
seed allocation.
Experiment IV: Effectiveness of the customized bandits
model. Recall that our customized bandits model introduces
two key designs, reward discretization and periodic param-
eter reset. Here, reward discretization cannot be changed
because, without a discrete reward, we cannot use the TS
algorithm for our method. As such, to address RQ4, we
remove the periodic parameter reset mechanism (denoted as
“no-reset”) and run in on the four targets used in Experiment
III. Comparing this variation with BANDFUZZ can demon-
strate the efficacy of considering the dynamical changes in
bandits’ reward distribution.
Experiment V: Hyper-parameter sensitivity. To answer
RQ5, we vary two key hyper-parameters of BANDFUZZ:
the time budget for each round TI and the reset interval
IR. Specifically, we adjust TI between 90 to 180 seconds in
30-second increments and vary IR from 90 to 180 minutes
at 30-minute intervals. We compare these variations with
BANDFUZZ’s default setup on the four targets used in Ex-
periment III & IV to quantify the sensitivity of BANDFUZZ
against these hyper-parameters. We conduct a Nemenyi post-
hoc test [67], which is widely used to determine whether
there are notable result differences among different experi-
mental setups.

5.3. Experiment Result

Experiment I: Comparison with individual fuzzer. Ta-
ble 1 shows the average score of each fuzzer across indi-
vidual target programs, as well as the median and mean
score, after a 24-hour testing period. The table first shows
that BANDFUZZ achieves the highest median and average
score across all the FuzzBench targets. Regarding individual
targets, BANDFUZZ outperforms all other individual fuzzers

9

Benchmark BANDFUZZ AFL++ honggfuzz LAF-Intel Radamsa MOpt AFL AFLFast FairFuzz DARWIN

bloaty fuzz target 97.97 97.41 77.56 96.38 82.45 94.95 93.65 93.78 80.52 †68.02
curl curl fuzzer http 99.07 98.09 85.09 85.23 89.74 92.03 90.64 89.46 83.97 †62.99
freetype2 ftfuzzer 98.15 88.38 53.91 77.56 53.46 61.38 59.50 58.66 58.42 †21.27
harfbuzz hb-shape-fuzzer 98.87 98.84 81.73 97.22 84.47 96.42 95.74 95.34 88.69 †68.31
jsoncpp jsoncpp fuzzer 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
lcms cms transform fuzzer 97.95 93.03 30.30 64.93 33.42 29.39 29.01 27.32 64.19 30.61
libjpeg-turbo libjpeg turbo fuzzer 82.74 82.65 82.29 82.65 82.61 82.26 82.18 82.19 82.19 †81.64
libpcap fuzz both 92.32 89.85 65.84 83.64 68.78 1.08 1.08 1.08 1.08 †0.00
libpng libpng read fuzzer 95.95 95.50 94.62 95.52 92.47 93.07 93.02 92.12 93.19 93.26
libxml2 xml 99.61 99.41 94.74 - 92.00 96.73 96.64 96.77 89.74 96.99
libxslt xpath 98.31 98.11 93.23 49.67 90.48 89.58 90.80 90.37 92.29 92.63
mbedtls fuzz dtlsclient 74.73 74.25 71.52 50.41 64.34 71.03 70.70 68.52 73.73 †49.30
openh264 decoder fuzzer 99.03 98.43 96.51 99.28 79.75 99.07 99.06 99.40 98.46 †0.00
openssl x509 99.95 99.94 98.97 99.59 99.29 99.69 99.73 99.72 99.69 99.91
openthread ot-ip6-send-fuzzer 77.05 89.91 70.08 71.28 69.06 73.10 72.04 70.95 69.14 †0.00
proj4 proj crs to crs fuzzer 96.70 90.67 50.13 67.82 52.22 9.83 10.32 9.35 10.47 †0.70
re2 fuzzer 99.84 99.43 98.39 99.76 98.54 98.89 99.34 98.63 99.13 99.01
stb stbi read fuzzer 96.18 95.59 92.34 90.28 89.01 89.56 90.35 89.81 89.85 90.62
systemd fuzz-link-parser 98.76 98.35 88.64 97.93 89.67 90.91 90.50 90.70 84.30 †51.65
vorbis decode fuzzer 98.79 98.40 97.62 99.38 93.75 97.58 97.74 97.70 97.54 †59.25
woff2 convert woff2ttf fuzzer 98.56 97.36 89.19 99.26 82.26 90.10 88.86 89.69 81.56 †62.95
Median Score 98.31 97.41 88.64 90.28 84.47 90.91 90.64 90.37 84.30 62.99
Average Score 95.26 94.46 81.56 81.32 80.37 78.89 78.61 78.17 78.01 58.53

TABLE 1: Fuzzer score summary in FuzzBench report. The fuzzers are organized based on average scores, representing their average
relative coverage. Those with higher values are positioned toward the left side of the table. A green background signifies a superior score,
whereas a blue background denotes the second-best score. Note that in FuzzBench report, any difference less than 1% is considered as
a random effect and thus disregarded. The symbol † indicates that the fuzzer encounters a crash before completing its 24-hour task. The
symbol - indicates that the fuzzer does not support the target.

Benchmarks
BANDFUZZ-8 autofz-8 autofz

mean std mean std mean std

boringssl-2016-02-12 1671.7 0.48 1622.9 12.03 1678.5 17.06
c-ares-CVE-2016-5180 42.9 0.32 43.0 0.00 42.9 0.32
freetype2-2017 10946.4 418.56 7887.1 326.99 8236.8 234.77
guetzli-2017-3-30 1409.9 3.75 1392.9 9.39 1399.6 8.25
harfbuzz-1.3.2 4866.0 41.63 4622.8 57.72 4722.3 53.50
json-2017-02-12 649.1 1.52 649.5 5.82 662.9 0.32
libarchive-2017-01-04 5071.1 190.69 4453.0 308.46 4687.7 300.56
libjpeg-turbo-07-2017 2028.9 91.89 1836.7 79.63 2026.6 42.24
libpng-1.2.56 1054.1 9.54 1076.9 11.86 1090.0 8.82
libssh-2017-1272 1068.0 59.60 1006.9 14.50 1064.9 54.02
libxml2-v2.9.2 8308.8 292.49 3955.4 73.62 4406.6 353.30
lcms-2017-03-21 1923.8 179.52 1991.8 39.44 1976.1 37.25
openssl-1.0.1f 5536.4 551.51 5058.8 822.06 5450.7 250.61
openssl-1.0.2d 2136.1 1.66 2126.4 3.37 2133.1 2.60
openssl-1.1.0c-bignum 2036.9 0.74 2034.8 0.42 2034.7 0.82
openssl-1.1.0c-x509 6105.8 0.63 6144.0 3.62 6145.3 1.70
openthread-2018-02-27-ip6 1412.5 318.97 1280.4 323.10 1412.8 320.93
openthread-2018-02-27-radio 2783.7 240.00 2595.2 290.29 3260.8 42.63
pcre2-10.00 9909.4 125.82 8956.5 73.64 9124.1 118.82
proj4-2017-08-14 2461.4 192.53 1015.1 595.85 3568.7 43.01
re2-2014-12-09 2485.3 7.10 2470.6 8.85 2478.7 7.24
sqlite-2016-11-14 1981.0 1112.83 1551.5 147.60 1624.0 0.00
vorbis-2017-12-11 1264.1 6.94 1236.3 10.75 1242.4 12.66
woff2-2016-05-06 1071.9 23.32 1097.1 16.93 1062.7 33.05
wpantund-2018-02-27 3315.2 99.03 3079.3 84.01 3176.1 52.75

Average Coverage Enhancement - 16.0% 4.8%
Average Score 91.5 84.3 89.6

TABLE 2: The branch coverage of BANDFUZZ vs. autofz-8 and
full autofz. Each row displays the arithmetic mean and standard
deviation of branch coverage for every fuzzer. The maximum
branch coverage achieved for each target is also highlighted.

in 18 of the 21 evaluated targets. This result validates BAND-
FUZZ’s capability in harnessing and ensembling the unique
strengths of individual fuzzers. In other words, BAND-
FUZZ’s bandit algorithm is able to consistently allocate more
resources to fuzzers with the best performance along the
fuzzing process. As a result, it puts together an ensemble

strategy with the best performance.
Figure 8 in the Appendix shows the branch coverage

of BANDFUZZ vs individual fuzzers across the time, we
can observe that BANDFUZZ is more stable than individual
fuzzers. This is another advantage of being an ensemble
strategy in that BANDFUZZ can always choose a functional
fuzzer and will not be largely affected by the failure of one
or two fuzzers. The fuzzer management feature introduced
in §4.2 also helps the stability. This feature enables BAND-
FUZZ to promptly identify and address any issues with the
fuzzers during operation, ensuring consistent performance.

However, it is noteworthy that despite its overall superior
performance, BANDFUZZ occasionally exhibits a slower
initial growth in code coverage during the initial 30 to 60
minutes compared to certain individual fuzzers (Figure 8).
We believe this is an expected characteristic of BANDFUZZ’s
operation, as BANDFUZZ necessitates multiple iterations to
effectively explore and determine the dynamic effectiveness
of the various fuzzers it includes.

Finally, we notice that the coverage of score of BAND-
FUZZ demonstrates relatively marginal improvement than
AFL++. This is mainly because AFL++ (with cmplog en-
abled) performs much better than other fuzzers in most
targets. By analyzing the seeds, we found that AFL++ domi-
nates other fuzzers in code coverage and is also assigned the
most resources. This demonstrates that BANDFUZZ indeed
identifies the best fuzzer and allocates most resources to it.
Furthermore, we believe the similar performance of BAND-
FUZZ and AF++ does not dilute the necessity of BANDFUZZ
for the following reasons. First, as demonstrated in §6,
BANDFUZZ performs much better than the state-of-the-art
fuzzers in mutation scores, another widely used metric for

10

evaluating a fuzzer’s ability to find vulnerabilities. Second,
as an ensemble approach, BANDFUZZ is more stable than
individual fuzzers like AFL++. Third, in scenarios where
AFL++ under-performs, BANDFUZZ can still choose other
superior fuzzers and achieve decent and stable performance.
Experiment II: Comparison with autofz. Table 2 presents
a comparison between BANDFUZZ-8, autofz-8, and autofz
on FTS targets. First, the table shows that BANDFUZZ-8
outperforms autofz-8 in terms of average branch coverage,
achieving an improvement of 16.0%. More specifically,
BANDFUZZ outperforms autofz-8 in 19 of the 25 evaluated
programs with a notable margin in branch coverage. This
superior performance validates the effectiveness of our ad-
vanced collaboration strategy, including our real-time seed
synchronization, faithful and efficient fuzzer evaluation, and
bandits-based resource allocation/fuzzer scheduling strategy.
In particular, it verifies our discussion in §2 and §3 that aut-
ofz only realizes greedy resource allocation strategies while
BANDFUZZ can learn globally more optimal strategies.

It is also worth noting that in cases where BANDFUZZ-
8 does not outperform autofz-8, the decline in coverage
is relatively marginal (not exceeding 3.5%). The standard
deviation of branch coverage for BANDFUZZ-8 in these
specific targets aligns closely with that of autofz-8. Fur-
thermore, it is important to highlight an outlier occurrence,
where BANDFUZZ-8’s standard deviation on the target
sqlite-2016-11-14 was exceptionally high, because
of an isolated trial that yielded remarkably high branch
coverage. This result shows that BANDFUZZ has a higher
stability than autofz.

Moreover, BANDFUZZ also slightly outperforms the
original autofz, which incorporates three additional fuzzers
(including some hybrid fuzzers). Despite having fewer
fuzzers, BANDFUZZ-8 achieves an average branch coverage
that exceeds that of the original autofz by 4.8%. Although
BANDFUZZ does not integrate hybrid fuzzers (with concolic
execution), powered with our advanced resource allocation
method, BANDFUZZ is superior to autofz, which integrates
these advanced fuzzers. This further demonstrates the im-
portance of our bandits-based resource allocation method.
Experiment III: Ablation study. Figure 4 shows the abla-
tion study results. First, BANDFUZZ outperforms “no-sync”
by an average of 9.6% in branch coverage. This improve-
ment validates the effectiveness of our real-time seed syn-
chronization mechanism. It prevents individual fuzzers from
repeatedly covering the same branches, enabling a more
thorough and efficient exploration of the entire program
space.

However, an exception is observed where BANDFUZZ
does not demonstrate superiority over “no-sync” in the
case of woff2. This deviation is because of the unique
characteristics of the target - a sparse edge count combined
with a large number of initial seeds. In such cases, the
advantage derived from inter-fuzzer knowledge exchange
becomes less significant since each fuzzer can already have
a comprehensive exploration of the program’s structure.

Second, Figure 4 also shows that BANDFUZZ outper-
forms “naive-reward” by about 5.8% in branch coverage.

0m 4h 9h 14h 19h 24h
4264

4805

5347

5888

6430

br
an

ch
 c

ov
er

ag
e

bloaty_fuzz_target

0m 4h 9h 14h 19h 24h
0

581

1162

1744

2325
lcms_cms_transform_fuzzer

0m 4h 9h 14h 19h 24h
time

2317

5158

7999

10840

13680

br
an

ch
 c

ov
er

ag
e

freetype2_ftfuzzer

0m 4h 9h 14h 19h 24h
time

740

863

987

1110

1233
woff2_convert_woff2ttf_fuzzer

BandFuzz
random
no-sync
naive-reward

Figure 4: Comparison among BANDFUZZ and two variants. Each
line plot represents the arithmetic mean along with a 95% con-
fidence interval, derived from 10 independent trials. The label
random refers to BANDFUZZ that employs random resource allo-
cation in each round, and no-sync represents BANDFUZZ operating
without seed synchronization.

This result verifies the importance of our proposed fuzzer
evaluation mechanism. As discussed in §3.1, assigning re-
wards solely based on coverage is limited in that it cannot
account for the difficulty and complexity of each new cover-
age, resulting in a less comprehensive assessment of fuzzer
performance.

Last but not least, the “random” variation triggers the
largest performance drop, recording about a 22.0% reduction
in branch coverage. This highlights the importance of our
bandits-powered resource allocation strategy, which explore
global optimal solutions for resource allocation, substan-
tially optimizing fuzzing efficiency.
Experiment IV: Effectiveness of the customized ban-
dits model. Figure 5 demonstrates the comparison between
BANDFUZZ and the “no-reset” version of BANDFUZZ,
which excludes the parameter reset operation in our cus-
tomized bandits model. The figure shows an 8.1% decrease
in branch coverage for “no-reset”. This result verifies the
necessity of our customized bandits model. As discussed
in §3.3, without a reset mechanism, BANDFUZZ’ cannot
mitigate the impact of outdated information. As a result,
“no-reset” cannot precisely adapt to changes in reward
distributions and thus has limited fuzzing effectiveness.
Experiment V: Hyper-parameter sensitivity. Figure 6 de-
picts the performance differences introduced by varying two
key hyper-parameters of BANDFUZZ: TI and IR. The figure
shows that changing these two hyper-parameters introduces
only marginal changes in overall fuzzing effectiveness. The
result verifies the insensitivity of BANDFUZZ against key
hyper-parameter changes. This also demonstrates the practi-
cality of BANDFUZZ, as users are not required to carefully
choose the optimal hyper-parameters.

11

0m 4h 9h 14h 19h 24h
4264

4806

5349

5891

6433

br
an

ch
 c

ov
er

ag
e

bloaty_fuzz_target

0m 4h 9h 14h 19h 24h
0

581

1162

1744

2325
lcms_cms_transform_fuzzer

0m 4h 9h 14h 19h 24h
time

2317

5159

8000

10842

13684

br
an

ch
 c

ov
er

ag
e

freetype2_ftfuzzer

0m 4h 9h 14h 19h 24h
time

741

861

982

1103

1224
woff2_convert_woff2ttf_fuzzer

BandFuzz
no-reset

Figure 5: Comparison among BANDFUZZ and two variants. Each
line plot represents the arithmetic mean along with a 95% confi-
dence interval, derived from 10 independent trials. The label no-
reset refers to BANDFUZZ without reset mechanism, and naive-
reward represents BANDFUZZ adopting a naive algorithm to eval-
uate fuzzers.

Figure 6: Critical Difference (CD) among various configurations
of BANDFUZZ. The average ranking of fuzzers is represented by
each number. The horizontal line indicates no critical difference
in performance among the grouped fuzzers, as determined by the
Nemenyi post-hoc test. Each label represents a variation of the
depicted hyperparameter while keeping another parameter at its
default values.

6. Real-World Assessment

Our evaluation of BANDFUZZ extends beyond controlled
experiments to its application in a recent, highly competitive
fuzz testing event, SBFT 2024, as detailed in [68]. This
event presents a modified FuzzBench platform for evaluating
advanced fuzzing techniques in a real-world context.

During the competition, participant fuzzers, including
BANDFUZZ, are deployed on the modified FuzzBench plat-
form with the same amount of resources for the same period
of time. Notably, the evaluation metric is different from our
experiments in §5, which primarily utilize branch coverage
as the performance metric. Instead, the competition organiz-
ers employ the mutation analysis as the primary evaluation
tool, a method that is increasingly used as an alternative
to traditional coverage metrics in fuzzing benchmarks, as
discussed in [69].

Mutation analysis introduces synthetic faults into target
programs to create program mutants, minimizing human

TABLE 3: Number of mutants killed per benchmark, with each
column reflecting the total mutants killed by the respective fuzzer.

Targets BANDFUZZ FishFuzz AF1 Pastis AF2 libAFL libFuzzer
freetype2 ftfuzzer 6814 5924 5944 6158 5900 6172 5131
jsoncpp jsoncpp fuzzer 1150 672 650 686 651 638 679
lcms cms transform fuzzer 1709 1461 1522 1560 1570 1547 1527
libpcap fuzz both 2095 2096 2443 1852 2031 1811 1636
libxml2 xml 7259 6582 6880 6240 6212 6160 6125
re2 fuzzer 6651 5967 3672 3670 3650 3635 3687
stb stbi read fuzzer 1597 1643 1550 1647 1592 1562 1474
zlib zlib uncompress fuzzer 361 333 352 359 326 326 355
Average Mutation Score 98 86 84 82 81 79 77

bias in the process. A mutant is deemed “killed” if the
fuzzer generates at least one input causing a deviation from
the original program’s behavior (i.e., trigger a synthetic
fault). The effectiveness of a fuzzer is thus quantified by the
number of mutants it successfully killed, with a higher count
indicative of superior performance. As discussed in [69], this
metric offers a more robust and comprehensive assessment
compared to coverage by addressing issues like saturation
and over-fitting. Moreover, by integrating a variety of fault
types into the program, mutation analysis provides a broader
spectrum evaluation of a fuzzer’s capability to discover
vulnerabilities, which is the main purpose of fuzzing in the
security context.

The mutation analysis results, as presented in Table 3,
clearly demonstrate BANDFUZZ’s outstanding performance
in the competition. It surpassed not only widely recognized
fuzzers like libAFL [70] and libFuzzer [71] but also ad-
vanced contenders such as FishFuzz [66] and Pastis [72],
alongside two anonymously fuzzers denoted as AF1 and
AF2. Specifically, BANDFUZZ achieved the highest count
of killed mutants in six out of the eight targeted categories.
Moreover, while the other fuzzers showed relatively narrow
variations in their average mutation scores (ranging from 79
to 86), BANDFUZZ recorded the highest average, a signifi-
cant 98, marking a substantial lead over its competitors. The
mutation score is calculated by taking the median number
of mutants it killed and dividing it by the highest number of
mutants killed recorded for the same target. In comparison
to the second-ranked fuzzer, TuneFuzz [66], BANDFUZZ’s
average mutation score is higher by an impressive 14%.
Overall, this evaluation demonstrates the significant superi-
ority of BANDFUZZ over other SOTA fuzzers (widely used
in academia or industry) in bug detection capability for
complex, real-world programs.

7. Related Work

In addition to heuristic-based and program analysis-
based fuzzers mentioned in §2.1, recent research also ex-
plores learning-based fuzzers [13], [6], [64], [73], [74], [75],
[76], [77], [78], [79], [1], [2], [80], [81], [82], [83], [11],
[84], [85]. These methods leverage a wide range of ML
methods, such as deep learning and reinforcement learning,
to enhance specific components of existing fuzzers or to
construct new fuzzing frameworks. Among these methods,
a notable line of research utilizes multi-arm bandits to
improve existing fuzzers [13], [6], [86], [64], [65], [87],
[88]. In what follows, we summarize these methods and
discuss their limitations.

12

Improving seed selection. Existing bandits-based seed se-
lection methods [13], [6], [86], [64] typically treat the seeds
as the arms and employ standard bandit algorithms, such as
Upper Confidence Bound (UCB) [59], to dynamically adjust
the weight of each seed based on the fuzzing feedback.
While these techniques outperform heuristic-based strate-
gies, they face two key limitations. First, dealing with a large
volume of seeds results in bandits having a large number of
arms, leading to a less efficient learning process. Further-
more, the continual growth in the number of seeds violates
the fundamental assumption of bandits, which is designed
for a fixed number of arms. Applying bandit algorithms
without addressing these issues may lead to performance
improvements that are not universally applicable across
different test scenarios.
Enhancing power scheduling. Beyond seed selection, re-
cent studies have also applied bandit algorithms to enhance
power scheduling. For example, Zhang et al. [65] treat seeds
as the arms of bandits. However, a notable difference is that
researchers employ the UCB algorithm to dynamically opti-
mize not just the selection of seeds but also the distribution
of energy. Consequently, bandits-based power scheduling
encounters similar challenges as those faced by bandits-
based seed selection methods.
Optimizing input mutation. Recent research also leverages
bandits for mutation scheduling [73], [87], [21], [89], [88].
For example, Wu et al. [87] designed a two-layer bandits.
Here, the arms of the first layer are the number of mutators
to be used and the second layer’s arms are types of mutators.
This method leverages the UCB1-Tuned algorithm [59] to
select arms for both layers to guide mutator selection. This
method, although not a typical bandits design, demonstrates
a decent empirical performance.

In this work, rather than use it for improving individ-
ual components, we leverage multi-arm bandits to build a
collaborative fuzzing framework, which is more robust and
generic than individual fuzzers.

8. Discussion

More fuzzer support. BANDFUZZ incorporates 10 state-
of-the-art fuzzers, which employ advanced strategies to
enhance nearly every fuzzing component. Hybrid Fuzzing
is the only main category of fuzzers that BANDFUZZ has
not employed. These fuzzers incorporate concolic (concrete
symbolic) executors to improve the fuzzers’ ability to
solve difficult constraints. Integrating concolic execution
into BANDFUZZ presents several challenges.

First, synchronizing seeds between concolic executors
and other fuzzers cannot be simply achieved via copying
the global seed pool, as concolic executors are not aware of
the coverage of fuzzers. Without synchronization, concolic
executors will explore program states already founded by
other fuzzers, leading to significant resource wastage. Addi-
tionally, given that concolic executors are much slower than
regular fuzzers, it is difficult to maintain a fair resource
allocation between fuzzers and concolic executors while
capturing fuzzer dynamics in real-time.

Tackling these challenges requires a comprehensive up-
date of BANDFUZZ, including designing a new seed syn-
chronization and fuzzer evaluation mechanism, which de-
mands non-trivial efforts. Our primary goal is to investigate
an effective collaborative fuzzing strategy. Additionally, we
position BANDFUZZ as the preliminary effort toward com-
prehensive collaborative fuzzing frameworks. As such, we
defer to integrating hybrid fuzzers as our future work.
Alternative seed assessment. Recall that BANDFUZZ em-
ploys code coverage and the interval between branch discov-
eries as metrics to assess the quality of new seeds. However,
there exist additional metrics that could be used to evaluate
seed quality, such as basic-block centrality [90] and the
distance to sanitizer [66]. In future work, we plan to explore
other seed quality assessment metrics and refine our fuzzer
evaluation accordingly.
TS improvement. Recall that we developed a customized
Thompson Sampling (TS) approach for our bandits model,
incorporating reward discretization to manage continuous
rewards and a reset mechanism to tackle non-stationary
reward distributions. Although these modifications are ef-
fective, there is room for improvement or replacement with
alternative techniques. For instance, we could evaluate dif-
ferent discretization strategies or reformulate TS by treating
rewards as a continuous distribution rather than a discrete
Bernoulli distribution. Furthermore, exploring adversarial
bandits, such as EXP3 [91], which are specifically designed
to handle non-stationary reward distributions, could offer
additional enhancements to our model.
Efficient compilation. As a collaborative fuzzing frame-
work, BANDFUZZ is designed to integrate with any type of
fuzzer. Technically, the fuzzers incorporated in BANDFUZZ
might employ various instrumentation techniques, neces-
sitating multiple compilations of the target program, each
with a distinct instrumentation pass. This process results in
greater compilation overhead compared to using individual
fuzzers. In our future research efforts, we plan to investigate
more efficient instrumentation strategies to mitigate the over-
head associated with diverse instrumentation requirements.
More sophisticated targets. The current version of BAND-
FUZZ is optimized for the C/C++ programs in the Linux
user space. Our future work will extend BANDFUZZ to other
platforms and fuzzing domains, such as kernel fuzzing [92],
[77], [51] and compiler fuzzing [93], [85], [79], [94]. This
extension will potentially demonstrate the effectiveness of
BANDFUZZ’s collaboration strategy across various software
layers and development tools, broadening the impact of
collaborative fuzzing in the software security landscape.

9. Conclusion

In this paper, we introduce BANDFUZZ, a novel col-
laborative fuzzing framework powered by a customized
bandits model. Different from the greedy method utilized
by the state-of-the-art collaborative fuzzing framework, aut-
ofz, BANDFUZZ model the long-term impact of individual
fuzzers, learning globally optimal collaborative strategies.
Together with the bandits-based resource allocation, we

13

also propose a new metric for fuzzer evaluation, a real-
time seed synchronization mechanism, as well as a set
of implementation-wise optimizations. Through extensive
experiments, we first demonstrate BANDFUZZ’s superior
effectiveness, stability, and adaptability across a variety of
programs, compared to autofz and widely used individual
fuzzers. Moreover, we conduct a comprehensive ablation
study and hyper-parameter sensitivity test to verify BAND-
FUZZ’s key designs and its insensitivity to the changes
in hyper-parameters. Finally, we demonstrate BANDFUZZ’s
effectiveness in bug detection for real-world programs by
analyzing the results of a recent fuzzing competition, where
BANDFUZZ won the first place. Through these findings, we
safely conclude that collaborative fuzzing presents a promis-
ing solution for constructing generic fuzzers, and multi-
arm bandits can be used to design effective collaborative
fuzzing strategies. We hope our work can inspire further
advancements in collaborative fuzzing through multi-arm
bandits and reinforcement learning, to push the boundaries
of software fuzzing in real-world applications.

References

[1] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in Proc. of S&P,
2019.

[2] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing
with a multi-task neural network,” in Proc. of ESEC/FSE, 2020.

[3] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang,
and Y. Liu, “Cerebro: context-aware adaptive fuzzing for effective
vulnerability detection,” in Proc. of ESEC/FSE, 2019.

[4] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting
for input prioritization.” in Proc. of NDSS, 2020.

[5] Y. Zhao, X. Wang, L. Zhao, Y. Cheng, and H. Yin, “Alphuzz: Monte
carlo search on seed-mutation tree for coverage-guided fuzzing,” in
Proc. of ACSAC, 2022.

[6] J. Wang, C. Song, and H. Yin, “Reinforcement learning-based hierar-
chical seed scheduling for greybox fuzzing,” Journal of Systems and
Software, 2021.

[7] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing,” in Proc. of
USENIX Security, 2014.

[8] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-
K. R. Choo, “Deepfuzzer: Accelerated deep greybox fuzzing,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[9] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L.
Hosking, “Seed selection for successful fuzzing,” in Proc. of ISSTA,
2021.

[10] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in Proc. of S&P, 2018.

[11] S. Zhu, J. Wang, J. Sun, J. Yang, X. Lin, T. Wang, L. Zhang, and
P. Cheng, “Better pay attention whilst fuzzing,” IEEE Transactions
on Software Engineering, 2023.

[12] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proc. of CCS, 2016.

[13] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou,
“Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of
the adversarial multi-armed bandit,” in Proc. of USENIX Security,
2020.

[14] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in Proc. of NDSS,
2017.

[15] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proc. of ASE, 2018.

[16] P. Jauernig, D. Jakobovic, S. Picek, E. Stapf, and A.-R. Sadeghi,
“Darwin: Survival of the fittest fuzzing mutators,” in Proc. of NDSS,
2023.

[17] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, and Y. Song, “Mopt:
Optimized mutation scheduling for fuzzers,” in Proc. of USENIX
Security, 2022.

[18] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” in Proc. of
NDSS, 2019.

[19] “Aki helin / radamsa · gitlab,” https://gitlab.com/akihe/radamsa, 2023.

[20] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “Profuzzer: On-the-fly input type probing for better zero-
day vulnerability discovery,” in Proc. of S&P, 2019.

[21] X. Wang, C. Hu, R. Ma, D. Tian, and J. He, “Cmfuzz: context-
aware adaptive mutation for fuzzers,” Empirical Software Engineer-
ing, 2021.

[22] M. Lee, S. Cha, and H. Oh, “Learning seed-adaptive mutation strate-
gies for greybox fuzzing,” in Proc. of ICSE, 2023.

14

https://gitlab.com/akihe/radamsa

[23] M. Schloegel, N. Bars, N. Schiller, L. Bernhard, T. Scharnowski,
A. Crump, A. Ale-Ebrahim, N. Bissantz, M. Muench, and T. Holz,
“Sok: Prudent evaluation practices for fuzzing,” in Proc. of S&P,
2024.

[24] “Fuzzbench: 2023-12-15-aflpp report,” https://fuzzbench.com/reports/
experimental/2023-12-15-aflpp/index.html, 2023.

[25] D. Liu, J. Metzman, M. Böhme, O. Chang, and A. Arya, “Sbft tool
competition 2023–fuzzing track,” ArXiv Preprint, 2023.

[26] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Combining
incremental steps of fuzzing research,” in Proc. of WOOT, 2020.

[27] “Fuzzbench reports,” https://fuzzbench.com/reports/experimental/,
2024.

[28] “Sbft 2023 fuzzing competition,” https://sbft23.github.io/tools/
fuzzing, 2023.

[29] S. Österlund, E. Geretto, A. Jemmett, E. Güler, P. Görz, T. Holz,
C. Giuffrida, and H. Bos, “Collabfuzz: A framework for collaborative
fuzzing,” in Proc. of EuroSec, 2021.

[30] E. Güler, P. Görz, E. Geretto, A. Jemmett, S. Österlund, H. Bos,
C. Giuffrida, and T. Holz, “Cupid: Automatic fuzzer selection for
collaborative fuzzing,” in Proc. of ACSAC, 2020.

[31] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in Proc. of USENIX Security, 2019.

[32] Y.-F. Fu, J. Lee, and T. Kim, “autofz: Automated fuzzer composition
at runtime,” in Proc. of USENIX Security, 2023.

[33] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proc. of ESEC/FSE, 2021.

[34] Google, “Fuzzer test suite (fts),” https://opensource.google/projects/
fuzzer-test-suite, 2021.

[35] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2013.

[36] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proc. of S&P, 2018.

[37] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my
way: Probabilistic path prioritization for hybrid fuzzing.” in Proc. of
NDSS, 2019.

[38] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, 2019.

[39] K. Zhang, X. Xiao, X. Zhu, R. Sun, M. Xue, and S. Wen, “Path tran-
sitions tell more: Optimizing fuzzing schedules via runtime program
states,” in Proc. of ICSE, 2022.

[40] J. Chen, S. Wang, S. Cai, C. Zhang, H. Chen, J. Chen, and J. Zhang,
“A novel coverage-guided greybox fuzzing based on power schedule
optimization with time complexity,” in Proc. of ASE, 2022.

[41] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in Proc. of NDSS,
2016.

[42] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and
I. Shin, “Symsan: Time and space efficient concolic execution via
dynamic data-flow analysis,” in Proc. of USENIX Security, 2022.

[43] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in Proc. of USENIX Security, 2020.

[44] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical
concolic execution engine tailored for hybrid fuzzing,” in Proc. of
USENIX Security, 2018.

[45] S. Poeplau and A. Francillon, “Symqemu: Compilation-based sym-
bolic execution for binaries,” in Proc. of NDSS, 2021.

[46] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incre-
mental hybrid fuzzing with polyhedral path abstraction,” in Proc. of
S&P, 2020.

[47] L. Borzacchiello, E. Coppa, and C. Demetrescu, “Fuzzolic: mixing
fuzzing and concolic execution,” Computers & Security, 2021.

[48] Z. Shen, R. Roongta, and B. Dolan-Gavitt, “Drifuzz: Harvesting bugs
in device drivers from golden seeds,” in Proc. of USENIX Security,
2022.

[49] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and
J. Sun, “Pata: Fuzzing with path aware taint analysis,” in Proc. of
S&P, 2022.

[50] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“Greyone: Data flow sensitive fuzzing,” in Proc. of USENIX Security,
2020.

[51] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl:
Hybrid fuzzing on the linux kernel.” in Proc. of NDSS, 2020.

[52] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proc. of CCS, 2017.

[53] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz: Automati-
cally generating pathological inputs,” in Proc. of ISSTA, 2018.

[54] Y. Kim and J. Yoon, “Maxafl: Maximizing code coverage with a
gradient-based optimization technique,” Electronics, 2020.

[55] D. H. Wolpert and W. G. Macready, “No free lunch theorems for op-
timization,” IEEE Transactions on Evolutionary Computation, 1997.

[56] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al., “A
tutorial on thompson sampling,” Foundations and Trends in Machine
Learning, 2018.

[57] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
1933.

[58] Y. Zhang, S. Wang, and Z. Fang, “Matching in multi-arm bandit with
collision,” in Proc. of NeurIPS, 2022.

[59] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, 2002.

[60] O. Chapelle and L. Li, “An empirical evaluation of thompson sam-
pling,” in Proc. of NeurIPS, 2011.

[61] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the
multi-armed bandit problem,” in Proc. of COLT, 2012.

[62] Google, “Honggfuzz: Security oriented software fuzzer,” https://
github.com/google/honggfuzz, 2020.

[63] “Laf-intel,” https://lafintel.wordpress.com/, 2016.

[64] C. Lyu, H. Liang, S. Ji, X. Zhang, B. Zhao, M. Han, Y. Li, Z. Wang,
W. Wang, and R. Beyah, “Slime: program-sensitive energy allocation
for fuzzing,” in Proc. of ISSTA, 2022.

[65] G. Zhang, P. Wang, T. Yue, X. Kong, S. Huang, X. Zhou, and
K. Lu, “Mobfuzz: Adaptive multi-objective optimization in gray-box
fuzzing,” in Proc. of NDSS, 2022.

[66] H. Zheng, J. Zhang, Y. Huang, Z. Ren, H. Wang, C. Cao, Y. Zhang,
F. Toffalini, and M. Payer, “Fishfuzz: Catch deeper bugs by throwing
larger nets,” in Proc. of USENIX Security, 2023.

[67] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013.

[68] “Sbft 2024 fuzzing competition,” https://sbft24.github.io/tools/
fuzzing, 2024.

[69] P. Görz, B. Mathis, K. Hassler, E. Güler, T. Holz, A. Zeller, and
R. Gopinath, “Systematic assessment of fuzzers using mutation anal-
ysis,” in Proc. of USENIX Security, 2023.

[70] A. Fioraldi, D. C. Maier, D. Zhang, and D. Balzarotti, “Libafl: A
framework to build modular and reusable fuzzers,” in Proc. of CCS,
2022.

15

https://fuzzbench.com/reports/experimental/2023-12-15-aflpp/index.html
https://fuzzbench.com/reports/experimental/2023-12-15-aflpp/index.html
https://fuzzbench.com/reports/experimental/
https://sbft23.github.io/tools/fuzzing
https://sbft23.github.io/tools/fuzzing
https://opensource.google/projects/fuzzer-test-suite
https://opensource.google/projects/fuzzer-test-suite
http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://lafintel.wordpress.com/
https://sbft24.github.io/tools/fuzzing
https://sbft24.github.io/tools/fuzzing

[71] “libfuzzer – a library for coverage-guided fuzz testing,” https://llvm.
org/docs/LibFuzzer.html, 2018.

[72] R. David, R. Abou Chaaya, and C. Heitman, “Pastis: A collaborative
approach to combine heterogeneous software testing techniques,” in
Proc. of SBFT, 2023.

[73] Y. Koike, H. Katsura, H. Yakura, and Y. Kurogome, “Slopt: Bandit
optimization framework for mutation-based fuzzing,” in Proc. of
ACSAC, 2022.

[74] J. Yu, X. Lin, and X. Xing, “Gptfuzzer: Red teaming large language
models with auto-generated jailbreak prompts,” ArXiv Preprint, 2023.

[75] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proc. of ISSTA, 2023.

[76] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang,
“Fuzz4all: Universal fuzzing with large language models,” ArXiv
Preprint, 2024.

[77] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. Abu-Ghazaleh, “Syzvegas: Beating kernel fuzzing odds with re-
inforcement learning,” in Proc. of USENIX Security, 2021.

[78] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “Fuzz-
guard: Filtering out unreachable inputs in directed grey-box fuzzing
through deep learning,” in Proc. of USENIX Security, 2020.

[79] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proc. of ISSTA, 2018.

[80] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu,
H. Cui, and L. Zhang, “Evaluating and improving neural program-
smoothing-based fuzzing,” in Proc. of ICSE, 2022.

[81] M.-I. Nicolae, M. Eisele, and A. Zeller, “Revisiting neural program
smoothing for fuzzing,” in Proc. of ESEC/FSE, 2023.

[82] K. Böttinger, P. Godefroid, and R. Singh, “Deep reinforcement
fuzzing,” in Proc. of S&PW, 2018.

[83] X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic
generation of syntax valid c programs for fuzz testing,” in Proc. of
AAAI, 2019.

[84] W. Chen, H. Wang, W. Gu, and S. Wang, “Rltrace: Synthesizing high-
quality system call traces for os fuzz testing,” in Proc. of InfoSec,
2023.

[85] X. Li, X. Liu, L. Chen, R. Prajapati, and D. Wu, “Alphaprog:
reinforcement generation of valid programs for compiler fuzzing,”
in Proc. of AAAI, 2022.

[86] Y. Zhao, X. Wang, L. Zhao, Y. Cheng, and H. Yin, “Evolutionary
mutation-based fuzzing as monte carlo tree search,” ArXiv Preprint,
2021.

[87] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proc. of ICSE, 2022.

[88] J. Scott, T. Sudula, H. Rehman, F. Mora, and V. Ganesh, “Banditfuzz:
fuzzing smt solvers with multi-agent reinforcement learning,” in Proc.
of ISFM, 2021.

[89] S. Karamcheti, G. Mann, and D. Rosenberg, “Adaptive grey-box fuzz-
testing with thompson sampling,” in Proc. of AI & Security, 2018.

[90] D. She, A. Shah, and S. Jana, “Effective seed scheduling for fuzzing
with graph centrality analysis,” in Proc. of S&P, 2022.

[91] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
2002.

[92] Google, “syzkaller,” https://github.com/google/syzkaller, 2016.

[93] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and
L. Zhang, “A survey of compiler testing,” Acm Computing Surveys
(Csur), 2020.

[94] H. Xu, Y. Wang, S. Fan, P. Xie, and A. Liu, “Dsmith: Compiler
fuzzing through generative deep learning model with attention,” in
Proc. of IJCNN, 2020.

Appendix

1. Example of customized multi-arm bandit algo-
rithm and resource allocation

We present a comprehensive explanation of our cus-
tomized multi-arm bandits, accompanied by a straightfor-
ward example that demonstrates the shift in weight distri-
bution.

Let’s assume that we use the method in §3.1 to sched-
ule three fuzzers throughout the fuzzing campaign: AFL,
AFLFast and AFL++. At the beginning of a new round,
say round t, the weight distribution for each fuzzer are
as follows: AFL ∼ Beta(2, 2), AFLFast ∼ Beta(3, 4),
AFL++ ∼ Beta(5, 4). For each fuzzer, we sample a value
θ from its weight distribution. Assume we got θAFL = 0.57,
θAFLFast = 0.32, θAFL++ = 0.81. Since AFL++ has
the highest sampled value, it is selected for the round to
execute the fuzzing task. After it finishes the task, we need to
evaluate its performance by collecting the seeds it generated
in this round. Then, we use Algorithm 1 to evaluate those
seeds and get a reward value r, let’s say r = 0.78. We then
need to discretize this value by sampling from a bernoulli
distribution Bernoulli(p = 0.78), and use the sampled
value as the discretized reward. Assume we got 1, then
AFL++ obtains a reward equal to 1. The reward distribution
of AFL++ is then updated from Beta(5, 4) to Beta(6, 4).

The procedure offers the advantage of achieving a bal-
ance between exploration and exploitation. In real world
scenarios, scheduling among fuzzers can be highly dynamic.
For instance, Figure 7 presents a graphical representation of
which fuzzer attains the maximum mathematical expected
sampling value in each round. As depicted in the figure,
no single fuzzer consistently outperforms others. AFL++,
MOpt, and AFLFast each take turns leading in performance.

2. More FuzzBench Results

In Figure 8, we show the branch coverage of BAND-
FUZZ vs individual fuzzers across the time. The results are
consistent with Table 1.

16

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/syzkaller

++

Figure 7: Bar graph representation of fuzzers achieving the highest mathematical expectation for reward distribution over consecutive
rounds, sampled every 10 rounds, in a single trial targeting lcms_cms_transform_fuzzer. Each colored bar indicates a fuzzer with
the leading expectation value at that specific round.

4h 8h 12h 16h 20h 24h
4746

5576

6406

br
an

ch
 c

ov
er

ag
e

bloaty_fuzz_target

4h 8h 12h 16h 20h 24h
5088

9318

13549
freetype2_ftfuzzer

4h 8h 12h 16h 20h 24h
8480

9822

11164
harfbuzz_hb-shape-fuzzer

4h 8h 12h 16h 20h 24h
509

1403

2298
lcms_cms_transform_fuzzer

4h 8h 12h 16h 20h 24h
0

1571

3143

br
an

ch
 c

ov
er

ag
e

libpcap_fuzz_both

4h 8h 12h 16h 20h 24h
1865

1956

2047
libpng_libpng_read_fuzzer

4h 8h 12h 16h 20h 24h
12825

14380

15934
libxml2_xml

4h 8h 12h 16h 20h 24h
8362

9881

11401
libxslt_xpath

4h 8h 12h 16h 20h 24h
1670

5826

9982

br
an

ch
 c

ov
er

ag
e

openh264_decoder_fuzzer

4h 8h 12h 16h 20h 24h
5777

5805

5834
openssl_x509

4h 8h 12h 16h 20h 24h
177

4090

8003
proj4_proj_crs_to_crs_fuzzer

4h 8h 12h 16h 20h 24h
1881

2030

2179
stb_stbi_read_fuzzer

4h 8h 12h 16h 20h 24h
time

193

217

242

br
an

ch
 c

ov
er

ag
e

systemd_fuzz-link-parser

4h 8h 12h 16h 20h 24h
time

1151

1216

1281
vorbis_decode_fuzzer

4h 8h 12h 16h 20h 24h
time

939

1078

1217
woff2_convert_woff2ttf_fuzzer

BandFuzz
AFL++
LAF-Intel
Radamsa
MOpt

AFL
AFLFast
FairFuzz
honggfuzz
DARWIN

Figure 8: Evaluation of BANDFUZZ and individual fuzzers on FuzzBench: Each line plot in the graph represents the arithmetic mean
along with a 95% confidence interval, derived from 10 independent trials. “Branch coverage” denotes the count of branches that each
fuzzer has explored.

17

	Introduction
	Background
	Individual Fuzzers
	Collaborative Fuzzing

	Key Techniques
	Overview of BandFuzz
	Fuzzer Evaluation Methodology
	Resource Allocation Mechanism

	Implementation
	Fuzzer Integration
	Fuzzer Management, Synchronization & Evaluation

	Experiment
	Experiment Setup
	Experiment Design
	Experiment Result

	Real-World Assessment
	Related Work
	Discussion
	Conclusion
	References
	Appendix
	Example of customized multi-arm bandit algorithm and resource allocation
	More FuzzBench Results

