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Abstract
Backdoor attacks involve either poisoning the training data or directly
modifying the model in order to implant a hidden behavior, that causes
the model to misclassify inputs when a specific trigger is present. Dur-
ing inference, the model maintains high accuracy on benign samples
but misclassifies poisoned samples into an attacker-specified target
class. Existing research on backdoor attacks has explored developing
triggers in the spatial, spectral (frequency), and semantic (feature) do-
mains, aiming to make them stealthy. While some approaches have
considered designing triggers that are imperceptible in both spatial and
spectral domains, few have incorporated the semantic domain. In this
paper, we propose a novel backdoor attack, termed 3S-attack, which
is stealthy across the spatial, spectral, and semantic domains. The key
idea is to exploit the semantic features of benign samples as triggers,
using Gradient-weighted Class Activation Mapping (Grad-CAM) and
a preliminary model for extraction. The trigger is then embedded in
the spectral domain, followed by pixel-level restrictions after convert-
ing the samples back to the spatial domain. This process minimizes
the distance between poisoned and benign samples, making the attack
harder to detect by existing defenses and human inspection. Exten-
sive experiments on various datasets, along with theoretical analysis,
demonstrate the stealthiness of 3S-attack and highlight the need for
stronger defenses to ensure AI security. Our code is available at:
https://anonymous.4open.science/r/anon-project-3776/

Keywords: Artificial intelligence Security, Backdoor attack, Deep
neural network, DCT transform

1 Introduction
With the rapid integration of artificial intelligence (AI) into diverse sec-
tors such as finance, healthcare, and daily life, concerns about the secu-
rity and trustworthiness of AI systems are intensifying. An increasing
number of studies have revealed the vulnerabilities of AI models, rais-
ing concerns about their reliability in real-world applications. Based on
the attackers’ objectives, the attacks targeting AI model can be broadly
classified into model manipulation attacks [1] and data extraction at-
tacks [2]. Model manipulation attacks aim to disrupt the inference
process of AI models, forcing them to produce unexpected outputs
or attacker-specified results. For example, adversarial attacks [3] and
scaling attacks [4] modify benign samples in subtle ways, causing the
model to misclassify them. Backdoor attacks [5], on the other hand,
implant hidden triggers in the model through poisoned training data or
direct modifications to the model, enabling the attacker to manipulate
the model’s output whenever these triggers are present. Similarly, data
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poisoning attacks [6] disrupt the learning process by altering the labels
of certain training samples, degrading the model’s ability to generalize
accurately. In contrast, data extraction attacks [2] focus on stealing in-
formation about the model or its training data. By analyzing the inputs
and outputs of a model or its internal parameters, attackers can extract
sensitive information. These attacks can reveal whether a specific sam-
ple was part of the model’s training data (membership inference) [7],
reconstruct representative samples for each class (model inversion) [8],
or infer detailed properties of the training data (attribute inference) [9].
In some cases, attackers can even recover specific training samples
(data reconstruction) [10].

Among them, backdoor attacks have drawn significant attention due
to their stealthy nature and minimal deployment cost [11]. In a typical
backdoor attack, an adversary poisons a small subset of the training
data by injecting inputs containing a specific trigger and labeling them
with the target class. Once trained, the model performs well on benign
inputs but misclassifies any input with the trigger into the attacker-
specified class. Notably, modifying as little as 1% of the training
data is sufficient to embed a backdoor [11], and the entanglement
of backdoor functionality with normal neurons further complicates
detection and removal. Consequently, defending against such attacks
remains a pressing challenge.

Over the years, various defense strategies have emerged, target-
ing different domains: spatial [12], spectral [13], and semantic [14]
characteristics. In neural networks, spatial domain refers to the ar-
rangement of pixels in an image, spectral domain focuses on frequency
components of samples (e.g., via Fourier transforms), and semantic
domain captures latent features of sample generated by pre-defined
metrics or the model. In response, attackers have developed more
covert strategies, seeking to evade these defenses by optimizing the
stealthiness of the trigger across specific domains [15, 16]. However,
stealthiness in the semantic (feature) domain—which closely reflects
the model’s internal representation—has received limited attention.
Existing semantic-aware attacks either require access to the training
process [17], or fail to achieve stealth across multiple domains simul-
taneously.

To address these limitations, we propose 3S-Attack, a novel back-
door attack that achieves stealthiness across three complementary do-
mains: spatial, spectral, and semantic. Our method does not require
access to the training pipeline. Instead, it operates solely through
data poisoning. Leveraging Grad-CAM [18], we extract the semantic
features of benign class samples and embed them into the poisoned
images. We then restrict pixel-level perturbations to preserve visual
indistinguishability. The resulting poisoned samples remain nearly
identical to clean ones in appearance, frequency characteristics, and
high-level features, effectively evading both human perception and
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state-of-the-art defense techniques.
As illustrated in Figure 1, 3S-Attack introduces less perturbation

to both spatial space and spectral space compared to widely adopted
backdoor methods, while achieving strong attack success rates.

Clean 3S-attack(ours) ISSBA Wanet Bppattack FIBA

Spatial
residual

Spectral
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Figure 1: Comparison of proposed 3S-attack with other state-
of-the-art (SOTA) backdoor attacks in spatial and spectral per-
spective.

The main contributions of this work are as follows:

1. We systematically analyze the limitations of existing backdoor
attacks and defenses across different domains.

2. We propose 3S-Attack, the first backdoor attack to simultaneously
achieve stealthiness in spatial, spectral, and semantic domains.

3. 3S-Attack is also the first semantic-domain stealthy backdoor
attack that operates purely through poisoned samples, without
requiring access to the model training process.

4. Extensive experiments and theoretical analysis demonstrate the
superior stealth and defense-resistance capabilities of our pro-
posed method compared to prior state-of-the-art attacks.

The rest of this paper is structured as follows. Section 2 reviews
related work on backdoor attacks and defenses. Section 3 introduces
the attack design and methodology. Section 4 presents experimental
evaluations and analysis. Finally, Section 6 concludes the paper.

2 Background and Related Work
Research on backdoor attacks can be divided into two categories: attack
schemes and corresponding defense methods.

2.1 Existing Backdoor Attacks
In 2017, Gu et al. [11] first proposed BadNets, defining the concept of
backdoor attacks targeting DNN models and revealing their potential
risks. In BadNets, the attacker first determines a trigger pattern and
its location, as well as a corresponding target class. Then, a batch
of samples from non-target classes in the training dataset is randomly
selected, embedded with the trigger, and their labels are modified to
the target class. These generated samples are referred to as poisoned
samples, which are subsequently injected back into the training dataset.
When a user trains a model using this dataset, the backdoor linking
the trigger to the target class is implanted into the model. Since

then, a plethora of research papers on backdoor attacks have emerged.
Currently, research on backdoor attacks can be categorized into two
stages: visible backdoor attacks and invisible backdoor attacks.

Visible Attacks At this stage, attackers primarily focus on enhanc-
ing the reliability and attack success rate (ASR) of the attack, paying
less attention to whether the trigger is conspicuous, i.e., whether it can
be detected by human observation or defense methods. Chen et al. [19]
proposed two types of backdoor attacks: a single-instance-key attack,
which aims to mislead the model into recognizing any sample of one
person as another; and a pattern-key attack, which causes the model to
misclassify any sample containing a specific pattern. Barni et al. [20]
introduced a clean-label backdoor attack in which the attacker achieves
the backdoor effect by modifying only the samples without changing
their labels. Lovisotto et al. [21] extended backdoor attacks to biomet-
ric systems, providing practical application scenarios and highlighting
that, if left undefended, backdoor attacks could be deployed in nearly all
deep learning settings. Liu et al. [22] proposed a black-box backdoor
attack aimed at reducing the usability of DNN models.

Invisible Attacks After the concept of backdoor attacks was in-
troduced, numerous researchers began developing defense methods.
Consequently, as understanding of backdoor attacks deepened, human-
recognizable triggers were gradually abandoned due to their suscepti-
bility to detection.

During this stage, researchers not only ensured the effectiveness of
the attack but also emphasized improving its stealthiness. This includes
invisibility to defense methods, i.e., bypassing various defenses, and
invisibility to humans, ensuring the poisoned samples appear normal
and coherent to the human eye. Specifically, Xue et al. [23] proposed
two types of backdoor attacks: one-to-N attacks, where one type of trig-
ger activates multiple backdoors, and N-to-one attacks, where multiple
triggers activate one backdoor, both of which bypass various defense
methods. Liao et al. [24] introduced the first global trigger backdoor
attack by overlaying a shallow watermark as the trigger, achieving high
attack success rates while remaining imperceptible to humans. Zou
et al. [25] proposed inserting one or more neural-level trojans into the
neural network, achieving high stability, as only images with triggers
could activate the trojan (or backdoor). Wang et al. [26] proposed an in-
visible trigger based on existing biological studies of the human visual
system and the assumption that the human eye is insensitive to small
color differences. This attack generates triggers by re-encoding and
dithering samples, making them undetectable by humans and defense
methods.

Subsequently, researchers found that adding backdoors to the fre-
quency domain features of samples can make the poisoned samples
inherently covert in the spatial domain. Therefore, some researchers
have attempted to implement backdoor attacks from the frequency per-
spective. For example, Yu et al. [27] proposed applying a Fast Fourier
Transform (FFT) to the samples, adding the features of trigger samples
to target samples, and then performing an inverse transform to obtain
poisoned samples. Gao et al. [28] proposed a dual stealthy backdoor
attack (DUBA) that embeds the trigger via discrete wavelet transform
(DWT), then smooths the trigger by applying a Fast Fourier Trans-
form (FFT) and Discrete Cosine Transform (DCT), making the trigger
stealthy in both the spatial and spectral domains. Zeng et al. [13] pro-
posed a trigger pattern that smoothly changes the pixel values in the
spatial domain, which avoids abnormal spikes in the frequency map.
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Other Backdoor Attacks In addition to adding poisoned sam-
ples to training datasets, researchers have also explored implanting
backdoors by directly modifying models. Tang et al. [29] achieved
the association between triggers and target classes by adding a bypass
from input to output in a trained model, enabling backdoor implan-
tation without modifying the dataset. Doan et al. [30] proposed that
during the training phase, when model parameter information is stored
in memory, accessing and modifying specific neuron parameters via
programs can also implant backdoors into the model. If the attacker
is a provider of Machine Learning as a Service (MLaaS), they can ac-
cess both the training dataset and the training process, enabling more
efficient and stealthy backdoor attacks. Liu et al. [31] suggested first
performing reverse engineering on the model to obtain an initial trig-
ger, then fine-tuning the model to enhance the trigger’s attack success
rate. Zhong et al. [17] proposed using a U-net encoder to generate
poisoned samples. The attacker modifies the model’s loss function
and trains the U-net synchronously with the model to generate optimal
triggers, significantly improving the attack’s stealthiness.

Beyond image classification tasks, recent work has extended back-
door attacks to models performing other tasks, including back-
door attacks on transfer learning [32], federated learning [33], self-
supervised [34] and semi-supervised learning [35], as well as models
for voice recognition [36] and natural language processing [37].

2.2 Existing Backdoor Defenses
The existing backdoor defense methods can be categorized into three
types based on their focus: spatial domain-based, spectral domain-
based, and semantic domain-based backdoor defenses.

Spatial Domain In image classification tasks, the spatial domain
refers to the arrangement of pixels within each sample image. Backdoor
defense methods that analyze from the spatial perspective attempt to
detect backdoors directly without applying any transformations to the
samples or the model.

Wang et al. [12] proposed the Neural Cleanse (NC) defense, which
assumes the attacker will try to design the trigger as small as possible
to draw less attention from human inspection. It therefore reverse-
engineers each class to find a potential trigger and regards the anoma-
lously small one as the actual backdoor trigger. Gao et al. [38] assumed
that trigger features are usually strong, while benign features are other-
wise fragile. Therefore, they proposed STRIP, which overlaps images
and checks whether the model’s predictions change. If not, the sam-
ple is likely poisoned. Selvaraju et al. [18] proposed Grad-CAM as
a method to improve model explainability by highlighting which area
of a sample the model focuses on during prediction. It has also been
recognized as a defense against backdoor attacks and inspired many
derivatives. For example, Doan et al. [39] proposed Februus, which
uses model explainability to extract the area receiving the most at-
tention during classification—usually the trigger area in a poisoned
sample. They then cover this area and perform image reconstruction
to restore a benign sample. Chou et al. [40] proposed SentiNet, which
also uses Grad-CAM to locate the most important area in a sample and
cover it to observe whether the model prediction changes.

Spectral Domain Spectral-based backdoor defense methods in-
volve transforming image samples from the spatial domain to the fre-
quency domain using techniques such as FFT (Fast Fourier Trans-

form) or DCT (Discrete Cosine Transform). After transformation,
these methods identify triggers and backdoors by detecting abnormal
changes in frequencies and amplitudes caused by trigger insertion.

Hammoud et al. [41] proposed a defense that clusters frequency-
domain response vectors of different samples (e.g., using k-means) to
automatically distinguish poisoned samples from benign ones, without
requiring prior knowledge of the trigger shape or target label. Zeng
et al. [13] used the spectral anomalies caused by trigger injection to
establish a trigger dataset, then used this dataset to train a classifier to
detect poisoned samples. Fu et al. [42] proposed a method to detect
malicious traffic. However, the proposed frequency-domain analysis
can also be applied to detect anomalous patterns in deep learning
models, including backdoor attacks. They leverage frequency-domain
features to achieve efficient and robust real-time detection.

Semantic Domain The semantic domain refers to any space that
can represent or maximize the features of a sample. This domain can
include not only manually defined spaces but also those automatically
discovered by the model during training. For instance, to classify
samples more efficiently, the model often assigns one or more neurons
to specific features. In this case, the set of neurons activated by a
sample can be regarded as its representation in the model’s abstract
semantic domain. Based on these features, poisoned samples can be
identified.

Liu et al. [14] proposed Fine-pruning, which assumes some neurons
in the network are specifically responsible for the backdoor function
and remain inactive when benign samples are input. By pruning these
neurons, the backdoor can be eliminated. Tran et al. [43] proposed
Spectral Signatures, which suggests that if a class contains both benign
and poisoned samples, the poisoned samples will exhibit strong signals
in activation states and can thus be detected by Singular Value Decom-
position (SVD). Chen et al. [44] proposed Activation Clustering, which
follows a similar assumption. Even if poisoned and benign samples
in the target class are classified the same, their internal mechanisms
differ. Clustering neuron activations of samples in a class reveals the
target class with a much higher Silhouette Score. Liu et al. [45] pro-
posed ABS, which analyzes neuron activations under varying stimulus
intensities to locate poisoned neurons and reverse-engineer the trigger
based on these neurons. Li et al. [46] proposed NAD, which uses a
teacher model to fine-tune the backdoored model, forcing it to share
hidden attention with the teacher model, thus mitigating the backdoor
effect.

3 3S-attack
The aim of this research is to address the limitations of existing back-
door attacks. Existing backdoor attack schemes have considered the
stealthiness of triggers and poisoned samples in the spatial domain
(making the poisoned samples look similar to the corresponding be-
nign samples), the spectral domain (ensuring the spectral map of poi-
soned samples has no obvious anomaly), and the semantic domain
(ensuring the model activations for poisoned samples resemble those
of benign samples). However, none of them aim to make backdoor
attacks stealthy across all three domains simultaneously. Therefore,
this paper focuses on designing a backdoor trigger that is stealthy
in the spatial, spectral, and semantic domains. We name our attack
3S-attack, as it satisfies all the above requirements. Furthermore, ex-
isting backdoor attacks that are stealthy in the semantic domain always
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involve controlling or manipulating the model training process [17],
which is unrealistic for attackers in most circumstances. To the best
of our knowledge, this is also the first work to develop a backdoor
attack scheme that is stealthy in the semantic domain without access to
model parameters or the training process. Thus, this work expands the
applicability of advanced backdoor attacks, posing a significant threat
to the backdoor defense community.

3.1 Threat Model
In this work, we follow the most common assumptions adopted in
previous studies [11, 15, 26, 16, 19, 21, 23, 47, 25, 27, 28, 30, 31, 35,
34].

Attacker’s Capability The attacker can inject or alter a certain
number of samples in the training dataset. For example, the attacker
may generate poisoned samples and publish them online, waiting for
victims to collect them as part of their training dataset; or the attacker
may be a third-party data collection or labeling service provider who
has more control over the victim’s dataset.

However, like many previous works, we do not assume that the
attacker has access to the model itself, such as the training process,
model parameters, or loss function. This is because very few individu-
als or parties have access to a specific victim’s model, such as MLaaS
providers. Moreover, attacks conducted by such parties are highly
traceable. Once a backdoor is discovered in the model, the victim
can easily identify the misbehaving party and hold them accountable,
which greatly limits the feasibility of such attacks.

Therefore, in this paper, we assume that the attacker has access to
the training dataset but not to the model training process.

Attacker’s Goal The attacker’s goal is to successfully implant a
backdoor into the target model via data poisoning. Specifically, the
attacker designs a trigger, generates multiple poisoned samples using
it, and relies on the victim to train a model with these samples. The
backdoor attack should fulfill the following characteristics: feasibility
(remains inactive on benign samples but causes misclassification to a
target class when triggered), stealthiness (undetectable through human
inspection across various domains), and defense resistance (resistant
to defenses from different perspectives).

Problem Formulation We focus our work on deep neural net-
works (DNN) for image classification trained using supervised learn-
ing, as this is the most common setting for DNN usage and training in
real-world applications.

Normally, a DNN model is trained with dataset D = {(xi, yi)}Ni=1

with the following equation:

θ∗ = argmin
θ

1

N

N∑
i=1

ℓ(fθ(xi), yi), (1)

where θ is the model parameters; ℓ(·) is the cross-entropy loss; fθ(·)
is the function of the model; xi is a sample in the training dataset; yi is
the corresponding label, and 1

N

∑N
i=1 represents the average loss over

all N training examples.
Now, the functionality of a DNN can be described as follows:

fθ(xi) = ti = yi, (2)

where fθ(·) is the function of the model; xi is a sample submitted to
the model; ti is the model prediction class of this sample; and yi is
the label of this sample, perhaps the ground truth of this sample. This
indicates the model should have a high prediction accuracy on benign
samples, which is the basic requirement for a functional model.

The backdoor model on the other hand, is trained with a
slightly modified dataset D = Dclean ∪ Dpoisoned, where Dpoisoned =

{(xp
i , y

p
i )}

Np

i=1 as the subset of poisoned samples following the same
process in Eq. 1. In which case, the poisoned sample xp

i is crafted via a
data poisoning function xp

i = T (xi) where T (·) donates the implant-
ing the trigger into samples process and samples’ corresponding class
is changed from the original yi to target class yp

i . The backdoor model
has not only the feature of Eq. 2, but also another function:

fθ(x
p
i ) = tpi = yp

i , (3)

where xp
i is the poisoned sample; tpi is the model prediction on the

poisoned sample; and yp
i is the target class. This indicates that the

backdoor model can accurately classify benign samples, while mis-
classifying every poisoned sample into the target class. Since we
assume no access to any model-related information, our attack design
focuses on finding an optimal trigger that satisfies these goals.

3.2 Attack Method Intuition
The major challenge in designing a stealthy backdoor attack lies in
making the trigger invisible in the semantic domain, which is an ab-
stract space autonomously learned by the model and exhibits strong
black-box characteristics. It is impossible to predict the shape of this
space before training begins, let alone describe it accurately.

To address this challenge, the proposed 3S-attack adopts a strategy of
fighting magic with magic. Theoretically, a fully trained model should
focus on parts of an input image that best reflect the features associated
with its label. For instance, if an image is labeled as a cat, the model
should focus on the parts that reveal the presence of a cat (e.g., the cat’s
body), while ignoring irrelevant parts (e.g., the background). Hence,
models trained on similar datasets are expected to focus on roughly the
same regions when classifying the same sample.

Following this insight, the 3S-attack attempts to indirectly charac-
terize the semantic domain and bypass the difficulty of describing it by
leveraging a preliminary model to predict the semantic domain of the
target model. Specifically, the attacker first trains a clean model and
observes which neurons are activated when processing benign samples.
No specific requirements are imposed on this clean model, as long as
it achieves acceptable classification accuracy to allow Grad-CAM to
compute saliency map for given samples. By analyzing the saliency
map, the attacker identifies the parts of the image that are most im-
portant to the model. This information is then utilized to construct
the trigger for the backdoor attack. The detailed procedures for trigger
generation and injection are introduced below.

3.3 Trigger Extraction
The attacker first trains a preliminary model using a clean dataset.
This model need not achieve optimal accuracy—only an acceptable
performance level. The attacker then selects a target class and chooses
one or more samples from this class to generate the trigger.

As shown in Figure 2, the attacker uses Grad-CAM to extract the
regions the model relies on most when classifying the trigger samples
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(saliency maps). These saliency maps are multiplied with the cor-
responding samples to produce tailored samples. Both the original
trigger samples and the tailored samples are then transformed using
the Discrete Cosine Transform.

F (u, v) =

1

4
α(u)α(v)

M−1∑
x=0

N−1∑
y=0

f(x, y) · cos
(
(2x+ 1)uπ

2M

)
· cos

(
(2y + 1)vπ

2N

)

Where:

f(x, y) : pixel value at position (x, y) in the spatial domain

F (u, v) : DCT coefficient at frequency coordinates (u, v)

M,N : image size

α(k) =

{
1√
2
, if k = 0

1, if k > 0
: normalization factor

The attacker compares the magnitude of each frequency component
in the resulting spectrograms. Frequencies with magnitude differences
below a certain threshold are considered the key features that the model
uses for prediction. These frequencies and their corresponding magni-
tudes are stored as the trigger.

Trigger Image

Saliency map

Grad-CAM
Pre-trained model

M

M : Multiply

Taliored image

C

D

C

: DCT transform

: Compare

Backdoor trigger

D

D

Figure 2: Pipeline for extracting a trigger from a benign sample
in target class.

3.4 Poisoned Samples Generation
After obtaining the trigger, the next step is to inject it into samples to
generate poisoned inputs. As shown in Figure 3, for a target sample, the
attacker first applies DCT to obtain its spectral map. Then, based on a
predefined parameter called the Poison Distance Ratio, the magnitudes
of the trigger-identified frequencies in the target sample are adjusted
toward the corresponding values in the trigger. After this adjustment,
inverse DCT is applied to convert the sample back into the spatial
domain.

However, preliminary experiments indicate that directly adding trig-
gers in the spectral domain can result in unnatural artifacts in the spatial
domain (see the upper half of Figure 4). Therefore, it is necessary to
constrain pixel variations. Specifically, after inverse transformation,
the modified sample is compared with the original in terms of pixel
values. If the change in any pixel exceeds a certain threshold, the
change is limited to that threshold. The same rule applies when pixel
values exceed the data boundaries (e.g., 0–255 for uint8, or 0–1 for
float data). Note that the pixel value change restriction step does not
always take effect, as in most cases the pixel changes caused by trigger

D

IM

Benign Image Frequency Map

Trigger

Poisoned
Frequency map

Poisoned image

D : DCT transform

: Inverse 
  DCT transform

: Move the frequency value towards the trigger

I

M

Figure 3: Process of embedding the trigger into benign samples
to generate poisoned samples.

injection do not exceed the pixel change threshold. In other words, the
pixel restriction serves merely as a safeguard in case the pixel changes
become too large.

Pixel value change restriction

Figure 4: Pixel value change restriction on poisoned samples.
Note that the red circles in the figure are solely used to highlight
the unnatural artifacts in the samples; the circles themselves are
not part of the poisoned samples.

3.5 3S-attack Overview
To summarize, the proposed 3S-attack follows a three-stage process
that enables stealthy and effective backdoor injection by leveraging
frequency-domain manipulation guided by semantic features. This
design ensures that the poisoned samples remain stealthy across spa-
tial, spectral, and semantic domains while evading multiple defense
mechanisms. The entire procedure is illustrated in Algorithm 1, which
includes the following components:

Trigger Extraction: A preliminary model is trained to generate
Grad-CAM saliency maps for samples in the target class. These maps
highlight class-relevant features. By comparing the DCT represen-
tations of the original and tailored images, a set of key frequency
components is selected as the trigger pattern.

Poisoned Sample Generation: A subset of clean data is ran-
domly selected, and their DCT coefficients are selectively modified at
the trigger frequencies using linear interpolation between their original
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values and those in the extracted trigger. The modified representations
are then transformed back into the spatial domain via inverse DCT.

Pixel Value Restriction: To preserve visual imperceptibility, the
pixel-level differences between each poisoned sample and its original
are clipped to a specified threshold.

Algorithm 1 Trigger Extraction and Poisoned Sample Genera-
tion Algorithm of 3S-Attack.
Require: Clean dataset D, target class ct, frequency selection

threshold δ, poison distance ratioα, pixel change restriction
threshold τ

Ensure: Poisoned dataset Dpoisoned

▷ Step 1: Trigger extraction
1: Train model M on D
2: Select sample(s) xtrig ∈ ct
3: S ← Grad-CAM(M(xtrig)) ▷ Compute saliency maps
4: x̃trig ← S ⊙ xtrig

5: Fori ← DCT(xtrig)
6: Ftailored ← DCT(x̃trig)
7: F ← {f : |Fori(f)− Ftailored(f)| < δ}
8: Extract trigger: {(f, Fori(f)) | f ∈ F}

▷ Step 2: Poisoned sample generation
9: Sample subset D′ ⊂ D

10: for all x ∈ D′ do
11: Fx ← DCT(x)
12: for all f ∈ F do
13: F ′

x(f)← (1− α) · Fori(f) + α · Fx(f)
14: end for
15: x̂← IDCT(F ′

x)
▷ Step 3: Pixel value change restriction

16: for all pixel p in x̂ do
17: if |x̂(p)− x(p)| > τ then
18: x̂(p)← x(p) + sign(x̂(p)− x(p)) · τ
19: end if
20: x̂(p)← clip(x̂(p), 0, 255)
21: end for
22: Add x̂ to Dpoisoned

23: end for
return Dpoisoned ← D ∪Dpoisoned

4 Experiments
4.1 Experimental Setup
Environment All experiments were conducted on a server
equipped with NVIDIA A100 Tensor Core GPUs and Intel® Xeon®
Platinum 8570 CPUs, running Red Hat Enterprise Linux 8.10. Before
running the experiments, we applied for 1 GPU, 10 nodes, and 40GB
of memory. All experiments were performed using Python 3.11.0 and
PyTorch 2.5.1+cu118. We used the Adam optimizer with a learning
rate of 0.001, a batch size of 128, and trained the models for 50 epochs.

Datasets Backdoor attacks against DNNs have mainly focused on
models for image classification tasks. Therefore, we selected datasets
that are representative in the image classification field to demonstrate
the generalizability of the 3S-attack across various scenarios.

Table 1: Details of each datasets.

Dataset Input Size #Train #Test Classes

MNIST 28× 28× 1 60000 10000 10
GTSRB 32× 32× 3 39209 12630 43
CIFAR-10 32× 32× 3 50000 10000 10
CIFAR-100 32× 32× 3 50000 10000 100
Animal-10 128× 128× 3 23679 2500 10

We strategically selected MNIST, GTSRB, CIFAR-10, CIFAR-100,
and Animal-10 to comprehensively evaluate our attack’s feasibility,
stealthiness, and resistance to defenses. MNIST [48] is a simple hand-
written digit dataset containing grayscale images of numbers from 0
to 9. GTSRB [49] stands for the German Traffic Sign Recognition
Benchmark and contains 43 types of traffic signs. Each sample is
an RGB image clipped from real-world photographs. CIFAR-10 [50]
contains images categorized into 10 classes, including objects such as
airplane and animals such as cat, with each sample being an RGB
image. CIFAR-100 [50] includes 100 image classes covering a wide
range of objects, buildings, creatures, and scenes, simulating high
inter-class similarity. Animal-10 [51] is a dataset for testing models on
high-resolution images. It contains 10 animal classes with each sam-
ple being a high-resolution RGB image. Table 1 shows the detailed
statistics of each dataset.

The selection of these datasets was based on key considerations to
ensure a thorough and balanced evaluation. They are representative
of a wide range of classification challenges, from simple tasks such as
digit recognition to complex real-world applications. They also span
a range of computational demands, allowing us to assess performance
under different resource constraints. Moreover, these datasets serve
as historical benchmarks in the field, enabling fair comparisons with
state-of-the-art models and existing defenses. Their structured diver-
sity—encompassing handwritten digits, traffic signs, objects, animals,
and high-resolution images—ensures a robust evaluation of 3S-attack
across varied conditions.

Models We employ different neural network architectures tailored to
the complexity and characteristics of each dataset to ensure a meaning-
ful and rigorous evaluation. The selected models include lightweight,
standard, and high-capacity architectures, allowing analysis of the at-
tack’s effectiveness across varying levels of model complexity and
feature extraction capabilities.

For MNIST, we utilize both a custom small model and LeNet-5,
as this dataset consists of low-resolution grayscale images of digits,
requiring relatively simple architectures. LeNet-5 is a classical CNN
benchmark for such tasks. The custom model provides flexibility to
evaluate the attack’s feasibility under different architectures.

For GTSRB and CIFAR-10, we use VGG-11 and ResNet-18 to study
the impact of model depth and feature extraction strategy. VGG-11
offers a simple stacked architecture, while ResNet-18, with its residual
connections, is designed to address vanishing gradients and enhance
feature reuse.

For CIFAR-100, we use WideResNet (WRN), a ResNet variant with
wider layers, offering greater feature representation capacity, suitable
for this fine-grained classification task.

For Animal-10, we adopt ResNet-18 due to its balance between
capacity and efficiency, and because it is widely used in high-resolution
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classification tasks.

Metrics 1: ASR Attack Success Rate (ASR) measures the ef-
fectiveness of a backdoor attack by quantifying the probability that a
model misclassify poisoned samples as the target class when the trigger
is present. It is defined as:

ASR =
|{(xp

i , yp
i ) ∈ Dpoisoned|fθ(xp

i ) = yp
i }|

|{(xp
i , yp

i ) ∈ Dpoisoned}|
, (4)

Where:

(xp
i , y

p
i ) : a poisoned input sample and its associated target label

Dpoisoned : a dataset that only contain poisoned samples

fθ(x
p
i ) : the model’s prediction for poisoned input xp

i

yp
i : the target class chosen by the attacker

| · | : cardinality, i.e., the number of elements in the set

A higher ASR indicates a more effective backdoor attack, as it implies
consistent misclassifications caused by the trigger. Vice versa, a low
ASR suggests the attack is weak or susceptible to defenses.

Metrics 2: PSNR Peak Signal-to-Noise Ratio (PSNR) evaluates
the stealthiness of a backdoor trigger in pixel level by measuring the
pixel level similarity between the original and poisoned samples. It is
defined as:

PSNR = 10 · log10
(

MAX2

MSE

)
, (5)

Where:

MAX : maximum possible pixel value of the image

MSE : Mean Squared Error between the images

x(i, j), y(i, j) : pixel intensities at position (i, j)

m,n : image height and width, respectively

A high PSNR value indicates that the poisoned image closely resembles
the original, making the backdoor attack more stealthy. Conversely,
a low PSNR suggests visible distortion, increasing the likelihood of
detection.

Metrics 3: SSIM Structural Similarity Index Measure (SSIM)
assesses the perceptual similarity between the original and poisoned
images in global level, considering not only pixel-wise differences but
also structural information. It is given by:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (6)

Where:

x, y : input images being compared (e.g., original and poisoned)

µx, µy : mean intensity (average pixel value) of images x and y

σ2
x, σ

2
y : variance (contrast) of images x and y

σxy : covariance between x and y

C1, C2 : small constants to stabilize the division

A high SSIM value (close to 1) indicates strong structural similarity
between the two images, suggesting that the perturbation (e.g., trigger)

is perceptually subtle. Compared to PSNR, SSIM better aligns with
human visual perception by incorporating luminance, contrast, and
structural components.

Together, these three metrics evaluate a backdoor attack’s effective-
ness (ASR) and stealthiness (PSNR and SSIM) from complementary
perspectives. ASR (Attack Success Rate) evaluates the reliability of
the attack by measuring how effectively the model misclassifies poi-
soned samples into the attacker-specified target class. PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Mea-
sure) both assess the imperceptibility of the trigger, but from different
perspectives. PSNR quantifies pixel-level distortions by measuring the
absolute differences in intensity between original and poisoned images,
offering a low-level view of visual changes. In contrast, SSIM cap-
tures the perceptual quality of the image by accounting for luminance,
contrast, and structural information, thereby providing a more holistic
and human-aligned assessment of visual similarity.

4.2 Attack Performance Evaluation
Baseline Attack We selected several baseline backdoor attack
methods that employ different trigger and poisoned sample genera-
tion algorithms to compare with 3S-attack. Specifically, we chose
Wanet [15], Bppattack [26], ISSBA [47], FIBA [16], and BadNets [11].
Wanet [15] defines a warping field as the trigger and applies it to benign
samples, it acts in the spatial domain. Bppattack [26] uses quantiza-
tion and dithering as the trigger mechanisms, it acts in the spatial
domain. ISSBA [47] trains an encoder-decoder pair initially designed
for steganography to embed hidden triggers, it acts in the semantic
domain. FIBA [16] selects the central frequencies of a benign sample
as trigger and replaces that of other samples to generate poisoned in-
puts, it acts in the spectral domain. BadNets [11] serves as a standard
baseline and is used to evaluate the effectiveness of various defenses,
it acts in the spatial domain.

Attack Performance We compare the proposed 3S-attack with
other backdoor attacks, and Table 2 demonstrates the comparative per-
formance of each backdoor attack across the above mentioned datasets.
Specifically, the 3S-attack attains a consistently high ASR across each
datasets, showing that it is achieving a acceptable attack feasibility.
More importantly, it demonstrates remarkably high PSNR and SSIM
scores across all datasets—for instance, a PSNR of 35.65 and SSIM
of 0.9690 on CIFAR-10, which surpass those of Wanet Wanet [15]
(29.95 / 0.7735) and Bppattack [26] (20.06 / 0.9233). These results
indicate that the perturbations introduced by 3S-attack are not only
effective but also imperceptible. Therefore, compared with baseline
attacks which sacrifice trigger stealthiness for ASR, 3S-attack offers
a better trade-off between effectiveness and imperceptibility. Besides,
3S-attack is having a constant performance across different dataset,
indicating its strong generalization capability. Note that in Table 2,
the results of BppAttack on MNIST are omitted because BppAttack
is incompatible with the data characteristics of MNIST. Specifically,
most pixel values in MNIST are either 0 (the minimum) or 255 (the
maximum), resulting in a highly saturated dataset. When BppAttack
is applied, it often produces pixel values that exceed these limits. Due
to value clipping, any modifications that fall outside the valid pixel
range are suppressed, rendering the inserted triggers ineffective. As a
result, BppAttack consistently fails to generate valid poisoned samples
on MNIST.
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Table 2: ASR, PSNR, and SSIM value of different attacks in spatial domain. Note that the ASR is in percentage format.

3S-attack ISSBA [47] Wanet [15] Bppattack [26] FIBA [16]
Datasets ASR PSNR SSIM ASR PSNR SSIM ASR PSNR SSIM ASR PSNR SSIM ASR PSNR SSIM
MNIST 96.47 46.01 0.943 99.10 39.22 0.892 97.43 34.13 0.639 - - - 70.68 23.93 0.679
GTSRB 94.12 32.78 0.979 93.71 19.03 0.653 98.31 31.22 0.759 95.29 24.61 0.943 79.05 14.62 0.559

CIFAR10 89.29 35.65 0.969 77.23 23.51 0.852 93.36 29.95 0.773 91.32 20.06 0.923 65.85 15.50 0.710
CIFAR100 92.38 31.68 0.946 86.42 22.79 0.851 93.06 30.69 0.858 85.94 20.12 0.927 75.48 15.87 0.770
Animal10 97.42 30.83 0.962 99.87 26.6 0.840 93.88 29.59 0.452 92.44 23.28 0.966 58.72 15.69 0.754

4.3 Parameters
In 3S-attack, there are multiple parameters and thresholds that can
affect the performance of the attack. Among them, the most important
parameters are:

1. Poison rate: The poison rate is the most intuitive way to demon-
strate the performance of a backdoor attack, as is well known that
with less poisoned samples needed for successfully embedding a
backdoor, comes a more effective backdoor attack.

2. Frequency selection threshold: After transformed target image
and tailored image to frequency domain, each frequencies at
the same location in both frequency map is compared. If their
numerical similarity percentage is above the frequency selection
threshold, then this frequency and the corresponding value is
selected as part of the trigger.

3. Poison distance ratio: When injecting the trigger into samples,
the amplitude of trigger frequencies in benign sample will move
towards the value in trigger and poison distance ratio is the extent
this amplitude will moves.

4. Pixel change restriction threshold: This parameter controls to
what extent the tolerance is on pixel value change on poisoned
samples. With a higher threshold, each pixel can change more
when modifying the frequency map of a sample. However, with
a lower threshold, less change is allowed on each pixel, which
could lead to a more stealthy change to samples, but also may
cause the trigger to be too weak to embed the backdoor.

Next, we evaluate how these parameters affect 3S-attack perfor-
mance. Figure 5, illustrate the effects on ASR for CIFAR-10, CIFAR-
100, and Animal-10, respectively. Generally, ASR increases as the
proportion of trigger components in the dataset increases, which is
intuitive—higher poisoned intensity leads to higher ASR. And with
the increase of number of poisoned samples (sub-figure a), frequency
selection threshold (sub-figure b), poison distance ratio (sub-figure c),
and pixel change restriction threshold (sub-figure d), the proportion of
trigger components in the dataset increases.

For CIFAR-10, we see that a very high frequency selection thresh-
old can reduce ASR. A possible explanation is that selecting too many
frequencies as triggers causes the attachment of the trigger to have an
excessive impact on samples in the spatial domain. This results in sig-
nificant pixel changes that exceed the preset threshold. Consequently,
when pixel changes are subsequently constrained, the magnitudes of
many frequencies in the spectral map are altered in reverse, rendering
the trigger in the frequency domain ineffective.

Overall, as illustrated in the datas (Fig 5 and Tab 2), the 3S-attack
exhibits strong stealthiness and robustness. Even when the proportion
of trigger components in the dataset is low—corresponding to conser-
vative parameter settings—it consistently achieves a satisfactory ASR.

Furthermore, it maintains a relatively high ASR across a wide range
of parameter variations. These results suggest that effective attack
performance can be attained with high probability, even in the ab-
sence of detailed knowledge about the target model or dataset. This
highlights the practicality of the 3S-attack, as its parameters can be
configured based on general intuition or prior experience rather than
precise model-specific tuning.

4.4 Defense Resistance

The ability to evade existing defenses is a fundamental requirement for
modern backdoor attacks, as any attack lacking this capability is likely
to be detected and mitigated. The 3S-attack is specifically designed
to remain imperceptible across the spatial, spectral, and semantic do-
mains. Accordingly, we selected a comprehensive set of defense meth-
ods that target these three domains to evaluate the defense resistance of
3S-attack. In particular, we consider the following representative de-
fenses: STRIP [38], Neural Cleanse (NC) [12], Activation Clustering
(AC) [44], Grad-CAM [18], Fine-Pruning [14], and Frequency-based
Trigger Detection (FTD) [13] where STRIP, NC, and Grad-CAM are
based on spatial domain; FTD is based on spectral domain; and FP
and AC is based on semantic domain. The remainder of this section
presents the evaluation of 3S-attack against each of these defenses in
detail.

STRIP The core idea behind STRIP is that backdoor triggers are
typically designed to be highly robust in order to ensure a high attack
success rate, whereas benign features in input samples tend to be more
fragile and susceptible to disruption. Consequently, when a sample is
perturbed by blending it with other inputs, the benign features are more
likely to be compromised, leading to changes in the model’s prediction.
In contrast, the backdoor trigger remains effective even when mixed
with other inputs, often still causing the model to misclassify the sample
into the target class. By analyzing the entropy distribution of model
predictions under such perturbations, STRIP distinguishes between
benign and poisoned samples, allowing for the establishment of a
threshold to detect and filter out potential backdoors.

Figure 6 presents the performance of STRIP against BadNets [11]
and the proposed 3S-attack on the GTSRB and Animal10 datasets. The
results show that STRIP is effective in identifying poisoned samples
in BadNets, as their distribution (orange) significantly diverges from
that of benign samples (blue). However, in the case of 3S-attack,
the distribution of poisoned samples (green) closely resembles that
of benign samples, making them indistinguishable. As a result, no
reliable threshold can be set to effectively separate poisoned samples
introduced by 3S-attack, allowing it to successfully evade detection by
STRIP.
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Figure 5: The effect of (a) poison rate, (b) frequency selection threshold, (c) poison distance ratio, and (d) pixel change restriction
threshold on ASR, evaluated on three datasets: CIFAR-10, CIFAR-100, and Animal-10. Increasing any of these parameters
generally leads to higher ASR, indicating stronger attack effectiveness.
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Figure 6: Experimental results of STRIP against Badnets and
3S-attack on GTSRB and Animal10 datasets.

Grad-CAM Grad-CAM is employed not only as a component in
generating the 3S trigger but also as an established method for backdoor
defense. When used defensively, Grad-CAM produces a heatmap
(saliency map) that highlights the regions of an input sample to which
the model pays the most attention during classification. In benign
samples, the highlighted area typically corresponds to the primary
object or key discriminative features. In contrast, for poisoned samples,
the highlighted region often corresponds to the location of the trigger.

Figure 7 illustrates saliency maps for benign samples (top), poisoned
samples from BadNets (middle), and poisoned samples from the 3S-
attack (bottom). For benign samples, the model’s attention is correctly
concentrated on the main features or objects within the image. How-
ever, in poisoned samples generated by BadNets, the model’s focus
is predominantly on the trigger region, regardless of the true label or
semantic content of the image. In contrast, the model’s behavior on
poisoned samples from the 3S-attack closely resembles its behavior on
benign samples, with attention distributed over the primary semantic
regions. This is because the 3S-attack trigger is embedded using fea-
tures already associated with the benign class, resulting in no specific
spatial region being consistently highlighted as the trigger area.

Fine-pruning Fine-pruning (FP) is based on the assumption that
certain neurons in a backdoored model are specifically responsible
for recognizing the presence of a trigger. These backdoor-associated
neurons are typically inactive when processing benign samples and are
only activated by poisoned inputs. Therefore, if a clean dataset that
shares the same distribution as the training data is available, it can
be fed into the model to monitor neuron activation states. Neurons
that remain consistently inactive across the benign dataset are then
considered likely to be backdoor-related and are subsequently pruned
or de-weighted.

Benign samples

Badnets

3S-attack
(a) GTSRB

Benign samples

Badnets
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Figure 7: Experimental results of Grad-CAM against Badnets
and 3S-attack on GTSRB and Animal10 datasets.

Figure 8 presents the results of applying the FP defense to the 3S-
attack on the GTSRB and Animal10 datasets. It is evident that as
the pruning rate increases, the benign accuracy (BA) declines more
rapidly and earlier than the attack success rate (ASR). This indicates
that there is no effective pruning threshold at which ASR is substantially
reduced without also significantly degrading the model’s performance
on benign samples. A likely explanation is that the 3S-attack embeds
the trigger using complex, distributed features that engage a wide range
of neurons. As a result, neurons responsible for recognizing benign
features and those involved in recognizing the trigger may overlap.
This makes it difficult to isolate and remove backdoor-specific neurons
without simultaneously impairing the model’s normal functionality.
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Figure 8: Experimental results of FP defense against 3S-attack
on GTSRB and Animal10 datasets.
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Frequency based Defense The core idea behind frequency-based
defense (FTD) is that most backdoor triggers are designed in the spatial
domain, often without careful consideration of their stealthiness in the
spectral domain. As a result, when such triggers are analyzed in the
frequency domain, they often leave distinct and detectable patterns
in the frequency spectrum. However, although these patterns may
appear visually conspicuous, it is challenging to design a rule-based
algorithm that can reliably distinguish between benign and poisoned
spectral signatures. To address this, FTD employs a neural network-
based approach. Specifically, the defender collects a diverse set of
known trigger patterns and uses them to generate poisoned samples.
A binary classifier is then trained to differentiate between benign and
poisoned samples based on their spectral characteristics.

Table 3 shows that FTD performs well in detecting certain types
of backdoor attacks and their corresponding triggers. Notably, even
when trained on a limited variety of trigger patterns, the FTD detector
demonstrates some generalization ability and can successfully detect
previously unseen trigger types. However, its effectiveness diminishes
when facing attacks like Wanet [15] and the proposed 3S-attack. This
is because the triggers in these attacks exhibit significantly different
frequency-domain characteristics compared to those used in the train-
ing set. In particular, the 3S-attack modifies only a very small subset
of frequency components, making the resulting spectral changes too
subtle for the detector to reliably distinguish from benign samples. As
a result, the FTD classifier fails to recognize the poisoned samples
generated by 3S-attack as anomalous.

Detection Rate (%)
Attack methods GTSRB Animal10

Benign samples 98.54 100
3S-attack 1.46 0.98
ISSBA 100 99.16
Wanet 6.11 4.36
Bppattack 98.87 99.44
FIBA 99.98 98.76
Badnets 100 99.08

Table 3: Experimental results of FTD defense method against
multiple backdoor attack schemes on GTSRB and Animal10
datasets.

However, the 3S-attack also have its vulnerability that can be de-
tected by certain type of backdoor defense like Neural Cleanse and
Activation Clustering.

Neural Cleanse The core idea behind Neural Cleanse (NC) is based
on the observation that attackers typically aim to design triggers as
small and inconspicuous as possible. Moreover, backdoor-ed models
often rely on a few key pixels from the trigger pattern to cause mis-
classifications. As a result, for the target class, it is usually possible
to identify a small trigger pattern that, when attached to a wide range
of benign inputs, consistently causes misclassification into that class.
In contrast, for clean (non-target) classes, any synthesized trigger that
causes benign samples to be misclassified into those classes tends to
be much larger, as there is no actual backdoor associated with them.
By reverse-engineering potential triggers for all classes and comparing
their sizes, NC identifies the class with an abnormally small trigger as
the likely backdoor target.

Figure 9 presents the anomaly index for each class in the NC de-
fense applied to a 3S-attack where the target class is 7. Subfigure
(a) shows the results on the GTSRB dataset, where class 7 exhibits a
significantly higher anomaly index, well above the detection threshold,
indicating that the 3S-attack is effectively detected. However, in subfig-
ure (b), based on the Animal10 dataset, the anomaly index of class 7 is
1.73—still relatively high but below the threshold. Moreover, another
clean class also has a comparable anomaly index of 1.65. These re-
sults suggest that while NC is effective in detecting the 3S-attack under
certain conditions, its reliability is not guaranteed across all settings.
Due to the black-box nature of DNNs, the underlying reasons for this
inconsistency are difficult to pinpoint. One possible explanation is that,
in some cases, the model learns to associate certain subtle, recurring
pixel patterns—shared across all poisoned samples—as the effective
trigger, thereby enabling successful reverse engineering by NC.
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Figure 9: Experimental results of Neural Cleanse against 3S-
attack on GTSRB and Animal10 datasets.

Activation Clustering The idea behind Activation Clustering
(AC) is similar to that of Fine-Pruning, in that certain neurons in
a backdoored model—particularly those in the fully connected lay-
ers—are specifically responsible for recognizing the presence of a trig-
ger. As a result, although poisoned and benign samples from the target
class may yield the same prediction, the internal mechanisms differ, as
they activate different subsets of neurons. Based on this observation,
for each class in the model, one can collect neuron activation patterns
and apply clustering analysis. If the activations naturally separate into
two distinct clusters, it is likely that the class is a backdoor target;
otherwise, the class is considered benign.

Figure 10 illustrates that AC is effective against the 3S-attack across
different datasets, as the Silhouette scores of the target class are con-
sistently higher than those of benign classes. This may be attributed
to the fact that, although 3S-attack is designed to make poisoned sam-
ples activate similar neurons as benign ones, the internal optimization
process of the target model remains a black box and is beyond the
attacker’s control. Consequently, some neurons may still be implicitly
assigned the task of recognizing trigger-specific patterns. This results
in distinguishable activation differences within the target class, making
it more prone to clustering. These findings suggest that AC is a partic-
ularly strong defense and that designing a backdoor attack capable of
evading AC without access to the model training process remains an
extremely challenging task.

5 Discussion
In this section, we analyze the key findings from the experiments,
compare 3S-attack with existing works, identify limitations, and dis-
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Figure 10: Experimental results of Activation Clustering against
3S-attack on GTSRB and Animal10 datasets.

cuss potential future directions.

Core Properties The experimental results demonstrate that 3S-
attack is a feasible, stealthy, robust, and defense-resistant backdoor
attack. It achieves consistently high ASR across datasets of varying
complexity and resolution, including MNIST, GTSRB, CIFAR-10/100,
and Animal-10, confirming its general feasibility. Meanwhile, the
attack induces only minimal perceptual distortion, as evidenced by
high PSNR and SSIM scores—often exceeding all baseline methods.
This validates its spatial and perceptual stealthiness.

Hyperparameter and Model Robustness The 3S-attack re-
mains stable across a wide range of parameters, including poison rate,
frequency threshold, poison distance ratio, and pixel-level restriction.
Even under conservative configurations, 3S-attack retains high effec-
tiveness, showing robustness to hyperparameter variations. Moreover,
it generalizes well across different model architectures, from simple
CNNs to deep residual networks, further enhancing its applicability.

Defense Resistance Several defense mechanisms are rendered in-
effective against 3S-attack. STRIP fails to detect poisoned samples
due to overlapping entropy distributions between benign and poisoned
samples are close. Grad-CAM-based detection is also evaded be-
cause Grad-CAM consistently highlights natural areas, even in poi-
soned samples. As a result, not only Grad-CAM but also its derivative
defenses—such as saliency-based trigger localization—are effectively
bypassed.

Failure of FTD FTD is designed to detect spectral anomalies but
fails against 3S-attack. As shown in Figure 2, the trigger typically
occupies only 1%–5% of the frequency map and lacks any structured
or localized pattern. This seemingly randomness prevents the FTD
classifier, trained on known triggers with regular frequency character-
istics, from generalizing to 3S-attack. Consequently, FTD consistently
misclassifies 3S-poisoned samples as benign.

Partial Detection by NC and AC Despite its stealth, 3S-attack
remains partially detectable by Neural Cleanse (NC) and Activation
Clustering (AC). NC succeeds in datasets like GTSRB, where class
patterns are constrained, but fails on Animal-10 due to semantic com-
plexity. AC is more robust: although 3S-attack aligns poisoned inputs
with benign attention maps, it cannot fully eliminate discrepancies
in deep-layer activations. These latent differences remain cluster-
able, suggesting that 3S-attack does not yet achieve complete semantic
stealth.

Contributions and Impact This work is the first to propose a
backdoor attack that is simultaneously stealthy in spatial, spectral,
and semantic domains. Furthermore, it achieves semantic stealthiness
without requiring access to the model training process—an important
advancement for practical black-box attacks. These findings imply
that backdoor attacks can remain effective even under strong stealth
constraints, underscoring the considerable potential for advancement
in the design of both backdoor attacks and corresponding defenses.

Limitations and Future Work The key limitation of 3S-attack
lies in its incomplete stealth at the feature (semantic) level. Specifi-
cally, Activation Clustering can still detect subtle activation differences
between benign and poisoned samples. Enhancing semantic invisibil-
ity without access to model internals remains a difficult but essential
direction. Future work may explore: (1) adaptive frequency selection
strategies, (2) activation-aligned poisoning to evade AC, and (3) ex-
tending the attack to more complex modalities such as video, text, and
multimodal learning.

Summary 3S-attack demonstrates that multi-domain stealth is both
achievable and effective. It exposes critical vulnerabilities in current AI
systems and motivates the design of more advanced defense strategies.

6 Conclusion
In this paper, we proposed 3S-Attack, a novel backdoor attack that
achieves stealthiness across spatial, spectral, and semantic domains.
The attack constructs a triple-stealthy trigger by extracting class-
relevant features using a preliminary model and Grad-CAM, followed
by frequency-domain embedding and pixel-level constraint. Unlike
prior works, 3S-Attack requires no access to the victim model or its
training process, making it applicable to realistic threat scenarios. Ex-
tensive experiments demonstrate that our method not only maintains
high attack success rates, but also achieves superior imperceptibility,
effectively evading multiple existing defenses.

However, our current approach—while not relying on training-time
access—does not fully guarantee invisibility in the model’s internal
feature space (semantic domain). This highlights a fundamental chal-
lenge for black-box backdoor attacks: achieving semantic-level stealth
without participating in the training process. Addressing this limitation
represents an important direction for future research.
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