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Abstract—Large Language Models (LLMs) have showcased
remarkable generalizability in language comprehension and hold
significant potential to revolutionize human-computer interaction
in smart homes. Existing LLM-based smart home assistants
typically transmit user commands, along with user profiles and
home configurations, to remote servers to obtain personalized
services. However, users are increasingly concerned about the
potential privacy leaks to the remote servers. To address this is-
sue, we develop HomeLLaMA, an on-device assistant for privacy-
preserving and personalized smart home serving with a tailored
small language model (SLM). HomeLLaMA learns from cloud
LLMs to deliver satisfactory responses and enable user-friendly
interactions. Once deployed, HomeLLaMA facilitates proactive
interactions by continuously updating local SLMs and user
profiles. To further enhance user experience while protecting
their privacy, we develop PrivShield to offer an optional privacy-
preserving LLM-based smart home serving for those users, who
are unsatisfied with local responses and willing to send less-
sensitive queries to remote servers. For evaluation, we build
a comprehensive benchmark DevFinder to assess the service
quality. Extensive experiments and user studies (M = 100)
demonstrate that HomeLLaMA can provide personalized services
while significantly enhancing user privacy.

Index Terms—Smart Home, Large Language Model, User
pivacy, Personlization

I. INTRODUCTION

THE proliferation of smart homes has significantly facil-
itated the development of intelligent living spaces [1],

[2]. Typically, a smart home is a residence equipped with
various interconnected devices and systems [3], [1] that can
be controlled remotely or autonomously to enhance efficiency
and convenience through technologies such as IoT and AI-
based chatbots [4]. The long-term goal of smart homes is to
achieve seamless user-assistant interaction, allowing systems
to deeply comprehend user intents and deliver satisfactory and
personalized responses [5].

Existing commercial-off-the-shelf (COTS) smart home as-
sistants, like Amazon Alexa [6] and Apple Siri [7], are
task-specific models pretrained on various instruction datasets
which may lead to degraded performance on unseen tasks.
For instance, when users provide an under-specified command
(e.g., “Let guests in”) without mentioning specific devices,
the system might struggle to generate a reasonable action
plan involving smart devices due to the lack of a predefined
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command. Consequently, users and developers must add new
command-action pairs manually to customize the assistant.
The configuration process [8] mainly involves setting up
triggers (e.g., specific times and conditions) and defining
corresponding actions (e.g., starting appliances and predefined
routines), which are complex and time-consuming for appli-
cation developers, let alone novice users.

To overcome these limitations, recent works integrate LLMs
[9], [10] to revolutionize smart home services, enabling as-
sistants to understand user intents beyond predefined com-
mands. Among them, Sasha leverages ChatGPT [11] to gen-
erate action plans in response to under-specified user com-
mands. SAGE further enhances user experience by storing
the conversation histories for personalized plan generation.
Nevertheless, these cloud LLM-based assistants introduces
substantial privacy risks. In practice, users typically need
to register for API keys to access cloud services, providing
identifiable details such as a user ID and email address.
During operation, in-home commands, user profiles, and home
device states (e.g., temperature settings, lighting conditions)
are transmitted to cloud for processing. Under the honest-but-
curious threat model [12], [13], [14], [8], this workflow may
expose user privacy [15], [16], including daily routines (e.g.,
cooking, exercising), personal preferences, and detailed home
configurations, to third parties.

To protect user privacy from being exposed, an alternative
approach is to exploit open-source models to serve smart
homes locally. Though promising, local devices can only
support small-size language models (SLMs) due to resource
constraints. [17], [18], [19] Our preliminary study (§ III-B)
reveals that SLMs often fall short in fully comprehending
user intents [20]. Therefore, users are facing a performance-
privacy dilemma: while cloud LLMs excel in delivering high-
quality services, they may raise privacy concerns; conversely,
local SLMs secure user privacy but fail to generate satisfactory
responses due to limited model capabilities.

To address this dilemma, we propose HomeLLaMA, a
privacy-preserving local home assistant that delivers personal-
ized and satisfactory services through continuous learning. The
key insight of HomeLLaMA is empowering local SLMs with
the capabilities of cloud LLMs to shift most privacy-sensitive
query processing tasks from the cloud to the local, thereby
achieving a balance between model performance and user
privacy. The powerful cloud services are consulted with users’
explicit approval only when necessary (e.g., unsatisfactory
responses of the local SLMs). While the basic idea is simple,
several technical challenges must be addressed.
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• SLMs perform poorly compared to LLMs and lack high-
quality datasets for effective enhancement.

Preliminary experiments (§ III-B) reveal the key bottleneck
of SLMs in delivering high-quality smart home plans lies
in their limited capabilities to accurately associate relevant
devices with user commands compared with cloud LLMs.
Yet further experiments show that directly tuning SLMs on
existing command-action pairs only yields slight performance
gains due to inadequate generalizability across heterogeneous
home configurations. To address it, we propose a novel labor-
free data augmentation method with a tailored inference
paradigm. Specifically, we instruct powerful cloud LLMs to
synthesize a generalizable command-device dataset based on
available crowdsourced data. We fine-tune local SLMs on such
a synthesized dataset and guide them using the consistent
inference pipeline with well-crafted prompts. As a result, the
fine-tuned local SLMs can effectively generate higher-quality
action plans that are applicable across diverse homes with
varied device configurations.

• Even a well-enhanced SLM may not consistently provide
cloud LLM-level services for users.

As shown in the preliminary results (Fig. 2(b)), even af-
ter fine-tuning with our well-constructed dataset, there still
remains a substantial performance gap between the local
SLM and the cloud LLM. This gap in serving smart homes
may undermine user experience limited by local SLMs. To
resolve this issue, we design a privacy-preserving local-cloud
collaboration paradigm, providing users with the option to
consult cloud assistance for higher-quality responses. During
this collaboration, HomeLLaMA retains user preference and
home configuration data locally, and further obfuscates the
commands sent for assistance to preserve user privacy. The
process is entirely user-driven, meaning that the privacy-
sensitive commands will only be processed and then trans-
mitted to remote servers for performance enhancement upon
explicit user approval.

• Limited local space for guaranteeing long-term person-
alized services.

Prior work [21] embeds entire historical user-assistant con-
versations into prompts for personalization. However, open-
source SLMs have a shorter context length (e.g., 8K tokens
for LLaMA3) than commercial models and cannot incorporate
long conversation histories into prompts. While the popu-
lar retrieval-augmented generation (RAG) [22] is promising
in reducing context length by fetching relevant information
from a database, merely storing all historical conversations
in the database can lead to the continuous accumulation of
preference-related data, resulting in redundancy and hindering
the efficient retrieval of highly correlated information. To
mitigate this, at the end of each conversation, we instruct the
local SLM to distill the current chat into a concise user profile
containing topics, preferences, the current command, and its
final approved plan. Following the digestion of historical data,
we design a dynamic profile updating mechanism based on
similarity to reduce redundancy.

We implement and deploy HomeLLaMA on a local server
concerning specific smart home layouts and evaluate its per-

formance across multiple commonly used scenarios (e.g.,
atmosphere adjustment, and energy management). Both quan-
titative experiments and sufficient user studies (M = 100)
reveal HomeLLaMA significantly enhances user-centered pri-
vacy while maintaining an acceptable level of performance,
alleviating the raised performance-privacy dilemma for smart
home users. In short, the contributions are as follows:
• To the best of our knowledge, HomeLLaMA1 is the first on-

device smart home assistant to support privacy-preserving
and personalized services via user-in-the-loop.

• HomeLLaMA features three key novel technical modules:
Local SLM Enhancement for effective enhancing the perfor-
mance of local assistants with a tailored inference paradigm,
Local-Cloud Collaboration for maximizing user experience
via a user-centered local-cloud collaborative workflow with
privacy considerations, and User Preference Learning for
efficient locally-hosted long-term personalized services.

• We build a comprehensive smart home benchmark De-
vFinder2 to quantitatively evaluate the plan quality of smart
home assistants. Extensive experiments and user studies
demonstrate HomeLLaMA can effectively offer satisfactory
and privacy-enhanced services while boosting user-oriented
privacy confidence.

II. RELATED WORK

A. Smart Homes
In recent years, smart homes have emerged as a significant

area of interest within the broader domain of Internet of Things
(IoT) [25]. These systems integrate various connected devices
to automate and enhance home living, offering functionalities
[26] such as energy management [1] and personalized services
[27]. A typical scenario contains several smart devices, a
user interface component, and a central processing unit that
connects the smart home with cloud servers [28]. On the
smart device side, recent research has focused on enhancing
device capabilities through machine learning algorithms. For
instance, [29] explores activity recognition for home automa-
tion by developing a deep learning algorithm that identifies
user activities based on accelerometer data collected by de-
vices. On the user interface side, voice-based assistants are
increasingly preferred due to their ability to facilitate natu-
ral language interactions and hands-free control. Commercial
products like Google Assistant [30], and Alexa [6] exemplify
this trend, offering intuitive interfaces capable of managing
various commands, such as shopping and setting reminders, to
streamline automated device control. However, these modern
home assistants usually struggle with implicit and complex
commands [31], as demonstrated in our preliminary study. On
the other hand, recent advances in LLMs have shown excellent
performance in open-vocabulary question answering, which
can better comprehend user intentions with under-specified
commands. HomeLLaMA enhances user experiences with im-
proved system performance by integrating LLMs with smart
home devices to overcome the aforementioned challenges.

1The trained model is available in Huggingface with an anonymous account:
https://huggingface.co/USER9724/HomeLlama-8B.

2The dataset is available in Huggingface with an anonymous account:
https://huggingface.co/datasets/USER9724/SmartHome-Device-QA.
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TABLE I
A COMPREHENSIVE COMPARISON WITH OTHER LLM-BASED ASSISTANTS.

System Base Model Plan Quality Personalization Privacy Protection User Engagement

HomeGPT [23] GPT-3.5 (Cloud) Medium Limited Low Limited

Sasha [5] GPT-4 (Cloud) High Limited Low Limited

SAGE [21] GPT-4 (Cloud) High High Low Limited

TT-Gemma [24] Gemma (Local) Low Limited High Limited

TT-Phi-2 [24] Phi-2 (Local) Low Limited High Limited

HomeLLaMA LLaMA3 (Local) Medium High High ↑ Proactive

B. Integrate LLMs with Smart Homes

Recognizing the strong generalizability and language pro-
cessing capabilities of LLMs [32], [33], [34], [35], researchers
are attempting to integrate them with smart homes for en-
hanced user experiences. A pioneering work, HomeGPT [23],
directly prompts LLMs to generate a series of routines for the
smart devices by providing the user command with detailed
device states. The routines will further be parsed to adjust
the states of the smart devices accordingly. Sasha [5] further
optimizes the inference and control procedures by dividing
the entire process into five steps: clarifying, filtering, plan-
ning, execution, and feedback. Nonetheless, it cannot adapt
to user habits to generate personalized action plans, lowering
long-term user satisfaction. To address this, SAGE [21] and
Jordan et al. [36] enable LLMs to incorporate user profiles
for generating personalized plans. However, these systems
transmit user data and smart home configurations to the cloud
LLM for processing, raising privacy concerns for users as
the data exits the local environment. To provide satisfactory
and personalized plans while enhancing privacy, HomeLLaMA
tailors a locally deployed SLM via fine-tuning, focusing on
providing satisfactory and personalized smart home plans
while enhancing user privacy through our designed PrivShield.

In summary, Table I qualitatively presents a comprehen-
sive comparison between HomeLLaMA and other LLM-based
smart home assistants across multiple dimensions. Each of
these dimensions corresponds to specific quantitative metrics
discussed in the evaluation section (§ VI), for example, plan
quality is measured using the defined Device Relevance Score.
Compared with cloud-based assistants, HomeLLaMA offers
personalized services while significantly enhancing user pri-
vacy with minimal performance trade-offs. On the other hand,
compared with local-based solutions, HomeLLaMA excels in
providing superior personalization and higher-quality plans.
Additionally, it favors an innovative interaction paradigm that
promotes proactive user engagement through a user-driven
user-assistant interaction chain, enabling users to actively
personalize responses for a more adaptive experience.

III. MOTIVATION AND CHALLENGES

A. Limitations of Existing Smart Home Assistants

Existing solutions for smart assistants can be categorized
into task-based and LLM-based assistants. Task-based assis-
tants are trained on predefined command-action pairs, while

Today’s party begins and 
let the guests in!

Sorry, I don’t understand 
what you mean. Here are 
some of the search results 
from the Internet which 
may be useful:
- Upcoming events in …

(a) A typical example of Siri.

User 
Commands

Device
States

User 
Profiles

U
p
lo
a
d

Cloud LLM

(b) General workflow of SOTA.

Fig. 1. Illustrations of existing works, including the typical example of task-
specific models and the workflow of existing LLM-based models.

LLM-based assistants utilize the robust capabilities of LLMs
to understand user intents in various smart home scenarios.
Limitations of existing task-based assistants. As a notable
task-based assistant trained on a vast human-annotated dataset,
Siri [37] can deliver excellent responses to predefined tasks
[7]. However, its performance degrades when encountering
unseen and complex commands. Fig. 1(a) illustrates a typical
failure scenario in a conversation between Apple Siri and a
smart home user. When the user inputs a command such as
”Party begins and let all the guests in!” Siri fails to provide
an appropriate response and instead directly returns the search
results from the Internet, leading to a poor user experience.
Privacy concerns of LLM-based assistants. Recent advance-
ments in LLM-based smart home assistants, such as Sasha
and SAGE, allow users to issue commands more freely and
receive responses that go beyond predefined tasks. Specifically,
Sasha prompts the LLM using a designed pipeline with steps
like clarifying, filtering, and planning to generate satisfactory
action plans in response to user commands. Sasha fails to pro-
vide personalized services. On the other hand, SAGE further
enhances personalization by storing conversation histories and
summarizing them into user profiles.

Despite the improvements, as illustrated in Fig. 1(b), this
workflow may pose significant risks to user privacy. In prac-
tice, users are required to transmit commands along with
constructed user profiles and detailed device states (e.g., a
JSON file indicating the status of an air conditioner) to cloud
servers for processing. Assuming an honest-but-curious cloud
adversary [12], this workflow may lead to the exposure of:

• Sensitive personal information, including personally identi-
fiable information (PII) and user preferences [38];
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I feel sleepy, but I must finish homework now. The following 
are the home supported available devices {……}.

Set the study lights to bright white, turn off the TV and 
music player, adjust air conditioners for comfort, and 
prepare a hot coffee using the coffee machine.

Brighten the lights of the study area and then set the music 
player to play in a moderate volume.

(a) Responses from GPT-4 and LLaMA3 give a command.

Lighting Climate Atmosphere Security Power
0.2

0.4

0.6

0.8

D
R

S
 (

A
vg

.)

Original w/ Direct FT Ours

(b) Average DRS results across multiple scenarios.

Fig. 2. Preliminary results of (a) responses from GPT-4 and LLaMA3 and (b) DRS after setting GPT-4 as references.

• Home configurations, e.g., real-time home device states [39];
• Users’ daily in-home activities/routines, e.g., exercising [40].
These privacy risks hinder existing LLM-based assistants.

B. Challenges

As a straightforward solution to mitigate privacy concerns
of existing LLM-based assistants, we conduct preliminary
experiments by deploying the open-source LLaMA3-8B [41]
on a local server. From the preliminary study, we report several
technical challenges that further inspire HomeLLaMA.
Challenge 1: Vanilla SLMs perform poorly in identifying
relevant devices and lack high-quality datasets for effective
fine-tuning. To first uncover the underlying reasons why
SLMs underperform LLMs in smart homes qualitatively, we
input an under-specified command along with a set of available
devices to both GPT-4 and LLaMA3 to generate responses.
As shown in Fig. 2(a), GPT-4 involves a comprehensive list
of relevant devices whereas LLaMA3 generates a simpler
response, mentioning only lights and the music player. The
result suggests that SLMs mainly lack the inherent capability
and domain knowledge in identifying the latent semantic
correlation between user commands and relevant devices.

Given this observation, a user-configured dataset from smart
home platforms [42] is then collected for fine-tuning the SLM.
Once tuned, we input the prepared test commands into both
the original and the fine-tuned SLM in the same prompt
format, generating two sets of relevant devices as responses.
For a fair comparison, the same test commands are also
processed using GPT-4 to produce reference device outputs.
All responses are generated based on a predefined device
set, thereby constraining the models from generating outputs
in a freestyle manner. To quantify each model’s ability to
associate relevant devices with input commands, we adopt the
device relevance score (DRS) defined in [43], with a detailed
metric definition provided in § VI. As shown in Fig. 2(b),
the comparison reveals that DRS values only exhibit a slight
improvement (less than 10%) across various scenarios after
tuning on the dataset. The minimal performance gain from the
existing crowd-sourced dataset drives us to construct a high-
quality dataset tailored for fine-tuning SLMs in smart homes.
Challenge 2: Even a well-enhanced SLM may not con-
sistently generate cloud LLM-level responses. We explore
potential strategies to address Challenge 1 and finally con-
struct a fit-for-purpose dataset for effectively enhancing SLMs
in the context of smart homes (§ IV-B). However, as demon-
strated in Fig. 2(b), though fine-tuning SLMs with our tailored
dataset significantly improves performance, there still remains

a gap between local SLMs and cloud LLMs. In practice, this
implies that even with enhancement, SLMs may still fail to
consistently deliver high-quality services to users in smart
home environments. Such inconsistencies can diminish the
user experience, particularly when compared to the robust
cloud-based assistants. The gap highlights the need for a
user-driven cloud-assisted mechanism—one that incorporates
privacy-preserving measures—enabling users to obtain higher-
quality responses when local outputs fall short of expectations.
Challenge 3: Simply storing all interaction history for
personalization necessitates an excessively long context.
Existing approaches [21] directly incorporate raw conversation
history or accumulated user profiles into prompts for cloud
LLMs to enhance personalization. However, applying this
method to local SLMs faces a unique challenge: local SLMs
have a much shorter context length (e.g., only 8K tokens for
LLaMA3), making it infeasible to include lengthy user profiles
in prompts. While the widely adopted retrieval-augmented
generation (RAG) method [22] presents a promising solution
for conserving context length by retrieving relevant infor-
mation from a local database, its long-term use in smart
homes may lead to the continuous accumulation of preference-
related files. This accumulation can result in increased data
redundancy over time, thereby hindering the effective retrieval
of highly-correlated information. This practical limitation calls
for innovative solutions to optimize the use of historical data.

IV. DESIGN OF HOMELLAMA
A. System Overview

To address the aforementioned challenges, we propose
HomeLLaMA, with an overview outlined in Fig. 3. Before
deployment, it begins with the offline Local SLM Enhancement
module (§ IV-B) and with the enhanced model, user commands
are further processed through the online stage, consisting of
the Multi-party Interaction module (§ IV-C) and the User
Preference Learning module (§ IV-D).
• Local SLM Enhancement enables the local SLM to gener-

ate plans for various user commands. Before deploying the
local assistant, it is necessary to enhance the SLM so that
it can identify relevant devices based on user commands.
We begin by selecting seed commands from an open-source
command-action dataset, covering various scenarios such as
lighting, environment control, and security [42]. We then
propose a tailored data augmentation method by feeding
seed commands into a cloud LLM (GPT-4) to generate new
commands, incorporating different expression styles (user
diversity) and scenarios (application diversity). This process
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HomeLLaMA

CloudPrivShield

Multi-party Interaction
Interact

Student SLM

SFT

Prompt
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Inspector

Compile
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Scenario Augmentation
Chat DataUser Profile
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Fig. 3. System overview of HomeLLaMA. The system begins with an offline stage to enhance service quality within smart homes. Once deployed, it enters
the online stage, where it continuously learns and updates user profiles in real time, with optional cloud assistance upon user request.

synthesizes a large set of user commands. Then, the teacher
LLM labels the commands with comprehensive relevant
devices and compiles them into an augmented dataset, which
is further used to fine-tune the local SLM.

• Multi-party Interaction further enhances the user experi-
ence in the loop of user-assistant-cloud interactions. Users
can interact with HomeLLaMA by freely expressing their
requirements ( 1⃝). If the response generated by HomeL-
LaMA falls short of expectations, users can give feedback or
allow the local assistant to seek advice from cloud LLMs
( 2⃝). To enhance user privacy, PrivShield obfuscates user
commands by blending them with adversarial commands
generated by the SLM before sending the mixture to a
cloud-based LLM for processing ( 3⃝). The cloud LLM, upon
receiving these mixed queries, generates a set of responses
and returns them to the local PrivShield ( 4⃝). The real
response corresponding to the original user command is then
identified and recovered as advice, which the SLM integrates
to provide users with a refined action plan ( 5⃝).

• User Preference Learning ensures the assistant continu-
ously learns and adapts to user preferences. Specifically,
HomeLLaMA records each user-assistant interaction, which
are then digested into structured user profiles with a pre-
defined format ( 6⃝). And the maintaining user profiles will
dynamically update based on profile similarity. The module
allows the assistant to retrieve user profiles to generate
personalized plans for similar commands in the future ( 7⃝).
Over time, with the accumulated user profiles, HomeLLaMA
becomes increasingly attuned to user preferences.

Remarks. HomeLLaMA focuses on generating satisfactory
personalized action plans. In practice, the action plans can
be automatically translated to executable files (e.g., JSON) to
control smart devices via APIs (e.g., Apple API [44]) and we
omit the automatic translation part in this paper.

B. Local SLM Enhancement

To improve SLMs in smart homes, a viable approach can
be applying supervised fine-tuning (SFT) [41] on a tailored
”user command → relevant devices” dataset. Inspired by re-
cent advances in data augmentation methods (e.g., WizardLM
[45]), we investigate the potential of leveraging powerful cloud
LLMs (e.g., GPT-4) to automatically synthesize a customized
dataset with higher quality. This approach effectively transfers

the knowledge embedded within the cloud LLM (teacher) to
the local SLM (student) through the fine-tuning process.

1) Understanding the dataset: Serving different smart
homes with diverse user groups is not a straightforward
one-input-to-one-output mapping problem and two types of
diversity need to be considered: 1) Command diversity. It
arises from two main aspects: user diversity and scenario
diversity. User diversity refers to the fact that different users
may express their requests in various ways, while scenario
diversity refers to different types of home scenarios. 2) Device
diversity. It refers to the fact that different smart homes may
have varying sets of available devices, leading to multiple
possible responses for the same command.

2) Command augmentation: Concerning the issue of com-
mand diversity, it is essential to construct a dataset that in-
cludes a wide range of high-quality commands across different
user groups and various scenarios. We begin this process by
manually selecting a set of under-specified commands as the
seed from crowd-sourcing platforms (e.g., IFTTT) [42] based
on their popularity, i.e., overall adoption frequency among
users. The selected commands encompass several commonly
used smart home scenarios, such as climate control and
lighting control. Each scenario contains 10 commands and we
obtain 90 seed commands in total.
Synthesis of new commands. Harnessing the strong genera-
tive capabilities of cloud LLMs allows us to expand the dataset
without the need for manual data collection. During each
iteration of synthesis, we randomly sample five commands
from the command pool as a starting point. Motivated by the
two aspects of command diversity, we proceed to augment the
original commands along the following two directions:

• Vertical synthesis generates new commands for different
smart home scenarios. With the sampled seed commands, we
first instruct GPT-4 to generate a new yet relevant command
considering a different scenario via our carefully designed
prompts (Fig. 4(a)). With the newly obtained command, we
feed it back into GPT-4 to verify whether the command is
indeed relevant to the smart home context. If not, we discard
the command and proceed to the next iteration.

• Horizontal synthesis aims to generate new commands with
varied expression styles. Similar to the vertical synthesis
process, we instruct (Fig. 4(b)) GPT-4 to change the ex-
pression style of the original command while maintaining
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Vertical Synthesis

Now imagine that you are a smart 
home user. Based on these seed 
commands, please generate one 
more new under-specified user 
command of another smart home 
scenario. Make your commands 
concise and please do not give any 
other information.

(a) Vertical synthesis.

Horizontal Synthesis

Imagine you are a user command 
rewriter. For each seed command, 
rewrite it in a different speaking 
style while keeping its original 
semantic meaning. Make the new 
commands concise and do not 
give any other information.

(b) Horizontal synthesis.

Command Labeling

Let us think step by step:
• Given a command, you should 

select any possible relevant 
devices from the list: {……}.

• Format the relevant device set 
as follows: {……}.

• Compile commands with their 
device sets in this form:{……}.

(c) Command labeling (cloud).

Plan Generation

Let us think step by step:
• Given a command, you should 

select any possible relevant 
devices from the list: {……}.

• The supported home device set 
is {……}, please do matching.

• Generate an action plan using 
this relevant device set.

(d) Plan generation (local).

Fig. 4. The prompt template for (a) vertical and (b) horizontal synthesis, (c) command labeling, and (d) plan generation.

its original meaning. Once generated, we add the new com-
mand to the candidate command pool for further verification.

Similarity inspector. To ensure the quality of augmented
commands, it is necessary to remove redundant commands
with similar semantic meanings from the candidate pool.
Specifically, given any newly generated command snew, let
the set of existing commands in the command pool be S =
{s1, s2, . . . , sn}. The ROUGE-L score function [46], denoted
as R(s, s

′
), measures the similarity between commands. Then

the retention condition for the new command is

Retain snew ⇐⇒ max
i∈{1,2,...,n}

R(snew, si) < α (1)

where α is a predefined threshold that controls the portion of
overlap in semantic similarity between the new and existing
commands. This means that a new command will be preserved
only if the similarity between the new command and any
existing command is less than the predefined threshold.

3) Command labeling: Given the augmented command
pool, the next critical step is accurately labeling these com-
mands to construct a comprehensive command-device dataset.
We leverage the cloud LLM to label the commands with
comprehensive device sets, encompassing all potential relevant
devices. Specifically, we first simulate a virtual and large-
scale smart home deployed with a comprehensive set of COTS
devices (39 devices in total) collected from a smart home
platform [42]. With the prompt designed in Fig. 4(c), we
instruct the cloud LLM to identify a subset of relevant devices
from the comprehensive set for each user command in the
augmented dataset. The labeling process can be expressed as:

Da = {si → G(si,D)}, ∀si ∈ Sa (2)

where Da is the augmented dataset, si is a user command from
the augmented command pool Sa, D is the comprehensive
device set we build, and G(·) represents the black-box LLM.
Remarks. For the uncommon situation where a smart home
contains a device not included in the comprehensive set, the
user can explicitly suggest the missed device and specify her
preference on how to adjust the device. Such explicit user
feedback will be recorded and retrieved for future reference
§ IV-C. Note that the labeling process is agnostic to distinct
device configurations and does not require transmitting specific
user data to the cloud LLM.

4) Training the adapter as the device identifier: After
obtaining the tailored command-device dataset, we proceed
to fine-tune the local SLM to enhance its capabilities. Specifi-
cally, we utilize the QLoRA technique [47], a widely adopted

parameter-efficient fine-tuning (PEFT) [48] method. Instead
of fine-tuning all model parameters, which is both resource-
intensive and time-consuming, QLoRA trains a lightweight
adapter integrated into the target model. In the smart home
context, this process involves training a LoRA adapter to act
as a device identifier for the local SLM. By combining this
adapter with the original SLM, which retains extensive world
knowledge, HomeLLaMA becomes more adept at accurately
identifying and interacting with various smart devices.

5) Inference paradigm: With the enhanced SLM, we then
propose a tailored inference paradigm for serving each indi-
vidual home concerning the device diversity based on Chain-
of-Thoughts (CoTs) [49]. Fig. 4(d) illustrates our designed
prompt that instructs the SLM to generate the corresponding
plans in a step-by-step manner. The inference paradigm can
be divided into two steps outlined in Fig. 5:
• Initially, we consider a large home equipped with almost all

COTS devices as mentioned before. Then, we prompt SLM
to generate a comprehensive list of relevant devices given
a command. We denote the comprehensive relevant device
set as Dl, as shown in the red box of Fig. 5.

• Then, the generated results are adapted to a specific home
by performing a matching process. Specifically, with the
available device set in home i denoted as Di, we prompt the
SLM with the instructions in Fig. 4(d) to execute the task,
matching the common devices of Dl with Di to obtain the
matched set Di

f for home i (as shown in the blue box of
Fig. 5). The matching operation via the SLM is:

Di
f = Dl ∩Di. (3)

Remarks: In the initial step, while it is feasible to directly
input the device set of a target home to generate the action
plan, this approach may result in performance degradation.
The main reason is that the local SLM is fine-tuned on our
tailored dataset with a predefined input format. Therefore, the
enhanced ability in relevant device identification may only be
activated when the prompt aligns with the expected format.

C. Multi-party Interaction

As mentioned in § III-B, the enhanced SLM may still fail to
consistently offer high-quality services in practice. To further
improve user experience, we propose a multi-party interaction
module that facilitates user feedback as well as consultation of
cloud LLMs when necessary. This module supports two types
of interactions: 1) the user-assistant interaction, which allows
users to explicitly specify their requests and preferences, and
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Fig. 5. The designed inference paradigm of the local SLM.

2) the user-driven local-cloud collaboration, where the local
SLM is triggered by users to consult cloud LLMs for better
services with privacy protection.

1) User-assistant interaction: As the core component of
HomeLLaMA, the user-assistant interaction acts as an interface
for users to express their intents. In the flowchart illustrated
in Fig. 6, upon receiving a user command, the assistant will
generate action plans and respond to the users for confirma-
tion. For every generated response to users, they may accept,
reject, or follow up with a piece of advice.
• Accept: If the user is satisfied with the generated action

plan, the action plan will be translated into the command to
smart devices to control relevant devices.

• Advice: The user can provide natural language feedback
to further refine the user intent. For example, suppose the
user inputs a command like ”Brighten the bedroom,” and
the assistant responds with ”Turn on all the lights in the
bedroom.” If the user only wants to turn on the bedside
lamp, she can follow up with a detailed instruction (e.g.,
”Bedside lamp only, please.”). The assistant will then re-
generate the action plan by incorporating the user’s advice
into the prompt.

• Reject: If the user is not satisfied with the local response,
she may reject the action plan. For instance, if the user wants
to hold a home party and inputs ”Let the party begin,” but
the assistant responds with a simple action like ”Turn on
the lights and adjust the room temperature,” the user might
reject the response. In that case, the assistant leverages the
cloud LLM to generate an improved action plan with the
user-driven local–cloud collaboration module (§ IV-C2).

Remarks. Note that after each generated response, includ-
ing revised plans resulting from ”Advice” or ”Reject,” user
can further interact with the assistant. Only when the user
explicitly ”Accept” a proposed action plan, the plan will
be translated to control smart devices accordingly (Fig. 6).
Subsequently, the command and the final approved plan will
be saved as an interaction record, which will be further utilized
by the preference learning module (§ IV-D).

2) Local-cloud collaboration: When user rejects a plan,
HomeLLaMA will ask user for permission to consult a cloud
model (e.g.. GPT-4). If approved, the assistant will proceed
the process to generate an improved response [50].
Potential privacy risks. However, directly querying the cloud
LLM via registered API calling with the raw user command
and home details may raise privacy concerns [51] since user
activities and personal information may be inferred and mon-
itored [52] indirectly (e.g., through differential attacks [53])
by the curious cloud servers. For example, suppose a user first

requests, ”At 9 pm, make my living room chilly and turn on the
TV,” followed by, ”At 10 pm, check if the doors and windows
are locked and make my bedroom comfortable.” From these
commands, it can be easily inferred that the user might be
watching TV from 9 pm to 10 pm and then go to bed.
Role of HomeLLaMA during collaboration. While the goal
of local–cloud collaboration is to enhance user experience, it
must not come at the cost of unacceptable privacy compro-
mises. To this end, HomeLLaMA functions as both a process-
ing center and a privacy guardian: it retains all smart home
configurations and user profiles locally, transmitting only the
current user command to the cloud for assistance. To further
mitigate potential privacy risks embedded in raw commands,
we incorporate PrivShield, a lightweight obfuscation module
designed to anonymize user queries before cloud interaction,
as illustrated in Fig. 7.
PrivShield. Essentially, the PrivShield operates within a SLM-
in-the-middle framework. In practice, PrivShield safeguards
user privacy through procedures including user command
rewriting, adversarial command generation, and plan recovery.
• User command rewriting. An original user command may

contain personal information (e.g., names, locations) and
many colloquial expressions (e.g., modal particles). These
components not only introduce information redundancy but
also provide opportunities for third-parties to infer the user’s
actual command through continuous pattern recognition
in subsequent processes. To address this, we direct the
local SLM to first filter sensitive personal information [54],
and then paraphrase the original user command using the
customized prompt illustrated in Fig. 8(a).

• Adversarial command generation. Given a paraphrased com-
mand, the PrivShield prompts the local SLM with the
designed instructions in Fig. 8(b) to generate other N
adversarial commands across various unrelated scenarios to
obscure the original command. Each of the commands is
assigned a unique command ID and shuffled, with only
the original command’s ID t being locally recorded. These
commands are subsequently combined into a single query
along with their respective command IDs, as shown in
Fig. 8(c). The combined query will be transmitted to a cloud
LLM to generate action plans for all the commands.

• Action plan recovery. Upon receiving the response from
the cloud LLM, the PrivShield extracts the comprehensive
action plan associated with the right order. This extracted
action plan is then fed into the local assistant as advice for
generating a tailored plan for the user. The tailored plan is
subsequently delivered to the user as the updated plan.

Remarks. PrivShield enables users to access cloud services
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Fig. 7. Workflow of the PrivShield.

with privacy protection in an easily understandable manner.
However, the assistant primarily operates locally whenever
possible. The reasons are twofold: 1) User profiles and home
configurations are stored locally and will not be transmitted
to the cloud for processing due to privacy concerns. 2) The
cost of constantly querying the cloud may be prohibitive.
Before deployment, users are allowed to customize the number
of adversarial commands, i.e., N , to achieve user-oriented
privacy-cost balance.

D. User Preference Learning

Due to the restricted context length and information redun-
dancy, local SLMs cannot simply store all the chat history for
generating personalized responses. To address this challenge,
we develop a lightweight user profiling method, enabling
the assistant to efficiently retrieve dynamically updating user
profile database for reference. In practice, the user preference
learning module operates in three key stages: user profile
generation, profile updating, and personalized plan generation.

1) User Profile Generation: The interaction records be-
tween the user and the assistant are locally recorded. A
structured prompt, as illustrated in Fig. 9(a), guides the local
SLM to digest and generate a well-organized user profile for
each conversation. These profiles include details on 1⃝ topics
(i.e., the keywords of conversations summarized by the SLM),
2⃝ preferences, 3⃝ commands, and 4⃝ final action plans in

a concise way. These profiles are then transformed into vector
representations and stored in a text embedding database E .

2) Profile Updating: The user profile database follows a
carefully designed updating mechanism to maintain its effec-
tiveness over time. When a new user profile is generated, it
is compared with all existing profiles via cosine similarity.
If the similarities between the new profile and all the existing
profiles are below a pre-defined threshold, the new profile will
be saved as a distinct entry in the database. Otherwise, it is
constructively merged with the most similar existing profile.
Specifically, given the embedding of a newly generated user
profile denoted as pn, the condition for inserting this profile
into the embedding database is determined by:

Insert pn into E ⇐⇒ max
∀pi∈E

C(pn, pi) < β (4)

where C(·) is the cosine similarity function and β is a pre-
defined similarity threshold. If the maximum cosine similarity

between pn and any existing profile pi in the database is less
than β, the new profile will be inserted as a distinct entry.
Otherwise, the two similar profiles are merged into a new,
consolidated profile, which replaces the original profile by
prompting the SLM with the designed prompts shown in Fig.
9(b). This process enhances the storage efficiency of the user
profile database.

3) Personalized Plan Generation: During the inference
stage, given a new query qi, the assistant retrieves the top-
3 user profiles in the form of text embedding (denoted as pm,
pn, and pp) that have the highest cosine similarity to the query.
We then convert the selected embedding into text (denoted as
um, un, and up) through decoding:

(pm, pn, pp)
Decode−−−−→ (um, un, up) (5)

By concatenating the decoding result with the user query
qi, the personalized output plan is generated based on these
profiles and the current home configuration Hi:

Plan← L(um, un, up, Hi, qi) (6)

where L represents the action plan generation function of the
local SLM. The generated action plan is subsequently used to
control the corresponding smart devices.
Remarks: The user preference learning module is designed
to maintain a dynamically updating user profile database
for personalization. Additionally, our designed user profile
learning paradigm can be extended to multi-user smart homes
by constructing separate databases for each user. During
service, the assistant will first perform voice recognition [39]
to determine the user identity before processing.

V. IMPLEMENTATION

We implement the designed HomeLLaMA on a local server
using the PyTorch framework [55], with the entire workflow
supported by LangChain [56]. The implementation details of
each key component are as follows:
Data Augmentation: We prepare seed commands from IFTTT
and access OpenAI’s services via the OpenAI API. During the
augmentation process, we select GPT-4-Turbo as the default
LLM and appropriately prompt it to generate the required data.
By default, we set α in Equation 1 to 0.7. The augmented
dataset contains 14K action-command pairs in total, covering
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User Command Rewriting (SLM)

Please perform step by step:
• Given a user command, paraphrase 

it without any personal information 
in a formal and concise way, such as: 
Give me a cup of coffee.

• DO not change the original meaning.
• Remember to make the paraphrased 

command concise and please do not 
give any other information.

(a) User command rewriting (SLM).

Adv. Command Generation (SLM)

Please perform step by step:
• Generate other N commands which 

are unrelated to the original one.
• Make sure the generated commands 

are all user commands in the context 
of smart homes.

• Make the generated commands in a 
concise manner and do not give any 
other information.

(b) Adv. command generation (SLM).

A Query Example (LLM)

Considering the smart home scenarios, 
generate appropriate action plans with 
any possible relevant device for all user 
commands by order. Please make your 
responses  in the same format concisely:

1. Make my room chilly.
2. Tidy up the kitchen.

 …………………
10. Let the guests in.

(c) A query example (LLM).

Fig. 8. The prompt templates of the designed PrivShield.

User Profile Generation

Given new recorded conversations, generate a user profile 
that can represent the user preference. Please generate the 
profile in this format strictly:

Topic: drink, coffee
Preference: Latte
Command: I am thirsty.
Final Plan: Prepare Latte using the coffee machine.

(a) User profile generation.

User Profile Merging

There are two similar user profiles:
Compare their contents and generate a new profile to merge 
their information. Make sure the merged file in this format:

Topic: drink, coffee
Preference: Latte
Command: I am thirsty.
Final Plan: Prepare Latte using the coffee machine.

Profile 1 Profile 2

(b) User profile merging.

Fig. 9. The prompt templates for user profile generation and merging.

9 common smart home scenarios (e.g., atmosphere adjustment,
power management, etc).
Fine-Tuning: We choose Meta-LLaMA3-8B [57] as our base
model downloaded from Hugging Face 3. To fine-tune the base
model with our augmented dataset, we utilize the QLoRA [47]
technique with 8-bit quantization. The rank r is set to 64 and
lora alpha to 128. The learning rate is initialized at 3×10−5,
and a dropout rate of 0.1 is applied to alleviate the over-fitting
problem. The number of fine-tuning epochs is 3, with a train-
test split ratio of 80-20. The model is fine-tuned on a server
installed with Ubuntu 22.04 LTS with a single NVIDIA RTX
4090 GPU, taking around 8 hours.
User Profile Database: We deploy and maintain the user
profile database via FAISS [58], which is a library for ef-
ficient similarity search and clustering of dense vectors. The
conversation histories collected from the interactions are saved
in the text format and summarized into user profiles. Those
well-summarized user profiles are stored in the text embedding
database, and ready to be retrieved for the generation of
personalized plans during the inference stage. By default, the
β in Equation 4 is set to 0.6.

VI. PERFORMANCE EVALUATION

In this section, we conduct comprehensive quantified ex-
periments to evaluate the effectiveness of HomeLLaMA in
addressing the performance-privacy dilemma. Specifically, we
aim to answer the following questions:
• Q1 - Performance: Can HomeLLaMA provide high-quality

services locally?
• Q2 - Privacy: Does HomeLLaMA quantitatively enhance

user privacy?

3https://huggingface.co

• Q3 - System Overhead: Is HomeLLaMA affordable to be
deployed locally?

• Q4 - Sensitivity: How do system configurations (i.e., base
models) impact performance?

A. Model Capacity (Q1)

1) DevFinder Benchmark: Considering the comprehensive
home setup described in § IV-B, which is equipped with
commonly used smart devices, we select 100 test commands
with human-annotated device labels from the IFTTT dataset
[42] with more details outlined in the open-source dataset.
These commands with labels encompass a wide range of
scenarios, including environmental control, atmosphere adjust-
ment, power management, etc. The commands are input into
the smart home assistants to generate responses, which are
then compared with the annotated labels to quantify the quality
of the generated action plans.

To quantify HomeLLaMA’s capability in identifying relevant
devices, we adopt the Device Relevance Score (DRS) as the
evaluation metric [5]. Suppose the ground truth device set is
Gl and the device set generated by the local SLM is Gr, we
compute the relevance score as:

DRS =
|Gl ∩Gr| − |Gr −Gl|

|Gr|
(7)

where |Gl∩Gr| represents the number of overlapping devices,
and |Gr−Gl| refers to the number of devices in the response
that are not included in the ground truth. Then, the relevance
score is normalized to [−1, 1]. The higher the relevance score,
the better the performance in identifying relevant devices.

2) Baselines: To contextualize the model performance of
HomeLLaMA, we compare our system with several other
LLM-powered smart home baselines:
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Fig. 10. Avg. DRS after setting (a) FP16 and (b) INT8 precision.
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Fig. 11. Results for (a) latency and (b) memory usage.

• HomeGPT [23] directly prompts the LLM to generate smart
home plans in response to user commands.

• Sasha [5] modifies HomeGPT by introducing a revised
pipeline consisting of five procedures, including filtering,
planning, etc, to enhance the quality of plans.

• SAGE [21] generates personalized plans by inserting all
conversation history into prompts.

• Thoughtful Things (TT) [24] utilizes the on-device SLMs
(Google Gemma-7B [59] and Microsoft Phi-2-3B [60]) to
generate routines and control smart devices.

Note that for a fair comparison, the cloud-assisted module
is disabled during the evaluation of device relevance, and all
results are computed purely based on local operations.

3) Results: We test HomeLLaMA and baselines on the
proposed DevFinder and report the average score of each
system. Additionally, we set the temperature t of these models
to 0.1 and 0.7 for evaluation, respectively. As illustrated in
Fig. 10, the designed HomeLLaMA significantly outperforms
the other two on-device assistants but still lags behind cloud-
based LLM assistants. To investigate the reasons behind this,
we examine and analyze the generated action plans and
uncover the following insights:

• Despite the superior performance of cloud-based assis-
tants enabled by larger models [20], HomeLLaMA achieves
comparable DRS to GPT-3.5 while ensuring user privacy
through PrivShield and local processing, demonstrating high
performance without compromising user privacy.

• Among on-device assistants, HomeLLaMA delivers the best
local service, outperforming TT-Gemma and TT-Phi-2 in
device relevance. This is due to its fine-tuning on smart
home–specific data and its hybrid design, which enables
selective cloud assistance to further boost DRS when needed.

• Raising the model temperature increases creativity and can
improve relevance (e.g., HomeLLaMA from 0.51 to 0.55 at
t=0.7 under FP16), but may also cause hallucinations [66].
While mitigations exist, smaller models like TT-Phi-2-3B
still suffer performance drops due to weaker reasoning when
temperature rises.

B. Privacy Protection (Q2)

1) Qualitative risk analysis: Before quantifying HomeL-
LaMA’s privacy protection, it is important to first examine
potential privacy risks qualitatively. In typical cloud-based
smart home systems, users must register for API keys and

Prompt template for Launching Activity Monitoring Attacks

You are now playing the role of an attacker attempting to uncover users' in-home activities. You will be 
presented with a set of commands, among which only one is the true user command. Note that human-
generated commands may differ significantly from machine-generated ones. Specifically, your task is to:
• Identify user commands with the highest likelihood of being correct.
• As you gather more prompts across multiple rounds, try to recognize the patterns in user commands, 

and utilize pattern matching to improve your accuracy in the subsequent identifications.

Fig. 12. The prompt template for launching activity monitoring attacks.

transmit commands and device states to remote servers, ex-
posing them to risks during data storage, network transmis-
sion, and inference, as detailed in Table II. These include
unauthorized access, interception, and inference attacks such
as PII extraction, attribute inference, and activity monitoring.
Unlike such systems, HomeLLaMA operates locally without
sharing user profiles or home configurations, thereby mitigat-
ing storage and transmission risks. Additionally, its PrivShield
module filters sensitive content before sending prompts to the
cloud, preventing PII exposure. However, obfuscated prompts
remain susceptible to activity monitoring via API traceability.
The next section presents quantitative experiments to evaluate
resilience against this residual threat.

2) Quantitiave Analysis: We focus on examining the in-
home activity monitoring threat in HomeLLaMA. During the
use of PrivShield, the real commands are obfuscated with N
other SLM-generated adversarial commands before being sent
to the cloud LLM for processing.
Threat Model. We assume the cloud LLM operates on the
honest-but-curious remote server [31], where adversaries de-
liver the correct inference results but investigate all transmitted
user queries. The goal is to identify the real query from the
mixture using pretrained classifiers, thereby enabling real-
time monitoring of users’ in-home activities. Following the
procedures in [67], we launch the activity monitoring attack by
instructing cloud GPT-4 using well-designed prompts shown
in Fig. 12 to infer user in-home activities based on the
continuously received commands. We then use attack success
rate [40] to assess the system’s privacy level, where a higher
rate indicates a greater threat to user privacy and reduced
system protection.
Results. We use the constructed DevFinder as test user
queries, setting the number of adversarial commands N to 2,
4, 9, and 19. We also vary the base SLMs in HomeLLaMA to
examine their impacts on the quality of adversarial command
generation. The average attack accuracy results across query
rounds obtained through extensive experiments are presented
in Fig. 13, and we report the following key findings:
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TABLE II
QUALITATIVE RISK ANALYSIS OF LLM-BASED ASSISTANTS INCLUDING CLOUD-BASED SYSTEMS, LOCAL TT AND HomeLLaMA. HERE ” ” INDICATES

COMPROMISING PRIVACY REGARDING THIS THREAT, WHILE ” ” SIGNIFIES IT REQUIRES QUANTITATIVE EVALUATION (§ VI-B2).

Threat Type Cloud-Based Systems TT (Local) HomeLLaMA (Hybrid)

Data Storage [61]
Network Transmission [62]

Inference [63]
PII Extraction [64]

Attribute Inference [65]
Activity Monitoring [40]
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Fig. 13. Average attack success rate across query rounds for different values of N and base models.

• PrivShield effectively safeguards user privacy by maintain-
ing significantly lower attack success rates compared to
direct queries without its protection. As shown in Fig. 13,
leveraging PrivShield with different N values and various
base models results in a substantial reduction in attack
accuracy, far below the 100% success rate of direct queries.
Furthermore, while an increase in query rounds allows
adversaries to accumulate more information, as illustrated
in all sub-figures, this does not enhance their ability to
accurately infer user prompts. In fact, denote the average
attack success rate of the PrivShield as SRp, and the overall
attack success rate of HomeLLaMA SRh should be

SRh = ϵ · SRp (8)

where ϵ represents PrivShield’s frequency of use. During
practical daily usage, the frequency ϵ will gradually become
lower with user profiles being progressively constructed,
as discussed in § VII-B. Consequently, the overall privacy
protection of HomeLLaMA will strengthen over time, as
users will increasingly rely on local operations without cloud
LLM assistance.

• Privacy protection strengthens as the number of adversar-
ial commands increases. These adversarial commands can
introduce noises in the text space, making it harder for
malicious attackers to identify the real queries. Moreover,
generating more adversarial commands incurs higher latency
and cost, users should be allowed to decide their preferred
trade-off between privacy and performance.

• Privacy protection also benefits from the use of stronger
SLMs. As demonstrated in Table II, replacing base SLMs
with larger and more powerful models significantly re-
duces attack accuracy. This is because identifying real
user queries becomes equivalent to distinguishing AI-
generated text from the mixture. Stronger SLMs are more
adept at generating high-quality adversarial commands, fur-
ther obscuring the real query from identification. However,

deploying larger models may be impractical due to resource
constraints, which will be discussed further in § VI-D.

Remarks. Although adversaries may deploy advanced pre-
trained classifiers to distinguish user commands from obfus-
cated mixtures. In such cases, PrivShield could be enhanced by
strengthening query obfuscation (e.g., selecting a larger N ) for
stronger privacy protection according to users’ requirements.

C. System Cost (Q3)

1) Metrics: We evaluate the system cost in terms of the
following aspects: 1) Response latency: We measure the time
cost from the moment the user inputs a command to the
generation of the final action plan as the response latency
of each system. 2) Memory usage: We measure the system
overhead by tracking the GPU memory usage (in GB) via a
Python package named memory-profiler [68] during usage.

2) Baselines: We keep the same baselines as selected in
§ VI-A2. Note that the first three systems (i.e., HomeGPT,
Sasha, and SAGE) are based on cloud LLMs which cannot
be directly accessed, while only TT explores the integration
of SLMs into smart home assistants. Consequently, we only
measure the memory usage of TT-Gemma, TT-Phi-2, and our
proposed HomeLLaMA.

3) Results: To measure the system overhead of HomeL-
LaMA and the baselines, we input each test command in
the DevFinder benchmark into them and report the average
response latency with its variance. As shown in Fig. 11(a),
the cloud-based assistants exhibit relatively faster average
response time (around 4.97 seconds) compared to the local-
based assistants, primarily due to the performance optimiza-
tions of OpenAI services [11]. However, cloud-LLM-based
systems are highly susceptible to network conditions and
server stability, leading to significant variance in response
latencies, which can negatively impact user experience [69].
In contrast, HomeLLaMA exhibits less variance in response
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Fig. 14. Impacts of different base models.

latency, albeit with a slightly longer response time. We also
track the maximum GPU memory usage of the two local SLM-
based systems (i.e., TT and HomeLLaMA) when adopting
different quantization precisions (i.e., fp16, int8, and int4)
during inference. As shown in Fig. 11(b), the maximum GPU
memory requirement for these systems remains under 16 GB,
which is affordable and manageable for a typical household4.

D. Sensitivity Analysis (Q4)

1) Different base models: We evaluate the impact of
base models by deploying Qwen2-1.5B [70], Phi3-3B [71],
LLaMA2-7B/13B [72], LLaMA3-8B [57], and LLaMA3-
70B [72] in HomeLLaMA. Given the test inputs from De-
vFinder, we record their average DRS and GPU memory
usage. As shown in Fig. 14, models fall into three groups: (1)
lightweight models (white) such as Qwen2-1.5B and Phi3-3B
offer minimal memory usage (∼8GB) but poor performance;
(2) high-end models (red) like LLaMA2-13B, LLaMA3-70B,
and GPT-4o yield the best DRS but require ≥24GB GPU
memory; (3) mid-range models (blue) such as LLaMA2-7B
and LLaMA3-8B balance performance and cost. Thus, we
choose LLaMA3-8B as the default base model.

2) Different α during augmentation: To study the effect of
the augmentation threshold α (Eq. 1), we vary it from 0.1 to
0.9 and fine-tune LLaMA3-8B, Phi3-3B, and LLaMA2-7B on
corresponding augmented datasets. As shown in Fig. 15(a),
increasing α improves average DRS by promoting data di-
versity. However, the gain saturates at higher values, while
training cost rises due to dataset expansion. We therefore set
α = 0.7 by default.

3) Different β during profile updating: The profile update
threshold β (Eq. 4) determines when to save a new user
profile. Using 10 participants, we evaluate personalization
ratings (1–5) under varying β from 0.1 to 0.9. As shown in
Fig. 15(b), higher β initially improves satisfaction by prevent-
ing premature profile merging, but overly high values lead
to redundant entries, impairing retrieval. Satisfaction peaks
around β = 0.6, which we adopt as the default.

4An NVIDIA RTX 4070 Ti SUPER GPU (16 GB) costs around $840.
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Fig. 15. Impacts of selecting different thresholds α and β.

VII. USER STUDY

We conduct user studies to gather user feedback. The study
can be divided into two parts: an online survey and an onsite
interview, aiming to answer those questions:
• Q5 - User Privacy Confidence: Does HomeLLaMA lift user-

perceived privacy confidence?
• Q6 - User Satisfaction: How do users feel about the overall

service quality of HomeLLaMA?
• Q7 - Long-term Personalization: Is HomeLLaMA capable

of adapting to users’ preferences continuously?

A. Online Survey: Cold-start Evaluation (Q5 & Q6)

1) Preparation works: We select two representative base-
lines: a cloud-based assistant SAGE and a local-based assistant
TT-Gemma. For each scenario, we select a test command from
DevFinder and input them into systems to generate initial
action plans. Subsequently, we manually select the ”Advice”
option (§ IV-C1) and provide the feedback to all systems.
These systems then perform preference learning, if applicable,
and regenerate action plans which are recorded for further
analysis. To ensure fairness, the order of system presentation
is randomized before being rated by participants.

2) Participants: We created an online survey using Mi-
crosoft Forms5 and distributed it via emails and social media to
recruit participants. Before participating, all respondents were
presented with an informed consent form outlining the purpose
of the study, data handling procedures, and their rights as
participants. The study protocol was reviewed and approved by
our institution’s ethics review board (IRB). Participants were
informed that their responses would be anonymized and used
solely for academic research purposes. Participation was en-
tirely voluntary, and no monetary compensation was provided.
After 12 days, we received 100 responses from volunteers in
total, and the data of participants shows a relatively balanced
distribution of participants in terms of gender, age, educational
background, English proficiency, and familiarity with smart
home assistants.

3) Survey design: The survey evaluated smart home sys-
tems from the following four metrics: 1⃝ General Plan
Satisfaction, assessing satisfaction with the quality of initial
action plans irrespective of personalization; 2⃝ User Profile
Correctness, measuring how accurately the generated user
profile reflects personal preferences and behaviors during the
current interaction; 3⃝ Personalization Fit Score, evaluating
how well the responses and recommendations align with

5 https://forms.office.com/

https://forms.office.com/
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Fig. 16. User study results, including (a) online survey ratings, and (b)–(d) show average interview results.

historical feedback within the interaction round; and 4⃝ Pri-
vacy Assurance Score, gauging participants’ confidence in
the system’s ability to safeguard personal data and maintain
privacy. Participants were asked to rate these metrics on a
Likert scale [73] from 1 (e.g., not at all) to 5 (e.g., completely).

4) Overall results: Fig. 16(a) visualizes the overall rat-
ing results, and key observations of each aspect include:
1) Participants expressed high satisfaction (close to cloud-
based assistant SAGE) with the quality of services provided
by HomeLLaMA, reflecting its ability to deliver effective
and reliable action plans tailored to user needs. This may
be attributed to the tailored enhancement method of SLMs
proposed in this paper. 2) HomeLLaMA excelled in delivering
personalized responses and generating precise user profiles
compared with other baselines, achieving the highest average
score of around 4.35 points. This may be attributed to the User
Preference Learning module, which accurately characterizes
well-structured user profiles to adapt plans effectively. 3)
HomeLLaMA received high ratings for its privacy-preserving
features, surpassing cloud-based solutions and approaching the
level of the fully local system, TT-Gemma. This demonstrates
its ability to enhance user-perceived privacy by operating
locally and minimizing data transmission to the cloud. Addi-
tionally, the local-cloud collaboration paradigm, supported by
the designed PrivShield, boosts users’ confidence in privacy,
thereby improving the overall usability of the system.

B. Onsite Interview: Long-term Evaluation (Q7)

To evaluate the long-term performance of HomeLLaMA, we
deploy the system locally for conducting an onsite interview.
The interview lasts for 25 days with 50 conversation turns,
and the actual usage time of volunteers is approximately
45.6 minutes on average. Each turn represents a complete
user-assistant-cloud interaction (Fig. 6), starting with the user
command and ending with the final action plan.

1) Procedures: We deployed HomeLLaMA on a labora-
tory PC using the configuration in § V. From 100 survey
respondents described in § VII-A1, 10 participants were
invited and divided into two groups: 5 experts and 5 non-
experts, based on their familiarity with smart homes. Prior
to interviews, all participants provided informed consent and
received compensation in the form of supermarket coupons
valued at approximately $10. Participants were first introduced
to the interaction workflow—including the accept, advise,
and reject options—to ensure familiarity. Additionally, two
evaluation metrics were explained to them before beginning
the interaction: 1⃝ Long-term Personalization assesses how

effectively the system infers and retains user preferences over
time. 2⃝ Ease of Use evaluates how efficiently the system
minimizes user efforts for delivering satisfactory responses
as usage continues. Participants were then invited to freely
interact with HomeLLaMA, issuing smart home commands in
natural language through UI without constraints. After every
five conversation turns, they rated the system using the two
predefined metrics on a 5-point scale. Throughout the session,
we recorded all evaluation scores and, every five turns, also
tracked the number of times PrivShield was activated for cloud
assistance. Finally, the average results for each group were
computed and analyzed separately.

2) Results: As illustrated in Fig. 16, both expert and non-
expert participants show a steady increase in ratings for Home-
LLaMA across personalization and ease of use as the number
of conversation turns grows, reflecting the system’s ability to
adapt through dynamically maintained user profiles. Experts
tend to assign higher scores earlier, likely due to their clearer
articulation of preferences, which accelerates profile quality
and system adaptation. A consistent gap remains in ease-of-use
ratings, with experts maintaining an advantage of about 0.35
points by the 50th turn, though both groups converge above
4.2, indicating strong usability. Additionally, the activation
frequency of PrivShield declines for both groups, approaching
zero by the 50th turn, highlighting HomeLLaMA’s reduced
reliance on cloud-based support as it better internalizes user
preferences, thereby enhancing privacy protection.

VIII. CONCLUSION

This paper presents an on-device smart home assistant that
balances privacy and performance for users. The designed
HomeLLaMA comprises three technical modules: Local SLM
Enhancement, Multi-Parity Interaction, and User Preference
Learning, enabling seamless and privacy-enhanced interac-
tions involving user-in-the-loop. We construct the DevFinder
benchmark to assess the quality of the generated responses.
Comprehensive user studies demonstrate that HomeLLaMA de-
livers satisfactory plans with enhanced personalization, while
alleviating privacy concerns. Additionally, extensive quantita-
tive experiments verify the effectiveness of HomeLLaMA in
enhancing user privacy in data storage, network transmission,
and inference-related (e.g., PII extraction) attacks.
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