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ABSTRACT

Fully Homomorphic Encryption (FHE) is an encryption scheme
that allows for computation to be performed directly on encrypted
data. FHE effectively closes the loop on secure and outsourced com-
puting; data is encrypted not only during rest and transit, but also
during processing. Moreover, modern FHE schemes such as RNS-
CKKS (with the canonical slot encoding) encrypt one-dimensional
floating-point vectors, which makes such a scheme an ideal can-
didate for building private machine learning systems. However,
RNS-CKKS provides a limited instruction set: SIMD addition, SIMD
multiplication, and cyclic rotation of these encrypted vectors. This
restriction makes performing multi-dimensional tensor operations
(such as those used in machine learning) challenging. Practitioners
must pack multi-dimensional tensors into 1-D vectors and map ten-
sor operations onto this one-dimensional layout rather than their
traditional nested structure. And while prior systems have made sig-
nificant strides in automating this process, they often hide critical
packing decisions behind layers of abstraction, making debugging,
optimizing, and building on top of these systems difficult.

In this work we ask: can we build an FHE tensor system with a
straightforward and transparent packing strategy regardless of the
tensor operation? We answer affirmatively and develop a packing
strategy based on Einstein summation (einsum) notation. We find
einsum notation to be ideal for our approach since the notation itself
explicitly encodes the dimensional structure and operation directly
into its syntax, naturally exposing how tensors should be packed
and manipulated in FHE. We make use of einsum’s explicit language
to decompose einsum expressions into a fixed set of FHE-friendly
operations: dimension expanding and broadcasting, element-wise
multiplication, and a reduction along the contraction dimensions.

We implement our design and present EinHops, which stands for
Einsum Notation for Homomorphic Tensor Operations. EinHops is
a minimalist system that factors einsum expasions into a fixed se-
quence of FHE operations, enabling developers to perform complex
tensor operations using RNS-CKKS while maintaining full visibility
into the underlying packing strategy. We evaluate EinHops on a
range of tensor operations from a simple transpose to complex
multi-dimensional contractions. We show that the explicit nature
of einsum notation allows us to build an FHE tensor system that is
simple, general, and interpretable. We open-source EinHops at the
following repository: https://github.com/baahl-nyu/einhops.
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import torch
import einhops

# batched matrix multiplication (pytorch)
a = torch.randn(2, 3, 4)

b = torch.randn(2, 4, 5)

c = torch.einsum("bij,bjk->bik", a, b)

# encrypted batched matrix multiplication (ckks)

a_ctxt = einhops.encrypt(a)

b_ctxt = einhops.encrypt(b)

c_ctxt = einhops.einsum("bij,bjk->bik",
a_ctxt,
b_ctxt)

# verify correctness

assert c.shape == c_ctxt.shape == (2, 3, 5)

assert torch.allclose(c, einhops.decrypt(c_ctxt))

Listing 1: EinHops introduces einsum notation [40] to the
RNS-CKKS FHE scheme [12]. This example performs batched
matrix multiplication where both operands are encrypted.
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1 INTRODUCTION

Fully Homomorphic Encryption (FHE) is a powerful encryption
scheme that enables computation to be performed directly on
encrypted data without the need for decryption [27]. This prop-
erty makes FHE a promising fit for outsourced computation, es-
pecially for applications that have strict data privacy rules (e.g.,
health care). Within FHE, there are several schemes that operate
over different data types: TFHE/CGGI for encrypted boolean cir-
cuits [16], BFV/BGV for arithmetic circuits over encrypted integer
vectors [9, 10, 25], and CKKS for arithmetic circuits over encrypted
complex-valued (and therefore real-valued) vectors [13]. For this
reason, the CKKS scheme (in particular, RNS-CKKS [12]) has been
used as the backbone for developing outsourced privacy-preserving
machine learning services [4, 20, 23, 33, 37]. These systems exe-
cute encrypted deep learning applications by performing tensor
operations within the constraints of RNS-CKKS.

When implementing encrypted multi-dimensional tensor op-
erations in RNS-CKKS, we must first map our multi-dimensional
data onto 1-D vectors. This issue is also present in canonical tensor
libraries such as PyTorch or Jax in which multi-dimensional tensors
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are mapped to blocks of memory (i.e., the logical representation
versus the physical representation) [5, 8, 45]. The key difference
when applying this mapping problem to RNS-CKKS is the limited
instruction set provided by FHE: we only have access to SIMD (Sin-
gle Instruction, Multiple Data) addition, SIMD multiplication, and
cyclic rotations [12]. And unlike PyTorch, which can freely index
into memory, FHE cannot access individual elements without rotat-
ing the entire vector. This makes indexing or accessing encrypted
sub-tensors fundamentally more challenging.

Prior systems like Fhelipe and CHET [20, 33] have made signif-
icant strides in bridging this gap through sophisticated compiler
infrastructures that automatically handle packing, bootstrapping,
and optimization. However, these approaches often obscure the
crucial packing decisions behind layers of abstraction. For instance,
when developers use a high-level function like matvec or matmul,
they lose visibility into whether their vectors are packed row-wise
or column-wise, whether padding is used, or how reductions are
implemented. This abstraction is appropriate for modern deep learn-
ing libraries that implement such operations using highly optimized
kernels (e.g., cuDNN) [15, 35, 39]. On the other hand, linear algebra
subroutines in FHE are still being developed without a consensus on
the optimal packing strategy, given that the underlying cost model
is inherently different. In FHE, we must ask: How many multiplica-
tive levels does your method consume? What encoding procedure
is being used? How many unique rotation keys are required? Can
you use hoisted rotations? How much memory is required?

In this work, rather than building a large-scale system, we choose
to build a simple FHE tensor system guided by the principle that
the packing strategy and FHE costs should be explicit to the end-
user. We find einsum notation to be an ideal candidate for our
approach since it naturally exposes the dimensional structure of
tensor operations through its notation. We implement our design in
EinHops, which brings the simple but powerful einsum notation to
the RNS-CKKS FHE scheme . Listing 1 shows how einsum notation
can be used to perform multi-dimensional tensor operations by
explicitly labeling dimensions over which to perform contractions.
EinHops runs the equivalent operations on encrypted tensors.

EinHops implements this design philosophy by recognizing a key
structural equivalence between einsum notation and a sequence
of FHE operations. For example, the reduction in "ij, jk->ik"
maps naturally to a sequence of operations in the RNS-CKKS slot
space: first, a linear transformation to align the data, a sequence of
rotations and summations to replicate data, an element-wise multi-
plication, and finally another sequence of rotations and additions
to perform the reduction over the contracted dimension.

Concretely, we make the following contributions:

o We develop a transparent packing strategy based on einsum
notation that exposes data layout decisions and remains
consistent across arbitrary tensor operations.

e We implement and open-source our system, EinHops, with
support for both CPU and GPU through an existing FHE
backend, plus a cleartext backend for slot-level debugging.

e We evaluate EinHops on more than 15 tensor operations,
showing that explicit packing enables operations such as
5-D tensor contractions while remaining interpretable.
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Figure 1: RNS-CKKS encrypts one-dimensional vectors of a
fixed length (e.g., 2'° slots) and enables SIMD Addition, SIMD
multiplication, and cyclic rotation upon these encrypted vec-
tors. Multi-dimensional tensors must therefore be packed
into one-dimensional cleartext vectors. These cleartext vec-
tors are then encoded into plaintext polynomials that are de-
composed using RNS [26]. Finally, plaintexts can be encrypted
into ciphertexts, which consist of two RNS-polynomials.

The rest of the paper is organized as follows. Section 2 pro-
vides the relevant background information on the RNS-CKKS FHE
scheme and einsum notation. In Section 3, we decompose einsum
expressions into a series of explicit FHE-friendly operations, and in
Section 4 we implement each of these steps using FHE primitives.
We discuss the system design and limitations of EinHops in Section
5, and we report our results in Section 6.

2 BACKGROUND

2.1 RNS-CKKS

Here, we describe the RNS-CKKS homomorphic encryption scheme
[12], its relevant datatypes, and the pipeline that consists of data
packing, encoding, and encryption. A high level overview of this
process is shown in Figure 1.

2.1.1 Datatypes. We interact with four primary datatypes in
CKKS: tensors, cleartexts, plaintexts, and ciphertexts. Tensors are
the familiar multi-dimensional arrays that represent our input data
in its logical, high-level form and exist outside of the scope of FHE.
A cleartext is a one-dimensional vector of a fixed power-of-two
length (e.g., 2° slots). We pack tensors into one or more cleartexts.
A plaintext is then generated by encoding a cleartext vector into a
single polynomial that resides in the ring Rp = Zg [X]/(X N ),
where N is a power-of-two degree (e.g., 21°) and Q is a large integer
modulus. Encryption then converts a plaintext into a ciphertext,
which consists of a pair of polynomials in the product ring Ro XRp.

2.1.2  Packing. The process of flattening multi-dimensional ten-
sors into one-dimensional cleartext vectors is called packing. Tech-
niques for packing have been extensively explored in prior work
[20, 23, 33, 36] and the best solutions are often problem-dependent.
For example, packing strategies in convolutional neural networks
[23] generally differ from those in language models [38] due to
their distinct network architectures.



2.1.3  Encoding. The goal of encoding in CKKS is to find a poly-
nomial in the ring Rp whose evaluations at N/; complex-valued
roots of unity interpolate our cleartext vector. This process involves
applying a variant of the inverse discrete Fourier transform. The
conversion from point-value representation to coefficient repre-
sentation guarantees that additions and multiplications between
polynomials perform element-wise, SIMD operations on their un-
derlying cleartexts. In this way, we can pack N/z values into the slots
of our cleartext vector. To satisfy RLWE constraints, a polynomial’s
coefficients must also be integers. Therefore before interpolating,
we scale the evaluations by a large factor A (typically a power of
two) to embed the desired precision into the integer parts. Then,
rounding to the nearest integer incurs less error. Decoding per-
forms the inverse transformation to recover scaled evaluations of
any resultant cleartext. We note that other encoding schemes such
as coefficient encoding exist [32], but do not preserve the SIMD
properties we would like to utilize in this work.

2.1.4  Encryption. We can encrypt the scaled integer plaintext
polynomial m(X) into a ciphertext ct = (b(X), a(X)). The compo-
nent a(X) is typically sampled uniformly at random from the ring
RQ. The second component, b(X), is then constructed based on
a(X), the secret key s(X) (a small polynomial in Rp), the plaintext
m(X), and a freshly sampled small error polynomial e(X). Specifi-
cally, b(X) is computed as [-a(X) - s(X) + m(X) + e(X)] g, where
the operations are performed with integer coefficients before the
final reduction modulo Q. This structure securely masks m(X).
Decryption then uses the secret key s(X) to reverse this masking.
The decryption process computes m’(X) = [b(X) +a(X) - s(X)]o.
Substituting the definition of b(X), we see the simplification:

m (X) = b(X) +a(X) -s(X) (mod Q)

(—a(X) - s(X) + m(X) +e(X)) +a(X) - s(X) (mod Q)
=m(X) +e(X) (mod Q)

As long as the coefficients of the combined m(X) + e(X) are small
enough, this final m’ (X)) correctly recovers the original scaled plain-
text plus the initial encryption error.

2.1.5 Homomorphic Operations. CKKS allows for computations
directly on ciphertexts, corresponding to operations on the under-
lying cleartext vectors. The scheme supports element-wise addition
and multiplication of these vectors. If ct; encrypts a vector cor-
responding to mj(X) and cty encrypts a vector for my(X), their
homomorphic sum, cty,qq = ct; @ ctz, decrypts to approximately
m1(X) + ma(X), effectively adding the slot values. The same prop-
erty holds for homomorphic multiplication. Additionally, CKKS
supports homomorphic rotations (cyclic shifts) of the encrypted
vector of slot values. This is achieved by applying a specific Galois
automorphism to the ciphertext, which permutes the underlying
data within the slots without decryption. All homomorphic opera-
tions are performed in the ring Rp, where the ciphertext modulus
Q must be very large to accommodate for noise growth.

2.1.6  Residual Number System (RNS). Working directly with the
large integer modulus Q is compute intensive. To address this, CKKS
implementations adopt the Residue Number System (RNS) [26]. The

RNS approach decomposes the single large modulus Q into a prod-
uct of several smaller, typically machine-word-sized, pairwise co-
prime moduli qo, g1, . ..,qr, sothat Q = Qp = H%:o qi- The integer
L is known as the maximum multiplicative level of the ciphertext.
By the Chinese Remainder Theorem, any integer coefficient ¢ from a
CKKS polynomial (which is an element of Zg, ) can then be uniquely
represented by a vector of its residues (¢ mod qq, ..., c mod qr).
Thus each polynomial in Rg, is transformed into a tuple of "limb"
polynomials, where the i-th limb has coefficients modulo the small
prime g;. Operations originally performed on the large-coefficient
polynomials are now efficiently computed through independent,
parallel operations on their corresponding small-coefficient poly-
nomial limbs using standard machine-word arithmetic.

2.1.7 Level Consumption. Homomorphic multiplication in CKKS
consumes levels of the RNS modulus. This occurs because multi-
plication significantly increases both the magnitude of the scaled
plaintext (from a scaling factor of A in the inputs to A? in the prod-
uct before rescaling) and the accumulated noise. To manage these
increases, rescaling is performed after multiplication. Rescaling ef-
fectively divides the ciphertext by the original scaling factor A (or
an RNS prime ¢; that approximates it) and, crucially, reduces the
ciphertext modulus from the current Q; = ]_[ﬁz0 qi to a smaller
Q-1 = Hg;& qi by dropping one of the RNS primes (e.g., q;). Each
rescaling operation therefore consumes one RNS modulus or one
level. Since fewer limbs exist at lower levels, the latency of ho-
momorphic operations increases with increasing level. When no
further levels can be consumed, an expensive bootstrapping opera-
tion must be performed to refresh this multiplicative budget. As a
result, the latency of bootstrapping often dominates the runtime of
practical workloads such as private deep neural network inference.

2.2 Einsum Notation

2.2.1 Overview. Einsum notation is a language for performing
tensor operations by explicitly stating over which dimensions to
perform contractions [24]. This notation is a simple, but powerful
abstraction that allows one to succinctly express a variety of ten-
sor operations such as transposes, matrix-vector products, matrix-
matrix multiplications, and higher-dimension tensor contractions.

While originally used in physics, einsum notation has since been
adopted in modern tensor libraries such as PyTorch and Jax [5, 8],
and each of these libraries is equipped with an einsum function.
This function takes as input 1) an equation that specifies the tensor
operation and 2) a series of operands. As an example, the expression
torch.einsum("ij->ji", x) from Line 3 of Listing 2 tells us that
we have a 2-D input matrix x with shape "ij". Furthermore, the
equation specifies that the resulting output tensor should have
shape "ji", informing us that we are transposing x.

By explicitly labeling both the input dimensions and the desired
output dimensions, einsum notation facilitates tensor arithmetic
while being interpretable. We make use of einsum’s explicitness to
develop EinHops, a system that performs encrypted tensor opera-
tions without obscuring the packing and implementation details.

2.2.2  Einsum Examples. Einsum notation is best understood by
reading and running examples [41]. We begin with Listing 2 which
instantiates a random tensor x of size (3, 5). Each of the einsum calls



import torch
x = torch.randn(3,5)

torch.einsum("ij->ji", x) # transpose (5,3)
torch.einsum("ij->", x) # sum all elements

torch.einsum("ij->j", x) # column-wise sum (5,)
torch.einsum("ij->i", x) # row-wise sum (3,)

Listing 2: Einsum notation to perform a transpose and
various summations for a 2-D tensor illustrating that einsum
explicitly labels each dimension from the inputs.

specifies the input tensor as having shape "1j", effectively labeling
the axis "i"=3 and "j"= 5. We could not have used einsum with
the input dimensions being listed as"ijk" given that the input
tensor x is two-dimensional.

The first einsum call (Line 3) performs the transpose operation
by switching the order of the dimensions in the output (labeled
"ji"). The subsequent calls to einsum perform a reduction over
one or more dimensions by omitting these dimensions from the
output equation. For example, Line 4 reduces over both dimen-
sions by having no output dimensions specified. On the other hand,
Line 5 reduces over the "i" dimension by stating that the output
dimension should only be "j"=5.

import torch
x = torch.randn(3,5)
y = torch.randn(5)

# matrix-vector product: (3,5) x (5,) -> (3,)
torch.einsum("ij,j->i", x, y)

Listing 3: A matrix-vector product using einsum notation. In

this case, the dimension "j" is multiplied and then reduced.

Listing 3 has an example of an einsum expression with two inputs,
x and y. The equation argument illustrates this by labeling each
dimension of the inputs, separated by a comma. In this instance,
we are performing a matrix-vector product. The "j" dimension
is shared between both inputs and is omitted from the output di-
mensions. This tells us that we are performing a contraction over

nan,

dimension "j": the inputs are multiplied and then reduced along

the "j" dimension, effectively computing dot products over "j".

2.2.3  Einsum in Practice. We now examine a real-world applica-
tion of the einsum notation from a recent ICLR 2024 paper [21]. In
Listing 4, einsum notation appears in key steps when performing
the multi-headed attention mechanism. By explicitly labeling each
dimension, the einsum expressions are self-documenting, making
them translatable to natural language. For example, Line 5 of Listing
4 can be read as: "for every sample in the batch (b) and for every
head (h), construct the t by T attention matrix by contracting the
inputs over their shared hidden dimension (d)".

3 DECOMPOSING EINSUM FOR FHE (concept)

In this section, we examine einsum notation from the perspective of
FHE. In particular, we develop a mapping from einsum expressions
to three FHE-friendly steps: 1) expanding and broadcasting inputs

import jax.nn as jnn
import jax.numpy as jnp

# batch_size, seq_len, n_heads, h_dim_per_head
attn = jnp.einsum("bthd,bThd->bhtT", q, k)

n_attn = jnn.softmax(attn)

output = jnp.einsum("bhtT,bThd->bthd", n_attn, v)

Listing 4: Since input and output dimensions are explicitly
labeled, einsum notation is self-documenting as shown in
this implementation of multi-headed attention.

to match dimensions, 2) performing an element-wise multiplica-
tion between the broadcasted inputs, and 3) reducing the resulting
product across the contraction dimensions.

To clarify, standard einsum expressions are not implemented
using these three steps; in reality, an einsum call will dispatch to a
highly optimized backend implementation that depends upon the
size, sparsity, and device associated with each input [2, 7]. Rather,
our conceptual view of einsum lets us carry over the explicit dimen-
sionality analysis into the realm of FHE by building a system that
explicitly realizes this decomposition. We use Listing 5 and Figure
2 as our reference for this section, which performs a matrix-matrix
multiplication between two 2-D tensors.

3.1 Matching Dimensions (torch)

First, we analyze the shapes of each input as well as the total number
of input dimensions. In our running example, the einsum expression
tells us that the input A has shape "i"= 4 and "j"= 5, whereas the
input B has shape "j"= 5 and "k"= 2. The total number of input
dimensions is three; we have { "i", "j", "k"}.

Our first FHE-friendly step is to expand and match the shapes
of the inputs. This means we must inflate A to include the missing
input dimension "k" and inflate B to include the missing input
dimension "i". We label this Step ® and Step @ in Figure 2.

3.1.1 Expanding. We first match the number of input dimen-
sions by simply adding singleton dimensions in an ordering that
satisfies broadcasting rules [17]. In Figure 2, we insert these new
axes using A[:, :, None]andB[None, :, :]although we could
have also used view, reshape, or unsqueeze.

The shapes of A and B are now (4, 5, 1) and (1,5,2) as shown in
Step @ in Figure 2. Note that we comply with broadcasting rules
and that the contraction dimension (" j"= 5) is aligned at the dim=1
position. This step performs no data duplication. Rather, it simply
views the tensor within a higher dimension. As we will see in the
following section, we can perform this operation in FHE either as a
linear transformation or a nop, depending upon where the singleton
dimensions must be added.

3.1.2  Broadcasting. Now that their shapes are aligned, we can
broadcast both inputs A and B to match their sizes along each
dimension. In this step, we duplicate the data across the singleton
dimensions; we visualize this duplication in Step @ of Figure 2
where the tensors A and B now have shapes (4, 5, 2). In the following
section, we will show how to perform this broadcasting across any
dimension in FHE using a logarithmic number of operations.
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Figure 2: Einsum notation for a matrix-matrix multiplication in PyTorch of size (4,5) X (5,2) — (4,2). The einsum equation
labels these input dimensions as (i, j) X (j, k) and explicitly states the output shape as (i, k). The dataflow decomposes this
einsum equation in an FHE-friendly manner. First, all operands are expanded and broadcasted to match tensor shapes. Then,
operands are element-wise multiplied. Finally, the output is reduced by summing across the contraction dimensions.

import torch

A = torch.arange(start=1,end=21).reshape(4,5)
B = torch.arange(start=1,end=11).reshape(5,2)
C = torch.einsum("ij, jk->ik", A, B)

Listing 5: Matrix-matrix multiplication using torch.einsum.

3.2 Multiplication (torch)

Now that the input tensor shapes precisely match up, we may
perform an element-wise Hadamard product between the inputs A
and B. Here, we are effectively performing all partial products in
the matrix-matrix multiplication in parallel, and this results in an
output tensor C of shape (4,5, 2). This resulting tensor C is shown
in Step ® of Figure 2. We note that this multiplication naturally
extends to the scenario when we have more than two inputs since
all input tensors will have the same shape.

3.3 Reduction (torch)

Finally, we must reduce all partial products by summing over the
contraction dimension, which in this case is " j"= 5. This step can
be seen in Step @ of Figure 2 where we sum out dim=1 which
corresponds to the labeled dimension "j", resulting in a tensor
of shape (4, 2). This resulting tensor precisely corresponds to the
desired matrix-matrix multiplication performed in Listing 5. Simi-
lar to broadcasting, we will show how to perform this reduction
over the contraction dimensions in a logarithmic number of FHE
operations in the following section.

4 DECOMPOSING EINSUM FOR FHE (impl)

We now implement our decomposed view of einsum from the pre-
vious section using RNS-CKKS primitives. As a consequence, we
follow the same outline from the previous section and show the
explicit set of FHE instructions that carry out 1) expanding and
broadcasting, 2) element-wise multiplication, and 3) summation
along the contraction dimensions. We assume that the product
of all input dimensions fit within a single ciphertext, and that all
dimensions are padded up to powers of two.

For this section, we demonstrate our low-level implementation
details in Figures 3, 4, and 5. At the end of this section, we use
Figure 6 to illustrate the end-to-end EinHops implementation of
the same matrix-matrix multiplication from Listing 5 and Figure 2.

4.1 Matching Dimensions (FHE)

As we saw in the previous section, we must first expand our tensors
by inserting singleton dimensions in order to match the number of
inputs dimensions for each operand. In libraries such as PyTorch
or Jax, such an expansion is trivial and for tensors allocated in
contiguous memory blocks, these expansions only change tensor
metadata without modifying the actual data itself [45].

However for encrypted tensors, there is a possibility that we
must actually manipulate the ciphertext slot ordering given that
indexing-based tensor operations are invalid (i.e. we only have
SIMD Add, SIMD Mult, and cyclic rotation). There are two possible
scenarios for dimension expansion which we detail below. To re-
iterate, we are not duplicating data during expansion; we are merely
re-ordering data within the slots of a CKKS ciphertext.

4.1.1 Expanding inner dimensions. When inserting an inner di-
mension into an encrypted tensor, we must permute the underlying
elements within the slots of the ciphertext. This is because inserting
an inner dimension will change the stride of existing dimensions
when the tensor is flattened [1]. To see why, let us examine the input
tensor in the bottom of Figure 4 (input.shape == (4,1)). In this
case, we must insert an inner dimension: (4, 1) — (4, 2). Before any
expansion, the data within the input ciphertext is contiguously lo-
cated in the top four slots of the underlying vector. However, adding
an inner dimension will naturally stride the original elements, in
this case by a stride of 2. This means we must insert placeholder
slots for this new dimension between the original elements, and
we do this by permuting the slots of the CKKS ciphertext using a
linear transformation.

In more detail, we choose to perform these permutations as a lin-
ear transformation via a permutation matrix. Figure 3 (left) shows
the Baby-Step Giant-Step (BSGS) algorithm that we use to perform
this linear transformation. The BSGS algorithm is a derivative of
the more straightforward Halevi-Shoup matrix-vector product algo-
rithm. Halevi-Shoup multiplies the plaintext diagonals of a matrix
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Figure 3: (Left) Matrix-vector products between an unencrypted matrix and an encrypted vector with n slots. The canonical
Halevi-Shoup method multiplies the diagonals of the matrix with the (homomorphically) aligned ciphertext [28]. For a full nxn
matrix, Halevi-Shoup requires n homomorphic rotations. The Baby-Step Giant-Step (BSGS) algorithm pre-rotates the cleartext
diagonals, therefore reducing the homomorphic rotation count to O(+/n) [11]. (Right) EinHops utilizes BSGS to re-arrange the
slots of an encrypted vector by performing a matrix-vector product between a permutation matrix and a ciphertext.

with a homomorphically rotated ciphertext, effectively sharding
each dot product across the aligned slots of many ciphertexts as
shown. Concretely, the first row of the matrix performs a dot prod-
uct with the ciphertext elements across slot index 0, the second row
with slot index 1, and so forth. BSGS provides precisely the same
interface as Halevi-Shoup but reduces the homomorphic rotation
count from O(n) to O+/n by instead rotating (i.e. torch.roll) the
cleartext diagonals before encoding them into plaintexts. Figure 3
(right) shows that the diagonal structure of a permutation matrix
fits naturally with BSGS.

4.1.2  Expanding outer dimensions. Expanding outer dimensions
is a much simpler scenario since the original input data remains
in contiguous slots. An example of this setup is shown in the top
of Figure 4 (input.shape == (1,4)) where we must add an outer
dimension: (1,4) — (2, 4). Here, the original input data retains its
stride of 1, so no permutation matrix is required to prepare this
tensor for broadcasting. This effectively becomes a nop in FHE since
the data is already in the correct order.

4.1.3 Broadcasting. At this stage, the input tensors have been
expanded by inserting placeholder slots via BSGS in the case of
inner dimension expansion or performing a nop in the case of outer
dimension expansion. We are now ready to broadcast our original
data across the new dimensions as shown in Figure 4.

Because we have chosen to pad all dimensions to a power of 2,
we can perform broadcasting across any set of dimensions using
the rotation-and-summation algorithm down the slots of the cipher-
text while only requiring a logarithmic number of homomorphic
operations with respect to the dimension size [43]. The number
of homomorphic rotations is logarithmic in the size of the new
dimension. The number of places by which we rotate the vector
depends upon the stride of the new dimension. In both the top and
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Figure 4: Broadcasting in FHE using O(log n) operations. (Top)
Expanding outer dimensions ((1,4) — (2,4)) does not per-
mute the ordering of existing elements. (Bottom) Expanding
inner dimensions ((4,1) — (4,2)) strides existing elements
and requires a permutation before broadcasting.

bottom of Figure 4, we only perform a single homomorphic rotation
because the size of the new dimension is 2 and so log(2) = 1. In
the top of Figure 4, we rotate down by four since the stride of the
new dimension is 4. In the bottom, we rotate down by one since
the stride of the new dimension is 1.



4.2 Multiplication (FHE)

Now that all ciphertext tensors have been broadcasted using FHE
primitives and have matching dimensions, it is straightforward
to perform the multiplication using homomorphic SIMD Multi-
plication. For k operands, we can perform this step in O(logk)
multiplicative levels by performing a tree-based multiplication.

4.3 Reduction (FHE)

Now, we must reduce the output ciphertext across the contrac-
tion dimensions. Similar to broadcasting, we can perform reduc-
tions across any arbitrary set of dimensions by using rotation-and-
summation up the slots of the ciphertext. We illustrate how to
perform this reduction in Figure 5 for a 2-D tensor. Again, we need
a logarithmic number of rotations with respect to the sizes of the
contraction dimensions, and the number of places by which we
rotate is dictated by the strides of the contraction dimensions.

Here, we make a critical observation that facilitates a simpler
FHE implementation. When performing a reduction over an inner
dimension (e.g., torch.einsum("ij->i", input)) as shown in
the bottom right of Figure 5, the desired sums are strided by the
size of this inner dimension. This introduces gaps in the output
ciphertext. On the other hand, reducing over an outer dimension
(e.g., torch.einsum("ij->j", input)) as shown in the bottom
left of Figure 5 naturally places the output sums in contiguous slots
at the beginning of the ciphertext.

We use this observation to make sure that the resulting reduction
places the computation in contiguous slots at the top of the cipher-
text. In more detail, when we parse our einsum equation in EinHops
to build our expanded and broadasted dimensions, we always place
the contraction dimensions as the outer dimensions and the desired
output dimensions as the inner dimensions in the correct order.
This design choice enables us to forgo any permutation to re-align
the output into contiguous slots in the output ciphertext.

4.4 Putting it all Together

We now use Figure 6 to illustrate this entire process of 1) expanding
and broadcasting input dimensions, 2) performing the element-wise
multiplication, and 3) reducing along the contraction dimensions
for the same matrix-matrix multiplication example from Listing 5.

4.4.1 Inputs. The inputs A and B have shapes (4, 5) and (5, 2),
respectively. These are padded up to the nearest power of two to
(4,8) and (8, 2), but we keep the original dimensions as an attribute
for both tensors. We can now encrypt these two padded tensors.
The equation "ij, jk->ik" in Listing 5 informs us that we are
reducing over dimension "j" and desire an output dimension of
"ik". We choose our broadcasted dimension to be "jik" in order
to place the contraction dimension as the outer dimension and the
resulting dimensions as inner dimensions in the correct order.

4.4.2 Matching. The inputs A and B have dimensions "ij" and
"jk", respectively. Expanding both to have a dimension of "jik"
requires inserting an inner dimension and so we need permutations
for both inputs. Furthermore, the permutation for A includes the
transpose from "ij" to "ji". The permutations (Step @ in Figure
6) result in ciphertexts with placeholder slots for broadcasting.
We now perform broadcasting using the rotation-and-summation
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torch.einsum("ij->i", input)

torch.einsum
("ij->3", input)

Figure 5: Reductions in FHE using O(log n) operations. Sum-
ming an inner dimension ("ij->i") introduces gaps between
the desired output, whereas summing the outer dimension
("ij->j") produces the desired sums in contiguous slots.

algorithm to ensure that we fill up the first "jik" slots in each
ciphertext with the correct and aligned data. This process is shown
as Step @ of Figure 6 and results in tightly packed ciphertexts.

4.4.3 Multiplying. We can now perform a simple SIMD multi-
plication using our backend FHE library. This will perform all the
partial products required by the matrix-multiplication and result in
a ciphertext tensor with the same dimension ("jik") as shown in
Step @ of Figure 6.

4.44 Reducing. We now reduce over the contraction dimension
"j". We know that the (FHE) size of "j" is 8 and the stride of "j"
is also 8. So, we perform the logarithmic rotation-and-summation
algorithm up the ciphertext. This requires log(8) = 3 steps and the
places by which we rotate starts at 8 (the stride) and doubles each
time. Since we placed the contraction dimension as the outer di-
mension, we’ve calculated our desired matrix-matrix multiplication
in the top contiguous slots of the ciphertext. The output after this
reduction is shown in Step ® of Figure 6. We will perform a final
masking of all other slots to maintain correctness for any further
computations (i.e. multiplication by a binary vector).

5 EINHOPS SYSTEM

In this section, we discuss the overall design philosophy, implemen-
tation details, and limitations of EinHops. Our code is open-sourced
at: https://github.com/baahl-nyu/einhops.

5.1 Design Philosophy

At a high level, the theme of EinHops is minimalism and simplicity.
This means that we would like to be explicit about our packing
strategy and we prefer eager execution versus graph execution
which is the de-facto standard in FHE tensor systems [20, 23, 33].
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Figure 6: An overview of EinHops using the same example from Listing 5 and Figure 2. Step O the einsum equation is parsed in
order to determine the broadcast shape. Step @ if required, we permute the encrypted inputs using a BSGS permutation. Step
® each input is broadcasted to match tensor shapes. Step @ all inputs are multiplied using SIMD multiplication. Step ® we
perform a reduction to collapse the contraction dimensions. Step ® a final mask ensures that all unused slots are zeroed out.

This design choice has ramifications in terms of raw performance
but greatly simplifies the EinHops architecture.

5.1.1 Goals. Similar to PyTorch or Jax, we would like to pro-
vide an einsum interface for expressing tensor reductions and con-
tractions in FHE. Inputs can either be tensors or encrypted ten-
sors. We target small FHE programs such as tensor contractions,
matrix-vector products, and matrix-matrix multiplication. Finally,
we would like to provide a simple and readable code-base to provide
a scaffolding for future research and engineering.

5.1.2  Non-goals. We do not support running large FHE pro-
grams (e.g., encrypted ResNet-20 or LLM inference). Running such
programs requires a robust system that handles the sharper bits of
FHE (e.g., memory management, bootstrap placement, scale man-
agement, data normalization, and non-linear approximations) [23].

5.2 Implementation

Figure 7 shows the overall system architecture for EinHops, which
we implement in roughly 1,000 lines of pure Python code.

5.2.1 Backend. We currently support the Liberate.FHE library
by using their desilo-fhe Python frontend [22]. This library low-
ers FHE operations to both CPUs and GPUs. Additionally, we
support an artificial backend of PyTorch 1-D cleartext tensors.
This means that we can simulate homomorphic operations using
torch.add, torch.mul, and torch.roll, which brings debugging
FHE programs to the slot level with minimal overhead. We use the
opt_einsum package to parse and validate einsum expressions.

5.2.2  Hoisted Baby-Step Giant-Step. Since the desilo-fhe back-
end only provides an interface for homomorphic SIMD addition,
SIMD multiplication, and cyclic rotation on desilo objects, we
implement the baby-step giant-step algorithm directly in Python

with the single hoisting optimization that amortizes the cost of
key-switching within each baby step [29].

5.3 Limitations

Here, we briefly describe the current limitations of EinHops.

5.3.1 Single Ciphertext. Currently, EinHops only supports oper-
ations between single ciphertexts and as a consequence, the product
of all input dimensions to an einsum expression must fit within a
single ciphertext, effectively limiting our total dimension size to
N/2. Adding support for multi-ciphertext tensors unlocks a new
scaling dimension for EinHops. Given that EinHops builds wide
computation graphs, task-based optimization can be used to in-
crease throughput [6]. At the same time, the multi-ciphertext case
raises several crucial questions over the meaning of applying homo-
morphic operations across ciphertexts. For example: what does it
mean to rotate a multi-ciphertext by some value k? Is this a global
rotation by k or a per-ciphertext rotation by k?

5.3.2  Bootstrap Placement. We do not currently implement any
bootstrapping placement policy. While it is straightforward to im-
plement a lazy bootstrapping strategy, this method has shown to
scale poorly, especially with arithmetic circuits that contain residual
connections [23].

5.3.3  Permutations. We implement permutations right now as
BSGS linear transformations. However, it would beneficial to em-
ploy a different permutation strategy such as the Vos-Vos-Erkin
method [34, 44] and analyze the change in terms of required mem-
ory, latency, and level consumption.

5.3.4 jit support. Compiling a series of einsum calls in EinHops
may reveal better packing and permutations strategies rather than
employing eager execution mode.



Operation Syntax Input Dimensions FHE CPU | FHE CPU | FHE GPU | FHE GPU

(s) + Keys (s) (s) + Keys (s)
Matrix transpose ij — ji (128, 128) 60.55 19.58 11.52 5.91
Matrix sum ij — (128, 128) 2.80 2.09 0.44 0.40
Column sum ij—3j (128, 128) 0.77 0.49 0.12 0.11
Row sum ij—1i (128, 128) 62.59 19.83 10.16 6.26
Matrix X vector ik,k — i (128, 128), (128) 124.41 34.84 17.69 11.58
Matrix X matrix ik kj — ij (16,32), (32,32) 27.16 10.17 5.91 4.97
Dot product i,i — (16384,) 2.50 1.63 0.27 0.33
Inner product ij,ij — (128,128), (128,128) 2.26 1.84 0.27 0.31
Hadamard product ij,ij —1ij (128,128), (128,128) 0.05 0.03 0.01 0.01
Outer product i,j —>1ij (128,), (128,) 61.16 16.21 8.55 5.00
Batched matrix X matrix ijk, ikl — ijl (16,8,8), (16,8,8) 11.54 3.70 4.12 4.01
3-way Hadamard ij,1,1j — 13 (128, 128), (128, 128), (128, 128) 0.08 0.05 0.01 0.01
Chained matrix X matrix ij, jk,kl — il (16,8), (8,8),(8,16) 85.34 21.31 14.22 9.30
Bilinear transform ik, jk1,il — ij (8,16), (8,16, 16), (8,16) 167.89 69.16 29.2 27.07
Tensor contraction pars, tugvr — pstuv (2,4,8,8),(1,4,4,2,8) 104.28 28.13 16.12 12.04

Table 1: EinHops on a CPU and GPU FHE backend. The "+ Keys" columns indicate the we generate the specific rotations keys
needed for the BSGS matrix-vector product apriori. BSGS rotations keys increase working memory from = 3 GB to ~ 32GB, but
reduce computation by enabling a single-step rotation rather than a series of power-of-two-step rotations for the BSGS stage.
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Figure 7: EinHops systems overview from the hardware to
user interface. We implement this system in pure Python.

6 EVALUATION

In this section, we report our results for evaluating EinHops on
a series of 15 einsum expressions [41] as well as calculating the
multi-headed self-attention score (Line 5 of Listing 4). All experi-
mental results are averaged over 10 runs and we observe a small
standard deviation in each case. We also calculate the £ norm of

the difference between the PyTorch and EinHops einsum expres-
sions, and observe a discrepancy on the order of roughly 107 in
each case. For every experiment, we choose to encrypt all inputs to
the einsum expression, although this does not have to be the case.
Indeed, the EinHops implementation of einsum accepts both torch
tensors and ciphertexts.

6.1 Experimental Setup

All experiments are performed on an Intel(R) Xeon(R) Platinum
8480+ processor (26 threads, 13 cores, 2 threads per core) that is
equipped with a single NVIDIA H100 PCIle GPU (80GB memory).
We run the FHE backend on both the CPU (using all 26 threads) and
the GPU. We use the medium engine provided by the desilo-fhe
backend which has a polynomial degree of 2!> and a correspond-
ing slot count of 16384. We run each experiment at the minimum
starting level: this is level 4 for Chained matrix X matrix and
Bilinear transform and level 3 for all other einsum expressions.

For both the CPU and GPU backend, we also run two differ-
ent configurations of EinHops. The first configuration is memory-
efficient but requires more compute by generating only the power-
of-two rotation keys (14 keys in our setup). This means, for example
that rotating a ciphertext by 3 slots requires two distinct rotations:
a rotation by 1 slot, followed by a rotation by 2 slots. The second
variant (labeled + Keys in Table 1) is compute-efficient but requires
more working memory by generating all rotation keys needed for
a general BSGS matrix transformation (14 + 256 keys in our setup).

6.2 Results

Table 1 lists our results for running 15 different einsum expressions
using EinHops [41] for both the CPU and GPU backend as well as


https://fhe.desilo.dev/latest/create_engine/

our two key-generation configurations. We list the tensor operation
along with the corresponding einsum syntax on the left side of the
Table. For example, the Chained matrix X matrix operation
performs two back-to-back matrix-matrix multiplications where
all matrices are ciphertexts. For each experiment, we specify the
input dimension so as to use a majority of the available slots in the
CKKS ciphertext (16384 slots in our setup).

6.2.1 Power-of-Two Keys Only. For the memory-efficient setup,
which generates only the power-of-two rotation keys, we find that
in most cases the GPU backend achieves roughly a 6x speedup
compared to the CPU backend. For example, transposing a 128 X128
matrix takes 60.55 seconds on the CPU backend while taking only
11.52 seconds on the GPU. In this particular instance, no reduction
is occurring and all time is spent permuting the ciphertext slots
using BSGS. Still, this memory-efficient configuration requires only
3 GB of working memory, which lowers the barrier to entry for
running and understanding FHE programs. While we choose to run
our experiments on server-grade hardware, this modest memory
requirement means EinHops can run on consumer-grade equipment
such as a laptop or an RTX 3090 GPU.

6.2.2 Power-of-Two + BSGS Keys. The compute-efficient setup,
which generates both the power-of-two rotation keys and the BSGS
rotation keys immediately lowers runtime in both the CPU and GPU
setting. This is because we are able to perform the rotations with
the pre-computed BSGS rotation keys rather than using a series
of power-of-two steps [30]. Furthermore in this setup, we are able
to leverage single-hoisting to amortize the Decompose component
of rotations for the baby-step rotations [29]. As an example, the
compute-efficient setup on the GPU results in a 10.7X speedup to
compute a ciphertext-ciphertext matrix-vector product on inputs of
size (128 x 128) and (128, 1) when compared to the CPU backend
which generates only the power-of-two rotation keys. Still, this
compute-efficient configuration requires roughly 32 GB of working
memory to hold all power-of-two and BSGS rotation keys.

6.2.3 Case Study: Multi-Headed Self Attention Scores. Besides
the tensor operations from Table 1, we also use EinHops to compute
the multi-head attention score from Listing 4 (Line 5). We set the
batch size, sequence length, number of heads, and hidden dimen-
sion to be b=2, t=T=5, h=8, d=16, respectively. Again, both inputs
to the attention mechanism are encrypted. We are able to compute
the attention matrix for each sample and each head in 28.57 sec-
onds with roughly 23 seconds being spent aligning data using the
BSGS transformation. This experiment illustrates the importance
of researching strategies for re-aligning data within CKKS slots.
Overall, our results demonstrate that einsum notation provides a
clean abstraction for FHE tensor operations without sacrificing the
transparency of underlying slot manipulations.

7 RELATED WORKS

The development of EinHops is informed by two primary areas of
research: the evolution of compilers for FHE and the use of einsum
notation in tensor libraries.

FHE Compilers: The field of FHE compilation has rapidly ma-
tured to address the significant performance and programmability
challenges of computing on encrypted data. Early works focused
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on circuit-level optimizations, and more recent domain-specific
compilers such as CHET [20], EVA [19], Porcupine [18], and Hecate
[37] targeted shallow machine learning workloads. These systems
introduce abstractions to automate complex tasks such as encryp-
tion parameter selection, noise management through sophisticated
rescaling strategies (e.g., EVA’s "waterline"), and optimizing data lay-
outs for SIMD execution. More advanced compilers such as Orion
[23], Dacapo [14], and Fhelipe [33] tackle the challenge of deep
learning by automating the placement of bootstrapping operations.
A common thread among prior FHE compilers is their reliance
on generating static computational graphs. These systems typically
parse a program into an intermediate representation and apply a
series of optimization passes to manage noise, latency, and schedul-
ing. We instead adopt an eager execution model akin to PyTorch [5].
Instead of building and optimizing a graph, the einsum expression
itself serves as an explicit plan. This design prioritizes simplicity
and transparency, making the packing strategy explicit rather than
abstracting it away behind an optimization framework.

Einsum Notation: Einsum notation has become a staple in modern
tensor libraries such as PyTorch [5], JAX [8], and NumPy [31] for its
ability to express complex tensor operations in a single, concise line
of code. The notation’s power has led to the development of spe-
cialized optimization packages like opt_einsum [2], which focuses
on finding the most computationally efficient contraction order for
a given expression. The notation has proven particularly valuable
in implementing attention mechanisms in transformers [42], where
complex batched matrix operations can be expressed more clearly
than with traditional BLAS calls. While einsum implementations
typically compile down to optimized GEMM routines, the notation
itself serves as a powerful intermediate representation. Libraries
such as TensorFlow [3] use einsum expressions internally to repre-
sent and optimize operations before lowering to platform-specific
kernels. This dual nature of einsum as both a user-facing API and an
optimization target makes it uniquely suited for bridging high-level
tensor expressions with low-level execution strategies. EinHops
leverages this same expressive power to provide a clean abstraction
for homomorphic tensor operations.

8 CONCLUSION

In this work, we decomposed the expressive einsum notation into
a series of FHE-friendly operations and built EinHops, a system
for performing high-dimensional tensor operations in FHE. By
mapping the semantics of einsum to a sequence of permutations (via
BSGS), broadcasts, and reductions (via rotate-and-sum), EinHops
brings a familiar and highly expressive programming model to the
constrained environment of RNS-CKKS.

Unlike graph-based compilers that abstract away implementa-
tion details behind complex optimization passes, EinHops makes
the data layout and operational plan explicit through the einsum
string itself. This transparency empowers researchers to reason
clearly about the underlying homomorphic operations, how slots
are being used, and apply optimizations at each stage of the pipeline.
We evaluate EinHops on a variety of tensor operations, from sim-
ple transposes to multi-head attention scores used in transformers,
demonstrating that einsum notation provides an intuitive yet pow-
erful abstraction for FHE tensor operations.



We embraced minimalism and simplicity throughout this project.
We hope our design philosophy makes learning about FHE more ac-
cessible and helps practitioners better explore system-level nuances
of running FHE programs.
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