
KeyDroid: A Large-Scale Analysis of
Secure Key Storage in Android Apps

Jenny Blessing
University of Cambridge

Ross J. Anderson
University of Cambridge
University of Edinburgh

Alastair R. Beresford
University of Cambridge

Abstract
Most contemporary mobile devices offer hardware-backed
storage for cryptographic keys, user data, and other sensitive
credentials. Such hardware protects credentials from extrac-
tion by an adversary who has compromised the main operat-
ing system, such as a malicious third-party app. Since 2011,
Android app developers can access trusted hardware via the
Android Keystore API [24]. In this work, we conduct the first
comprehensive survey of hardware-backed key storage in An-
droid devices. We analyze 490,119 Android apps, collecting
data on how trusted hardware is used by app developers (if
used at all) and cross-referencing our findings with sensitive
user data collected by each app, as self-reported by developers
via the Play Store’s data safety labels [75].

We find that despite industry-wide initiatives to encourage
adoption, 56.3% of apps self-reporting as processing sensitive
user data do not use Android’s trusted hardware capabilities
at all, while just 5.03% of apps collecting some form of sensi-
tive data use the strongest form of trusted hardware, a secure
element distinct from the main processor. To better under-
stand the potential downsides of using secure hardware, we
conduct the first empirical analysis of trusted hardware perfor-
mance in mobile devices, measuring the runtime of common
cryptographic operations across both software- and hardware-
backed keystores. We find that while hardware-backed key
storage using a coprocessor is viable for most common cryp-
tographic operations, secure elements capable of preventing
more advanced attacks make performance infeasible for sym-
metric encryption with non-negligible payloads and any kind
of asymmetric encryption.

1 Introduction

Mobile devices store highly sensitive user data ranging from
private health information and payment credentials to per-
sonal photographs and correspondence. At the same time,
mobile handsets are regularly lost or stolen, making data
stored on devices vulnerable to an adversary with physical

device access. Similarly, sensitive data may be accessed by
an adversary who is able to compromise the main operating
system (OS), such as malicious third-party apps which cir-
cumvented app store vetting processes or were independently
downloaded by users [82, 86].

Modern encryption methods may provide data confidential-
ity and integrity against such threats, but data is only as secure
as the cryptographic keys used. Keys stored in a software key-
store (e.g., Java’s Bouncy Castle keystore) are vulnerable to
memory-extraction attacks [60, 77] where an adversary with
full control over the operating system or physical access to
the device can retrieve the decryption keys or other sensitive
data through a memory dump of device RAM.

Fortunately, mobile device key storage has seen major se-
curity improvements over the past decade: almost all modern
mobile handsets now offer some form of hardware-backed
credential storage capable of protecting keys against an ad-
versary with root permissions [50]. The most common form
of hardware-backed storage (commonly called “trusted hard-
ware” or “secure hardware”) is the trusted execution environ-
ment (TEE), a special mode of operation by the main proces-
sor (e.g., Arm TrustZone or Intel VT). Keys are generated
and stored within specialized hardware, and all cryptographic
operations using these keys take place within the hardware
component. Provided the TEE is not compromised, these op-
erations cannot be inspected or interfered with by the Android
OS (e.g., an attacker who compromises the device cannot
extract keys or use them to decrypt data stored off-device).
Android has offered the Android Keystore system [24] as its
public trusted hardware API for developers since 2011.

Recent premium models of Android smartphones such as
the Google Pixel devices contain additional hardware in the
form of a separate secure processor, commonly known as a
secure element (SE) [24, 55]. While a TEE is a separate OS
on the main processor, an SE is an entirely separate proces-
sor with its own CPU, memory, and storage. In Android, the
SE is called the StrongBox Keymaster [11]. The Android
Keystore API uses the device’s TEE by default but offers
developers the option of requesting StrongBox instead.

1

ar
X

iv
:2

50
7.

07
92

7v
1

 [
cs

.C
R

]
 1

0
Ju

l 2
02

5

https://arxiv.org/abs/2507.07927v1

Unfortunately, there is currently a lack of empirical ev-
idence on when and how developers use secure hardware
in practice. Secure hardware is only useful if it is actually
used, and the Android Security team acknowledges that apps
need to explicitly use these APIs in order to see a security
benefit as Android’s historical Java cryptography APIs use a
software-backed keystore by default [61]. Furthermore, while
hardware-backed keystores provide significant security bene-
fits, runtime performance is a critical consideration for mobile
developers. More advanced forms of secure hardware (e.g.,
StrongBox), tend to come with an accompanying performance
hit, as acknowledged at a high level in Android’s documen-
tation [11], but to date there has been no publicly available
empirical data on hardware keystore performance to the best
of our knowledge. At the same time, however, Android is pur-
suing public initiatives to encourage wider adoption of secure
hardware such as the Android Ready SE Alliance (see §2.2.2).
The lack of empirical evaluation of performance and exist-
ing usage patterns is a major barrier to encouraging more
widespread adoption: without detailed performance statistics,
developers cannot make informed choices about the trade-offs
between security and performance for their use case.

In this work, we conduct the first comprehensive and sys-
tematic study of secure credential storage in Android, an-
alyzing both the contemporary usage and performance of
key storage schemes. We compile and analyze a dataset of
490,119 Android applications between October 2023 and Au-
gust 2024, extracting data from 64 API calls relevant to key
storage in Android. We find that 56.3% of apps report collect-
ing sensitive data as part of the Play Store’s data safety labels
do not use any form of trusted hardware, and only 5.03% con-
tain a reference to the SE API. Moreover, these usage figures
represent an upper bound on security within the Android app
ecosystem as it is not possible to detect at scale whether apps
which contain at least one reference to the Android Keystore
API are using it to secure all sensitive and relevant credentials.
In particular, of those apps that do use the Android Keystore
API, 94.7% of key initializations are located in third-party
components, indicating that use of the Keystore API may be
due to using a general-purpose library rather than a conscious
choice to use hardware-backed key storage. Furthermore, we
find that 8.5% of keys generated in the Android Keystore
explicitly disable Android’s randomized encryption require-
ment (i.e., IND-CPA), indicating that secure defaults are not
enough to enforce security guarantees.

Having measured the usage of secure key storage across
the Android app ecosystem, we investigate the runtime per-
formance of common cryptographic operations using the
hardware-backed key storage APIs to consider whether per-
formance overhead may discourage adoption. We find that
the performance of TEE-backed key storage is viable for the
vast majority of common app use cases and is noticeably
different from a software-backed keystore only for large pay-
loads greater than 5 MiB. StrongBox introduces a far more

significant performance hit. For instance, encrypting a 1MiB
message with AES-GCM takes around 3 seconds and sim-
ply generating asymmetric keys in StrongBox takes over 9
seconds in Google’s flagship Pixel 8 device, a runtime which
may be prohibitive even for security-conscious apps. Even so,
StrongBox’s performance has improved significantly since
first introduced by Android in 2018 and is viable for use cases
involving small payloads, such as using StrongBox to encrypt
a key generated by a keystore with less overhead. To the
best of our knowledge this is the first time comprehensive
performance measurements of trusted hardware in mobile
devices have been published, providing Android developers
with empirical evidence to make informed decisions for their
particular use case.

Our specific contributions are as follows:

• We design KeyDroid, a tool for static analysis of key
storage in Android apps.

• Conduct large-scale static analysis of ∼500,000 apps
to understand how trusted hardware is used, cross-
referencing results with user data collection practices.

• Run comprehensive measurements of key storage perfor-
mance on all hardware primitives in Android devices.

• Conduct a developer survey to better understand factors
influencing developer decisions about trusted hardware.

• Provide developers with concrete guidance on trusted
hardware usage patterns and performance.

2 Key Storage in Android

At a systems level, Android provides three options for storing
cryptographic keys and other sensitive credentials: a software
keystore via long-standing Java APIs, hardware-backed key
storage logically separated from the main Android Operating
System (OS) to protect against OS compromise, and hardware-
backed key storage located on a separate processor to guard
against the most advanced logical and physical attacks. We
discuss security properties and limitations of each below.

2.1 Software-backed Key Storage
Mobile devices have historically relied on software keystores
which operate within the mobile OS and use the device’s in-
ternal storage. Java’s Cipher API [10] and the Java Keystore
API [14] using a software-backed provider (either Bouncy
Castle or AndroidOpenSSL, also known as Conscrypt [27])
are both examples of software-backed keystores within An-
droid that have been available since Android’s inception in
2007. On all Android devices today, if no keystore provider
is specified when using Java’s cryptographic APIs (namely
java.security.* and javax.crypto.*) Android defaults
to using a software-backed keystore even if the device sup-
ports hardware-backed key storage [41, 81].

2

Software key storage implementations are vulnerable to
memory extraction attacks, where an adversary with root per-
missions in the Android operating system can observe the key
as it is decrypted in RAM while being used [48, 60]. Mobile
applications are particularly vulnerable to such attacks since
apps are long-running processes and keys stored in memory
are not garbage collected until a process has terminated. Mal-
ware, malicious third-party apps, and other privileged users
are all capable of compromising the underlying OS, including
kernel access control measures, and launching an attack of
this sort.

Prior work investigating Java cryptography APIs has also
observed that these libraries have an unfortunate tendency to
use the weakest ciphers as defaults (ECB mode with sym-
metric encryption being the most pervasive example) [42, 45].
Such choices shift the responsibility for achieving an adequate
security level from the API provider to the developer.

2.2 Hardware-backed Key Storage
The defining feature of hardware-backed key storage is that
keys are stored and used in hardware separate from the main
OS. A compromise of the Android operating system, then,
will not compromise any cryptographic keys or other pro-
cesses running inside the hardware element. Importantly, se-
cure hardware ensures that keys will never be revealed in
memory while they are used (and therefore cannot be viewed
or extracted even by a privileged user).

The vast majority of modern smartphones today contain
at least some form of secure execution environment [50, 61].
We use the terms “secure hardware”, “trusted hardware”, and
“hardware enclave” interchangeably throughout this work to
broadly characterize hardware-backed key storage.

There are two main forms of hardware-backed key storage
in the Android ecosystem, each offering different security
properties: (1) a trusted execution environment (TEE), avail-
able in Android through the Android Keystore API [24]
and (2) a secure element (SE), termed (StrongBox Keymas-
ter [11] and provided as a subset of the Android Keystore
API. We discuss each of these in turn below as different
forms of secure hardware vary in degree of isolation from
the Android OS, and hence the attacks they protect against.
Throughout the rest of the paper, we use the terms “Android
Keystore” and “Keystore” to refer specifically to Android’s
trusted hardware API (either TEE or SE).

2.2.1 Trusted Execution Environment

A trusted execution environment (TEE) is a discrete area of
the main processor intended to provide a more secure, logi-
cally isolated execution environment. It has its own operating
system (named Trusty in Android [22]), and communicates
with the Android OS through requests forwarded through the
Android Keystore interface to the TEE, referencing keys by a

string alias. In Android, the TEE is located on the main pro-
cessor, which is divided into the Android OS and the Trusty
OS [22], also commonly referred to as the normal world and
the secure world. The hardware used to protect the normal
world from the secure world depends on the processor ar-
chitecture: TrustZone is used for ARM-based systems and
provides dual execution environments [68] while Intel x86
uses virtualization technology to provide similar support [52].

The primary security benefit of a TEE is to guard against
kernel compromise, including malicious applications installed
on the device which could request root permissions [61, 71].
The Android kernel and applications run in the normal world,
while the secure world (i.e., the hardware enclave) stores
long-term cryptographic key material and performs opera-
tions using these keys. Trusted hardware has numerous other
benefits for mobile device security, such as enabling hardware
root of trust schemes to authenticate firmware running on the
device, but in this paper we focus on the direct security to app
developers for storing and using cryptographic keys.

In Android, a TEE has been available since Android 4.3
(API level 18) was released in 2013, with new features added
over the years since [24, 38]. The initial version of the An-
droid Keystore only supported asymmetric cryptographic op-
erations and did not add support for symmetric keys until
Android 6.0 (API level 23) in 2015 (approximately two years
after the initial release date). Hardware-level key attestation,
the ability to verify that keys are indeed stored in a hardware-
backed keystore, and other more advanced features were in-
troduced in Android 7.0 (API level 24) [23].

In addition to hardware-derived security benefits, the Key-
store API makes deliberate design choices that provide an
increased level of security in practice when compared with
older Java APIs. The API explicitly disallows certain inse-
cure key configurations, such as symmetric encryption with a
constant initialization vector, and offers more secure defaults.

While TEEs offer substantial benefits over software-backed
key storage, including protection from memory extraction,
they are still vulnerable to various physical attacks, including
side-channel attacks. There have been several documented
attacks on Intel SGX [36, 79, 80], which is an example of a
TEE; most of these were side-channel attacks [64]. Prior work
has also discovered several architectural design flaws in ARM
TrustZone implementations leaving data stored even in TEEs
potentially vulnerable to sophisticated threat actors [35, 74].
To protect against the most advanced attacks, a device needs
to contain a hardware element entirely separate from the main
processor: a secure element.

2.2.2 Secure Element

Most premium Android smartphones include a secure element
(SE), a form of hardware security module (HSM) which must
have its own CPU and storage, tamper-resistant packaging,
and a true random number generator [11,24]. An SE provides

3

all the benefits of a TEE and more: the increased isolation
from the main Android OS and processor provides resistance
to various side-channel attacks, including cold-boot memory
attacks and shared-resource attacks [24]. As with a TEE, cryp-
tographic keys are generated and stored within the confines of
the SE, and any operations performed using the key material
take place within the hardware so the key never enters an ap-
plication’s host memory. Different hardware elements are not
mutually exclusive—for instance, a mobile device containing
an entirely separate SE will almost certainly also contain a
TEE as part of its main processor.

Android’s public SE API is termed the StrongBox Key-
master [11] (henceforth abbreviated as StrongBox) and has
been available to external developers since Android 9.0 (API
level 28) was released in August 2018 [24]. An SE was first in-
troduced in Pixel devices, Google’s flagship device line, with
the Titan M chip (Google’s in-house secure element proces-
sor) in the Pixel 3 in 2018 [85]. This was upgraded to the Titan
M2 chip beginning with the Pixel 6 in 2021 [55]. System-on-
chip (SoC) hardware, or integrated secure elements (iSE),
qualify as providing StrongBox support as long as they meet
the requirements above [24]. In 2021, Google’s Pixel 6 intro-
duced Google Tensor, a system-on-chip (SoC) that is isolated
from the main processor but also has its own CPU and ROM,
among other features [55]; Google Tensor interfaces with the
Titan M2 chip. While secure elements are still comparatively
novel in mobile handsets, Hugenroth et al. [50] estimated se-
cure element availability in contemporary mobile devices and
found that as of 2023, 96% of iPhones and 45% of Android
devices offer some form of SE. We expect these percentages
will increase in future years as older devices are cycled out.

Spurred on by the advanced security properties SEs can pro-
vide, industry firms have invested significant resources into
encouraging the development and adoption of HSM schemes:
Google launched the Android Ready SE Alliance in 2021,
a “collaboration between Google and Secure Element (SE)
vendors” that aims to make discrete hardware-backed storage
(e.g., StrongBox) “the lowest common denominator for the
Android ecosystem” and to facilitate interoperability and con-
sistency across secure element vendors within the Android
ecosystem [3, 49]. We discuss recommended best practices
and legal mandates in further detail in §A.1.

Despite the industry shift towards SEs as the desirable and
intended outcome, to the best of our knowledge there have
been no prior studies on the usage or performance of this form
of trusted hardware. This is of particular concern since SEs
are widely acknowledged to reduce performance. Google’s
documentation in particular described StrongBox’s perfor-
mance as “a little slower and resource-constrained (meaning
that it supports fewer concurrent operations) compared to
TEE”, and recommends StrongBox for developers who “want
to prioritize higher security guarantees over app resource
efficiency” [24]. Due to these performance drawbacks, the
Android Keystore API is structured so that developers must

Figure 1: KeyDroid Stages: We (1) scrape Play Store meta-
data and data safety information for all apps in the AndroZoo
dataset with at least 10,000 downloads and (2) decompile
each app and pre-screen for any relevant API references. If
an app contains a reference to the Android Keystore API, we
run KeyDroid, our in-depth static analysis tool, to generate
the app call graph and extract all API references, arguments,
and call packages.

explicitly opt in to using StrongBox even when the application
is running on a device that contains a SE.

2.3 Key Considerations
Trusted hardware is not a panacea: although hardware-backed
key storage prevents keys from being exported off-device or
revealed in memory, the keys can still be used on-device by
an attacker with root privileges, a “fundamental limitation”
of hardware-backed storage [37, 61]. Even so, the adversary
will only be able to decrypt data stored on the device which,
depending on the application, may limit the damage they
can cause if they are unable to use the keys to decrypt data
stored off the device (e.g., data stored on a remote server).
Additional authentication requirements prior to key use can
also substantially mitigate this risk.

Furthermore, the use of hardware-backed protection for
cryptographic key material is “best effort” in the sense that
the Android Keystore API uses the TEE if it is available
on the device (or SE if specially requested), but reverts to a
software-backed keystore otherwise. The default reversion
to a software-backed keystore instead of throwing an error
reflects a desire to support backwards compatibility and a
fragmented Android ecosystem containing many different
device vendors with different price budgets and hardware
specifications. Developers who desire to require hardware-
backed storage as the minimum security level of their product
can add runtime conditional checks hardware availability and
adjust accordingly. A key goal of this work, then, is to ex-
plore whether app developers do indeed request to use trusted
hardware on devices where it is available.

4

3 Methodology

We begin by describing our process for collecting our dataset
of Android apps and analyzing these apps with respect to
API usage. Figure 1 provides a high-level overview of all
app analysis stages. We further describe our methodology for
testing the runtime performance of different keystores across
common cryptographic operations.

3.1 Dataset Selection
We use the publicly available AndroZoo dataset [6] as
our source for Android applications. We initially identify
8,804,118 apps in the AndroZoo dataset from the Play Store
marketplace which were crawled on or after July 2013, when
Android’s trusted hardware API was first released to devel-
opers, though this number includes different versions of the
same app and apps no longer available for download. We nec-
essarily only consider free apps since the AndroZoo dataset
does not include paid apps.

For each app provided in the AndroZoo dataset that passed
preliminary filtering, we scrape the Play Store between Octo-
ber 2023 to March 2024 to filter for apps currently available
at the point of scraping with at least 10,000 downloads. We
collect other relevant app metadata at the same time, resulting
in a dataset of 490,119. We were able to successfully down-
load and decompile almost all of these apps, leaving us with a
revised dataset of 486,234. We record the following metadata
for each app: app package ID, title, number of installs, devel-
oper name and email, Play Store genre, release date of the
latest version (release date of initial version is not available),
and version number.

We download the Android Package (.apk) archive file con-
taining the app source code, metadata, and other resource
files for each of these 486,234 apps. When there are multiple
versions of the same app (as identified using Android’s APK
package name) available in the AndroZoo dataset, we use the
most recently crawled version.

3.2 Play Store Data Safety Labels
App key storage is only a concern if the app processes sensi-
tive or confidential data. Since July 2022 Google has required
each app listed in the Play Store to complete a data safety
form containing self-reported information from the app devel-
opers on what types of user data the app collects and shares
with third-parties, and for what purpose; this includes data
collected by third-party libraries. For instance, the Signal mes-
saging app notes that it collects only a user’s phone number
for “app functionality and account management”, and does
not share data with third parties [76]. We provide further
specifics on what data is considered to be sensitive and dis-
cuss limitations of developer-reported data in §A.2.

3.3 Static Analysis
To reduce computational load, we use multiple layered static
analysis techniques to filter for references to Android’s trusted
hardware APIs and extract relevant API calls. We begin by
executing a basic keyword search across all APKs in our
dataset, and then perform more in-depth static analysis on any
APKs flagged as relevant.

Keyword Filtering. Since analyzing the call graph is very
resource-intensive, to filter candidate apps we first decom-
pile each .apk file using apktool [28] and run an initial
grep search for any call to the Android KeyStore API
(android.security.keystore). After filtering out any
apps that do not contain at least one reference to the Key-
store API, we are left with a dataset of 122,305 apps.

Inter-Procedural Call Graph Analysis. To analyze the byte-
code of the 303,948 apps flagged as having at least one rele-
vant API call, we use Soot [2], a well-known framework for
inter-procedural static analysis [57] also used by similar re-
lated work. We experimented with using FlowDroid and other
static analysis tools that more accurately model the Android
lifecycle (e.g., by detecting implicit callback methods such as
onCreate or onClickListener) but found that the runtime
was sufficiently large as to make it infeasible for a dataset of
our size, in large part due to its iterative callback calculation,
which recomputes the call graph each time a new callback is
encountered. Prior work [84] showed that Flowdroid did not
finish app call graph generation on 24% of apps even with a
timeout of 5 hours, consistent with our own observations, and
so we ultimately determined Soot offered the right balance of
accuracy and efficiency.

We allocate each APK 10GB RAM and set an automatic
timeout of 30 minutes. Our analysis tool begins by generating
the call graph of the APK to determine the context for a
particular API reference. To keep runtime manageable, we
assume that all methods are reachable while generating the
initial call graph, and conduct a custom reachability analysis
(described in more detail below) tracing backwards from a
method of interest along the method call chain.

We search for 64 distinct API calls, including all methods
from the primary KeyStore API as well as other Android
cryptography APIs that in turn call the KeyStore API, such
as androidx.security.crypto.MasterKey [15] and an-
droid.security.keystore.KeyProtection [13], and the
primary methods from the Java KeyStore [14] and Cipher
APIs [10]. The Java cryptographic APIs allow developers
to specify a keystore provider, and so we check these to see
if developers are referencing the Keystore API indirectly.
The full list of specific API methods searched for is avail-
able in our dataset in Table 11 in the Appendix. For each
API call identified, we collect the full method signature of
the calling method, including associated package and class
names, record the object on which the method is called (i.e.,

5

register value), and extract all parameter values by applying
backwards program slicing [83]. As part of our reachability
analysis, we conduct a backwards breadth-first search and
trace each method containing a relevant API call backwards
through the call graph for up to 1,000 nodes, recording all
possible paths.

Package Analysis. We are particularly interested in determin-
ing whether a particular API call is located within the main
application code or whether it is part of a third-party library.
First-party usage indicates that developers have consciously
chosen to store cryptographic key material in trusted hard-
ware, while for certain third-party libraries developers may
be unaware that this is even occurring.

To determine call context, we classify packages as first- or
third-party by checking whether the same package is called by
other APKs, following similar methodology used by Oltrogge
et al. [67] (described in more detail below). While there are a
small number of public datasets of third-party library signa-
tures, we find that these are generally too outdated or other-
wise incomplete to be fit for purpose (e.g., LibRadar [59] was
last updated in 2018).

We collect all packages containing a call to the
Android Keystore key generation constructor an-
droid.security.keystore.KeyGenParameterSpec.
Builder(String keystoreAlias, int purposes). If
a package is referenced by multiple APKs from different
developers, we consider it to be third-party; otherwise, if it is
referenced by only a single APK or by multiple APKs from
the same developer, we classify it as a first-party package.

Obfuscation. We observe a significant amount of obfuscation
of package names where package names are shortened and
anonymized (e.g., o8 or q1.x.a), likely due to built-in obfus-
cation techniques available to developers in Android Studio
and other widely used development tools.

Different packages may share the same obfuscated name,
and so we exclude obfuscated packages from party analysis.
To identify non-obfuscated package names, if a package name
has at least one sub-component (i.e., character string separated
by periods) of at least three characters in length, we consider
it to be an authentic (non-obfuscated) package name.

Reachability. Our call-graph generation methodology de-
scribed above errs on the side of favoring false positives over
false negatives (i.e., we would prefer to include a relevant
API call that may be unreachable than to exclude a call that is
used). To reduce the risk of false positives, once we have clas-
sified all packages as first-party or third-party, to determine
whether a particular API call is reachable we trace backwards
through the recorded call paths along the control flow. If there
exists at least one path containing a call to first-party source
code, we consider the API call to be reachable.

3.4 Performance Measurements
From the average developer’s perspective, perhaps the most
important consideration when choosing among different key
storage APIs is performance. A natural corollary to surveying
the usage of secure key storage is to investigate key storage
runtime performance, particularly among different forms of
hardware-backed key storage.

To conduct systematic performance measurements we
wrote a benchmarking test application that performs symmet-
ric and asymmetric key generation, message encryption, and
message signing following canonical examples provided in
Android documentation and Android’s developer blog [12,53].
We use AWS Device Farm [1] to run our test application
across a variety of Android devices.

4 Secure Hardware Usage in Android

As the first step in our work, we conduct a comprehensive sur-
vey of all Android API calls relevant to key storage or trusted
hardware, collecting arguments provided and relevant context
(e.g., class and package name in which the call occurred).
While we make every effort to retrieve the parameter argu-
ment via constant propagation in cases where static analysis
initially returns the register value, this is not always possible
and thus in the results below the parameter total for a particu-
lar API method call is generally lower than the method call
total shown in Table 1.

We further note that unless otherwise specified, statistics for
API calls discussed throughout this section are not necessarily
distinct: if a particular API call is located within a third-party
library, this call configuration (e.g., parameters) is then dupli-
cated in our findings for each call to this library (including
across separate apps). We intentionally consider duplicates
in our findings since our purpose is to understand the state
of Android security and keystore usage in the wild, though
for certain highly relevant calls we will distinguish between
first-party (e.g., unique) calls and third-party library calls.
Similarly, we will frequently distinguish between API usage
as a percentage of total calls for a particular API method and
percentage of individual apps containing at least one reference
to the method in question since a single app can reference the
same method numerous times.

4.1 Overall Usage
Of the 486,234 in our dataset (apps currently in the Play
Store with at least 10,000 downloads) which we were able
to download and decompile, through keyword searching as
described in §3.3 we find 122,305 apps containing a reference
to the Android Keystore API within their source code. This
provides us with an upper bound of 25.15% of apps within the
Play Store using device trusted hardware. If we consider only
the 159,241 apps self-reporting to the Play Store as collecting

6

sensitive data, we find 69,583 apps referencing the Android
Keystore API and the upper bound of trusted hardware use
rises to 43.7%.

In practice, these calls may be located within components
of third-party libraries not referenced by the app, or within
unreachable or legacy source code of the app itself. We then
run our in-depth static analysis tool, KeyDroid, on all 122,305
apps flagged as directly referencing the Android Keystore
API in some capacity to verify which calls are reachable and
collect detailed statistics on how the API is used1. We are
able to successfully analyze 116,555 apps, with the remaining
2.82% erroring out for various miscellaneous reasons, most
commonly exceeding the time limit.

The Android Keystore API further requires developers to
specify an intended purpose at the time of key initialization
and enforces this purpose when developers attempt to use the
key (e.g., a key specified as being intended for encryption
cannot later be used to sign). We find that of the 278,056 total
init calls for which we were able to retrieve the purpose value,
92.31% of keys are designated as being used for encryption
and decryption only, while 5.60% are used for signing or
verifying message authentication codes.

A full list of all Keystore API endpoints and their total
usage counts is shown in §A.5. We discuss most methods
in more detail throughout this section. We further describe
how usage varies by Play Store category in §A.3, and describe
alternative keystores used from a manual review of a subset of
apps flagged as not using the Android Keystore API in §A.4.

StrongBox Usage. We find that 22,875 of the 116,555 apps
with any reference to the Android Keystore API (19.62%) fur-
ther contain a reference to the StrongBox API setIsStrong-
BoxBacked(boolean), which is 4.7% as a percentage of the
overall dataset (and 5.03% as a percentage of apps collecting
sensitive data). However, since the API takes in a boolean
parameter some of these instances may explicitly request not
to use StrongBox. To calculate how many apps enable Strong-
Box, we are able to retrieve the argument value for 21,022 out
of 24,630 calls and find that while 94.85% of these instances
request to use StrongBox, the remaining 5.15% explicitly
opt out of using StrongBox and storing cryptographic key
material in the device’s secure element. Applying this per-
centage to the 22,875 apps referencing the API, we estimate
that 22,367 apps, or 4.6% of our overall dataset, request to use
StrongBox for at least one key. This percentage rises slightly
to 5.03% if we consider only apps self-reporting collecting
sensitive data. To better understand the context behind these

1A small number of APKs (2,365, or 0.48% of our overall dataset) were
flagged as containing the string “AndroidKeystore” but did not contain any
references to the actual android.security.keystore API when searching
the source code. After manual investigation we hypothesize that in most
cases this is due to requesting the Android Keystore provider via a different
Java API in potentially unreachable code (and so the Keystore API references
along the call chain were removed at compilation). We include these APKs
in our upper bound percentages reported above but exclude them from more
in-depth analysis

choices without being hampered by source code obfuscation,
we manually searched for instances of StrongBox disabling
on GitHub [47] as of January 2025. Of the 14 unique (i.e., non-
fork) repositories which contained a call disabling StrongBox,
two repositories included a comment citing performance rea-
sons while 10 opted out without explanation. The Salesforce
Android SDK, for instance, disables StrongBox as the run-
time is "too slow" and therefore "not a good fit for [their] use
case" [72, 73]. The remaining two instances disabled only if
a StrongBoxUnavailableException was thrown and were
therefore false positives.

The nested structure of Android key generation makes it
difficult to reliably link a key generation call (which speci-
fies the algorithm to be used) with the Android Keystore’s
parameter specification using call objects, and simply check-
ing whether both calls are located in the same method is too
imprecise since a single method may generate multiple keys.
Instead, we can indirectly estimate ciphers used for Strong-
Box specifically by linking key size with Strongbox usage.
For the 98 keys which set both StrongBox and the key size
and for which we are able to retrieve both parameter values,
we find that 97 of 98 keys used StrongBox with an AES-256
cipher while just one key used StrongBox to generate an RSA-
2048 key, a distribution which again suggests runtime is a
major consideration when using StrongBox.

4.2 First-Party vs. Third-Party Usage
Here we present a package-level analysis of the location con-
text in which trusted hardware is referenced. In particular, we
are interested in determining whether apps flagged as using
trusted hardware are doing so as part of the core applica-
tion source-code or because the hardware API is referenced
indirectly as part of a third-party library. First-party usage in-
dicates that developers have consciously chosen to store cryp-
tographic key material in trusted hardware, while for certain
third-party libraries (such as analytics libraries) developers
may be unaware that this is occurring.

Overall, we find that the vast majority of Keystore API
usages are located in third-party source code (definition pro-
vided in §3.3). Of a total of 199,156 calls to the Keystore
init method located in non-obfuscated packages, we find
that 94.69% of calls originated in third-party libraries, while
5.31% are located in first-party source code. This observed
distribution is also true for SE usage. Of the 17,400 Strong-
Box calls located in non-obfuscated packages, 98.31% are
located in third-party libraries, while only 294 (1.69%) are
first-party calls within custom app source code.

Third-Party Libraries. A natural follow-on question is
which third-party libraries referencing the trusted hardware
API are most commonly used by apps. Table 2 in the Ap-
pendix shows the top 10 third-party libraries used by Android
apps to reference the Keystore API. While several of the top
10 are security-focused libraries, four are primarily app de-

7

velopment and analytics libraries, suggesting that the details
of key generation and storage are abstracted from developers
who may be unaware of what data is stored where.

4.3 Key Authentication
The Android Keystore API allows for a variety of authentica-
tion configurations to determine when a key can be accessed.
The core authentication method setUserAuthentication-
Required(boolean) requires users to authenticate via any
available form of device unlock (device pattern/PIN/password
or biometric credentials) for any cryptographic operations us-
ing a private key [20]. More specialized API methods allow
developers to require a specific form of authentication (e.g.,
biometric authentication only) and to set the duration during
which the authentication is valid.

We find that 15.84% of keys stored in the Android Keystore
require some form of user authentication prior to granting
access, with 2.78% requiring biometric authentication specifi-
cally (and disallowing any other form of authentication, such
as device passcode).

By default, if a key requires any form of authentication
then a user must authenticate each time the key is used. To
provide a more user-friendly configuration, the Keystore API
allows developers to set a validity duration period in seconds
during which the key can be reused without any need to reau-
thenticate. 21.75% of keys require the user to authenticate
each time they initiate an operation requiring key access, the
most secure configuration but also one that can use friction
for the user experience. For calls that set a specific duration,
the most popular durations were 5 seconds (set by 38.53%
of keys which set a duration) and 1 hour (set by 4.45% of
keys). A significant percentage of API calls set very short
validity durations: 13.2% of calls that set a duration set it to
3 seconds or less, meaning that the user can only reuse the
key within the next few seconds. For some use cases, unless
the user proceeds very quickly this is effectively the same as
requiring authentication each time.

As an alternative to requiring a user to provide information
to authenticate, a user can instead approve a pop-up mes-
sage via the setUserConfirmationRequired(boolean)
API before proceeding. As a standalone API this does not
require the individual approving the message to provide any
information indicating that they are indeed the device owner
(i.e., they need only tap to approve), but it can be used in
combination with the authentication APIs described above to
provide cryptographic certification that a user has approved a
certain action. However, we find that very little use of this fea-
ture: of the 26 calls to the setUserConfirmationRequired
API detected where we were able to retrieve the argument
value, only two of them enabled confirmation (with the re-
maining 24 disabling).

4.4 Implementation Security
Ciphers. Of 232,283 key generation calls to Android cryp-
tographic APIs requesting the Android Keystore as provider,
63.51% requested an AES key, 34.48% requested an RSA key
pair, and 0.9% of keys requested an EC key pair. Table 4 in
the Appendix shows the full list of requested ciphers and their
respective usage counts.

As a point of comparison, of the 20,042 calls requesting the
AndroidOpenSSL software-backed provider, 99.74% gener-
ated an RSA key pair with just 51 generating an AES key. We
hypothesize that developers avoid hardware-backed key stor-
age for asymmetric encryption out of performance concerns,
which we discuss further in subsequent sections.

The Android Keystore API also includes legacy ciphers
for backwards compatibility and interoperability, some of
which have since been deprecated. 3DES, for instance, was
simultaneously added and deprecated in API level 28 [25]. In
our analysis, we fortunately find very few instances of apps
using insecure or legacy ciphers. In particular, we find no
instances of 3DES or HMAC-SHA1 even though these ciphers
are available within the Android Keystore [26].

Defaults. Android Keystore API defaults are significantly
more secure than those of software-based Java cryptog-
raphy APIs historically available in Android. For in-
stance, if a developer requests an AES cipher without
specifying the accompanying encryption mode(s) as in
javax.crypto.Cipher.getInstance(“AES”), Java’s Ci-
pher API defaults to AES with ECB mode, an insufficiently
random configuration [16].

Android Keystore, on the other hand, disallows various
insecure cryptographic operations by default, including us-
ing ECB mode in symmetric encryption, RSA encryp-
tion/decryption without proper padding, and using an insuffi-
ciently random IV [19]. All of the six essential rules in cryp-
tography laid out by Egele et al. [42] (e.g., do not use ECB
mode with symmetric encryption, do not use a non-random
IV for CBC) in 2013 are not possible within the Keystore
API by default. Unless the developer explicitly disallows ran-
domized encryption, many of the same configurations that
run smoothly or are even the default in Java’s software APIs
will throw an InvalidKeyException with the Android Key-
store. In addition to disallowing insecure configurations by
default, the Android Keystore API is designed such that it
requires developers to provide specific configurations instead
of providing only a high level cipher (e.g., for symmetric
encryption a developer must specify the block mode(s) and
encryption padding at the point of key generation using the
designated setBlockModes and setEncryptionPaddings
APIS [39,40]). Android Keystore then verifies that the config-
uration provided is valid, sufficiently secure, and compatible
with the specified key purpose.

Randomized Encryption. It is possible, however, for de-

8

Figure 2: Performance evolution of encrypting 1 MiB with
AES-GCM in Pixel devices. Each data point corresponds to
the Pixel device released in that year (e.g., 2023 represents
measurements taken from the Pixel 8). The y-axis is log-
scaled.

velopers to circumvent Android Keystore’s secure default
settings and implement known insecure configurations by
setting Keystore’s setRandomizedEncryption(boolean)
API [19], which mandates configurations must be sufficiently
randomized to provide indistinguishability between cipher-
texts given chosen plaintexts (e.g., IND-CPA), to false. In
general, disabling this API means that the same plaintext
encrypted with the generated key may produce similar or
identical ciphertexts.

We find that 77.94% of calls to the randomized encryp-
tion API disable the setting (a relatively unsurprising result
given that it is enabled by default, and so referencing the API
with True as the argument has no effect). When estimating
how this configuration is distributed as a percentage of all
hardware-backed keys, however, given that there were 30,245
references to the randomized encryption API endpoint we
estimate that approximately 8.45% of all Android Keystore-
backed keys disable IND-CPA, a surprisingly high percentage
given that this configuration violates a core cryptographic
security property.

There are a handful of scenarios in which a developer
may deem it necessary to disable this requirement (for
instance, if a custom IV is needed), though the API doc-
umentation suggests alternative workarounds to avoid
disabling randomized encryption for several common
cases [19]. To investigate this further, we identify the ten
most-used libraries containing a call disabling randomized
encryption and manually review each, though we find
only three are public without significant reverse engi-
neering: (1) com.amazonaws.internal.keyvaluestore,
AWS’s internal keystore which generates a secure

Figure 3: Execution times of AES-GCM-256 encryption as a
function of message length on the Pixel 8. The x-axis is log-
scaled. The precise numerical runtimes are shown in Table 5
in the Appendix.

key configuration (AES/GCM/NoPadding) but dis-
ables randomized encryption because the API “does
not work consistently in API levels 23-28” [31], (2)
com.apptentive.android.sdk.encryption.resolvers,
a customer engagement platform which uses a custom initial
vector (IV) and thus is required to disable randomized
encryption [29], and (3) dev.mcodex.RNSensitiveInfo,
a React Native wrapper library which disables randomized
encryption for a basic AES/GCM/NoPadding configuration
as AWS did [62]. Our results are inconclusive as we manually
searched Android bug trackers for historical issues with
randomized encryption API and could not find any relevant
results, but these reported issues with consistency may be an
area for the Android team to issue public guidance.

Key Attestation. Android Keystore allows developers to re-
quire key attestation, which verifies that keys are indeed stored
in device hardware [18]. We find 2,724 calls to setAttesta-
tionChallenge(byte[]), indicating that 0.98% of all keys
generate an attestation certificate chain. While still a relatively
small percentage, this nonetheless represents a significant in-
crease from Imran et al. [51] who previously scanned a ran-
domly sampled subset of 112,886 Android apps for attestation
in January 2021 and found only 5 apps using key attestation.

5 Key Storage Performance

Having surveyed the current usage of trusted hardware, in
order to judge when hardware-backed key storage should be
used we must first understand what performance differences,
if any, exist compared with software-backed key storage. Un-
fortunately, to the best of our knowledge Android does not

9

currently publish any empirical statistics evaluating the per-
formance of software or hardware keystores.

To conduct our own measurements, we use AWS Device
Farm [1] to measure the runtime performance of key stor-
age options across a variety of Android devices. Our test app
calculates the runtime performance of each individual oper-
ation for the following three keystores: the device’s default
software-based keystore (Bouncy Castle for the Pixel XL and
AndroidOpenSSL for all other devices), the Android Key-
store using the default TEE configuration, and the Android
Keystore using a SE (StrongBox Keymaster). The numbers
reported below for each operation represent the average per-
formance across 100 distinct iterations.

5.1 Performance Evolution
We first measure how key generation and encryption perfor-
mance has changed over time using Google’s flagship Pixel
device line from 2016 through 2023.

Key Generation. Our results show that symmetric key gener-
ation has a negligible performance impact regardless of the
keystore used. In the most recently released Pixel device, the
Pixel 8, generating an AES-GCM-256 key takes 0.002s in
Android’s software keystore, 0.021s in Android’s TEE key-
store, and 0.071s in Android’s SE keystore, StrongBox. We
observe similar runtimes for older Pixel devices. While this
represents a large percentage difference, the real runtime im-
pact is negligible given the small execution times. Runtime
differences are more significant with asymmetric encryption:
in the Pixel 8, generating an RSA-2048 key takes 0.21s in
a software keystore, 1.93s in Android’s TEE keystore, and
9.22s in StrongBox.

Key Encryption. Figure 2 shows the comparative perfor-
mance of encrypting a randomly generated 1MiB payload
with AES-GCM-256 with no padding across Pixel devices
released between 2016 and 2023. Android introduced a se-
cure processor beginning with the Pixel 3, and consequently
StrongBox measurements are only shown from 2018 on.

The performance impact of software-backed encryption
and TEE-backed encryption has roughly stayed the same over
time, with the original Pixel and the most recent Pixel 8 report-
ing TEE measurements of 0.78 and 0.41 seconds respectively.
For a payload of 1MiB or smaller there is a negligible differ-
ence between running cryptographic operations inside a TEE
and running them natively in terms of what is observable to
the end user, which has been the case since the initial release
of the Android Keystore API.

StrongBox encryption, however, is significantly slower than
the other two keystore types. In the Pixel 8, for a 1 MiB
payload StrongBox symmetric encryption takes an average
of 15.43 s while TEE encryption takes 0.42 s and encryp-
tion using a software-backed key takes just 0.02 s. Strong-

Box performance has improved over time, and so execution
times are even longer in older devices: the initial Pixel 3 (re-
leased in 2018) has a symmetric encryption runtime of 63.43s
which held reasonably steady until the release of the Pixel 7 in
2022 where the performance dropped significantly to 17.42s.
The sharp performance improvement between the Pixel 6
and Pixel 7 is somewhat surprising since both devices use
Google’s in-house Titan M2 security chip [55]. The Pixel’s
main processor changed from Google Tensor in the Pixel 6
to Google Tensor G2 between the 6 and 7 devices, however,
and it is possible that the main Tensor G2 processor is able to
communicate with the Titan M2 chip more efficiently.

For asymmetric encryption, we measure Pixel 8 perfor-
mance across keystores on a very small payload of 256 bits
(i.e., the use case where a software-backed AES key is en-
crypted by a hardware-backed RSA key). We find that asym-
metric encryption incurs very little performance overhead on
minuscule payloads regardless of keystore, with TEE encryp-
tion taking an average of 0.0065s and StrongBox encryption
taking 0.0125s on average.

Overall, symmmetric encryption using a SE-backed key
is roughly 35 to 55 times slower than encryption using a
TEE-backed key depending on the device, likely due to the
cost of round-trip communications between the main pro-
cessor and secure processor. This finding somewhat contra-
dicts Android’s official documentation, which qualitatively de-
scribes StrongBox as “a little slower” as previously mentioned
in §2.2.2. On the most recently released Pixel device, how-
ever, basic symmetric encryption of a 1MiB payload within
StrongBox takes around 37 times (and 15 seconds) longer
than the same operation within a TEE.

5.2 Performance vs. Payload Length
We further measure the impact of message length on encryp-
tion performance. Figure 3 shows the performance of payload
sizes between 1MiB and 16MiB for the Pixel 8 (again using
AES-GCM-256 with no padding). In this experiment we used
the average of 10 iterations for payloads 4MiB and above
(instead of 100 iterations as with other experiments) due to
rapidly increasing execution times.

While encryption runtime increases linearly with message
length for all three keystore types, StrongBox runtime quickly
becomes unmanageable for large lengths. A relatively small
payload of 0.1 MiB takes the Android Keystore 0.08s to en-
crypt using the TEE and takes StrongBox 1.59s. A 4MiB
payload, however, will take StrongBox roughly 1 minute to
encrypt, while the TEE-backed keystore can encrypt the same
payload in just 2.56s, making the TEE viable even for larger
message lengths. A software-backed keystore provides the
best performance by far as expected, encrypting payloads of
up to 16 MiB in just 0.3 seconds given that all operations
are in-process with no IPC calls or context switch. Table 5 in
the Appendix contains the TEE and SE execution times and

10

Figure 4: Runtime duration of encrypting 1 MiB with AES-
GCM within a TEE across a range of Android devices recently
released in the past two years. While four of the five devices
cluster around 0.1 seconds, the runtime of the Pixel 8 is no-
ticeably longer and with a wider range.

standard deviations for all message sizes tested on the Pixel 8
(shown visually in Figure 3).

Execution times for message signing are similarly cost-
prohibitive using StrongBox. As shown in Table 6 in the
Appendix, while StrongBox needs only 1 second to sign a
small payload of 0.1 MiB, this runtime increases to 9 seconds
for a payload of 1 MiB and 35.91 seconds for a 4 MiB payload.
In contrast, a TEE is able to sign a 4 MiB message in 1.76
seconds, making it roughly 20x faster than StrongBox.

5.3 Cross-Provider Performance
We further investigate how Pixel performance compares with
other commonly used mobile devices in the Android ecosys-
tem. Figure 4 shows TEE performance for symmetric encryp-
tion across a range of Android devices, including Samsung
and Xiaomi. The five devices measured were chosen by select-
ing the most recently released device across all device lines
available through AWS Device Farm. Four of the five devices
measured (Samsung Galaxy A15, Samsung Galaxy A35, Sam-
sung Galaxy S24, and Xiaomi 13) consistently report runtimes
around 0.1 seconds for TEE-backed symmetric encryption,
while the Pixel 8’s average runtime is 0.41 seconds.

While the Galaxy A15, Galaxy A35, and Xiaomi 13 devices
do not include a secure element 2, we compare StrongBox per-
formance between the Pixel 8 and the Samsung Galaxy S24
(released in January 2024) and find a noticeable difference

2Samsung first introduced a secure processor in 2020 but only within its
Galaxy S series [63]. Devices recently released as part of other series (such as
the Galaxy A15 and Galaxy A35 devices, introduced in December 2023 and
March 2024, respectively) do not include a secure processor (and thus throw
a StrongBoxUnavailableException if a developer attempts requests to
store keys in the StrongBox). We confirmed this through our own tests.

in performance in symmetric encryption. As previously dis-
cussed above the Pixel 8 takes 15.43s to execute AES-GCM
for a 1MiB payload, while the Galaxy S24 takes 26.39s, or
close to twice as long. Curiously, the inverse is true for these
two devices when considering TEE performance as shown in
Figure 4: the Pixel 8 takes 0.41s to execute symmetric encryp-
tion using a TEE-backed key, while the Galaxy S24 takes far
less time at 0.06s, illustrating the nuances and complexities
of each individual device’s processor(s) and other hardware.

6 Developer Survey

To better understand why Android developers opt not to use
hardware APIs, we conducted a large-scale developer survey
in August 2024 for apps flagged as matching either of two
trusted hardware configurations of interest. This study was
approved by our department’s ethics committee (equivalent to
IRB), and all response data was aggregated and anonymized
(see §12 for an in-depth ethics discussion). The survey ques-
tions are given in §A.5.

We are interested in two broad categories of apps
and conducted separate surveys for each: (1) Sensitive-
NonKeystore: apps that self-reported as collecting sensi-
tive user data but did not use Android’s trusted hardware
APIs (either in first-party or third-party components) and
(2) StrongBox-Disabled: apps that referenced the Android
Keystore API in a first-party context but explicitly disabled
StrongBox for at least one key (e.g., they requested to only
use TEE-backed key storage). Both of these high-level config-
urations indicated that the app developers may have made a
conscious decision not to use some form of trusted hardware.

For the first (Sensitive-NonKeystore) configuration, we
surveyed a random sample of 10,000 developers via email
using the contact information given on the Play Store, and
have received n = 42 responses at the time of writing. We
attribute the low response rate in large part to the use of Play
Store app support email addresses, which are often read by a
customer service team (if one exists) and who may not pass
on our survey request to developers.

Of the 42 responses, 18 respondents reported that one fac-
tor in opting not to use trusted hardware APIs is that their
app does not store credentials and/or deemed the security
benefits unnecessary given the type of user data collected.
Three respondents reported general performance concerns,
while 14 respondents indicated that legacy development or
compatibility reasons were prohibitive factors, reporting ei-
ther a desire to maximize devices the app can run on or that
the app was developed prior to the Android Keystore API
release date in 2013. One such developer specified that their
app uses SQLite due to “lack of knowledge [of the Android
Keystore API] at the time of development and difficulties for
migrating later.” Notably, API usability did not appear to be a
widespread concern—just two of the 42 respondents indicated
they had found the Keystore API difficult to use.

11

For the StrongBox-Disabled configuration, after filter-
ing out third-party StrongBox calls we identified n = 25 apps
matching a StrongBox-disabled configuration. Unfortunately
we received no responses for our StrongBox-Disabled sur-
vey, a relatively unsurprising response rate given our restric-
tion of the dataset to first-party disabled calls limited our sam-
ple size. Even so, our manual review of disabled StrongBox
configurations on GitHub described in §4.1 has also provided
a window into developers’ thought processes.

7 Limitations

Here we acknowledge the following limitations of our analy-
sis and describe steps taken to mitigate these limitations.

Accuracy of static analysis: As with prior work in Android
app analysis, our research is subject to the inherent technical
limitations of static analysis. Given that we only have access
to packaged bytecode instead of the original source code, we
cannot guarantee that certain source code components have
not been obfuscated, though it is unlikely that this would be
the case for Android system APIs. Static analysis cannot re-
liably detect whether a particular component is executed at
runtime (i.e., dead or legacy code), but this is a natural trade-
off with the scale of our work. Modern compilers and widely
used app optimization tools are highly effective at removing
unused source code and so we anticipate app bytecode is un-
likely to contain unreachable code at the point of our analysis.
Dynamic analysis would further preclude studying certain
categories of apps, such as financial apps, since we cannot
create test financial accounts for regulatory reasons.

Necessity of high-level analysis: The scale of our work
(downloading and analyzing around half a million apps) nec-
essarily means that our analysis will be comparatively high-
level. In particular, static analysis is unable to automatically
detect the semantic application context in which a trusted
hardware API call occurs, including what particular data is
being stored within the hardware element and how keys gen-
erated are being used, or to guarantee that the flagged API
call is used to protect sensitive data at runtime (e.g., an app
might import a marketing analytics API that in turn references
the Keystore API for processing analytics data). However, in
our work we are primarily interested in which apps choose
not to use trusted hardware, particularly SEs, and why. Our
results provide an empirical upper bound on secure key stor-
age usage and provide comprehensive data on API usage and
performance across the Android ecosystem as a whole.

8 Discussion

Trusted hardware usage is still comparatively low: While
both industry and government have launched various initia-
tives encouraging developers to move towards trusted hard-
ware [3, 5, 78], usage remains stubbornly low even among

apps that, by their own admission, collect potentially sensitive
user data. Just 43.7% of apps processing sensitive data use
any form of trusted hardware, and almost all of this usage
comes from third-party components. While some of these
apps may be collecting relatively benign data (such as a user’s
name) or may rely primarily on a remote server to handle
most cryptographic operations instead of storing data on de-
vice, this is still a comparatively low rate given there is little
to no performance drawback for common cryptographic use
cases in a TEE-backed keystore.

Additionally, the vast majority of apps using hardware-
backed storage use a TEE instead of an SE (43.7% compared
to 5.03%). Put another way, while Google’s public goal is to
make the SE the "lowest common denominator" in credential
storage [3], as of 2024 we observe that only around 10% of
apps using trusted hardware at all are using the SE at least
once. As side-channel attacks become ever more sophisticated
and effective [34], it is even more important for applications
to use the most advanced storage available to protect data.

Android Keystore API provides more secure defaults: In
addition to the protection secure hardware provides against
OS compromise, the Android Keystore API also offers signif-
icantly more secure defaults than similar Java cryptographic
APIs. Android Keystore mandates an IND-CPA-secure config-
uration by default, disallowing insecure configurations that
have plagued other cryptographic APIs [42,45]. Android also
runs checks to ensure the security and validity of a config-
uration, including cross-referencing the stated purpose of a
key with which it is generated (e.g., EC keys cannot be used
for encryption and decryption, only signing). While it is still
possible for developers to circumvent this default (as 8.45%
of them do), this nonetheless requires a conscious decision by
the developer. Android Keystore’s default settings alone make
it a security improvement over other cryptographic APIs.

TEE-backed storage performance is viable for small-to-
medium message sizes: We find a negligible difference (<0.5
seconds) between TEE-backed and software-backed crypto-
graphic operations for payloads less than 1MiB, empirically
confirming that in common scenarios hardware key storage
runtime is not a prohibitive factor when using the Android
Keystore API. A TEE keystore can thus provide significant
security benefits with minimal performance impact, providing
an ideal trade-off between enhanced security and performance
overhead for most app use cases.

Need for public performance evaluations of StrongBox: In
comparison to the TEE, Android’s SE demonstrates signifi-
cantly worse processing time for all but the smallest payloads.
If we consider acceptable processing times to be less than
three seconds, StrongBox can only encrypt message sizes of
roughly 0.2 MiB or less even in the most recently released
Pixel devices. For comparison, a TEE can encrypt message
sizes of up to around 2 MiB within the same time frame. Our
performance measurements, static analysis of symmetric ver-

12

sus asymmetric usage patterns, and manual review of calls
disabling StrongBox all strongly suggest that performance is
a prohibitive factor in using SEs in practice. 5.15% of devel-
opers referencing the Android Keystore API explicitly opt out
of using StrongBox (as in the Salesforce example in §4.1).

Even so, StrongBox’s execution time may be entirely rea-
sonable in cases with very small payloads: for instance, an app
may use StrongBox to encrypt a different cryptographic key.
Equally, developers may evaluate overhead cost differently
depending on whether it is a one-time operation (e.g., initial
login) or a repeated process. Developers need quantitative
information in order to make case-by-case decisions, a gap
which our work fills. Most importantly, Android’s documenta-
tion arguably understates the depth of the performance draw-
backs of SEs, making it more challenging for developers to
make an informed decision. Updated, empirical performance
measurements based on contemporary device measurements
should be publicly available and easily accessible to develop-
ers in place of the ambiguous language currently used in the
documentation., which may also have led developers to opt
out of using StrongBox as a precautionary measure.

9 Related Work

Android App Analysis: Most prior work studying security
and privacy in Android apps has used metrics such as permis-
sions requested [44,58,70] and traffic analysis [43,67,69] and
has often overlooked data storage, even when investigating
overall app security [56]. For instance, Gilsenan et al. [46]
studied security issues in two-factor authentication (2FA) apps
and recommended that apps use the Android Keystore, but
did not investigate how apps actually do store their keys.

Egele et al. [42] studied cryptographic misuses in Android
applications in 2014, but looked only at the software-backed
Java Cryptographic Architecture APIs (presumably due to the
timing of the work, since the initial Android trusted hardware
API was only released in 2013). They noted at the time that
both Java and Android JCA APIs allowed a developer to spec-
ify only the encryption algorithm (e.g., AES), in which case
Java and Android used ECB mode with PKCS7Padding as the
default. Focardi et al. [45] similarly analyzed the confiden-
tiality and integrity properties provided by various software-
backed Java keystores in 2018.

There have been a handful of studies focusing on particular
subsets of hardware-related API usage in Android. Bianchi et
al. [32] conducted an empirical survey of Android’s Finger-
print API and found very low adoption rates, with just 424 of
30,459 popular apps scanned using the API. Imran et al. [51]
ran a keyword search for the key attestation API on a subset
of apps in sensitive categories (e.g., finance, communication,
medical), finding that of 112,886 apps only five use key at-
testation. Concurrently to our work, Bove [33] conducted a
high-level study on various TEE-based Android APIs (includ-
ing the Biometrics and Digital Rights Management APIs)

on a randomly sampled subset of Play Store apps and found
that 32.0% of apps analyzed contained a call to the Keystore
API (excluding gaming apps), but only measured the binary
question of whether an app contained any Keystore API call
without investigating usage specifics. Additionally, a particu-
lar focus of our work is comparing TEE and SE APIs in both
usage and performance.

Coojimans et al. [37] systematized high-level security prop-
erties of Android key storage options in 2014, observing that
while Android’s TEE-backed key storage provides device
binding (i.e. prevents keys from being extracted from the
device) where software keystores are vulnerable, the imple-
mentation of the TEE keystore made it possible for an attacker
with root permissions to use other apps’ keys (i.e. did not ef-
fectively provide app-binding). Our work expands on this
discussion to consider new forms of hardware (namely, SEs)
that were not available when Coojimans et al. surveyed An-
droid key storage in 2014.

Trusted Hardware Performance: To the best of our knowl-
edge, Android does not provide official quantitative assess-
ments of trusted hardware performance. There has been a
small amount of prior work measuring specific aspects of
trusted hardware performance in Android as supporting ex-
periments demonstrating the viability of a proposed crypto-
graphic scheme. Hugenroth et al. [50] measured the perfor-
mance of HMAC execution in SEs on Android and iPhone
devices to confirm their proposed key stretching scheme was
feasible on contemporary devices, observing that time elapsed
increases linearly with input length and that a 10 KiB payload
takes approximately 1 second to execute in the Pixel 3 SE.
In our work, we present the first comprehensive, longitudinal
analysis of the performance of various key storage schemes,
measuring the comparative performance of all widely used
ciphers across the three major key storage options for de-
velopers (a software-backed Java Keystore, Android’s TEE
Keystore, and Android’s StrongBox SE API).

10 Conclusion

This work presents the first comprehensive, large-scale sur-
vey of trusted hardware usage and performance in Android
devices. While even the most secure trusted hardware config-
uration is ultimately best-effort as developers have to contend
with available device hardware, we find that a significant per-
centage of apps, including those self-reporting to the Play
Store as collecting sensitive user data, do not make use of the
Android Keystore trusted hardware API. Our performance
results show that TEE-backed key storage is viable for all
but very large payloads, removing one of the most significant
barriers to adoption. Our results provide app developers with
concrete performance data to encourage adoption and ulti-
mately to enable them to make an informed decision for their
individual use case(s).

13

11 Open Science

In compliance with the open science policy and in the inter-
est of open access, we have open sourced all data used in
our analysis, including our APK dataset, keyword search and
call graph analysis results files for all individual APKs, and
all source code and testing scripts used. Our performance
benchmarking test app and all runtime logs are also publicly
released. Our dataset can be accessed here: <redacted for
review>.

12 Ethics Considerations

We carefully considered the ethics of all components of our
research. All static analysis is conducted on publicly available
data, including both published apps and Play Store metadata.
We intentionally keep our discussion of usage analysis aggre-
gated and comparatively high-level to avoid the perception
of targeting specific apps for potentially insecure configura-
tions, though we open-source all analysis results as described
in §11.

Developer survey. As part of our developer survey, we sent
a single initial email to each app developer in our random
sample of 10,000 apps, after filtering the random sample to
ensure that we only selected one app from each developer
(i.e., a developer would not receive more than one email). All
email addresses were retrieved by scraping the Play Store
and were intentionally provided as a point of contact for the
public. We did not send follow-up or reminder emails to avoid
spam.

Our email clearly identified ourselves as academic re-
searchers, including institutional affiliation, in the first sen-
tence and emphasized that we were conducting a voluntary
research study in which all responses were anonymous. If
recipients clicked on the survey link, we further included an
informed consent statement at the beginning of the survey
that included similar information in greater detail, and invited
respondents to reach out directly over email with any ques-
tions.

Our developer survey was approved by our computer sci-
ence department’s ethics committee (the effective equivalent
of an Institutional Review Board) after the committee re-
viewed the proposed survey questions, email, and informed
consent statement appearing at the beginning of the survey.
Additional specifics of the methodology are described in §6.
We opted not to financially compensate participants in order
to adequately preserve anonymity in line with similar work
involving large-scale surveying of Play Store developers but
took care to keep the survey length to a minimum (estimated
2-3 minutes) to be respectful of developers’ time.

Acknowledgments

Jenny Blessing is funded by Entrust and Nokia Bell Labs.
Ross Anderson made important contributions to the ideas
contained in this paper. Unfortunately he died on 28th March
2024 before the final version was written; any errors remain
our own.

References

[1] AWS Device Farm. https://aws.amazon.com/dev
ice-farm/.

[2] Soot. https://soot-oss.github.io/soot/.

[3] Android Ready SE. https://developers.google.
com/android/security/android-ready-se, 2021.
Last accessed August 25th 2024.

[4] Cryptography in Mobile Apps. https://mobile-sec
urity.gitbook.io/mobile-security-testing-g
uide/general-mobile-app-testing-guide/0x0
4g-testing-cryptography, 2024.

[5] Shifting the Balance of Cybersecurity Risk: Principles
and Approaches for Secure by Design, October 2023.

[6] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In Pro-
ceedings of the 13th international conference on mining
software repositories, pages 468–471, 2016.

[7] Android. AndroidKeyStoreBCWorkaround-
Provider.java. https://android.googlesour
ce.com/platform/frameworks/base/+/marshmal
low-mr1-release/keystore/java/android/sec
urity/keystore/AndroidKeyStoreBCWorkaround
Provider.java.

[8] Android. androidx.security.crypto. https://develo
per.android.com/reference/androidx/securit
y/crypto/package-summary.

[9] Android. App Security Improvement Program. https:
//developer.android.com/privacy-and-secur
ity/googleplay-asi.

[10] Android. Cipher. https://developer.android.co
m/reference/javax/crypto/Cipher.

[11] Android. Hardware security module. https://develo
per.android.com/privacy-and-security/keys
tore#HardwareSecurityModule.

[12] Android. KeyGenParameterSpec. https://develope
r.android.com/reference/android/security/k
eystore/KeyGenParameterSpec.

14

https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/
https://soot-oss.github.io/soot/
https://developers.google.com/android/security/android-ready-se
https://developers.google.com/android/security/android-ready-se
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04g-testing-cryptography
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04g-testing-cryptography
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04g-testing-cryptography
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04g-testing-cryptography
https://android.googlesource.com/platform/frameworks/base/+/marshmallow-mr1-release/keystore/java/android/security/keystore/AndroidKeyStoreBCWorkaroundProvider.java
https://android.googlesource.com/platform/frameworks/base/+/marshmallow-mr1-release/keystore/java/android/security/keystore/AndroidKeyStoreBCWorkaroundProvider.java
https://android.googlesource.com/platform/frameworks/base/+/marshmallow-mr1-release/keystore/java/android/security/keystore/AndroidKeyStoreBCWorkaroundProvider.java
https://android.googlesource.com/platform/frameworks/base/+/marshmallow-mr1-release/keystore/java/android/security/keystore/AndroidKeyStoreBCWorkaroundProvider.java
https://android.googlesource.com/platform/frameworks/base/+/marshmallow-mr1-release/keystore/java/android/security/keystore/AndroidKeyStoreBCWorkaroundProvider.java
https://developer.android.com/reference/androidx/security/crypto/package-summary
https://developer.android.com/reference/androidx/security/crypto/package-summary
https://developer.android.com/reference/androidx/security/crypto/package-summary
https://developer.android.com/privacy-and-security/googleplay-asi
https://developer.android.com/privacy-and-security/googleplay-asi
https://developer.android.com/privacy-and-security/googleplay-asi
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/privacy-and-security/keystore##HardwareSecurityModule
https://developer.android.com/privacy-and-security/keystore##HardwareSecurityModule
https://developer.android.com/privacy-and-security/keystore##HardwareSecurityModule
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

[13] Android. KeyProtection. https://developer.andr
oid.com/reference/android/security/keystor
e/KeyProtection.

[14] Android. KeyStore. https://developer.android.
com/reference/java/security/KeyStore.

[15] Android. MasterKey. https://developer.android.
com/reference/androidx/security/crypto/Mas
terKey.

[16] Android. Remediation for unsafe encryption mode us-
age. https://support.google.com/faqs/answer
/10046138.

[17] Android. Security guidelines. https://developer.
android.com/privacy-and-security/security
-tips.

[18] Android. setAttestationChallenge. https://develope
r.android.com/reference/android/security/k
eystore/KeyGenParameterSpec.Builder#setAtt
estationChallenge(byte[]).

[19] Android. setRandomizedEncryptionRequired. https:
//developer.android.com/reference/android/
security/keystore/KeyGenParameterSpec.Buil
der#setRandomizedEncryptionRequired(boolea
n).

[20] Android. setUserAuthenticationRequired. https://de
veloper.android.com/reference/android/secu
rity/keystore/KeyGenParameterSpec.Builder#
setUserAuthenticationRequired(boolean).

[21] Android. SharedPreferences. https://developer.an
droid.com/reference/android/content/Shared
Preferences.

[22] Android. Trusty TEE. https://source.android.c
om/docs/security/features/trusty.

[23] Android. Verify hardware-backed key pairs with Key
Attestation. https://developer.android.com/pr
ivacy-and-security/security-key-attestati
on.

[24] Android. Android Keystore system. https://develo
per.android.com/privacy-and-security/keys
tore, 2024.

[25] Android. KEY_ALGORITHM_3DES. https://deve
loper.android.com/reference/android/securi
ty/keystore/KeyProperties#KEY_ALGORITHM_3D
ES, 2024.

[26] Android. KeyProperties. https://developer.andr
oid.com/reference/android/security/keystor
e/KeyProperties, 2024.

[27] Android Developers. Conscrypt. https://source.a
ndroid.com/docs/core/ota/modular-system/co
nscrypt.

[28] Apktool. Apktool. https://apktool.org/, 2024.

[29] Apptentive. appten-
tive/android/sdk/encryption/resolvers/KeyResolver23.java.
https://github.com/apptentive/apptentive-a
ndroid/blob/91aebf3fa758edddd40924f06aecdf
1be4f12683/apptentive/src/main/java/com/ap
ptentive/android/sdk/encryption/resolvers/
KeyResolver23.java#L70.

[30] American Medical Association. HIPAA security rule &
risk analysis. https://www.ama-assn.org/practi
ce-management/hipaa/hipaa-security-rule-r
isk-analysis.

[31] AWS-SDK-Android. amazon-
aws/internal/keyvaluestore/KeyProvider23.java.
https://github.com/aws-amplify/aws-sdk-and
roid/blob/8fd69db5e22d13973ddebf6521f5663a
e2275c4c/aws-android-sdk-core/src/main/jav
a/com/amazonaws/internal/keyvaluestore/Key
Provider23.java#L91.

[32] Antonio Bianchi, Yanick Fratantonio, Aravind Machiry,
Christopher Kruegel, Giovanni Vigna, Simon Pak Ho
Chung, and Wenke Lee. Broken Fingers: On the Usage
of the Fingerprint API in Android. In NDSS, 2018.

[33] Davide Bove. A Large-Scale Study on the Prevalence
and Usage of TEE-based Features on Android. arXiv
preprint arXiv:2311.10511, 2023.

[34] Elie Bursztein, Luca Invernizzi, Karel Král, Daniel
Moghimi, Jean-Michel Picod, and Marina Zhang.
Generic attacks against cryptographic hardware
through long-range deep learning. arXiv preprint
arXiv:2306.07249, 2023.

[35] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. SoK: Understanding the Prevailing Security
Vulnerabilities in TrustZone-Assisted TEE Systems. In
2020 IEEE Symposium on Security and Privacy (SP),
pages 1416–1432. IEEE, 2020.

[36] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre: Steal-
ing intel secrets from sgx enclaves via speculative exe-
cution. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[37] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis
of secure key storage solutions on android. In Proceed-
ings of the 4th ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices, pages 11–20, 2014.

15

https://developer.android.com/reference/android/security/keystore/KeyProtection
https://developer.android.com/reference/android/security/keystore/KeyProtection
https://developer.android.com/reference/android/security/keystore/KeyProtection
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/androidx/security/crypto/MasterKey
https://developer.android.com/reference/androidx/security/crypto/MasterKey
https://developer.android.com/reference/androidx/security/crypto/MasterKey
https://support.google.com/faqs/answer/10046138
https://support.google.com/faqs/answer/10046138
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setAttestationChallenge(byte[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setAttestationChallenge(byte[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setAttestationChallenge(byte[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setAttestationChallenge(byte[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://developer.android.com/reference/android/content/SharedPreferences
https://source.android.com/docs/security/features/trusty
https://source.android.com/docs/security/features/trusty
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/security-key-attestation
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/reference/android/security/keystore/KeyProperties#KEY_ALGORITHM_3DES
https://developer.android.com/reference/android/security/keystore/KeyProperties#KEY_ALGORITHM_3DES
https://developer.android.com/reference/android/security/keystore/KeyProperties#KEY_ALGORITHM_3DES
https://developer.android.com/reference/android/security/keystore/KeyProperties#KEY_ALGORITHM_3DES
https://developer.android.com/reference/android/security/keystore/KeyProperties
https://developer.android.com/reference/android/security/keystore/KeyProperties
https://developer.android.com/reference/android/security/keystore/KeyProperties
https://source.android.com/docs/core/ota/modular-system/conscrypt
https://source.android.com/docs/core/ota/modular-system/conscrypt
https://source.android.com/docs/core/ota/modular-system/conscrypt
https://apktool.org/
https://github.com/apptentive/apptentive-android/blob/91aebf3fa758edddd40924f06aecdf1be4f12683/apptentive/src/main/java/com/apptentive/android/sdk/encryption/resolvers/KeyResolver23.java#L70
https://github.com/apptentive/apptentive-android/blob/91aebf3fa758edddd40924f06aecdf1be4f12683/apptentive/src/main/java/com/apptentive/android/sdk/encryption/resolvers/KeyResolver23.java#L70
https://github.com/apptentive/apptentive-android/blob/91aebf3fa758edddd40924f06aecdf1be4f12683/apptentive/src/main/java/com/apptentive/android/sdk/encryption/resolvers/KeyResolver23.java#L70
https://github.com/apptentive/apptentive-android/blob/91aebf3fa758edddd40924f06aecdf1be4f12683/apptentive/src/main/java/com/apptentive/android/sdk/encryption/resolvers/KeyResolver23.java#L70
https://github.com/apptentive/apptentive-android/blob/91aebf3fa758edddd40924f06aecdf1be4f12683/apptentive/src/main/java/com/apptentive/android/sdk/encryption/resolvers/KeyResolver23.java#L70
https://www.ama-assn.org/practice-management/hipaa/hipaa-security-rule-risk-analysis
https://www.ama-assn.org/practice-management/hipaa/hipaa-security-rule-risk-analysis
https://www.ama-assn.org/practice-management/hipaa/hipaa-security-rule-risk-analysis
https://github.com/aws-amplify/aws-sdk-android/blob/8fd69db5e22d13973ddebf6521f5663ae2275c4c/aws-android-sdk-core/src/main/java/com/amazonaws/internal/keyvaluestore/KeyProvider23.java#L91
https://github.com/aws-amplify/aws-sdk-android/blob/8fd69db5e22d13973ddebf6521f5663ae2275c4c/aws-android-sdk-core/src/main/java/com/amazonaws/internal/keyvaluestore/KeyProvider23.java#L91
https://github.com/aws-amplify/aws-sdk-android/blob/8fd69db5e22d13973ddebf6521f5663ae2275c4c/aws-android-sdk-core/src/main/java/com/amazonaws/internal/keyvaluestore/KeyProvider23.java#L91
https://github.com/aws-amplify/aws-sdk-android/blob/8fd69db5e22d13973ddebf6521f5663ae2275c4c/aws-android-sdk-core/src/main/java/com/amazonaws/internal/keyvaluestore/KeyProvider23.java#L91
https://github.com/aws-amplify/aws-sdk-android/blob/8fd69db5e22d13973ddebf6521f5663ae2275c4c/aws-android-sdk-core/src/main/java/com/amazonaws/internal/keyvaluestore/KeyProvider23.java#L91

[38] Android Developers. Jelly Bean. https://develope
r.android.com/about/versions/jelly-bean.

[39] Android Developers. setBlockModes. https://deve
loper.android.com/reference/android/securi
ty/keystore/KeyGenParameterSpec.Builder#se
tBlockModes(java.lang.String[]).

[40] Android Developers. setBlockModes. https://deve
loper.android.com/reference/android/securi
ty/keystore/KeyGenParameterSpec.Builder#se
tEncryptionPaddings(java.lang.String[]).

[41] Android Developers. Cryptography. https://develo
per.android.com/privacy-and-security/cryp
tography, Last Accessed September 4 2024.

[42] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 73–84, 2013.

[43] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgärtner, Bernd Freisleben, and Matthew Smith.
Why Eve and Mallory love Android: An analysis of
Android SSL (in)security. In Proceedings of the 2012
ACM conference on Computer and communications se-
curity, pages 50–61, 2012.

[44] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 627–638,
2011.

[45] Riccardo Focardi, Francesco Palmarini, Graham Steel,
M Squarcina, Mauro Tempesta, et al. Mind your keys?
a security evaluation of java keystores. In Proceedings
of the Network and Distributed System Security Sympo-
sium, pages 1–15. The Internet Society, 2018.

[46] Conor Gilsenan, Fuzail Shakir, Noura Alomar, and Serge
Egelman. Security and privacy failures in popular
{2FA} apps. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 2079–2096, 2023.

[47] GitHub. GitHub Search Results. https://github.com
/search?q=%22setIsStrongBoxBacked%28false%
29%22+language%3AJava&type=code&l=Java&p=1.

[48] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calandrino,
Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-
ten. Lest we remember: cold-boot attacks on encryption
keys. Communications of the ACM, 52(5):91–98, 2009.

[49] Sudhi Herle and Jason Wong. Announcing the Android
Ready SE Alliance. https://security.googleb
log.com/2021/03/announcing-android-ready-s
e-alliance.html, 2021.

[50] Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and
Alastair R Beresford. Sloth: Key stretching and deni-
able encryption using secure elements on smartphones.
Cryptology ePrint Archive, 2023.

[51] Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim,
Z Berkay Celik, and Antonio Bianchi. SARA: Secure
Android Remote Authorization. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 1561–
1578, 2022.

[52] Intel. What Is Virtualization Security? https://www.
intel.com/content/www/us/en/business/enter
prise-computers/resources/virtualization-s
ecurity.html.

[53] Trevor Johns. Using Cryptography to Store Credentials
Safely. https://android-developers.googlebl
og.com/2013/02/using-cryptography-to-store
-credentials.html.

[54] Rishabh Khandelwal, Asmit Nayak, Paul Chung, and
Kassem Fawaz. Unpacking privacy labels: A measure-
ment and developer perspective on google’s data safety
section. arXiv preprint arXiv:2306.08111, 2023.

[55] Dave Kleidermacher, Jesse Seed, Brandon Barbello, and
Stephan Somogyi. Pixel 6: Setting a new standard for
mobile security. https://security.googleblog.co
m/2021/10/pixel-6-setting-new-standard-for
-mobile.html, 2021.

[56] Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max
Van Kleek, and Nigel Shadbolt. Are iphones really better
for privacy? comparative study of ios and android apps.
arXiv preprint arXiv:2109.13722, 2021.

[57] Li Li, Tegawendé F Bissyandé, Mike Papadakis,
Siegfried Rasthofer, Alexandre Bartel, Damien Octeau,
Jacques Klein, and Le Traon. Static analysis of android
apps: A systematic literature review. Information and
Software Technology, 88:67–95, 2017.

[58] Rui Li, Wenrui Diao, Zhou Li, Jianqi Du, and Shanqing
Guo. Android custom permissions demystified: From
privilege escalation to design shortcomings. In 2021
IEEE Symposium on Security and Privacy (SP), pages
70–86. IEEE, 2021.

[59] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
Libradar: Fast and accurate detection of third-party li-
braries in android apps. In Proceedings of the 38th
international conference on software engineering com-
panion, pages 653–656, 2016.

16

https://developer.android.com/about/versions/jelly-bean
https://developer.android.com/about/versions/jelly-bean
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setBlockModes(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setBlockModes(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setBlockModes(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setBlockModes(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setEncryptionPaddings(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setEncryptionPaddings(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setEncryptionPaddings(java.lang.String[])
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setEncryptionPaddings(java.lang.String[])
https://developer.android.com/privacy-and-security/cryptography
https://developer.android.com/privacy-and-security/cryptography
https://developer.android.com/privacy-and-security/cryptography
https://github.com/search?q=%22setIsStrongBoxBacked%28false%29%22+language%3AJava&type=code&l=Java&p=1
https://github.com/search?q=%22setIsStrongBoxBacked%28false%29%22+language%3AJava&type=code&l=Java&p=1
https://github.com/search?q=%22setIsStrongBoxBacked%28false%29%22+language%3AJava&type=code&l=Java&p=1
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://android-developers.googleblog.com/2013/02/using-cryptography-to-store-credentials.html
https://android-developers.googleblog.com/2013/02/using-cryptography-to-store-credentials.html
https://android-developers.googleblog.com/2013/02/using-cryptography-to-store-credentials.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html

[60] Carsten Maartmann-Moe, Steffen E Thorkildsen, and
André Årnes. The persistence of memory: Forensic iden-
tification and extraction of cryptographic keys. digital
investigation, 6:S132–S140, 2009.

[61] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker,
and Nick Kralevich. The Android Platform Security
Model. ACM Transactions on Privacy and Security
(TOPS), 24(3):1–35, 2021.

[62] mCodex. RNSensitiveInfoModule.java. https://gi
thub.com/mCodex/react-native-sensitive-inf
o/blob/495dd7f08c077f5744e56803e45f54787df
3dab3/android/src/main/java/dev/mcodex/RNS
ensitiveInfoModule.java#L313.

[63] Samsung Newsroom. Strengthening Hardware Security
with Galaxy S20’s Secure Processor. https://news.s
amsung.com/global/strengthening-hardware-s
ecurity-with-galaxy-s20s-secure-processor,
May 2020.

[64] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim
Brorsson. A Survey of Published Attacks on Intel SGX.
arXiv preprint arXiv:2006.13598, 2020.

[65] U.S. Department of Health and Human Services. Guid-
ance to render unsecured protected health information
unusable, unreadable, or indecipherable to unauthorized
individuals. https://www.hhs.gov/hipaa/for-pro
fessionals/breach-notification/guidance/i
ndex.html.

[66] U.S. Department of Health and Human Services. The
security rule. https://www.hhs.gov/hipaa/for-p
rofessionals/security/index.html.

[67] Marten Oltrogge, Yasemin Acar, Sergej Dechand,
Matthew Smith, and Sascha Fahl. To pin or not
to {Pin—Helping} app developers bullet proof their
{TLS} connections. In 24th USENIX Security Sympo-
sium (USENIX Security 15), pages 239–254, 2015.

[68] Sandro Pinto and Nuno Santos. Demystifying ARM
TrustZone: A Comprehensive Survey. ACM computing
surveys (CSUR), 51(6):1–36, 2019.

[69] Andrea Possemato and Yanick Fratantonio. Towards
HTTPS everywhere on android: We are not there yet. In
29th USENIX Security Symposium (USENIX Security
20), pages 343–360, 2020.

[70] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system.
In 28th USENIX security symposium (USENIX security
19), pages 603–620, 2019.

[71] Mohamed Sabt and Jacques Traoré. Breaking into the
keystore: A practical forgery attack against android key-
store. In Computer Security–ESORICS 2016: 21st Eu-
ropean Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings,
Part II 21, pages 531–548. Springer, 2016.

[72] Salesforce. Commit 4b074b7: Refactoring StrongBox
code. https://github.com/forcedotcom/Salesfo
rceMobileSDK-Android/commit/4b074b7c744f44
129486029a7df6481d0d7c3eb2.

[73] Salesforce. KeyStoreWrapper.java. https://github
.com/forcedotcom/SalesforceMobileSDK-Andro
id/blob/1a11e225b20968cc88ed08cf3304ede28b
5701af/libs/SalesforceSDK/src/com/salesfor
ce/androidsdk/security/KeyStoreWrapper.jav
a#L247.

[74] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust
Dies in Darkness: Shedding Light on Samsung’s Trust-
Zone Keymaster Design. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 251–268, 2022.

[75] Google Play Store. Provide information for Google
Play’s Data safety section. https://support.goog
le.com/googleplay/android-developer/answer/
10787469?hl=en.

[76] Google Play Store. Signal Private Messenger. https:
//play.google.com/store/apps/datasafety?id
=org.thoughtcrime.securesms&hl=en&gl=US.

[77] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish
Bijlani, Roxana Geambasu, and Nikhil Sarda. CleanOS:
Limiting Mobile Data Exposure with Idle Eviction. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 77–91, 2012.

[78] United Kingdom Department for Science, Innovation
and Technology. Code of practice for app store operators
and app developers. https://www.gov.uk/governm
ent/publications/code-of-practice-for-app
-store-operators-and-app-developers.

[79] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient Out-Of-Order execution. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 991–1008, 2018.

[80] Stephan Van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. Cacheout: Leaking
data on intel cpus via cache evictions. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 339–
354. IEEE, 2021.

17

https://github.com/mCodex/react-native-sensitive-info/blob/495dd7f08c077f5744e56803e45f54787df3dab3/android/src/main/java/dev/mcodex/RNSensitiveInfoModule.java#L313
https://github.com/mCodex/react-native-sensitive-info/blob/495dd7f08c077f5744e56803e45f54787df3dab3/android/src/main/java/dev/mcodex/RNSensitiveInfoModule.java#L313
https://github.com/mCodex/react-native-sensitive-info/blob/495dd7f08c077f5744e56803e45f54787df3dab3/android/src/main/java/dev/mcodex/RNSensitiveInfoModule.java#L313
https://github.com/mCodex/react-native-sensitive-info/blob/495dd7f08c077f5744e56803e45f54787df3dab3/android/src/main/java/dev/mcodex/RNSensitiveInfoModule.java#L313
https://github.com/mCodex/react-native-sensitive-info/blob/495dd7f08c077f5744e56803e45f54787df3dab3/android/src/main/java/dev/mcodex/RNSensitiveInfoModule.java#L313
https://news.samsung.com/global/strengthening-hardware-security-with-galaxy-s20s-secure-processor
https://news.samsung.com/global/strengthening-hardware-security-with-galaxy-s20s-secure-processor
https://news.samsung.com/global/strengthening-hardware-security-with-galaxy-s20s-secure-processor
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.hhs.gov/hipaa/for-professionals/security/index.html
https://www.hhs.gov/hipaa/for-professionals/security/index.html
https://github.com/forcedotcom/SalesforceMobileSDK-Android/commit/4b074b7c744f44129486029a7df6481d0d7c3eb2
https://github.com/forcedotcom/SalesforceMobileSDK-Android/commit/4b074b7c744f44129486029a7df6481d0d7c3eb2
https://github.com/forcedotcom/SalesforceMobileSDK-Android/commit/4b074b7c744f44129486029a7df6481d0d7c3eb2
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://github.com/forcedotcom/SalesforceMobileSDK-Android/blob/1a11e225b20968cc88ed08cf3304ede28b5701af/libs/SalesforceSDK/src/com/salesforce/androidsdk/security/KeyStoreWrapper.java#L247
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://play.google.com/store/apps/datasafety?id=org.thoughtcrime.securesms&hl=en&gl=US
https://play.google.com/store/apps/datasafety?id=org.thoughtcrime.securesms&hl=en&gl=US
https://play.google.com/store/apps/datasafety?id=org.thoughtcrime.securesms&hl=en&gl=US
https://www.gov.uk/government/publications/code-of-practice-for-app-store-operators-and-app-developers
https://www.gov.uk/government/publications/code-of-practice-for-app-store-operators-and-app-developers
https://www.gov.uk/government/publications/code-of-practice-for-app-store-operators-and-app-developers

[81] Adam Vartanian. Cryptography Changes in Android P.
https://android-developers.googleblog.com
/2018/03/cryptography-changes-in-android-p
.html, March 8 2018.

[82] Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen
Han, and Xiangliang Zhang. Exploring permission-
induced risk in android applications for malicious ap-
plication detection. IEEE Transactions on Information
Forensics and Security, 9(11):1869–1882, 2014.

[83] Mark Weiser. Program slicing. IEEE Transactions on
software engineering, (4):352–357, 1984.

[84] Daoyuan Wu, Debin Gao, Robert H Deng, and
Chang Rocky KC. When program analysis meets byte-
code search: Targeted and efficient inter-procedural anal-
ysis of modern android apps in backdroid. In 2021
51st Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 543–554.
IEEE, 2021.

[85] Xiaowen Xin. Titan M makes Pixel 3 our most secure
phone yet. https://blog.google/products/pixel
/titan-m-makes-pixel-3-our-most-secure-pho
ne-yet/, 2018.

[86] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.
Detecting repackaged smartphone applications in third-
party android marketplaces. In Proceedings of the sec-
ond ACM conference on Data and Application Security
and Privacy, pages 317–326, 2012.

18

https://android-developers.googleblog.com/2018/03/cryptography-changes-in-android-p.html
https://android-developers.googleblog.com/2018/03/cryptography-changes-in-android-p.html
https://android-developers.googleblog.com/2018/03/cryptography-changes-in-android-p.html
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

A Appendix

A.1 Trusted Hardware Best Practices
Legal Mandates: In certain industries, developers have to
abide by a heavy patchwork of regulatory standards govern-
ing data collection and processing. In the U.S. (the region
in which our application dataset and ranking information are
collected) since 1996 the medical sector has been governed
by the Health Insurance Portability and Accountability Act
(HIPAA)’s Security Rule [66], which specifies minimum se-
curity standards that health service providers must meet. The
financial sector has a variety of SEC regulations and long-
standing laws they must comply with, such as the global
Payment Card Industry Data Security Standard (PCI DSS)
that governs processing and storage of credit card data.

Regulatory standards in the financial and medical indus-
tries generally require that data is encrypted at rest. Specific
implementations, such as use of secure hardware to store cre-
dentials, are usually not mandated directly. For instance, the
American Medical Association acknowledges that since secu-
rity is an “evolving target, and so HIPAA’s security require-
ments are not linked to specific technologies or products” [30].
Rather, regulation often encourages adoption indirectly, such
as a law that mandates a security standard only provided by
the hardware-backed storage mechanism. For instance, an
industry may be required to use a FIPS-compliant random
number generator [65], which on a particular mobile device
is only available via the HSM API. Moreover, even in cases
where regulations provide little specific guidance, providers
operating in heavily-regulated sectors are generally motivated
to prioritize security within their product to keep pace with
the sector in which they operate and minimize the risk that
they could be charged with running afoul of the law.

Developer Guidelines: Android’s published security guide-
lines for developers [17] recommends developers use the
Android Keystore for long-term or multi-use keys, and the
OWASP Mobile Application Security Testing Guide [4] rec-
ommends that developers “should always rely on” available
secure hardware to store and use encryption keys. To audit app
security, Android’s “app security improvement program” [9]
further scans all applications for various potential security
issues upon initial submission and subsequent updates, in-
cluding well-known vulnerabilities (e.g., Logjam), unsafe en-
cryption modes, and insecure connection issues. We are not
aware of any analysis of key storage.

A.2 Play Store Data Safety Labels
In this paper we use the Play Store’s data safety label infor-
mation to determine which apps process sensitive data, and
therefore which apps may be expected to make use of secure
key storage.

Published data safety information. According to Google’s
developer documentation, “all developers that have an app
published on Google Play must complete the data safety form”
(including apps that self-report not collecting user data) [75].
In practice, we find that only 74.47% (342,872/460,362) of
apps have submitted a data safety form at the time of scraping
in March through April 20243. Khandelwal et al. [54] had
previously conducted a large-scale analysis of Play Store data
safety labels in May 2023 (approximately one year earlier)
and found that only 46.8% of apps reported any data, so we
note the percentage of apps providing a data safety label
has increased significantly from approximately a year earlier,
though it is still noticeably far from satisfying the Play Store
mandate.

For apps that have data safety information, we classify each
app as “sensitive” or “benign” based on the types of data the
developer has reported. Google uses 14 high-level data type
categories, such as location, financial information, audio files,
etc. [75] We consider an app to be sensitive if it collects any
information from 12 of these 14 data types. We exclude the
final two categories, “App info and performance” (defined
by Google as crash logs and other app performance data)
and “Device or other IDs” (e.g. MAC address or Firebase ID),
since we are interested in whether developers are intentionally
collecting sensitive user data relating to specific individuals,
which we broadly define as user-provided data. Based on
this classification, we find that of the 342,872 apps reporting
data safety information, 46.75% are sensitive (and therefore
53.25% are benign).

Developer self-reporting. Google uses a somewhat counter-
intuitive notion of what constitutes data collection: instruc-
tions to developers state data is considered to be collected
if it is transmitted “from your app off a user’s device” [75],
and user data that is only processed and stored locally does
not need to be reported as “collected”. In short, it is possible
that an app that processes sensitive user data locally (and may
therefore be expected to use some form of hardware-backed
key storage) yet this app would not be listed as collecting
sensitive data.

Therefore, by using the information in the data safety labels
there is a risk our analysis excludes apps which do in fact
process sensitive data. Nevertheless, we argue that there is
much to be gained from understanding how the Keystore API
is used by those apps which state they process sensitive data: if
these apps do not make use of hardware-based secure storage,
we hypothesize that it is unlikely that those apps which do
process sensitive data, but do not declare it in their data safety
label, process such data securely.

3The slight difference in number of apps for which we attempted to
retrieve a data safety label (460,263) vs. number of apps downloaded and
decompiled (486,234) is due to apps that were available in the Play Store at
the time we began scraping apps themselves in October 2023 but had been
removed by the time we began scraping app data safety pages in March 2024.

19

Figure 5: Percentages of Android apps using TEE and SE
APIs, respectively, across major categories within the Google
Play Store. StrongBox usage is shown here as a subset of An-
droid Keystore API usage (i.e., any app that uses StrongBox
necessarily uses the Android Keystore API).

There are both benign and malicious reasons for developers
inaccurately reporting their use of sensitive data. For example,
developers may be unaware of the data collected by third-
party libraries or wish to avoid highlighting the data their app
collects in their submission, and thus may understate data col-
lected. Conversely, it is also possible that developers may err
on the side of overstating the sensitivity of the data they col-
lect to ensure they are in compliance with Play Store policies.
In principle, Google can often verify whether an app collects
sensitive data (or not) and spot any differences between app
behavior and reported collection. If discrepancies are found,
Google has the ability to block app updates or remove the app
from the Play Store altogether. We are unable to determine
the extent to which such verification and enforcement takes
place and therefore validate the correctness (or otherwise) of
the data safety label information.

A.3 Usage by Category
Figure 5 shows the comparative usage of the Android Key-
store (TEE) and StrongBox (SE) APIs across a range of cat-
egories in the Google Play Store. We show a representative
sample of categories here due to space limitations, but data for
all categories can be found in the accompanying code repos-
itory (see §11). Unsurprisingly, we find that financial apps
demonstrate the highest rates of trusted hardware usage, with
over 60% of apps referencing the broader Android Keystore
API and 12.8% referencing the StrongBox API. Gaming apps
have an exceptionally low rate of StrongBox usage, which we
hypothesize is due to the fact that the vast majority of Strong-

Box references come from third-party APIs, but gaming app
development teams are less likely to use high-level app de-
velopment toolkits given the more advanced functionality
required to create the app.

A.4 Manual Analysis
We select a subset of applications flagged as not using An-
droid’s trusted hardware API for further examination to verify
our static analysis results and to better understand which key
storage schemes are used instead. We scraped the top 200
most-downloaded apps in the Play Store as of April 1, 2024,
and then selected the ten most highly-ranked apps which
self-reported collecting sensitive data but had been flagged
in our initial keyword search as not referencing the Android
Keystore API. We decompiled each app using Apktool and
manually searched for relevant keywords relating to widely
used software-backed keystores provided as part of Android,
such as Android’s SharedPreferences API [21].

We verified that each of these ten apps were indeed not
using Android’s trusted hardware API anywhere and found
that they instead generally made use of some combination
of Android’s SharedPreferences, Android’s default software-
backed keystore (i.e., AndroidOpenSSL), or a local SQLite
database such as SQLCipher. SharedPreferences is a bit more
concerning than other software-backed keystores as it offers
very different security properties: some Android keystores
(namely SharedPreferences and KeyChain are intended as
systemwide credential storage, where keys are accessible to
any app on the device. While it is challenging to make any
definitive statements on individual app use cases due to the
high-level nature of our analysis and obfuscation of internal
variable names, developers should always exercise caution
when using a systemwide keystore.

It is also possible that some apps hardcode encryption keys
after obfuscating the keys using Dexguard or a similar tool,
but this was not possible to detect given our manual review is
relatively cursory and intended primarily to verify our static
analysis results and identify other APIs used.

A.5 Developer Survey Questions
1. Which of the following best describes your role?

a. Programmer/Developer

b. Software Tester/Quality Assurance

c. Project Manager

d. Software Design/Architecture

e. Administration (Non-Technical)

f. Other

2. Approximately how many people (including project man-
agers, developers, testers, etc.) are involved in developing
the app?

20

a. 1

b. 2 - 5

c. 6 - 20

d. 21 - 50

e. 50+

3. How many years of experience do you have working
with Android app development?

a. None

b. Less than 1 year

c. 1 - 5 years

d. 5 - 10 years

e. 10 years or more

4. On a five-point scale, how much do you agree with the
following statement: Our development team prioritizes
security as part of the development process.

a. Strongly agree

b. Agree

c. Neither agree nor disagree

d. Disagree

e. Strongly disagree

5. On a five-point scale, how much do you agree with the
following statement: Our app collects and processes
potentially sensitive user data (e.g., name, other demo-
graphic information, health data, financial data, etc.).

a. Strongly agree

b. Agree

c. Neither agree nor disagree

d. Disagree

e. Strongly disagree

6. On a five-point scale, how much do you agree with the
following statement: I am familiar with the concept of
trusted hardware (e.g., Intel SGX and Arm TrustZone).

a. Strongly agree

b. Agree

c. Neither agree nor disagree

d. Disagree

e. Strongly disagree

7. On a five-point scale, how much do you agree with the
following statement: I am familiar with the Android Key-
store trusted hardware API, commonly used in Android
development for credential storage (e.g., storing crypto-
graphic keys).

a. Strongly agree

b. Agree

c. Neither agree nor disagree

d. Disagree

e. Strongly disagree

8. [If app did not reference Android Keystore API at all.]
Based on our static analysis as of November 2023, your
app was recorded as not using the Android Keystore API.
Which of the following reasons best describe the main
considerations behind this decision? Please select all that
apply.

• Security benefits were unclear

• Security benefits were not needed given type of
data (if any) collected by app

• Performance concerns

• Lack of features: Desired algorithm and/or key size
was unavailable with Android Keystore

• We wanted to maximize our app’s ability to run on
many different devices (potentially running older
versions of Android)

• App was developed prior to Android’s Keystore
API release date in 2013

• Found Keystore API difficult to use

• Unaware this API existed

• Don’t know/don’t remember

• We believe your static analysis result to be incor-
rect: [open text]

• Other: [open text]

9. [If app did not reference Android Keystore API at all.]
To the best of your knowledge, what libraries, if any,
does your app use within Android for credential storage
(either user login credentials or developer credentials
such as cryptographic keys)? [Open text]

10. [If app was recorded as disabling StrongBox.] A secure
element (called the StrongBox Keymaster in Android)
is a more advanced form of trusted hardware. Based on
our static analysis of your app from November 2023,
we determined your app used the Android Keystore API
but disabled usage of the secure element in at least one
instance. (Specifically, the setIsStrongBoxBacked API
described in the link above was set to false). Which of the
following reasons best describe the main considerations
behind this decision? Please select all that apply.

• Security benefits were unclear

• Security benefits were not needed given type of
data (if any) collected by app

• Performance concerns

21

https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore#HardwareSecurityModule

• Lack of features: desired cryptographic algorithm
and/or key size was unavailable with StrongBox
Keymaster

• We wanted to maximize our app’s ability to run on
many different devices (potentially running older
versions of Android)

• Don’t know/don’t remember

• We believe your static analysis result to be incor-
rect: [open text]

• Other: [open text]

22

Keystore API Method Count

void <init>(java.lang.String,int) 278,567
android.security.keystore.KeyGenParameterSpec$Builder setEncryptionPaddings(java.lang.String[]) 235,719
android.security.keystore.KeyGenParameterSpec$Builder setBlockModes(java.lang.String[]) 224,169
android.security.keystore.KeyGenParameterSpec$Builder setKeySize(int) 166,379
android.security.keystore.KeyGenParameterSpec$Builder setUserAuthenticationRequired(boolean) 48,150
android.security.keystore.KeyGenParameterSpec$Builder setDigests(java.lang.String[]) 48,095
android.security.keystore.KeyGenParameterSpec$Builder setCertificateNotAfter(java.util.Date) 44,087
android.security.keystore.KeyGenParameterSpec$Builder setCertificateNotBefore(java.util.Date) 44,062
android.security.keystore.KeyGenParameterSpec$Builder setRandomizedEncryptionRequired(boolean) 30,245
android.security.keystore.KeyGenParameterSpec$Builder setIsStrongBoxBacked(boolean) 24,656
android.security.keystore.KeyGenParameterSpec$Builder setUserAuthenticationValidityDurationSeconds(int) 23,946
android.security.keystore.KeyGenParameterSpec$Builder setKeyValidityForOriginationEnd(java.util.Date) 15,334
android.security.keystore.KeyGenParameterSpec$Builder setSignaturePaddings(java.lang.String[]) 9,313
android.security.keystore.KeyGenParameterSpec$Builder setUserAuthenticationParameters(int,int) 8,974
android.security.keystore.KeyGenParameterSpec$Builder setInvalidatedByBiometricEnrollment(boolean) 6,629
android.security.keystore.KeyGenParameterSpec$Builder setAlgorithmParameterSpec
(java.security.spec.AlgorithmParameterSpec) 5,531
android.security.keystore.KeyGenParameterSpec$Builder setAttestationChallenge(byte[]) 2,724
android.security.keystore.KeyGenParameterSpec$Builder setKeyValidityEnd(java.util.Date) 1,295
android.security.keystore.KeyGenParameterSpec$Builder setKeyValidityStart(java.util.Date) 1,088
android.security.keystore.KeyGenParameterSpec$Builder setUnlockedDeviceRequired(boolean) 383
android.security.keystore.KeyGenParameterSpec$Builder setKeyValidityForConsumptionEnd(java.util.Date) 230
android.security.keystore.KeyGenParameterSpec$Builder setUserAuthenticationValidWhileOnBody(boolean) 93
android.security.keystore.KeyGenParameterSpec$Builder setUserConfirmationRequired(boolean) 47
android.security.keystore.KeyGenParameterSpec$Builder setUserPresenceRequired(boolean) 38

Table 1: Usage count of Android Keystore API methods across all apps in the Play Store.

Package Name Call Count

com.google.android.gms.internal
.firebase-auth-api 30,055

androidx.security.crypto 26,345
com.appsflyer 23,566
androidx.biometric 15,960
com.microsoft.appcenter.utils.crypto 12,282
com.google.crypto.tink.integration.android 11,656
com.flurry.sdk 7,806
com.amazonaws.internal.keyvaluestore 4,138
com.oblador.keychain.cipherStorage 4,073
com.huawei.secure.android.common

.encrypt .keystore.aes 2,794

Table 2: Top 10 third-party libraries referenc-
ing the Android Keystore key initialization API
<init>(java.lang.String, int). We chose to clas-
sify androidx.security.crypto [8] as third party after
finding that the majority of references were to the Encrypt-
edFile and EncryptedSharedPreferences classes which
abstract the details of key generation and storage.

Package Name Call Count

androidx.security.crypto 11,424
com.oblador.keychain.cipherStorage 2,161
com.microsoft.identity.common.internal

.platform 1,019
com.salesforce.marketingcloud.sfmcsdk

.components.encryption 758
com.iproov.sdk.crypto 179
androidx.tracing 136
com.ionicframework.IdentityVault 129
com.oblador.keychain.g 108
com.epicshaggy.biometric 76
com.it_nomads.fluttersecurestorage.ciphers 66

Table 3: Top 10 third-party libraries referencing Android’s
secure element StrongBox Keymaster API.. We chose to clas-
sify androidx.security.crypto [8] as a third-party library
after finding that the majority of references were to the En-
cryptedFile and EncryptedSharedPreferences classes
which abstract the details of key generation and storage from
the developer.

23

Cipher Usage Count

AES 147,529
RSA 80,096
HMAC-SHA256 2,321
EC 2,233
HMAC-SHA512 100

Table 4: List of ciphers requested for the Android Keystore
provider through the javax.crypto.KeyGenerator,
java.security.KeyPairGenerator,
javax.crypto.Cipher and java.security.KeyStore
APIs along with respective usage counts. We include results
from both the “AndroidKeyStore” and “AndroidKeyStoreBC-
Workaround” providers due to an Android bug dating back to
2015 [7].

Message
Size (MiB)

Avg. Runtime (s)

TEE SE

0.01 0.03 ± 0.01 0.21 ± 0.01
0.1 0.08 ± 0.01 1.59 ± 0.02
0.2 0.12 ± 0.02 3.11 ± 0.02
1 0.42 ± 0.06 15.43 ± 0.10
2 1.13 ± 0.09 30.88 ± 0.16
4 2.56 ± 0.19 62.23 ± 0.33
6 4.25 ± 0.74 94.68 ± 0.37
8 7.67 ± 1.02 159.61 ± 0.72

10 5.83 ± 0.63 127.01 ± 0.69
12 9.24 ± 0.83 192.37 ± 0.80
14 10.87 ± 1.14 223.44 ± 1.02
16 13.10 ± 1.44 257.69 ± 1.09

Table 5: Execution times of AES-GCM-256 encryption as a
function of message length. These measurements were taken
from the TEE and SE in Google’s Pixel 8 device.

Message
Size (MiB)

Avg. Runtime (s)

TEE SE

0.01 0.02 ± 0.01 0.15 ± 0.02
0.1 0.06 ± 0.01 0.99 ± 0.07
0.2 0.14 ± 0.02 1.89 ± 0.02
1 0.48 ± 0.03 9.05 ± 0.05
2 0.89 ± 0.04 17.99 ± 0.06
4 1.76 ± 0.05 35.91 ± 0.09

Table 6: Execution times of generating an Elliptic Curve
Digital Signature Algorithm (ECDSA) signature with SHA-
256. These measurements were taken from the TEE and SE
in Google’s Pixel 8 device.

24

	Introduction
	Key Storage in Android
	Software-backed Key Storage
	Hardware-backed Key Storage
	Trusted Execution Environment
	Secure Element

	Key Considerations

	Methodology
	Dataset Selection
	Play Store Data Safety Labels
	Static Analysis
	Performance Measurements

	Secure Hardware Usage in Android
	Overall Usage
	First-Party vs. Third-Party Usage
	Key Authentication
	Implementation Security

	Key Storage Performance
	Performance Evolution
	Performance vs. Payload Length
	Cross-Provider Performance

	Developer Survey
	Limitations
	Discussion
	Related Work
	Conclusion
	Open Science
	Ethics Considerations
	Appendix
	Trusted Hardware Best Practices
	Play Store Data Safety Labels
	Usage by Category
	Manual Analysis
	Developer Survey Questions

