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Abstract

Poisoning attacks pose significant challenges to the ro-
bustness of diffusion models (DMs). In this paper, we sys-
tematically analyze when and where poisoning attacks tex-
tual inversion (TI), a widely used personalization technique
for DMs. We first introduce Semantic Sensitivity Maps,
a novel method for visualizing the influence of poisoning
on text embeddings. Second, we identify and experimen-
tally verify that DMs exhibit non-uniform learning behav-
ior across timesteps, focusing on lower-noise samples. Poi-
soning attacks inherit this bias and inject adversarial sig-
nals predominantly at lower timesteps. Lastly, we observe
that adversarial signals distract learning away from rele-
vant concept regions within training data, corrupting the
TI process. Based on these insights, we propose Safe-Zone
Training (SZT), a novel defense mechanism comprised of 3
key components: (1) JPEG compression to weaken high-
frequency poison signals, (2) restriction to high timesteps
during TI training to avoid adversarial signals at lower
timesteps, and (3) loss masking to constrain learning to rel-
evant regions. Extensive experiments across multiple poi-
soning methods demonstrate that SZT greatly enhances the
robustness of TI against all poisoning attacks, improving
generative quality beyond prior published defenses.
Code: www.github.com/JStyborski/Diff_Lab
Data: www.github.com/JStyborski/NC10

1. Introduction
The image quality and prompt fidelity offered by diffusion-
based image generation models such as DALL-E 2 [57],
Stable Diffusion [58], and Imagen [60] have popularized (or
vilified) the use of AI-generated images in the art, market-
ing, and media industries. The subsequent proliferation of
personalization and editing methods [15, 20, 25, 35, 59, 82]
and tools [2, 7, 72] allows anyone, even non-experts and
non-artists, to quickly retrain existing models to generate
their desired images, including images of novel concepts
not found in the model training data.

Figure 1. Applying SZT to TI mitigates poison signals and re-
covers shape, color, and texture of desired concepts. NovelCon-
cepts10 training data poisoned by ADM+. Generation prompt: “A
R∗ with a wheat field in the background”

Unfortunately, the surge in generative AI corresponds to
misfortune for artists and copyright owners, who may see
their works easily reproduced by retrained generative mod-
els. Consequently, the subfield of data poisoning for gener-
ative AI has focused on how to inject images with signals
that nullify their use in training datasets for generative mod-
els. Individuals looking to protect their data are encouraged
to “poison” their images with imperceptible adversarial per-
turbations such that generative models will fail to learn to
recreate the novel concepts contained within.

The concept of data poisoning stems from adversarial ex-
amples (AEs) [17, 36, 49, 70], where the inputs are slightly
perturbed in order to maximize loss. Intuitively, these AEs
learn to incorporate signals that maximally mislead AI mod-
els into making incorrect predictions. The AE method is
likewise effective against generative models; multiple state-
of-the-art poisoning methods for generative models apply
the AE method to the diffusion model (DM) objective to in-
ject poison signals into images [6, 39, 61, 78]. Although
the textual inversion (TI) technique is widely used to adapt
DMs to novel concepts, there are no systematic studies that
identify when and where AEs attack the TI process.
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1.1. Research Gap and Contributions
State-of-the-art poisoning methods for DMs are largely can-
nibalizing previous adversarial methods (e.g., Glaze [63]
from Adv-VAE [71] or AdvDM [39] from PGD [36, 49])
or creating new loss functions that nonetheless follow the
same AE algorithm (e.g., SDS [78] or DiffusionGuard [6]).
Although these poisoning methods are useful research mile-
stones that explore novel applications for AEs, they neglect
to study how poison signals are learned and which DM vul-
nerabilities are being exploited. Furthermore, many poison-
ing works neglect to understand the intricacies of the down-
stream tasks, such as TI, for which the AEs are designed.

In this paper, we examine the learning behavior of TI
[15], a lightweight personalization technique for adapting
DMs to novel concepts, when trained on poisoned datasets.
To enable our analysis, we devise a novel visualization
method, semantic sensitivity maps (SSM), to display loss
sensitivity to individual text tokens throughout training. Us-
ing SSMs, we observe several heretofore unseen trends in
poison learning: (1) DMs concentrate poison learning at
lower-middle timesteps (approximately t ∈ [0, 600]) and
(2) adversarial signals tend to “distract” learning away from
the novel concept of interest and towards irrelevant regions.

We scrutinize the noising process and the noise-
prediction training objective that are common to DMs and
the TI process to demonstrate that their combined effect in-
herently favors low-noise images. Crucially, this learning
bias towards lower-middle timesteps is inherent in most AE
algorithms for DMs, which implies that the AEs themselves
are mostly learned at lower-middle timesteps. This exposes
a weakness where many poisoning techniques are less ef-
fective at higher timesteps. In experiments, we demonstrate
that restricting TI training to higher timesteps is a simple
yet effective defense against multiple poisons.

We find that TI prioritizes learning in regions that contain
concept objects rather than background objects. This behav-
ior stems from the tendency to minimize noise-prediction
loss by focusing on common features across training im-
ages. Poisoning disrupts this process by introducing domi-
nant adversarial signals and suppressing the learnability of
clean concept information, misleading the TI training pro-
cess. To counteract this, we propose a loss-masking strategy
during optimization, explicitly training the model to focus
on the concept regions within poisoned images. This en-
sures that TI effectively captures the intended concept and
mitigates the influence of adversarial signals.

We also analyze JPEG compression, a common defense
technique in poisoning literature. We find that JPEG com-
pression helps purify AEs by reshaping the distributions
of adversarial signal magnitudes and frequencies to be-
nign distributions, similar to those of clean images. Al-
though JPEG compression alone cannot enable TI to learn
from poisoned images, using it as a first step to weaken

high-frequency adversarial signals significantly improves
the performance of other defense methods.

Finally, we combine our analyses to present safe-zone
training (SZT), a simple and lightweight defense method
for training TI. SZT consists of three main components:
(1) JPEG compression to weaken high-frequency adversar-
ial signals, (2) training at high timesteps to avoid adversar-
ial signals at lower-middle timesteps, and (3) loss masking
to prioritize learning on the novel concept. We show that
SZT outperforms multiple established defenses across six
different poisons in accurately generating novel concepts
and reaches the performance of TI on clean data.

Our contributions are summarized below:
• We devise SSMs and use them to visualize loss attribution

during the TI training process.
• We analyze the noising process and noise-prediction ob-

jective to understand the mechanism by which DMs, AEs,
and TI focus on lower-middle timesteps.

• We develop a loss-masking strategy to encourage DMs to
learn from the concept regions in the training data.

• We combine our findings and establish SZT to methodi-
cally improve the poison robustness of TI.

2. Related Works
We assume that the reader is familiar with standard DMs
[24, 32, 67, 68] and generation techniques [12, 23, 50, 66].
We mainly focus on latent diffusion models (LDMs) [58].

Although DMs can easily generate most concepts from
their training dataset with high quality, they predictably suf-
fer in generation quality for novel (unseen) concepts. Edit-
ing techniques [3, 20, 29, 50–52, 82] apply modifications
to an input image while enforcing structural or composi-
tion constraints, permitting generation with novel concept
images. However, editing techniques are still bound to the
prior from the DM’s training data. In order to “inject” new
concepts and styles into the DM, personalization techniques
[15, 18, 19, 25, 35, 53, 59, 73, 74, 83] quickly finetune some
component of the DM on a small dataset of novel concept
images. Many personalization techniques learn new text
embeddings [15, 18, 35, 73, 74] or co-opt existing tokens
[19, 59] to capture concept semantics. Without retraining
the entire DM from scratch, personalization techniques are
the best way to adapt DMs to new concepts. In particular,
TI [15] is a lightweight personalization method that requires
training only one new text embedding and is often included
within other methods [18, 35, 73].

AEs [5, 17, 36, 49, 70] expose the brittleness of neu-
ral net predictions by learning minor perturbations to max-
imize loss. Although originally designed for classification
models, AEs have also been applied to object detection and
segmentation [76], reinforcement learning [27], watermark-
ing [48], self-supervised learning [4, 28, 30], VAEs [34, 71],
and diffusion models [6, 37, 39, 61, 63, 64, 78]. Due to their



ability to defeat deep learning models, AEs have become
a landmark technique for data protection. The concept of
AEs extends to adversarial poisoning [14, 26], where entire
datasets are poisoned to nullify attempts to scrape or steal
data. Typical defenses against AEs include simple detec-
tion [1], augmentation [8, 9, 11, 45, 80, 81], which modifies
input images to increase sample diversity and dilute poison
signals, multitask architectures [69, 79], which use multiple
networks to mitigate shortcut learning [16, 47], and adver-
sarial training, which simply adds AEs to the training set.

AEs for DMs fall into two main categories. Encoder at-
tacks [61, 63, 64] utilize the encoder of an LDM to learn
a small perturbation to an input image that minimizes the
distance between the perturbed image encoding and the en-
coding of some unrelated target image. Diffuser attacks
[6, 37, 39, 61, 78] aim to learn a small perturbation to
an input image that maximizes the DM loss (often noise-
prediction). Other attack methods combine encoder attacks
and diffuser attacks [38, 61]. Defenses against AEs for DMs
include augmentation [65] and regeneration [13, 44, 77, 84],
where poisoned images are randomly noised and then de-
noised with a DM to remove adversarial signals. Regenera-
tion methods are the most actively researched, but they are
time-consuming and complex as they require preprocessing
entire datasets with a DM in order to “purify” them.

3. Preliminaries
3.1. Latent Diffusion Models
We mainly focus on LDMs [58] as they are quick to
train, they generate high-quality outputs, and tools for us-
ing/modifying them are widely available. In LDMs, an in-
put image x is first encoded to a latent of lower dimension
via a variational encoder, z0 = E(x)1. The latent is then
iteratively noised to timestep t according to noise variance
schedule βt. An equivalent one-step noising process is

zt =
√
αtz0 +

√
1− αtϵ, (1)

where αt = Σt
s=1(1 − βs) and ϵ ∼ N (0, I). αt mono-

tonically decreases from 1 to 0 as t increases from 0 to T ,
following a variance-preserving schedule [68]. A genera-
tive DM learns the denoising process, where the goal is to
maximize the likelihood of generating the unnoised input
(z0). DDPM [24] showed that this objective can be prac-
tically realized with a simple noise-prediction task. The
model predicts the Gaussian noise ϵ added to input z0 when
given noisy sample zt, and the learning objective is given as

argmin
θ

Ex,t∼U(0,T ),ϵ

[
||ϵθ(zt, t)− ϵ||22

]
, (2)

where x is drawn from the training dataset, U(0, T ) is the
uniform distribution between timesteps 0 and T , and ϵθ is

1We abuse notation and let E(x) encompass encoding and sampling.

a model that predicts a noise vector ϵ given a noised latent
zt. For text-conditional models, ϵθ(zt, t, τθ(y)) also accepts
features vector τθ(y), where τθ is a language model and
input prompt y is provided by the user or training data.

3.2. Textual Inversion
In this paper, we consider how AEs affect the downstream
personalization task of TI [15], which seeks to learn a new
text token that captures the semantics of a novel concept. TI
trains a new text embedding corresponding to a new token
R∗; the new embedding is the only finetuned parameter. TI
trains via a noise-prediction task as

argmin
θR∗

Exf ,t∼U(0,T ),y∗,ϵ

[
||ϵθ(zt, t, τθ(y∗))− ϵ||22

]
, (3)

where sample xf is drawn from the finetuning dataset and
y∗ is a prompt containing token R∗.

3.3. Adversarial Examples
The primary method to create AEs against LDMs is by at-
tacking the diffuser with an adversarial perturbation δ in-
jected into the input data. The adversarial objective is to
find a δ that maximizes the noise-prediction loss, as

argmax
δ

Exp,t∼U(0,T ),ϵ

[
||ϵθ(z′t, t)− ϵ||22

]
s.t. ||δ||b ≤ κ,

(4)

where sample xp is drawn from the dataset to poison and
z′t =

√
αtE(xp+δ)+

√
1− αtϵ is the adversarial latent fol-

lowing Eq. 1. The perturbation δ is commonly constrained
in the l∞ norm to a small value κ to limit its visibility.

Encoder attacks against LDMs seek to perturb an im-
age such that the encoding of the poisoned image xp + δ is
similar to that of some unrelated target image xg . Encoder
attacks optimize the objective function

argmin
δ

Exp

[
||E(xp + δ)− E(xg)||22

]
s.t. ||δ||b ≤ κ. (5)

4. Analysis
4.1. Visualizing the Effect of Adversarial Examples
To observe the influence of AEs against TI, it is critical
to visualize the impact of each text embedding on a gen-
erated image. Let ê = {e0, ...en, ..., eL−1}, where e0
represents the start token embedding vector and en repre-
sents the embedding vector of the nth token. For a text
input consisting of l tokens, ê is padded to length L with
{el+1, ..., eL−1} with end token embeddings. Each en is
obtained via lookup in a token-embedding dictionary. As
an example, given the text prompt, “a puppy wearing a hat”,
embeddings {e1, ..., e5} correspond to “a”, “puppy”, “wear-
ing”, “a”, and “hat” respectively.



Figure 2. Cross attention maps (a) and SSMs (b) for tokens “<start
token>”, “puppy”, and “hat” with text prompt “a puppy wearing

a hat” at noise timestep t = 500.

A popular text-attribution method for LDMs visual-
izes the cross-attention maps [41] in ϵθ. However, cross-
attention maps are incapable of capturing the effect of each
embedding en. This is because the self-attention layers in
the text encoder τθ entangle signals from the embedding
vectors en before they reach the cross-attention layers of
ϵθ. Fig. 2(a) visualizes text attribution using cross-attention
maps. The cross-attention map corresponding to the start
token e0 is bright, highlighting many regions, but the maps
corresponding to words “puppy” and “hat” are dim and
blurry. This drawback has been noted in other works [46].

To accurately identify the spatial regions over which a
specific token has influence, we developed a new visualiza-
tion method called semantic sensitivity maps (SSMs). We
define SSMs by

SSM(x, t, ê, n) = Eê∆n

[
||ϵθ(zt, t, c)− ϵθ(zt, t, c∆n)||2ch

]
s.t. c = τθ(ê), c∆n = τθ(ê∆n), (6)

where x is an input image, c is the condition tensor. c∆n

is analogous to c but its input ê∆n modifies the nth input
embedding by replacing en with a randomly-sampled vec-
tor from the embedding dictionary. For notational simplic-
ity here, we input token embeddings in τθ(ê) instead of the
prompt. || · ||2ch indicates sum of squares across channels
such that the output is a one-channel image that matches
the input height and width. Fig. 2(b) displays the SSMs
corresponding to the embeddings for “puppy” and “hat”.
Compared to cross-attention attribution maps in Fig. 2(a),
SSMs more accurately reflect the regions corresponding to
each input embedding. Crucially, SSMs avoid attributing
semantic tokens to the start token.

Using SSMs, we can investigate when and where ad-
versarial signals attack the TI process. Fig. 3 shows the
SSMs for a clean image and its corresponding AEs for var-
ious noising timesteps. The input images contain a novel
concept not contained in the training dataset. The image
prompt is “a R∗ laying on top of a grass covered field”. Fig.
3 shows the SSMs for the trainable text embedding corre-
sponding to R∗ before and after TI training. We observe

Figure 3. Comparison between SSMs of clean and AE samples at
different noise timesteps (a) before TI training and (b) after 500
steps of TI training.

that before TI training, SSMs of the clean sample and AEs
highlight the novel object in the range t ∈ [300, 700]. This
indicates that the DM prior can already correlate unknown
objects with unknown tokens. After TI training, the novel
concept is more pronounced in SSMs of clean images, but
the SSMs of AEs become extremely noisy, particularly at
lower-middle timestep values. Notably, the attribution for
AEs extends far outside the novel concept region. To ex-
plain this behavior, we investigate the temporal and spatial
learning properties of TI in subsequent sections.

4.2. Timestep Learning Bias

Fig. 3 shows that concept learning is focused on lower-
middle timesteps (t < 700) and that poison signals have
the greatest impact at lower timesteps. To understand this
phenomenon, we revisit the noising and training processes.

We begin by noting that all training objectives (i.e.,
model training in Eq. 2, TI in Eq. 3, or AEs in Eq. 4)
utilize the expected noise-prediction loss over a uniform t
distribution. The only differences between the objectives
are the training datasets and the trainable parameters.

Recalling that αt from Eq. 1 monotonically decreases
from 1 at t = 0 to 0 at t = T , we can see that the noising
process is interpolating between input z0 and noise ϵ. At t =
0, zt=0 =

√
α0z0 +

√
1− α0ϵ = z0. Therefore, at t = 0,

the input to the noise-prediction model ϵθ(z0, 0) contains no
information about the sampled noise ϵ. Since ϵ is distributed
as N (0, I), the optimal noise prediction to minimize the ex-
pected loss at t = 0 is ϵθ(z0, 0) = 0. Predictably, the loss at
t = 0 is a maximum because the noise-prediction model
cannot accurately predict the ground-truth noise. Con-
versely, at t = T , zt=T =

√
αT z0+

√
1− αT ϵ = ϵ, and the



Figure 4. Loss distributions for Stable Diffusion 1.5 on 1000 clean
(green) and 1000 ADM+ poisoned (red) LAION Aesthetic images
at each of 21 interspersed timesteps. The dark lines represent me-
dian loss values. The dark and light bands encompass 50% and
95%, respectively, of the loss distributions.

noise-prediction model simply needs to return the input to
minimize loss. At t = T , the loss approaches a minimum.

To validate our argument, we calculate the noise-
prediction loss of Stable Diffusion 1.5 for 1000 images sam-
pled from the LAION Aesthetic [62] dataset at 21 equally-
spaced timesteps (21000 samples total) and plot the result-
ing distributions in Fig. 4. As predicted, the expected loss
decreases from a maximum at t = 0 to 0 at t = T . Apply-
ing ADM+ [39] poisoning to the images increases the loss
values in the lower-middle timesteps (as expected by a loss-
maximizing AE algorithm), but the losses at t = 0 and at
high timesteps remain unchanged.

We must also consider how the noise-prediction objec-
tive affects gradients during TI training. Fig. 5 displays the
average loss gradient magnitude with respect to the train-
able text embedding at each timestep after 1000 steps of TI
training with Stable Diffusion 1.5. Curves are obtained by
calculating 1000 losses for each concept of the NovelCon-
cepts10 dataset across 21 equally-spaced timesteps and then
averaging gradient magnitudes at each timestep across con-
cepts. As expected, the graph shows that at high timesteps,
gradients decay to 0 as the loss distributions converge to 0.
At lower-middle timesteps, moderate loss allows the model
to backpropagate real (or adversarial) signals to the text em-
bedding, corresponding to high gradients. However, near
t = 0, high losses correspond to low gradients. Intuitively,
this is because the noise-prediction model minimizes loss at
t = 0 by predicting near-0 noise regardless of the inputs,
zt and τθ(y

∗). Since the prediction is independent of the
inputs, no loss signal is backpropagated to the trainable text
embedding. The loss gradient magnitudes in Fig. 5 corre-
spond to the intensities of the sensitivity maps in Fig. 3.

This behavior is particularly applicable to diffusion-
based AEs and TI. All diffusion-based AEs seek to max-
imize the expected noise-prediction loss (Eq. 2), which
includes an expectation over a uniform timestep range

Figure 5. Trainable text embedding loss gradients after 1000 steps
of TI training on clean and ADM+ poisoned NovelConcepts10 im-
ages. Results at each timestep are averaged across all concepts.
The dark lines represent median gradient values. The dark bands
encompass 50% of the gradient distributions.

U(0, T ). As the loss gradient is near 0 at high timesteps,
most of the adversarial signals will be learned at lower-
middle timesteps. Likewise, TI applies an expectation over
a uniform timestep range (Eq. 3) thus focusing learning at
lower-middle timesteps. Assuming that the adversarial sig-
nals contained within the training images are biased towards
lower-middle timesteps, then we can bias the TI task to-
wards high timesteps to avoid adversarial signals and learn
clean concept features.

In Appendix B, we give a detailed derivation of the
noise-prediction error along with additional plots for the
loss and noise-prediction distributions. In Appendix C, we
show the resulting effect on loss gradients throughout TI
training and across multiple poisons.

4.3. Spatial Learning Bias

As observed in Sec. 4.1, AEs disrupt TI by “distracting” the
optimization process and expanding the spatial distribution
of the trainable token attribution beyond the novel concept
region. To understand this phenomenon, we revisit the ad-
versarial objectives in Eq. 4 and Eq. 5.

We begin by noting that both adversarial objectives in-
volve an l2 norm which includes a sum over all spatial
coordinates (height, width, channels) of the error tensor.
This summation does not apply preferential weight to any
spatial region. Furthermore, the l2 vector norm is convex
and non-decreasing, implying that it increases as the mag-
nitudes of individual elements increase. This encourages
all spatial elements to contribute to optimizing the l2 objec-
tive. This incentive combines with the adversarial pertur-
bation constraint ||δ||b, which is commonly implemented
with the l∞ norm. We note that ||δ||∞ is non-increasing for
all infinitesimal changes in perturbation elements δi where
|δi| < ||δ||∞; this permits increases in most perturbation el-
ements without affecting the constraint. In summary, the l2

norm objectives in Eq. 4 and Eq. 5 encourage all elements



Figure 6. Loss difference inside (“LossIn”) and outside (“Los-
sOut”) novel concept regions during TI training on clean, ADM+,
SDS+, and EA images of seven concepts from NovelConcepts10.

of the error terms to contribute and the l∞ constraint on δ
encourages all elements of δ to contribute maximally. Prac-
tically, this implies that adversarial perturbations maximally
infect every region of a poisoned image.

To empirically verify this phenomenon, we study the
losses attributed to novel concept regions for clean images
and AEs during TI training. We apply TI to clean, ADM+,
SDS+, and EA versions of the NovelConcepts10 dataset.
We track the loss contributions from inside and outside the
novel concept regions throughout training. We first average
losses across their contributing pixels and then average the
results across all concepts. The results in Fig. 6 indicate that
TI for clean images can effectively minimize the loss inside
the novel concept regions and ignores signals outside these
regions. This implies that TI effectively learns new con-
cepts and ignores background information. However, when
trained on AEs, TI losses inside and outside of the concept
regions are reduced by the same proportion. This indicates
that AEs mislead TI to learn equally from all regions and
ignore the semantic significance of the novel concept. This
aligns with the observation from Fig. 3 that all regions of
an adversarial input are attributed to the trainable token.

4.4. JPEG as Poison Defense
The adversarial signals injected into images by poisoning
techniques tend towards higher frequencies in pixel space.
Consequently, JPEG compression, which relies on discrete
cosine transforms to identify and remove high-frequency
signals, has been noted as an effective poison defense [45].
We investigate the mechanism by which JPEG eliminates
adversarial signals and identify two crucial behaviors: (1)
JPEG compression converts bimodal poison noise into uni-
modal Gaussian-like noise in pixel space and (2) JPEG cen-
tralizes the frequency spectrum in latent space, forcing poi-
soned latent frequencies towards those of clean latents.

We empirically verify (1) in Fig. 7 by examining the dis-

Figure 7. Histograms of pixel-space perturbations (relative to
clean images) for ADM+ poisoned images without (red) and with
(green) JPEG compression.

tribution of poison perturbations (relative to clean images)
with and without applying JPEG compression. We use a
JPEG quality of 25 and aggregate results across all 50 im-
ages in the NovelConcepts10 dataset. The bimodal distribu-
tion of poison perturbations aligns with loss objective and
constraint discussion from Sec. 4.3. After JPEG compres-
sion, the poison perturbations follow a unimodal Gaussian-
like distribution. We note in Fig. 12 of Appendix D that
this behavior holds for all poisons studied. Intuitively, the
carefully-optimized poison signals have been replaced by a
distribution of random errors due to JPEG compression.

Due to space limitations, we move empirical verification
of (2) and subsequent analysis to Appendix D. We note that
the effect of (2) is that JPEG-compressed poisoned images
force poison latents to conform to the power spectra of nat-
ural image latents, as would be expected by LDMs.

4.5. Safe-Zone Training
In the above analyses, we have demonstrated when and
where AEs poison TI. Combining takeaways from our anal-
yses, we propose Safe-Zone Training (SZT) to mitigate the
influence of adversarial signals in poisoned images. Apply-
ing lessons from Sec. 4.4, we first apply JPEG compression
to obfuscate the adversarial signals in the pixel domain and
centralize the power spectra in the latent domain. Apply-
ing the conclusions from Sec. 4.2, we restrict training to
high timesteps in order to avoid adversarial signals at lower-
middle timesteps. Finally, SZT incorporates the behaviors
noted in Sec. 4.3 and utilizes a binary mask to prevent
adversarial signals outside the novel concept region from
backpropagating to the trainable text embedding. In sum-
mary, SZT is a simple algorithm which involves applying
JPEG compression, adjusting the timestep sampling range,
and inserting a mask during loss calculation. Crucially, SZT
does not require additional networks to regenerate or purify
poison data. The SZT objective can be formulated as

argmin
θR∗

Ex′
j ,t,y

∗,ϵ

[
||(ϵθ(z′t, t, τθ(y∗))− ϵ)⊙Mz||22

]
(7)

s.t. x′
j = JPEG(x′

p), t ∼ U(tth, T ), Mz = Resize(Mx),



where x′
j is the JPEG-compressed version of poisoned im-

age x′
p = xp+δ, z′t =

√
αtE(x′

j)+
√
1− αtϵ, timestep t is

uniformly sampled from the range above threshold tth, Mz

is the latent-space mask resized from the pixel-space mask
of the novel concept region Mx, and ⊙ denotes element-
wise multiplication.

5. Experiments
5.1. Experiment Settings
5.1.1. Datasets
We test the ability of TI to learn new concepts from poi-
soned images. To ensure that the LDM is learning new
concepts not contained within the prior, we collected Nov-
elConcepts10, a dataset of five images for each of 10 dis-
tinct objects (50 total images). An extended dataset descrip-
tion and example images are given in Appendix E. We also
evaluate on CustomConcept101 [35], which was curated to
study personalization tasks. For each image in a dataset, we
create a binary mask of the novel concept region using the
Segment Anything Model [33]. We utilize six data poisons:
ADM+ [39], ADM-, SDS+ [78], SDS- [78], EA [61], and
DA [61]. We place poisoning details in Appendix F.

5.1.2. Model and Training
We conduct all experiments with Stable Diffusion v1.5 [58].
We utilize a modified Diffusers library from HuggingFace
[72] to perform TI. For each concept of a dataset, we run
TI [15] with a default learning rate of 5e−4 (no decay, no
warmup) for 5000 training steps and a batch size of 1. For
CustomConcept101, we utilize 2500 training steps without
noticeable loss of performance. For each learned concept,
we generate five images for each of the 24 object prompts
from the DreamBooth pipeline [59] (120 images total).

5.1.3. Evaluation Metrics
For each learned concept, we measure the DINOv2 en-
coding similarity [54] and FID score [22] between train-
ing images and the images generated after TI. For poisoned
datasets, we calculate metrics between generated images
and clean versions of the training images. We also measure
prompt fidelity with CLIP Score [21, 56] between the gen-
eration prompt and the generated images. We report metrics
first averaged across all generated images per concept and
then across all concepts in a dataset.

5.2. Results and Analysis
5.2.1. Personalization Settings Ablations
We begin by ablating training hyperparameters for TI across
clean, ADM+, ADM-, and EA versions of NovelCon-
cepts10 for learning rate in (5e−5, 5e−4, 5e−3), learning
rate schedule in (constant, linear decay, cosine decay), and
training steps in (1000, 5000, 10000). Results and fur-
ther discussion are given in Appendix G. In summary, we

find that maintaining default settings (constant 5e−4 learn-
ing rate with 5000 training steps) is sufficient to learn novel
concepts without overfitting to the training images.

5.2.2. Timestep Range Ablation
Based on findings about timestep learning bias in Sec. 4.2,
we ablate methods to restrict timesteps to high values dur-
ing TI training. We consider multiple sampling methods
to favor high timesteps: thresholding, power distributions,
and tanh distributions. Fig. 15 in Appendix H displays the
probability curves for the power and tanh distributions. We
ablate t-sampling methods for clean, ADM+, ADM-, and
EA versions of NovelConcepts10. Full results are given in
Appendix H. We find that simple high-thresholding works
best, improving DINOv2 similarity for ADM+ data from
0.10 (t ∼ U(0, 1000)) to 0.21 for t ≥ 600 and 0.28 for
t ≥ 700. Using t ≥ 600 also maintains or improves scores
for clean and EA datasets. In our subsequent proposed de-
fenses, we mainly utilize t ≥ 600, denoted “T600”.

5.2.3. Masking Ablation
To verify the effectiveness of loss masking (LM), we com-
pare it to various masking strategies: input image mask-
ing (IM), latent (zt) masking (ZM), and masking both input
image and loss (LIM). We ablate the masking method on
all poisoned versions of NovelConcepts10. Results in Ap-
pendix I demonstrate that LM outperforms all other mask-
ing strategies across all poisoning methods, except EA. We
hypothesize that applying masks directly to the input image
or latent zt may destroy useful information before the fea-
tures are processed by the U-Net. Intuitively, masked inputs
lack contextual information about the relationship between
the novel concept and the background, distorting the U-Net
predictions. By applying the mask to the final loss, we pre-
serve background information and permit a more coherent
understanding of the scene.

In Appendix J, we experiment with dilating the mask size
to incorporate additional context in loss backpropagation.
We find that relatively small amounts of mask dilation (i.e.,
16 pixels for 512x512 masks) can improve LM for TI.

5.2.4. Safe-Zone Training Performance
Our implementation of SZT is highly customizable, em-
powering the user to control JPEG compression qual-
ity, timestep restriction method/shape, and loss mask
size/shape. In our ablations, we find that combining JPEG
compression (quality= 25), timestep restriction t ≥ 500,
and LM with 16 pixels of mask dilation performs best. We
defer further discussion on SZT configurations to Appendix
J and encourage users to explore additional settings.

We demonstrate the robustness of SZT across poisoned
versions of the CustomConcept101 dataset. Table 1 com-
pares the DINOv2 similarity performance of SZT and its
novel components with established defenses, including Re-



Table 1. CustomConcept101 DINOv2 Similarity for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.46 0.46 0.25 0.45 0.45 0.50 0.47 0.47 0.46 0.48

ADM+[39] 0.10 0.17 0.23 0.15 0.36 0.25 0.30 0.41 0.44 0.45
ADM- 0.33 0.25 0.23 0.35 0.41 0.27 0.43 0.45 0.45 0.46
SDS+[78] 0.10 0.16 0.25 0.16 0.34 0.23 0.32 0.40 0.45 0.44
SDS-[78] 0.31 0.22 0.23 0.35 0.40 0.23 0.42 0.45 0.45 0.47
EA[61] 0.10 0.09 0.24 0.19 0.33 0.12 0.29 0.44 0.44 0.46
DA[61] 0.29 0.25 0.27 0.35 0.39 0.22 0.42 0.44 0.46 0.47

Psn Avg 0.21 0.19 0.24 0.26 0.37 0.22 0.36 0.43 0.45 0.46

Figure 8. Generated images after TI training on NovelConcepts10 FishDoll poisoned by ADM+. Generation prompt: “a R∗ on the beach”

gen [84], PDMPure [77], AdvClean [65], and JPEG com-
pression; we utilize published repositories for Regen, PDM-
Pure, and AdvClean and quality of 25 for JPEG.

JPEG is a moderately-strong defense, outperforming es-
tablished methods like Regen and PDMPure on multiple
poisons. T600, despite requiring only one parameter change
and no extra computation overhead, modestly improves per-
formance against adversarial poisons like ADM+ and SDS+
and outperforms some established defenses on these poi-
sons. LM is a strong standalone defense, improving the gen-
erative quality for every poison. Adding JPEG compression
as a preprocessing step for T600 or LM further improves
performance across all poisons. In particular, JPEG+T600
is an incredibly efficient defense, delivering competitive im-
age quality across all poisons without additional networks
or masking. SZT is consistently the strongest defense,
achieving state-of-the-art image quality across almost all
poisons. Notably, SZT performance on all poison data (av-
erage of 0.46) matches the quality achieved by nominal TI
on clean data, effectively nullifying all poisons. We also
report FID and CLIP Score for CustomConcept101 in Ap-
pendix K. We perform the same study on NovelConcepts10
in Appendix L and find that the trends are largely similar.

We include further studies on additional LDM architec-
tures and parameterizations in Appendix O and for addi-
tional personalization methods in Appendix P. Across all
models and methods, SZT is the strongest defense.

For a qualitative comparison, we display images gen-
erated after TI training on the FishDoll concept poisoned
by ADM+ in Fig. 8. Existing defenses (Regen, PDM-
Pure, and AdvClean) can occasionally improve generated

image quality, resulting in generated images that contain
a semblance of the desired concept. Images generated af-
ter JPEG compression display some faithfulness to the de-
sired concept. T600 also presents as a moderately effec-
tive defense, often removing poison noise but occasionally
failing to capture the desired concept. LM alone tends to
learn the correct concept shape but not the correct texture
or color, as LM does not attempt to mitigate adversarial sig-
nals within the masked region. JPEG+LM improves on this
weakness. JPEG+T600 strikes a good balance between ac-
curately learning the desired concept and displaying prompt
context. SZT is able to accurately learn the desired concept
shape and texture. We note that defenses utilizing the LM
operation (i.e., LM, JPEG+LM, and SZT) tend to hyperfo-
cus on the concept, generating images that are dominated by
the concept. This behavior is reduced for SZT, which uses
dilated masks to incorporate some background information
from training images. We include further qualitative results
for additional poisons and concepts from NovelConcepts10
and CustomConcept101 in Appendix M.

6. Conclusion
The SZT defense method is derived from systematic analy-
ses of the underlying mechanisms of DMs as well as obser-
vations on the learning tendencies of TI. Despite the sim-
plicity of SZT, it is an effective defense method that per-
forms beyond other established defenses and nullifies many
poisons. We hope that our work exposes the vulnerabili-
ties of existing poisons and spurs further research on robust
poisons for DMs.
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Figure 9. Comparison between SSMs of clean and AE samples at
different noise timesteps (a) before TI training and (b) after 500
steps of TI training.

A. Additional Semantic Sensitivity Maps
We include an additional study of SSMs for the FishDoll
concept from NovelConcepts10 in Fig. 9. Trends here gen-
erally reflect those noted in Sec. 4.1.

B. Noise-Prediction Distribution
We assume that the distribution of LDM latents z0 fol-
lows some Gaussian N (µz,Σz).2 The ground truth noise
ϵ is sampled from a standard Gaussian N (0, I). For some
timestep t, we calculate zt following Eq. 1. The distribution
of zt can be described as the Gaussian achieved by scaling
and combining the z0 and ϵ distributions.

zt ∼ N (
√
αtµz,Σzt), (8)

where Σzt = αtΣz + (1 − αt)I . We assume that Σzt is
invertible. The joint distribution of ϵ and zt is given by

p(ϵ, zt|t) = N
([

0√
αtµz

]
,

[
I

√
1− αtI√

1− αtI Σzt

])
,

(9)
2We note a distinction between distributions p(z0|x) and p(z0). In

LDMs where the encoder is from a VAE [31, 58], p(z0|x) is Gaussian by
definition, as z0 is randomly sampled from a multivariate Gaussian that de-
scribes the encoding space (i.e., E(x) = [µz ,Σz ]). However, across many
samples x, p(z0) is not necessarily Gaussian. Our analysis in this section
is exactly correct in the single-image case (p(z0|x)), but its correctness
in the multi-image case (p(z0)) hinges on the correctness of the Gaussian
assumption for p(z0). In a brief experiment (not shown), we sample z0
for 1000 LAION Aesthetic images and find that the distributions of z0
dimensions are generally unimodal and akin to bell-curves, but they are
decidedly not Gaussian. Even so, the empirical results for the multi-image
case in Fig 10 conform to the behavior expected by our derivation in this
section, suggesting that the Gaussian assumption for p(z0) is permissible.

Figure 10. Noise prediction magnitude (top) and loss (bottom)
distributions for Stable Diffusion 1.5 on 1000 LAION Aesthetic
images at each of 21 interspersed timesteps.

where we apply the linearity property of covariance
(cov(A,A + B) = cov(A,A) + cov(A,B)) and the in-
dependence between z0 and ϵ to derive the off-diagonal
covariance matrices. We seek to predict the distribution
of noise when given the same inputs as a noise-prediction
DM. We use the definition of a conditional distribution,
p(x|y) = p(x, y)/p(y) to derive the distribution of ϵ condi-
tioned upon inputs zt and t. The conditional distribution can
be derived in closed form from the joint distribution [75].

p(ϵ|zt, t) = N (
√
1− αt(Σzt)

−1(zt −
√
αtµx),

I − (1− αt)(Σzt)
−1),

(10)

Though initially complicated, this conditional distribu-
tion simplifies beautifully in the limits as t → 0 and t → T .
As t → 0, αt → 1, so the conditional distribution ap-
proaches N (0, I). This is sensible because zt → z0, which
contains no information about the ground-truth noise, so the
noise distribution ϵ = N (0, I) is independent of z0. As
t → T , αt → 0, so the distribution approaches N (zT , 0).
This is sensible as zt → zT = ϵ.

This derivation can be extended to the distribution of the
noise-prediction error (Eq. 2). As both components are
Gaussian, the noise-prediction error p(ϵ|zt, t) − ϵ is also
Gaussian and the covariance of Eq. 10 is shifted by I . No-
tably, the noise prediction error has maximum variance at



Figure 11. Plots of text embedding loss gradient magnitude as a function of timestep measured throughout training. Values at each timestep
are averaged across concepts in the NovelConcepts10 dataset.

t = 0 which monotonically decreases as t increases.

p(ϵ|zt, t)−N (0, I)

= N (
√
1− αt(Σzt)

−1(zt −
√
αtµx),

2I − (1− αt)(Σzt)
−1),

(11)

Fig. 10 is an expanded version of Fig. 4 that includes
plots for the magnitudes of the predicted noise. As dis-
cussed in Sec. 4.2, the model predicts noise near 0 at t = 0
and perfectly predicts noise at t = T . The magnitude of the
predicted noise grows from near 0 at t = 0 to a maximum of
128 at t = T (which aligns with E[||ϵ||2] =

√
tr(I) = 128

when ϵ is a 4x64x64 vector as in Stable Diffusion). The
median loss monotonically decreases from a maximum at
t = 0 to 0 at t = T . Additionally, the width of the loss dis-
tribution at each timestep indicates that the variance of the
noise-prediction error is indeed a maximum at t = 0 and
diminishes to 0 at t = T .

The noise-prediction DM always seeks to minimize loss
by maximizing the conditional probability of the noise (Eq.
11). At t = 0, it will return the mean of ϵ ∼ N (0, I).
At high timesteps, it will increasingly predict its own in-
put. At middle timesteps, it will actually learn to distinguish
noise from image. Therefore, all useful learning will occur
at lower-middle timesteps.

Lastly, we note that this behavior is reversed (but still
present) for input-prediction models (i.e., z0,θ(·)). An
input-prediction model will return its input at t = 0 and
the average image (i.e., a plain gray image) at t = T .

C. Textual Inversion Gradients
In Fig. 11 we display the l2 magnitude of the loss gradient
on the trainable text embedding as a function of timestep
t throughout TI training. For each concept in the Nov-
elConcepts10 dataset, we extract checkpoints every 1000
steps during TI training and calculate the expected gradient
magnitude for each timestep then average the magnitudes
across concepts. Aligning with our findings from SSMs
(Sec. 4.1) and timestep learning bias (Sec. 4.2), all gradi-
ent magnitudes are biased towards lower-middle timesteps,

with near-0 gradient magnitudes at high timesteps for all
datasets. The ADM- poison, which seeks to minimize DM
loss, mitigates the low-timestep bias. The EA poison, which
optimizes poisons on the LDM encoder and avoids the DM
entirely during optimization, still permits a bias towards
lower timesteps during TI training. This is likely because
EA focuses on perturbing z0, thereby adversarially affecting
high signal-to-noise zt latents (i.e., those at lower-middle
timesteps).

We note that the dropoff in gradient at very low timesteps
for Clean, ADM+, and EA samples is due to the tendency
of the noise-prediction model to predict 0 at t = 0. Al-
though the loss at this point is maximal (as shown in Fig.
10 (bottom)), the conditional distribution of ϵ (from Eq. 10)
at t = 0 is independent of zt, as noted in Sec. B. Therefore,
there is no loss gradient with respect to the inputs at t = 0.
In summary, learning is generally minimal at high timesteps
and at t = 0, regardless of whether the model is learning a
true concept or an adversarial signal.

D. JPEG Compression Analysis

In Fig. 12, we extend the analysis performed for Fig. 7
in Sec. 4.4 to all poisons. Across all poisons, we find that
JPEG compression has the same effect: the poison pertur-
bation distribution is converted from a bimodal distribution
with modes that skew towards the perturbation limits (±κ)
to a bell-curve distribution centered at or near 0.

To verify claim (2) from Sec 4.4, we also investigate
the impact of JPEG compression on the LDM latent space.
Fig. 13 displays the radially averaged power spectrum den-
sity curves for the mean latent encodings of Clean, ADM+,
ADM-, and EA images with and without JPEG compres-
sion, averaged across all 50 images in the NovelConcepts10
dataset. Before JPEG compression, the power curve for
ADM+ latents is consistently higher than that of clean la-
tents at high frequencies, whereas the powers for ADM-
and EA latents are consistently lower. However, after JPEG
compression (in pixel space), the power spectra of all im-
ages are centralized, lying closer to the power spectra of



Figure 12. Histograms of pixel-space perturbations (relative to clean images) for poisoned NovelConcept10 images without (red) and with
(green) JPEG compression. Input images are shifted and scaled to [−1, 1]

Figure 13. Radially averaged power spectrum density curves for
mean latents with and without JPEG compression. Curves are av-
eraged across all images in NovelConcepts10.

clean images. This result suggests that JPEG compression
tends to “standardize” poisoned images, forcing their latents
to conform to the power spectra expected by LDMs.

E. NovelConcepts10 Dataset

The NovelConcepts10 dataset consists of five images for
each of 10 distinct concepts, for a total of 50 images. Each
object is located roughly at the center of each image, as is
common in most LAION [62] and ImageNet [10] images.
Angle (or pose) and background are different for each im-
age of a single object. The images are resized to 512x512
and stored in PNG format to preserve quality. When choos-

Figure 14. One example image for each of the 10 concepts con-
tained within the NovelConcepts10 dataset.

ing concepts to capture, we included both non-unique ob-
jects (e.g., CokeCan) and unique objects (e.g., FishDoll).
Non-unique objects are easily recognizable and are likely
included in large training datasets whereas as unique ob-
jects are rare and unlikely to be captured in most training
datasets. Fig. 14 shows an example of each concept in the
NovelConcepts10 dataset.

F. Poison Descriptions

We analyze multiple adversarial methods. In particular, we
use AdvDM (ADM+) [39], SDS (SDS+) [78], as well as
EncoderAttack (EA) and DiffusionAttack (DA) [61]. We
implement ADM+ and EA via attack modes 0 and 1 from
the MIST library [38]. We also analyze the gradient de-
scent versions of ADM+ and SDS+, ADM- and SDS- re-
spectively, since gradient descent poisons are also effective
[78]. Table 3 describes the attack direction, targeting type,



Table 2. NovelConcepts10 DINOv2 Similarity for various TI hyperparameter settings.

LR Sched. Constant Linear Cosine
LR 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3

C
le

an 1k 0.14 0.36 0.43 0.11 0.31 0.41 0.11 0.36 0.41
5k 0.33 0.44 0.47 0.28 0.42 0.47 0.26 0.40 0.48
10k 0.37 0.44 0.49 0.33 0.44 0.50 0.36 0.43 0.51

A
D

M
+ 1k 0.11 0.09 0.08 0.11 0.10 0.10 0.11 0.12 0.11

5k 0.10 0.10 0.08 0.10 0.09 0.09 0.10 0.09 0.08
10k 0.10 0.10 0.09 0.11 0.11 0.09 0.11 0.11 0.09

A
D

M
- 1k 0.11 0.29 0.30 0.11 0.24 0.29 0.11 0.25 0.28

5k 0.22 0.29 0.33 0.21 0.30 0.30 0.20 0.29 0.34
10k 0.22 0.26 0.37 0.24 0.29 0.35 0.24 0.28 0.40

E
A

1k 0.11 0.09 0.07 0.11 0.11 0.07 0.11 0.10 0.06
5k 0.11 0.08 0.08 0.10 0.09 0.07 0.10 0.07 0.07
10k 0.09 0.09 0.07 0.10 0.08 0.09 0.10 0.09 0.09

Table 3. Characteristics of examined poisons.

Poison Direction Targeted Objective

ADM+ [39] ↑ No DM Loss
ADM- ↓ No DM Loss
SDS+ [78] ↑ No DM Loss
SDS- [78] ↓ No DM Loss
EA [61] ↓ Yes Encoding Dist
DA [61] ↑ No DM Sampling

and objective of each poison. We restrict each poison per-
turbation to a l∞ bound of size κ = 16/256. For ADM+,
ADM-, SDS+, SDS-, and EA, we apply 100 projected gra-
dient steps of strength η = 1/256. For DA, we follow
the default sampling and optimization settings. We use the
high-contrast MIST image from the MIST library as the tar-
get image for EA, which was cited by [38] as a better target
than gray images.

G. Hyperparameters Ablation
We ablate the hyperparameter settings (learning rate, learn-
ing rate schedule, training steps) for TI training on clean and
poisoned NovelConcepts10 datasets. Results are shown in
Tables 2, 4, and 5 (we apologize for the nonconsecutive ta-
ble order - the formatting for this section was difficult).

In general, we find that very low learning rates or training
steps inhibit concept learning whereas higher learning rates
result in reduced performance on poisoned concepts. Of the
settings studied, a learning rate of 5e−4 tends to perform
best for images poisoned by ADM+ or EA. At a learning
rate of 5e−4, a constant learning rate schedule gives best
performance. Finally, 5000 training steps typically outper-

forms 1000 training steps across most datasets and marginal
improvements (if any) for 10000 training steps are not worth
the extended training time.

We note additional interesting behaviors from the hy-
perparameter ablation. In particular, we find that training
for 1000 is almost equally affected by poisoning as training
for 10000 steps, even as clean performance increases. This
suggests that early stopping cannot avoid adversarial sig-
nals. Likewise, a higher learning rate boosts performance
for clean images but reduces performance on concepts poi-
soned by ADM+ or EA. Using linear or cosine decay re-
duces performance when training for 1000 steps but does
not significantly impact results for 5000 or 10000 steps. Fi-
nally, it appears that ADM- is the weakest poison across a
wide range of settings.



Table 4. NovelConcepts10 FID for various TI hyperparameter settings.

LR Sched. Constant Linear Cosine
LR 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3

C
le

an 1k 397 307 285 415 330 289 414 301 296
5k 317 285 266 335 287 273 341 297 270
10k 301 285 269 315 285 262 305 286 258

A
D

M
+ 1k 417 449 457 412 446 446 411 434 447

5k 440 453 459 439 452 453 436 447 459
10k 431 449 457 433 438 454 438 447 454

A
D

M
- 1k 414 344 337 416 359 341 414 348 343

5k 370 339 333 368 341 337 373 348 323
10k 370 358 318 358 347 324 365 352 300

E
A

1k 414 435 440 414 418 444 414 424 448
5k 419 443 457 416 437 450 416 446 467
10k 425 440 465 424 442 448 417 439 457

Table 5. NovelConcepts10 CLIP Score for various TI hyperparameter settings.

LR Sched. Constant Linear Cosine
LR 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3 5e−5 5e−4 5e−3

C
le

an 1k 0.37 0.48 0.50 0.34 0.47 0.46 0.34 0.50 0.51
5k 0.47 0.51 0.46 0.45 0.51 0.48 0.44 0.51 0.51
10k 0.50 0.49 0.43 0.46 0.51 0.48 0.50 0.47 0.48

A
D

M
+ 1k 0.40 0.50 0.46 0.35 0.52 0.48 0.35 0.49 0.51

5k 0.46 0.46 0.42 0.48 0.46 0.44 0.46 0.48 0.45
10k 0.45 0.45 0.40 0.48 0.46 0.44 0.49 0.45 0.44

A
D

M
- 1k 0.38 0.50 0.47 0.37 0.46 0.51 0.37 0.45 0.50

5k 0.48 0.45 0.45 0.44 0.48 0.45 0.43 0.45 0.47
10k 0.45 0.46 0.41 0.46 0.43 0.45 0.46 0.47 0.43

E
A

1k 0.37 0.49 0.46 0.35 0.44 0.46 0.36 0.45 0.46
5k 0.45 0.45 0.43 0.39 0.45 0.43 0.39 0.46 0.45
10k 0.44 0.44 0.38 0.43 0.44 0.43 0.42 0.44 0.40



H. Timestep Range Ablation
We ablate methods of restricting training to higher
timesteps. We investigate high thresholding (t ∼ U(ρ, 1)),
power distributions (p(t) ∝ tρ), and tanh distributions
(p(t) ∝ tanh(ρ(t−0.5))/2+0.5). For comparison, we also
evaluate low thresholding (t ∼ U(0, ρ)). We abuse notation
and use ρ for various function parameters that control the
shape of each sampling distribution; increasing ρ increases
sampling probability for higher timesteps. Here, t is sam-
pled in domain [0, 1] and then the sampled output is rescaled
to [0, 1000] during training. Fig. 15 displays the tanh and
power probability distributions for various ρ values.

It can be seen from ablation results in Tables 6, 7, and 8
that performance on datasets poisoned by ADM+ improves
significantly as timestep sampling shifts towards higher
timesteps. Performance on EA-poisoned concepts also in-
creases slightly while performance on ADM- is relatively
stable across methods. In all cases, we note a performance
decrease when t is concentrated at extremely high timesteps
(e.g., t ≥ 900) since learning true features in this high-
noise range is challenging. Lastly, we empirically validate
the hypothesis that adversarial signals are concentrated at
lower-middle timesteps by demonstrating that performance
for low thresholding (t ∼ U(0, ρ)) is consistently worse
than nominal sampling.

Figure 15. Probability curves for timestep sampling, displaying
tanh distributions (top) and power distributions (bottom). Distri-
bution parameters for each curve are given in the legends.



Table 6. NovelConcepts10 DINOv2 Similarity for various timestep range restrictions at various ρ values.

Curve Nominal Tanh Power
ρ - 1 3 5 10 0.25 0.5 1 2 4

Clean 0.44 0.44 0.47 0.49 0.45 0.45 0.46 0.45 0.47 0.47
ADM+ 0.10 0.13 0.11 0.20 0.18 0.10 0.10 0.12 0.24 0.27
ADM- 0.29 0.31 0.30 0.28 0.27 0.28 0.29 0.30 0.26 0.25
EA 0.08 0.10 0.09 0.10 0.11 0.08 0.08 0.10 0.10 0.11

Curve Threshold Low Threshold High
ρ 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

Clean 0.17 0.24 0.29 0.31 0.37 0.46 0.44 0.39 0.37 0.31
ADM+ 0.08 0.08 0.08 0.10 0.09 0.22 0.21 0.28 0.33 0.26
ADM- 0.13 0.16 0.20 0.27 0.26 0.26 0.25 0.23 0.19 0.18
EA 0.07 0.07 0.08 0.07 0.07 0.11 0.13 0.14 0.13 0.10

Table 7. NovelConcepts10 FID for various timestep range restrictions at various ρ values.

Curve Nominal Tanh Power
ρ - 1 3 5 10 0.25 0.5 1 2 4

Clean 285 288 271 265 283 281 274 279 270 265
ADM+ 453 440 443 401 399 448 448 430 376 360
ADM- 339 335 341 344 351 351 344 335 349 362
EA 443 445 440 439 432 442 442 433 425 424

Curve Threshold Low Threshold High
ρ 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

Clean 387 365 342 334 323 279 285 304 312 336
ADM+ 442 448 449 451 447 388 389 352 336 364
ADM- 426 407 387 360 363 351 361 369 393 400
EA 437 441 445 443 451 424 414 413 413 439

Table 8. NovelConcepts10 CLIP Score for various timestep range restrictions at various ρ values.

Curve Nominal Tanh Power
ρ - 1 3 5 10 0.25 0.5 1 2 4

Clean 0.51 0.53 0.51 0.50 0.52 0.51 0.51 0.53 0.47 0.50
ADM+ 0.46 0.49 0.46 0.53 0.50 0.47 0.47 0.47 0.49 0.52
ADM- 0.45 0.47 0.49 0.47 0.44 0.49 0.48 0.49 0.47 0.44
EA 0.45 0.47 0.46 0.45 0.44 0.47 0.46 0.46 0.48 0.45

Curve Threshold Low Threshold High
ρ 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

Clean 0.44 0.45 0.43 0.49 0.49 0.51 0.49 0.50 0.49 0.45
ADM+ 0.38 0.41 0.43 0.44 0.44 0.49 0.50 0.48 0.48 0.47
ADM- 0.44 0.45 0.45 0.48 0.46 0.44 0.45 0.48 0.49 0.48
EA 0.41 0.43 0.40 0.43 0.45 0.44 0.46 0.48 0.49 0.49



I. Masking Ablation

Table 9. NovelConcepts10 DINOv2 Similarity for different mask-
ing methods.

Poison Nominal LM IM LIM ZM

Clean 0.44 0.45 0.38 0.42 0.20

ADM+ 0.10 0.36 0.28 0.33 0.11
ADM- 0.29 0.41 0.31 0.31 0.22
SDS+ 0.11 0.33 0.30 0.26 0.14
SDS- 0.25 0.39 0.29 0.29 0.16
EA 0.08 0.30 0.29 0.26 0.15
DA 0.27 0.38 0.34 0.31 0.16

Psn Avg 0.18 0.36 0.30 0.29 0.16

Table 10. NovelConcepts10 FID for different masking methods.

Poison Nominal LM IM LIM ZM

Clean 285 285 299 293 406

ADM+ 453 309 344 342 439
ADM- 339 299 330 341 378
SDS+ 439 341 341 365 428
SDS- 352 304 346 342 405
EA 443 359 348 365 421
DA 352 309 328 333 434

Psn Avg 396 320 340 348 417

Table 11. NovelConcepts10 CLIP Score for different masking
methods.

Poison Nominal LM IM LIM ZM

Clean 0.51 0.52 0.48 0.52 0.46

ADM+ 0.46 0.47 0.48 0.52 0.42
ADM- 0.45 0.54 0.50 0.51 0.44
SDS+ 0.44 0.48 0.48 0.48 0.45
SDS- 0.45 0.49 0.49 0.50 0.41
EA 0.45 0.50 0.49 0.48 0.42
DA 0.49 0.48 0.52 0.53 0.46

Psn Avg 0.46 0.49 0.49 0.50 0.43

We define the various objectives used by loss masking
(LM), input masking (IM), loss-input masking (LIM), and
latent masking (ZM). The notation here follows that of Sec-
tions 3 and 4.5. The LM objective is given by

LLM (x, t, c,Mx) = ||(ϵθ(zt, t, c)− ϵ)⊙Mz||22, (12)

which is similar to the SZT objective from Eq. 7. IM applies
masking only to the input x and is given by

LIM (x, t, c,Mx) = ||ϵθ(ztM , t, c)− ϵ||22, (13)

where ztM is the noised latent of a masked input image,
ztM =

√
αtE(x ⊙ Mx) +

√
1− αtϵ. LIM combines the

LLM and LIM objectives as

LLIM (x, t, c,Mx) = ||(ϵθ(ztM , t, c)− ϵ)⊙Mz||22. (14)

ZM applies masking to the latent vector zt and is given by

LZM (x, t, c,Mx) = ||ϵθ(zt ⊙Mz, t, c)− ϵ||22. (15)

We evaluate masking types on NovelConcepts10 across
all poisons. Tables 9, 10, and 11 demonstrate that LM out-
performs all other forms of masking for poison defense, as it
is the only method that fully preserves background informa-
tion in the forward process. IM performs underwhelmingly
and LIM is apparently limited by the input mask applied by
IM. ZM consistently gives the lowest performance.

To further evaluate the impact of LM, we measure the
proportion of SSM values within novel concept regions
compared to the sum of all SSM values throughout the im-
age. This metric can be captured using the ratio defined
below, with notation mirroring that of Sec. 4.1:

Rn,Mz
=

∑
i,j(SSM(x, t, ê, n)⊙Mz)i,j∑

i,j SSM(x, t, ê, n)i,j
. (16)

We measure Rn,Mz
for clean and poisoned versions of

NovelConcepts10 at steps 100, 500, and 900 during TI
training and average the values across all concepts. The
results in Fig. 16 show that the ratio of SSM within novel
concept regions naturally increases throughout training for
clean data. For poisoned datasets without LM, the propor-
tion of SSM in the novel concept regions never increases,
indicating that learning is distracted away from the novel
concept regions by adversarial signals. Only with LM does
TI focus on the novel concept regions for poisoned datasets.

Figure 16. Average Rn,Mz for clean and poisoned versions of
NovelConcepts10 throughout TI training. “w LM” denotes TI with
loss masking.



J. Mask Dilation Ablation
In initial experiments with SZT, we found that combining
T600 and LM tended to perform below expectations. Al-
though the performance of T600+LM was typically bet-
ter than established defenses like Regen and AdvClean, it
underperformed other SZT ablations like JPEG+T600 or
JPEG+LM. We hypothesize that strong restrictions in both
time (i.e., T600) and space (i.e., LM) may be too restrictive
and may hinder concept learning during TI training. There-
fore, we evaluated additional configurations of SZT that
ease temporal and spatial restrictions when used in combi-
nation. In particular, we investigate lower timestep thresh-
old (e.g., t ≥ 500, denoted as “T500”) combined with di-
lated concept masks. To implement mask dilations for LM,
we apply the ImageFilter.MaxFilter method from
PIL with 8, 16, or 24 pixels of dilation to the 512x512 bi-
nary masks, then rescale to 64x64 for latent space. Intu-
itively, applying mask dilation includes extra background
information outside of the novel concept region during loss
backpropagation.

Tables 12, 13, and 14 display the DINOv2 similarity,
FID, and CLIP Score for various combinations of T500,
T600, and dilated masks (denoted “LM-D08”, “LM-D16”,
and “LM-D24”). Of the various LM configurations, 16 pix-
els of dilation (LM-D16) demonstrates the highest robust-
ness to poisons. Furthermore, when combining T500 or
T600 with LM, using T500+LM-D16 gives the best per-
formance, validating our “too restrictive” hypothesis above.
Our final implementation of SZT uses JPEG preprocessing
with T500+LM-D16 and further improves poison defense
beyond all other ablations.

K. Defense Comparison for CustomCon-
cept101

We additionally include FID and CLIP Score metrics for
CustomConcept101 in Tables 15 and 16, complementing
the DINOv2 Similarity results in Table 1. Trends in de-
fense methods are generally similar as those observed in
Sec. 5.2.4 As observed for the DINOv2 Similarity results,
SZT is the best method for poison defense.

For emphasis, we plot the DINOv2 Similarity versus
CLIP Score values for “Psn Avg” on CustomConcept101
for all defenses in Fig. 17. As discussed in Sec. 5.2.4,
Regen, PDMPure, and AdvClean all offer minor improve-
ments in poison performance. We note the that despite a
drastic improvement in DINOv2 Similarity, JPEG is limited
in its prompt fidelity (measured by CLIP Score). This aligns
with qualitative observations of its limited concept learning
from Fig. 8. SZT improves DINOv2 Similarity and CLIP
Score beyond all existing defenses, and most ablations of
SZT also perform well. We note that all ablations of SZT
can beat existing defenses in at least one metric.

Figure 17. DINOv2 Similarity versus CLIP Score for all defenses
on CustomConcept101. Values are from the “Psn Avg” rows in
Tables 1 and 16.

L. Defense Comparison for NovelConcepts10
We repeat the same study as Sections 5.2.4 and K for Novel-
Concepts10 and report results in Tables 17, 18, and 19. All
trends for NovelConcepts10 generally mirror those seen for
CustomConcept101, validating our prior observations.

M. Generated Images after TI
We display generated images after TI for various concepts,
poisons, and defenses in figures 18, 19, 20, and 21. For
each concept/poison/defense, we utilized DINOv2 similar-
ity between generated images and training images to iden-
tify the most faithful image for display. Fig. 18 focuses on
the things-bottle1 concept from CustomConcept101 across
multiple poisons. Fig. 19 compares five concepts from Cus-
tomConcept101, each poisoned by ADM+. Figures 20 and
21 are analogous, but for NovelConcepts10. Observations
for these figures reflect those made for Fig. 8 in Sec. 5.2.4.



Table 12. NovelConcepts10 DINOv2 Similarity for various timestep-restriction and masking ablations.

Defense → Nominal LM LM LM LM JPEG JPEG+ T500 T500+ T600 T600+
Poison ↓ D08 D16 D24 +LM LM-D16 +LM LM-D16 +LM LM-D16

Clean 0.46 0.45 0.45 0.45 0.47 0.43 0.46 0.44 0.46 0.44 0.46

ADM+[39] 0.10 0.36 0.39 0.45 0.45 0.43 0.44 0.39 0.40 0.33 0.36
ADM- 0.32 0.41 0.43 0.44 0.42 0.43 0.42 0.25 0.31 0.22 0.24
SDS+[78] 0.09 0.30 0.44 0.44 0.41 0.43 0.42 0.24 0.25 0.21 0.24
SDS-[78] 0.11 0.33 0.40 0.47 0.44 0.42 0.44 0.36 0.42 0.33 0.37
EA[61] 0.25 0.39 0.41 0.41 0.42 0.41 0.42 0.23 0.28 0.19 0.20
DA[61] 0.27 0.38 0.43 0.43 0.42 0.42 0.42 0.29 0.34 0.33 0.34

Psn Avg 0.19 0.36 0.42 0.44 0.43 0.42 0.43 0.29 0.33 0.27 0.29

Table 13. NovelConcepts10 FID for various timestep-restriction and masking ablations.

Defense → Nominal LM LM LM LM JPEG JPEG+ T500 T500+ T600 T600+
Poison ↓ D08 D16 D24 +LM LM-D16 +LM LM-D16 +LM LM-D16

Clean 281 285 280 281 281 291 281 284 275 289 272

ADM+[39] 451 309 296 279 275 291 290 297 284 312 309
ADM- 323 299 291 287 296 293 302 375 341 374 378
SDS+[78] 434 359 288 291 302 296 300 372 358 390 381
SDS-[78] 439 341 297 273 281 299 288 311 283 318 303
EA[61] 352 304 298 295 285 296 297 378 354 381 389
DA[61] 352 309 295 286 295 299 298 350 321 343 328

Psn Avg 392 320 294 285 289 296 296 347 324 353 348

Table 14. NovelConcepts10 CLIP Score for various timestep-restriction and masking ablations.

Defense → Nominal LM LM LM LM JPEG JPEG+ T500 T500+ T600 T600+
Poison ↓ D08 D16 D24 +LM LM-D16 +LM LM-D16 +LM LM-D16

Clean 0.54 0.52 0.48 0.52 0.52 0.50 0.52 0.50 0.45 0.50 0.48

ADM+[39] 0.46 0.47 0.48 0.50 0.48 0.51 0.52 0.52 0.53 0.50 0.48
ADM- 0.49 0.54 0.48 0.51 0.46 0.50 0.49 0.45 0.48 0.48 0.46
SDS+[78] 0.45 0.50 0.50 0.48 0.48 0.47 0.47 0.49 0.51 0.52 0.49
SDS-[78] 0.44 0.48 0.46 0.51 0.50 0.50 0.54 0.45 0.53 0.50 0.49
EA[61] 0.45 0.49 0.47 0.46 0.46 0.51 0.53 0.46 0.49 0.49 0.48
DA[61] 0.49 0.48 0.47 0.46 0.48 0.53 0.53 0.49 0.48 0.51 0.53

Psn Avg 0.46 0.49 0.48 0.49 0.48 0.5 0.51 0.48 0.50 0.50 0.49



Table 15. CustomConcept101 FID for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 251 255 356 256 257 235 250 246 251 245

ADM+[39] 422 386 363 399 292 344 332 269 259 257
ADM- 302 349 367 297 271 333 267 256 256 252
SDS+[78] 420 389 357 393 301 348 322 275 261 259
SDS-[78] 311 357 367 299 273 355 272 259 261 248
EA[61] 413 421 365 367 302 386 329 260 262 248
DA[61] 323 341 347 298 278 358 273 260 255 249

Psn Avg 365 374 361 342 286 354 299 263 259 252

Table 16. CustomConcept101 CLIP Score for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.53 0.53 0.48 0.52 0.52 0.53 0.53 0.51 0.53 0.53

ADM+[39] 0.47 0.47 0.50 0.47 0.49 0.53 0.50 0.52 0.51 0.54
ADM- 0.50 0.50 0.48 0.51 0.50 0.47 0.52 0.51 0.52 0.52
SDS+[78] 0.46 0.49 0.50 0.48 0.50 0.53 0.51 0.53 0.53 0.52
SDS-[78] 0.48 0.48 0.50 0.51 0.50 0.46 0.53 0.50 0.52 0.53
EA[61] 0.47 0.48 0.50 0.47 0.49 0.48 0.51 0.52 0.52 0.53
DA[61] 0.50 0.49 0.51 0.51 0.52 0.54 0.54 0.52 0.53 0.54

Psn Avg 0.48 0.48 0.50 0.49 0.50 0.50 0.52 0.52 0.52 0.53



Table 17. NovelConcepts10 DINOv2 Similarity for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.44 0.43 0.24 0.44 0.41 0.44 0.45 0.45 0.43 0.47

ADM+[39] 0.10 0.14 0.24 0.13 0.28 0.21 0.36 0.36 0.43 0.43
ADM- 0.29 0.27 0.21 0.31 0.34 0.25 0.41 0.42 0.43 0.44
SDS+[78] 0.11 0.16 0.22 0.12 0.23 0.18 0.33 0.36 0.42 0.44
SDS-[78] 0.25 0.25 0.20 0.30 0.30 0.21 0.39 0.40 0.41 0.45
EA[61] 0.08 0.09 0.19 0.16 0.28 0.13 0.30 0.40 0.43 0.44
DA[61] 0.27 0.26 0.23 0.28 0.33 0.25 0.38 0.40 0.42 0.47

Psn Avg 0.18 0.19 0.22 0.21 0.29 0.21 0.36 0.39 0.42 0.45

Table 18. NovelConcepts10 FID for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 285 285 380 281 294 285 285 280 291 276

ADM+[39] 453 416 378 443 349 389 309 311 291 280
ADM- 339 353 390 336 324 361 299 294 293 279
SDS+[78] 439 410 389 433 374 399 341 317 299 283
SDS-[78] 352 366 392 338 335 379 304 300 296 277
EA[61] 443 450 394 410 349 414 359 308 296 282
DA[61] 352 350 373 354 323 367 309 305 299 269

Psn Avg 396 391 386 385 342 385 320 306 296 278

Table 19. NovelConcepts10 CLIP Score for various poison defenses.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.51 0.47 0.49 0.53 0.48 0.49 0.52 0.51 0.50 0.52

ADM+[39] 0.46 0.47 0.49 0.46 0.47 0.50 0.47 0.50 0.51 0.52
ADM- 0.45 0.50 0.46 0.50 0.46 0.45 0.54 0.51 0.50 0.49
SDS+[78] 0.44 0.49 0.47 0.48 0.47 0.48 0.48 0.48 0.50 0.49
SDS-[78] 0.45 0.48 0.48 0.48 0.48 0.44 0.49 0.51 0.51 0.52
EA[61] 0.45 0.45 0.47 0.48 0.48 0.46 0.50 0.48 0.47 0.48
DA[61] 0.49 0.49 0.48 0.49 0.48 0.52 0.48 0.52 0.53 0.46

Psn Avg 0.46 0.48 0.48 0.48 0.47 0.47 0.49 0.50 0.50 0.49



Figure 18. Images generated after TI on things-bottle1 (CustomConcept101) for various poisons. Prompt: “a R∗ in the snow”

Figure 19. Images generated after TI on various concepts from CustomConcept101 poisoned by ADM+. Prompt: “a R∗ in the snow”



Figure 20. Images generated after TI on FishDoll (NovelConcepts10) for various poisons. Prompt: “a R∗ on the beach”

Figure 21. Images generated after TI on various concepts from NovelConcepts10 poisoned by ADM+. Prompt: “a R∗ on the beach”



N. JPEG Preprocessing for Other Defenses

Given the success of JPEG with SZT in Sec. 5.2.4, we fur-
ther analyze JPEG preprocessing for existing defenses in
Tables 20, 21, and 22. In general, adding JPEG preprocess-
ing improves performance for Regeneration and Adverse-
Cleaner, but reduces performance for PDMPure. SZT still
outperforms all baseline defenses with JPEG processing.

O. Additional Diffusion Models

We further validate the effectiveness of SZT and existing
defenses for TI applied to multiple LDMs. We analyze Sta-
ble Diffusion 1.5 (rectified flow version) [43], Stable Diffu-
sion 2.1 (noise-prediction), Stable Diffusion 2.1 (velocity-
prediction) [40], and SDXL [55]. For convenience, we ab-
breviate the models as SD15, SD15rf, SD21, SD21v, and
SDXL. We evaluate all models on NovelConcepts10 for all
poisons. Training settings are generally similar to those de-
scribed in Sec. 5.1.2 except that we use 2500 training steps.
Due to the large size of SDXL, we instead use 500 training
steps, each with 5 steps of gradient accumulation. We were
unable to track CLIP Score for SD21, SD21v, or SDXL due
to their text encoders’ incompatibilities with the OpenAI
CLIP image encoder.

This experiment approaches a “black-box” poisoning
scenario, as we craft all poisons using SD15 and then test
defenses on different Stable Diffusion versions. This is not
a major concern, as multiple prior works have demonstrated
the strong transferability of poisons across Stable Diffusion
models [37, 78]. In multiple tables for SD15rf, SD21, and
SD21v results below, the “Nominal” defense column indeed
shows that all poisons are effective. Network-based de-
fenses (Regen and PDMPure) shown here still use the same
models for purification.

We evaluate SD15rf in Tables 23, 24, and 25. We sus-
pect that the poor performance of SD15rf is due to the fact
that it derives from a reflow procedure [42]. We hypothe-
size that reflow, which relies on deterministic sampling for
data/noise pairs to finetune models, acts as a type of model
distillation and forces models to unlearn natural ODE paths
between probability distributions. The rigid ODE paths en-
forced by distilled models may lack the flexibility to insert
new concepts into the model via personalization. Existing
defenses like Regen and AdvClean barely improve the poi-
son performance. Even so, SZT improves generative quality
for TI on poisoned data to match that of clean data.

Poison and defense performance on SD21 in Tables 26
and 27 is generally similar to that of SD15, which is sensible
given their similar architectures, training data, and training
objectives. The trends for SD21v in Tables 28 and 29 are
generally similar to those of SD15 and SD21, though the
effective of poisoning (i.e., the difference between “Clean”
and “Psn Avg” values) is diminished relative to SD15 and

SD21. Even so, SZT and its ablations are still effective for
improving generation quality on poisoned data. In Tables
30 and 31, SDXL demonstrates the largest rift in perfor-
mance trends relative to SD15, being unaffected by most
poisons. Though SZT and its ablations can improve per-
formance on poison data they are generally not necessary.
We are uncertain of the exact cause of low degree of poison
transferability from SD15 to SDXL.

P. Additional Personalization Methods
In addition to TI, we investigate additional personalization
methods for Stable Diffusion 1.5, namely LoRA [25] and
CustomDiffusion [35]. We use NovelConcepts10 for these
experiments. LoRA personalizes LDMs by finetuning low-
rank adapters for U-Net weights (and optionally for the text
encoder). LoRA does not finetune any text embeddings,
though it does associate finetuned weights with a target
prompt. CustomDiffusion is a compact version of Dream-
Booth [59] that only finetunes the cross-attention weights
of the U-Net as well as a new text token (as in TI). Notably,
the CustomDiffusion paper also introduced a crop/rescale
augmentation that applies as a mask during loss calculation,
similar to our LM strategy.

In our implementation of LoRA, we use rank 4 adapters
with a target prompt that includes “*” as a dummy token
to signify LoRA usage and trained for 1000 steps. We
did not find any improvement in generative quality when
using the prior preservation loss or when training text en-
coder weights, and thus our implementation does not in-
clude these methods. We report LoRA results in Tables
32, 33, and 34. We find that poisons are moderately effec-
tive against LoRA, with EA being the most severe. Exist-
ing defenses like PDMPure and AdvClean slightly improve
defense against poisons but Regen generally reduces gen-
erative quality. SZT and its ablations outperform existing
defenses to achieve clean-level generative quality for poi-
soned images. We note that as LoRA does not provide any
finetuned text tokens, the CLIP Score becomes a metric for
background fidelity; the CLIP text encoder will ignore the
dummy token (“*”) and instead focus on context words.

In our implementation of CustomDiffusion, we train for
1000 steps and do not use the prior preservation loss. We
report results both without their novel crop/rescale augmen-
tation (Tables 35, 36, and 37) and with it (Tables 38, 39, and
40). Without crop/rescale, performance is generally simi-
lar to that of LoRA, with SZT outperforming existing de-
fenses to improve poison performance. With crop/rescale,
all poisons are almost ineffective and most defenses (with
the exception of JPEG+T600) only reduce generative per-
formance. This suggests that their novel crop/rescale aug-
mentation, which is applied during loss calculation, acts
similarly to our LM method, effectively blocking out ad-
versarial signals outside the novel concept region.



Table 20. NovelConcepts10 DINOv2 Similarity for existing defenses with JPEG preprocessing.

Defense → Nominal Regen PDMPure AdvClean JPEG JPEG + JPEG + JPEG + SZT
Poison ↓ [84] [77] [65] Regen PDMPure AdvClean

Clean 0.44 0.43 0.24 0.45 0.41 0.37 0.19 0.38 0.47

ADM+[39] 0.10 0.14 0.24 0.13 0.28 0.26 0.20 0.30 0.43
ADM- 0.29 0.27 0.21 0.31 0.34 0.35 0.19 0.33 0.44
SDS+[78] 0.11 0.16 0.22 0.12 0.23 0.23 0.19 0.29 0.44
SDS-[78] 0.25 0.25 0.20 0.30 0.30 0.35 0.19 0.35 0.45
EA[61] 0.08 0.09 0.19 0.16 0.28 0.29 0.22 0.32 0.44
DA[61] 0.27 0.26 0.23 0.28 0.33 0.33 0.17 0.35 0.47

Psn Avg 0.18 0.19 0.22 0.21 0.29 0.30 0.19 0.32 0.45

Table 21. NovelConcepts10 FID for existing defenses with JPEG preprocessing.

Defense → Nominal Regen PDMPure AdvClean JPEG JPEG + JPEG + JPEG + SZT
Poison ↓ [84] [77] [65] Regen PDMPure AdvClean

Clean 285 285 380 281 294 303 389 303 276

ADM+[39] 453 416 378 443 349 355 389 335 280
ADM- 339 353 390 336 324 303 387 315 279
SDS+[78] 439 410 389 433 374 364 388 335 283
SDS-[78] 352 366 392 338 335 310 398 309 277
EA[61] 443 450 394 410 349 335 370 321 282
DA[61] 352 350 373 354 323 317 396 311 269

Psn Avg 396 391 386 385 342 331 388 321 278

Table 22. NovelConcepts10 CLIP Score for existing defenses with JPEG preprocessing.

Defense → Nominal Regen PDMPure AdvClean JPEG JPEG + JPEG + JPEG + SZT
Poison ↓ [84] [77] [65] Regen PDMPure AdvClean

Clean 0.51 0.47 0.49 0.53 0.48 0.49 0.46 0.52 0.52

ADM+[39] 0.46 0.47 0.49 0.46 0.47 0.49 0.51 0.47 0.52
ADM- 0.45 0.50 0.46 0.50 0.46 0.48 0.49 0.50 0.49
SDS+[78] 0.44 0.49 0.47 0.48 0.47 0.50 0.51 0.47 0.49
SDS-[78] 0.45 0.48 0.48 0.48 0.48 0.50 0.49 0.51 0.52
EA[61] 0.45 0.45 0.47 0.48 0.48 0.49 0.49 0.48 0.48
DA[61] 0.49 0.49 0.48 0.49 0.48 0.48 0.44 0.49 0.46

Psn Avg 0.46 0.48 0.48 0.48 0.47 0.49 0.49 0.49 0.49



Table 23. NovelConcepts10 DINOv2 Similarity for various poison defenses with Stable Diffusion 1.5 (rectified flow).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.21 0.23 0.20 0.20 0.18 0.17 0.30 0.19 0.28 0.28

ADM+[39] 0.03 0.04 0.17 0.02 0.08 0.18 0.09 0.16 0.21 0.24
ADM- 0.12 0.13 0.20 0.13 0.15 0.12 0.18 0.14 0.20 0.23
SDS+[78] 0.04 0.03 0.15 0.04 0.09 0.17 0.10 0.15 0.21 0.24
SDS-[78] 0.13 0.12 0.18 0.14 0.12 0.10 0.17 0.15 0.22 0.18
EA[61] 0.07 0.09 0.21 0.10 0.14 0.10 0.14 0.13 0.22 0.19
DA[61] 0.10 0.08 0.17 0.10 0.15 0.11 0.19 0.16 0.21 0.23

Psn Avg 0.08 0.08 0.18 0.09 0.12 0.13 0.14 0.15 0.21 0.22

Table 24. NovelConcepts10 FID for various poison defenses with Stable Diffusion 1.5 (rectified flow).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 385 364 380 386 391 389 343 385 356 352

ADM+[39] 440 443 394 455 419 388 416 396 379 367
ADM- 415 408 381 408 407 403 393 402 383 370
SDS+[78] 440 442 401 438 426 398 417 400 367 364
SDS-[78] 407 416 397 409 409 410 395 398 371 399
EA[61] 430 429 384 421 399 419 409 408 375 387
DA[61] 422 422 400 425 400 408 395 389 374 368

Psn Avg 426 427 393 426 410 404 404 399 375 376

Table 25. NovelConcepts10 CLIP Score for various poison defenses with Stable Diffusion 1.5 (rectified flow).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.44 0.41 0.46 0.43 0.42 0.46 0.47 0.43 0.47 0.44

ADM+[39] 0.40 0.41 0.45 0.38 0.43 0.42 0.40 0.42 0.46 0.48
ADM- 0.41 0.44 0.46 0.43 0.44 0.45 0.46 0.43 0.45 0.45
SDS+[78] 0.37 0.37 0.44 0.39 0.42 0.45 0.40 0.44 0.47 0.46
SDS-[78] 0.39 0.45 0.45 0.45 0.42 0.44 0.47 0.44 0.47 0.46
EA[61] 0.40 0.42 0.45 0.44 0.42 0.43 0.43 0.44 0.45 0.46
DA[61] 0.43 0.45 0.45 0.43 0.44 0.43 0.46 0.44 0.45 0.47

Psn Avg 0.40 0.42 0.45 0.42 0.43 0.44 0.43 0.43 0.46 0.46



Table 26. NovelConcepts10 DINOv2 Similarity for various poison defenses with Stable Diffusion 2.1 (noise-prediction).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.41 0.39 0.31 0.41 0.38 0.43 0.44 0.41 0.44 0.43

ADM+[39] 0.10 0.14 0.29 0.10 0.30 0.20 0.34 0.38 0.40 0.44
ADM- 0.21 0.29 0.26 0.33 0.34 0.28 0.42 0.37 0.44 0.40
SDS+[78] 0.08 0.13 0.24 0.10 0.32 0.18 0.36 0.32 0.44 0.43
SDS-[78] 0.23 0.24 0.24 0.26 0.31 0.22 0.41 0.37 0.42 0.43
EA[61] 0.09 0.07 0.26 0.10 0.26 0.12 0.33 0.38 0.43 0.41
DA[61] 0.27 0.23 0.26 0.31 0.35 0.27 0.42 0.38 0.45 0.44

Psn Avg 0.16 0.18 0.26 0.20 0.31 0.21 0.38 0.36 0.43 0.42

Table 27. NovelConcepts10 FID for various poison defenses with Stable Diffusion 2.1 (noise-prediction).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 290 305 356 298 301 295 279 294 288 286

ADM+[39] 440 421 355 429 339 393 319 306 295 276
ADM- 377 342 365 320 320 341 291 313 283 303
SDS+[78] 445 439 374 433 322 399 317 323 289 286
SDS-[78] 362 368 383 356 318 371 299 313 290 295
EA[61] 421 448 372 406 355 417 335 310 281 303
DA[61] 350 370 374 340 310 361 299 313 280 291

Psn Avg 399 398 370 380 327 380 310 313 286 292

Table 28. NovelConcepts10 DINOv2 Similarity for various poison defenses with Stable Diffusion 2.1 (velocity-prediction).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.28 0.31 0.26 0.34 0.30 0.29 0.39 0.31 0.41 0.39

ADM+[39] 0.25 0.23 0.29 0.30 0.29 0.24 0.37 0.24 0.42 0.37
ADM- 0.20 0.16 0.25 0.16 0.22 0.17 0.31 0.28 0.36 0.38
SDS+[78] 0.21 0.21 0.31 0.27 0.25 0.23 0.33 0.28 0.40 0.38
SDS-[78] 0.16 0.14 0.28 0.17 0.35 0.17 0.27 0.26 0.38 0.38
EA[61] 0.09 0.09 0.28 0.21 0.26 0.13 0.27 0.26 0.38 0.40
DA[61] 0.21 0.17 0.26 0.28 0.29 0.16 0.28 0.27 0.37 0.37

Psn Avg 0.19 0.17 0.28 0.23 0.28 0.18 0.30 0.27 0.38 0.38



Table 29. NovelConcepts10 FID for various poison defenses with Stable Diffusion 2.1 (velocity-prediction).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 336 328 343 321 326 334 308 330 295 314

ADM+[39] 355 362 332 332 335 370 309 360 292 309
ADM- 376 389 353 381 368 381 329 347 313 319
SDS+[78] 393 385 327 332 341 367 323 350 294 309
SDS-[78] 388 401 336 383 318 386 341 345 306 317
EA[61] 431 436 336 370 348 420 371 352 300 316
DA[61] 369 378 348 331 341 382 361 357 310 315

Psn Avg 385 392 339 355 342 384 339 352 303 314

Table 30. NovelConcepts10 DINOv2 Similarity for various poison defenses with SDXL.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.35 0.33 0.25 0.33 0.22 0.41 0.42 0.34 0.39 0.39

ADM+[39] 0.36 0.29 0.24 0.31 0.25 0.39 0.42 0.32 0.34 0.32
ADM- 0.30 0.26 0.23 0.34 0.20 0.40 0.38 0.32 0.38 0.39
SDS+[78] 0.34 0.37 0.27 0.32 0.29 0.39 0.41 0.39 0.38 0.42
SDS-[78] 0.32 0.30 0.26 0.35 0.17 0.36 0.43 0.35 0.37 0.36
EA[61] 0.30 0.16 0.22 0.30 0.20 0.35 0.42 0.30 0.31 0.33
DA[61] 0.34 0.31 0.29 0.33 0.21 0.38 0.41 0.36 0.35 0.38

Psn Avg 0.33 0.28 0.25 0.32 0.22 0.38 0.41 0.34 0.35 0.37

Table 31. NovelConcepts10 FID for various poison defenses with SDXL.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 325 335 374 333 374 303 293 332 319 322

ADM+[39] 314 340 383 342 358 319 311 326 327 329
ADM- 341 351 382 330 370 307 316 347 314 310
SDS+[78] 317 313 370 332 342 321 312 317 314 298
SDS-[78] 336 322 371 321 386 325 297 323 322 332
EA[61] 337 421 387 334 376 328 303 337 344 321
DA[61] 325 334 356 331 378 325 319 318 324 313

Psn Avg 328 347 375 332 368 321 310 328 324 317



Table 32. NovelConcepts10 DINOv2 Similarity for various poison defenses with LoRA.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.35 0.35 0.25 0.34 0.35 0.47 0.39 0.42 0.38 0.44

ADM+[39] 0.26 0.26 0.28 0.28 0.35 0.28 0.31 0.35 0.31 0.35
ADM- 0.33 0.29 0.29 0.35 0.32 0.28 0.32 0.40 0.36 0.42
SDS+[78] 0.32 0.26 0.31 0.29 0.30 0.28 0.28 0.31 0.32 0.34
SDS-[78] 0.31 0.27 0.28 0.35 0.32 0.26 0.31 0.41 0.35 0.38
EA[61] 0.11 0.13 0.30 0.18 0.29 0.09 0.13 0.35 0.31 0.36
DA[61] 0.29 0.27 0.27 0.32 0.32 0.24 0.28 0.40 0.34 0.38

Psn Avg 0.27 0.25 0.29 0.30 0.32 0.24 0.27 0.37 0.33 0.37

Table 33. NovelConcepts10 FID for various poison defenses with LoRA.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 322 311 365 316 315 261 301 284 303 280

ADM+[39] 364 363 357 367 312 383 360 310 337 325
ADM- 328 347 360 318 319 345 350 284 316 287
SDS+[78] 335 355 348 346 339 375 363 340 330 323
SDS-[78] 338 350 357 318 320 355 345 282 317 298
EA[61] 435 433 347 414 351 432 425 328 339 318
DA[61] 348 356 365 342 323 388 352 292 323 311

Psn Avg 358 367 356 351 327 380 366 306 327 310

Table 34. NovelConcepts10 CLIP Score for various poison defenses with LoRA.

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.48 0.48 0.51 0.48 0.48 0.41 0.44 0.44 0.45 0.42

ADM+[39] 0.49 0.49 0.50 0.50 0.48 0.46 0.45 0.45 0.48 0.45
ADM- 0.47 0.48 0.48 0.47 0.49 0.42 0.46 0.43 0.46 0.43
SDS+[78] 0.48 0.49 0.47 0.50 0.49 0.45 0.47 0.46 0.48 0.45
SDS-[78] 0.48 0.46 0.47 0.48 0.49 0.44 0.45 0.44 0.46 0.44
EA[61] 0.42 0.42 0.46 0.43 0.48 0.41 0.43 0.44 0.47 0.45
DA[61] 0.47 0.48 0.48 0.48 0.49 0.44 0.47 0.44 0.47 0.45

Psn Avg 0.47 0.47 0.48 0.48 0.48 0.44 0.45 0.44 0.47 0.44



Table 35. NovelConcepts10 DINOv2 Similarity for various poison defenses with CustomDiffusion (no crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.30 0.31 0.27 0.30 0.30 0.37 0.30 0.34 0.32 0.37

ADM+[39] 0.26 0.28 0.29 0.28 0.30 0.27 0.31 0.33 0.34 0.35
ADM- 0.29 0.25 0.27 0.30 0.31 0.20 0.29 0.32 0.32 0.33
SDS+[78] 0.25 0.27 0.28 0.26 0.29 0.26 0.29 0.33 0.33 0.35
SDS-[78] 0.27 0.25 0.28 0.30 0.32 0.19 0.29 0.32 0.34 0.38
EA[61] 0.14 0.15 0.24 0.19 0.29 0.13 0.19 0.30 0.33 0.33
DA[61] 0.28 0.25 0.27 0.30 0.31 0.23 0.31 0.29 0.34 0.34

Psn Avg 0.25 0.24 0.27 0.27 0.30 0.21 0.28 0.31 0.33 0.35

Table 36. NovelConcepts10 FID for various poison defenses with CustomDiffusion (no crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 336 333 346 331 327 305 335 316 324 307

ADM+[39] 347 346 342 339 331 347 330 322 311 306
ADM- 335 352 349 338 334 374 338 332 324 320
SDS+[78] 357 345 341 354 334 350 341 319 325 309
SDS-[78] 344 348 344 333 324 383 343 330 314 302
EA[61] 404 393 360 382 339 408 389 336 318 321
DA[61] 342 351 347 332 333 368 331 339 315 310

Psn Avg 355 356 347 346 333 372 345 330 318 312

Table 37. NovelConcepts10 CLIP Score for various poison defenses with CustomDiffusion (no crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.37 0.38 0.38 0.38 0.38 0.39 0.38 0.39 0.40 0.39

ADM+[39] 0.40 0.39 0.40 0.39 0.39 0.39 0.40 0.40 0.40 0.39
ADM- 0.38 0.39 0.39 0.38 0.38 0.41 0.39 0.38 0.40 0.39
SDS+[78] 0.40 0.38 0.38 0.40 0.39 0.40 0.39 0.39 0.39 0.40
SDS-[78] 0.37 0.39 0.38 0.38 0.39 0.41 0.40 0.39 0.39 0.40
EA[61] 0.38 0.38 0.38 0.37 0.38 0.39 0.40 0.39 0.39 0.39
DA[61] 0.39 0.38 0.38 0.38 0.38 0.39 0.39 0.39 0.38 0.39

Psn Avg 0.39 0.39 0.38 0.38 0.39 0.40 0.39 0.39 0.39 0.39



Table 38. NovelConcepts10 DINOv2 Similarity for various poison defenses with CustomDiffusion (crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.35 0.35 0.33 0.36 0.33 0.36 0.34 0.36 0.34 0.32

ADM+[39] 0.32 0.30 0.33 0.34 0.31 0.34 0.33 0.33 0.33 0.30
ADM- 0.33 0.25 0.33 0.33 0.33 0.33 0.31 0.34 0.34 0.30
SDS+[78] 0.33 0.31 0.34 0.31 0.32 0.32 0.32 0.34 0.34 0.30
SDS-[78] 0.32 0.26 0.32 0.34 0.33 0.31 0.31 0.34 0.32 0.30
EA[61] 0.31 0.21 0.29 0.31 0.31 0.29 0.32 0.32 0.33 0.30
DA[61] 0.36 0.33 0.32 0.32 0.32 0.34 0.33 0.35 0.33 0.30

Psn Avg 0.33 0.28 0.32 0.32 0.32 0.32 0.32 0.34 0.33 0.30

Table 39. NovelConcepts10 FID for various poison defenses with CustomDiffusion (crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 316 313 321 315 323 314 320 313 320 325

ADM+[39] 329 330 325 319 326 321 323 324 322 333
ADM- 324 353 320 327 320 327 327 321 321 334
SDS+[78] 323 331 319 329 325 328 326 320 316 328
SDS-[78] 324 357 326 320 317 338 329 324 327 337
EA[61] 332 375 336 335 331 349 324 331 323 337
DA[61] 311 326 329 327 327 320 325 321 324 332

Psn Avg 324 345 326 326 325 330 326 324 322 333

Table 40. NovelConcepts10 CLIP Score for various poison defenses with CustomDiffusion (crop/rescale augmentation).

Defense → Nominal Regen PDMPure AdvClean JPEG T600 LM JPEG JPEG SZT
Poison ↓ [84] [77] [65] +T600 +LM

Clean 0.41 0.40 0.42 0.41 0.40 0.40 0.42 0.41 0.42 0.40

ADM+[39] 0.41 0.41 0.41 0.40 0.41 0.41 0.42 0.41 0.43 0.41
ADM- 0.42 0.42 0.41 0.40 0.41 0.40 0.42 0.39 0.43 0.42
SDS+[78] 0.42 0.43 0.42 0.40 0.43 0.41 0.42 0.40 0.42 0.42
SDS-[78] 0.42 0.40 0.41 0.41 0.41 0.42 0.41 0.41 0.42 0.41
EA[61] 0.41 0.40 0.42 0.41 0.40 0.41 0.40 0.40 0.42 0.41
DA[61] 0.41 0.42 0.42 0.40 0.42 0.41 0.42 0.40 0.42 0.4

Psn Avg 0.41 0.41 0.42 0.40 0.41 0.41 0.42 0.40 0.42 0.41



Q. Ethical Statement
As our research primarily concerns the subfield of data poi-
soning, we are keenly aware of our work’s ethical proxim-
ity to copyright theft and artistic style copying. Practical
applications of SZT (and related methods) may realize as
improved attacks against attempts by copyright holders and
artists to protect their works. Even so, we believe that our
research is necessary. The individual components of SZT
are not complex, simply relying on JPEG compression, bi-
ased timestep sampling, and loss masking. Rather, we be-
lieve that the effectiveness of SZT, despite its simplicity,
exposes the vulnerabilities of existing poisons and demands
further research on robust poisons.
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