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Abstract

Phishing has become a prominent risk in modern cybersecurity, often used
to bypass technological defences by exploiting predictable human behaviour.
Warning dialogues are a standard mitigation measure, but the lack of ex-
planatory clarity and static content limits their effectiveness. In this paper,
we report on our research to assess the capacity of Large Language Mod-
els (LLMs) to generate clear, concise, and scalable explanations for phish-
ing warnings. We carried out a large-scale between-subjects user study
(N = 750) to compare the influence of warning dialogues supplemented
with manually generated explanations against those generated by two LLMs,
Claude 3.5 Sonnet and Llama 3.3 70B. We investigated two explanatory
styles (feature-based and counterfactual) for their effects on behavioural met-
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rics (click-through rate) and perceptual outcomes (e.g., trust, risk, clarity).
The results indicate that well-constructed LLM-generated explanations can
equal or surpass manually crafted explanations in reducing susceptibility to
phishing; Claude-generated warnings exhibited particularly robust perfor-
mance. Feature-based explanations were more effective for genuine phish-
ing attempts, whereas counterfactual explanations diminished false-positive
rates. Other variables such as workload, gender, and prior familiarity with
warning dialogues significantly moderated warning effectiveness. These re-
sults indicate that LLMs can be used to automatically build explanations for
warning users against phishing, and that such solutions are scalable, adap-
tive, and consistent with human-centred values.

Keywords: Phishing, Warnings, Human factors, Alert, LLMs, Explanations

1. Introduction

Phishing attacks are among the most widespread and harmful cyber
threats, leveraging human behaviour instead of technical weaknesses (Khonji
et al., 2013; Prakash et al., 2010). There is a vast number of automatic fil-
tering techniques (e.g., blacklists, machine learning-based detection). Still,
these automatic defence systems are pretty far from perfect (Basit et al.,
2021), and there is the strong possibility of false positives and, even more
importantly, false negatives, which entail that users might receive harmful
material.

To overcome this issue, most defensive systems engage the human in the
decision-making process by presenting users with warning dialogues, allowing
them to make the final decision and possibly prevent a phishing attack (Des-
olda et al., 2019). Although warning dialogues are commonly used, they
work well only when describing the risk and influencing the decision to act
upon (IBM, 2024). Most dialogues used today are passive and mostly static,
with no clear explanations as to why a particular message is harmful (Egel-
man et al., 2008; Wu et al., 2006).

In the last few years, researchers working in Human-Centred Security and
Explainable AI (XAI) have investigated whether feature-based explanations
might be effective in mitigating phishing attacks (Guidotti et al., 2019b;
Gunning and Aha, 2019). The clear advantage of such explanations is the
reduction of susceptibility to phishing, but they are hand-made, expensive
to maintain, and might not easily adjust to the changing circumstances of
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the threats (Desolda et al., 2023; Buono et al., 2023; Greco et al., 2025).
Other ways of generating explanations have also been considered in general,
such as the use of counterfactuals (Guidotti et al., 2019a) or the use of Large
Language Models (LLMs), but they have not been investigated extensively
in the specific field of cybersecurity (Xu et al., 2024).

To bridge these gaps, we have carried out a large-scale, between-subjects
user study (N = 750). We investigated how well phishing warning dialogues
with explanations can be generated with LLMs. We assessed the result of
using a commercial closed-weight model (Claude 3.5 Sonnet) and an open-
weight alternative (Llama 3.3 70B). In addition, we considered two styles of
explanation, i.e., feature-based and counterfactual explanations. A baseline
with feature-based, manually-written explanations has also been considered
(Desolda et al., 2023; Greco et al., 2025). The effectiveness of the the different
experimental conditions have been evaluated by considering both measures
of behaviour (e.g., click-through rate on phishing links) and user perceptions
(e.g., clarity, trust, perceived risk), and modelled the degree to which individ-
ual factors, including cognitive style and knowledge of cybersecurity issues,
influence results.

We found that explanations generated by LLMs can be as effective as
those produced manually; specifically, explanations generated by Claude were
better than those crafted manually. Concerning the type of explanation,
counterfactual ones have an interesting power in ensuring false positive cases,
and feature-based ones have certain benefits in true positive cases. Moreover,
user-related factors such as gender, familiarity, and mental workload signifi-
cantly influence the effectiveness of the warning.

The remainder of this paper is structured as follows. Section 2 reviews
related work on phishing defences, warning dialogue design, and explainable
AI in cybersecurity. Section 3 presents the experimental design and the
explanation generation process. This section also reports the formalisation
of the four research questions this study aims to answer. Section 4 details the
study procedure and methodology. Section 5 reports the quantitative and
qualitative results addressing our four research questions. Section 6 discusses
threats to validity. Section 7 synthesises the findings as a set of lessons
learned. In conclusion, Section 8 summarises the paper and emphasises
potential areas for future research.
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2. Related work

2.1. Warning dialogues for Phishing Defence
The complete elimination of phishing through automated filtering meth-

ods such as blocklists (Gupta and Kumaraguru, 2014) and AI-based methods
Basit et al. (2021) is currently unfeasible. No existing tools can detect phish-
ing content, such as websites or emails, with perfect accuracy (El Aassal
et al., 2020; Mehdi Gholampour and Verma, 2023). Furthermore, attempts
at reducing the number of false negatives (i.e., phishing emails that go unde-
tected) tend to increase the number of false positives (i.e., legitimate emails
misclassified as phishing) in classification tasks (Saxena, 2018). This even-
tually leads to filtering out genuine, relevant emails, potentially disrupting
user productivity.

The solution currently adopted in most of the systems is not to automat-
ically filter suspicious content classified as phishing with lower confidence;
instead, these emails are presented to users alongside a warning dialogue
that alerts them about possible threats while leaving the final decision to
the users (Kumaraguru et al., 2010). Despite warning dialogues, many users
fail to grasp their significance or meaning, so phishing attacks remain highly
effective (IBM, 2024).

One key problem of everyday warning dialogues is their passive behaviour.
Popular email clients such as Google Gmail implement static toolbars above
the email content. Warnings like these are largely ineffective, as users often
overlook or ignore them (Egelman et al., 2008; Wu et al., 2006). On the other
hand, warnings that implement an active behaviour, i.e., interrupt user in-
teractions and demand attention, have been proven to be significantly more
effective (Wogalter et al., 2002; Petelka et al., 2019; Buono et al., 2023; Egel-
man et al., 2008; Greco et al., 2025). However, such warnings are currently
implemented only in web browsers (Desolda et al., 2019), despite the bene-
fits of active behaviour having also been demonstrated for warnings shown
in email clients (Greco et al., 2025; Buono et al., 2023).

Another limitation of warnings is the phenomenon known as habituation.
This behaviour occurs when users are repeatedly exposed to the same warning
stimulus, even under varying risk conditions, leading to decreased attentional
responses and increased likelihood of bypassing the warning (Akhawe and
Felt, 2013; Kim and Wogalter, 2009). To mitigate this problem, polymorphic
warnings were demonstrated to be significantly more resistant to habitua-
tion than static warnings (Anderson et al., 2015). Such warnings are called
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polymorphic since they dynamically change their appearance or content to
provide varied visual stimuli. Nonetheless, they are still not implemented in
browsers or email clients despite their advantages (Desolda et al., 2019). Only
two studies have explored using polymorphic warnings paired with tailored
explanations to enhance their effectiveness (Desolda et al., 2023; Buono et al.,
2023). Desolda et al. found that including manually designed explanations
of malicious features in warning dialogues in web browsers led to warnings
that were more familiar and understandable than those in the most common
browsers. Buono et al. studied warnings with explanations in the context
of email clients and found that active warnings with explanations based on
phishing features largely outperformed contextual warnings without explana-
tions. This study confirmed the importance of interrupting user interaction
flow to focus entirely on the message, similar to active warnings shown in
browsers. Additionally, the study demonstrated the importance of explain-
ing to users why content is malicious, helping them make better-informed
decisions.

A further issue that compromises the warnings’ effectiveness is the ab-
sence of detailed explanations about the phishing risk (Bravo-Lillo et al.,
2011). Ideally, warnings should communicate clearly why specific content is
dangerous and outline the potential consequences of ignoring it. However,
many current warnings provide vague messages that fail to identify the ma-
licious elements within an email or website. This places the burden of risk
assessment on the users, who often lack cybersecurity expertise or additional
information to make informed decisions (Desolda et al., 2021). By incorpo-
rating explanations into warnings, the users’ understanding of the threat can
be improved, addressing knowledge gaps, and potentially increasing compli-
ance and trust in the system (Bravo-Lillo et al., 2011; Vilone and Longo,
2021).

The use of explanatory warnings in web browsers has been explored in
(Desolda et al., 2023). The authors identified seven website features that
can be intuitively explained to users and produced two explanation messages
for each. These messages were refined through an iterative process to op-
timise text readability and sentiment. Moreover, the explanation messages
followed a well-defined structure grounded in warning theory (Bauer et al.,
2013), which led to the identification of a template for generating explana-
tion messages: “Feature description + Hazard Explanation + Consequences
of not complying with the warning”. The authors empirically validated with
150 users the adoption of warnings with explanations, compared with warn-
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ings without explanations. Results showed that the proposed warnings were
clearer and more effective than those implemented in modern browsers, which
lack explanations. Greco et al. (2025) explored a similar approach in the con-
text of email clients, combining active warning dialogues with embedded ex-
planations. The findings indicated that this combination of active behaviour
and explanation significantly outperformed the state-of-the-art email client
warnings proposed by Petelka et al. (2019).

As security software engineers, we must understand the underlying decision-
making algorithm to generate explanations. In the case of AI-based phishing
filtering methods, explanations can be produced by employing eXplainable AI
(XAI) techniques (Guidotti et al., 2019b; Gunning and Aha, 2019).1 These
allow one to explain the behaviour and decisions of AI models, which are
often black-box, and thus not directly interpretable even by AI engineers.
With XAI techniques, for example, the system can provide a rationale for
the reasons that led to the automatic classification of an email as phishing.
Explanations in warning dialogues can contain such a rationale to improve
the transparency of the AI system. Let us explore these aspects in the fol-
lowing subsection.

2.2. Human-Centred Explainable AI for Phishing Attacks
Integrating XAI solutions into cybersecurity systems is essential to main-

tain user trust and confidence. This underscores the importance of user-
centred experimental evaluations that balance security, usability, and re-
silience to adversarial attacks (Charmet et al., 2022; Rjoub et al., 2023;
Sarker et al., 2024; AL and Sagiroglu, 2025). In this regard, the broader
Human-Centred XAI (HCXAI) literature offers valuable insights into mul-
tiple explanation types and their effects on users. The most prevalent ex-
planations in AI-assisted decision systems are the feature-based ones (Lai
et al., 2023), clarifying why an AI system produced a specific decision by
highlighting the most important features driving the decision. Feature-based
explanations might enhance user understanding, uncertainty awareness, trust
calibration, and decision accuracy, though they can sometimes foster over-
reliance on AI (Zhang et al., 2020; Wang and Yin, 2021; Chen et al., 2023;
Ma et al., 2023; Fok and Weld, 2024; Cau and Spano, 2025). Counterfactual

1See (Viganò and Magazzeni, 2020) for a discussion on the relationship between ex-
plainable cybersecurity and explainable AI.
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explanations constitute another, less explored style: they provide not only
why an AI system reached a specific decision, but also how it is possible
for users to alter input features to achieve a potential desired outcome by
presenting contrastive “what-if ” statements. While they are mainly used to
offer actionable recourse when negative decisions occur—e.g., loan denial—
by indicating necessary feature changes for a positive result—e.g., increasing
income for approval—(Koh et al., 2024; Verma et al., 2024; VanNostrand
et al., 2024; Upadhyay et al., 2025), they have also demonstrated improve-
ments in helpfulness, decision alignment, and accuracy, sometimes matching
or exceeding feature-based methods, in AI-assisted decision-making tasks
(Scharowski et al., 2023; Celar and Byrne, 2023; Cau et al., 2023; Teso et al.,
2023; Lee and Chew, 2023; Gentile et al., 2025).

Regarding XAI in cybersecurity and phishing in particular, only a small
number of proof-of-concept studies have assessed explanation effectiveness
with real users (Desolda et al., 2023; Greco et al., 2025). For example, Des-
olda et al. (2023) found that adding a feature-based explanation to a phish-
ing warning dialogue made the warning more understandable and familiar,
which may deter users from visiting malicious sites. In a similar study, Greco
et al. (2025) compared warnings with and without feature-based explanations
and the effect of showing the warning before versus after opening an email.
They showed that adding explanations improved users’ comprehension of the
phishing threat and, when the warning appeared after an email opening, led
to a measurable reduction in click-through rate (CTR) despite the additional
effort required by participants. However, these investigations have focused
exclusively on manually crafted feature-based explanations, leaving the gen-
eration of feature-based or alternative explanation types via large language
models largely unexplored (Sarker et al., 2024).

This work addresses these gaps through a user study in a phishing email
scenario. We compare LLM-generated, feature-based, and counterfactual ex-
planations to manually crafted ones within warning dialogues, and evaluate
their impact on users’ CTR on potentially harmful links and subjective per-
ceptions of the warning dialogue.

3. Approach

In this study, we focus on the impact of two factors on user decision-
making in phishing-warning dialogues: (i) the style of the explanation mes-
sages in the warning dialogue and (ii) the LLM employed to generate the
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explanation message.
Regarding the explanation style, the first approach we considered is based

on feature-based explanations, a widely adopted approach in HCI systems for
communicating the most influential features contributing to an AI decision
(Lai et al., 2023; Fok and Weld, 2024). In our context, these explanations
highlight specific elements of an email, such as a masked link or a suspicious
sender address, that led the AI to classify it as phishing. Complementing
this standard, we also include counterfactual explanations, which offer an
alternative, theoretically grounded approach to supporting user understand-
ing. Rather than simply highlighting influential features, counterfactuals
offer contrastive explanations answering implicit “why not?” questions by
describing how small, meaningful changes would alter the AI’s prediction
(Lee and Chew, 2023; Koh et al., 2024; Gentile et al., 2025). This explana-
tion technique clarifies decision boundaries and supports actionable recourse,
particularly relevant in high-stakes settings such as fraud detection or secu-
rity. In our phishing warning dialogues, we embed these explanations to show
how the email could have avoided being flagged, for example, stating that the
email would be considered safe if the link label matched the actual destination
URL (e.g., “protect your account” linking to facebook.com/protect-account).

The second factor concerns the LLM model used to generate the expla-
nation message. While past studies often relied on manually written ex-
planation messages demonstrating their effectiveness (Desolda et al., 2023;
Greco et al., 2025; Buono et al., 2023), the growing availability of LLMs
might enable automatic generation of tailored content in both explanation
styles. If explanations produced by LLMs prove as effective as manually
crafted messages, which are both time-consuming to create and must be
updated whenever new features are introduced, then LLMs could fully au-
tomate their generation. This study considered explanations generated by
an open-source model (Llama 3.3) and a closed-source commercial model
(Claude 3.5 Sonnet). These two LLMs were considered to evaluate whether
a commercially available LLM (Claude) could provide better explanations
than an open-weight solution such as LLama 3.3. This aspect is critical,
as an organization could have strict privacy requirements that prohibit the
sharing of sensitive data (i.e., emails) with third parties like Claude (Shashid-
har et al., 2023; Panwar et al., 2024; Zhang et al., 2024; Adams et al., 2024;
López Espejel et al., 2025).

Building on these premises, we aim to address the following research
questions:
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• RQ1 Can LLMs generate explanations as effective as manually-generated
ones in protecting users in warning dialogues?

• RQ2 Are feature-based explanations as effective as counterfactual ex-
planations in warning dialogues?

• RQ3 How do users perceive LLM-generated warnings?

• RQ4: How do user-related factors affect click trough rate (CRT) of
phishing links?

In the following subsections, we detail i) how we designed the warning
dialogues, ii) how the two explanation styles have been integrated into the
warning dialogues, and iii) the selection process of the two LLMs considered
in this study.

3.1. Warning dialogues design
The phishing warning dialogues explored in this study have the same

structure to isolate the effects of the explanation message, depicted in Fig-
ure 1. A dialogue opens with an attention-grabbing header flagging the link
as potentially dangerous, followed by a summary that attributes this judg-
ment to the AI system. The main part of the interface is the explanation
message, presented as a short paragraph embedded within the dialogue box.
The bottom part contains buttons to get back to the email visualization or,
with a less prominent presentation, a link to continue browsing the destina-
tion. All messages have the same typographic style and layout to control
for visual biases. This design ensured that any differences in user response
could be attributed to the nature of the explanations rather than variations
in formatting.

3.2. Explanation Styles
The explanation message included in the main part differs according

to the considered styles. Feature-based explanations emphasize observable
cues extracted from the email, such as sender identity mismatches or sus-
picious links. The left part of Figure 4 shows sample explanations for this
style, realised through declarative statements pointing to concrete phish-
ing indicators. All messages share a common structure consisting of three
sentences, inspired by prior work Desolda et al. (2023), which builds on
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A Warning Header

B Main Explanation

B Control Footer

Figure 1: Anatomy of the warning dialogue used in the study. The top part (A) includes a
brief warning working as the header of the box, the main part (B) presents the explanation
message, while the footer (C) shows controls to get back to the email visualization or to
proceed with browsing.

the Communication-Human Information Processing (C-HIP) model (Wogal-
ter, 2018) and previous studies on effective warning communication (Bauer
et al., 2013). The same structure was explicitly adopted when prompting
the LLMs to generate the warnings, ensuring consistency across human- and
AI-authored messages.

In contrast, counterfactual explanations present a hypothetical scenario
in which the email would not have been flagged. These explanations reframe
the AI’s decision as contingent on a small change, inviting users to consider
alternatives. The examples adopt a conditional format, underscoring a key
difference in framing: while feature-based explanations justify the current
decision, counterfactuals highlight what could have made the outcome differ-
ent. The right part of Figure 4 shows sample warnings using a counterfactual
style.

3.3. Generating the explanations
The other difference in the experimental conditions is the LLM used to

generate the warning text. We selected the two LLMs to create explanations
for this study through a rigorous evaluation process. Notably, 13 different
LLMs (six commercially available, seven open-source) were included in our
evaluation process as possible candidates. As grounds for this evaluation, we
considered the three emails (two true positives and one false positive) whose
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links, when clicked, generated a warning dialogue during the experiment. To
evaluate each LLM, we followed this process:

• Following the approach and the prompts proposed in Desolda et al.
(2025), for each of the three emails, the LLM was prompted to gen-
erate an explanation message to be included in the warning, given
the email body and one of the features to explain. We considered
the following three email features, which were found to be helpful to
users when making decisions regarding phishing content (Greco et al.,
2025; Desolda et al., 2025), i.e., (i) the Top-Level Domain of the URL
in the email is misplaced (i.e., “www.amazon.com.cz”); (ii) the URL
in the email is an IP address; (iii) the link shown in the email and
its actual destination mismatch (e.g., "click here" is shown instead of
"www.facebook.com/...") — this feature was found in the false positive
email.

• For each of the three emails, we generated a counterfactual explanation
message through a modified version of the prompt proposed in Desolda
et al. (2025).

• Two researchers qualitatively assessed the six explanation messages to
highlight whether an explanation was not generated correctly (e.g.,
by reaching the token limit early) or contained hallucinations. In this
case, the previous step was repeated, and the produced explanation was
analysed again for a maximum of three times. If every attempt did not
lead to a coherent explanation, the LLM was marked as inadequate for
this task. This process led to the discarding of Llama 3.2 1B-Instruct.

• The explanations underwent an automatic measurement of text read-
ability with the FK (Flesch-Kincaid) Grade Level (Kincaid, 1975) and
of text understandability with the SMOG (Simple Measure of Gob-
bledygook) Index (Laughlin, 1969).

• Explanations with low SMOG Index and FK Grade values were pre-
ferred as they indicate more readable and understandable text. Feature-
based explanations’ readability metrics are shown in Figure 2, while
counterfactual-related ones are shown in Figure 3.

To select the best commercial and open-weight LLMs, we initially selected
a set of LLMs with the lowest, thus best, SMOG Index and FK Grade for
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both feature-based and counterfactual explanations. From this analysis, we
selected Claude 3.5 Sonnet and Gemini 1.5 Flash as the best candidates for
commercial LLMs, while all the Llama LLMs are candidates for the open-
weight solutions. Then, two experts in HCI and cybersecurity performed
a manual inspection of the generated explanations. This analysis removed
Gemini 1.5 Flash because it generated explanations that were either too
generic or contained hallucinations, especially for the counterfactual style
(e.g., for the Amazon phishing email it generated an explanation reporting
“[..] A safe email address wouldn’t have strange parts in its name. [..]”).
Moreover, Llama 3.2 90B (as well as Gemini 1.5 Pro) was excluded, as it
could not be forced to produce an explanation for the false-positive email.
Llama 3.1 8B was a good candidate for feature-based explanations, although
readability and understandability metrics were mediocre in the context of
counterfactual explanations. Moreover, the generated feature-based expla-
nation for the Amazon email contained a hallucination (“[..] It looks like an
Amazon link, but the ’.com’ name is typically found in other types of compa-
nies. [..]”). Therefore, considering the qualitative assessment and the average
metrics for both explanation styles, we selected Llama 3.3 70B as it repre-
sents a good trade-off between the resources needed to deploy this LLM and
the quality of the explanations. The explanations produced by Claude 3.5
Sonnet and Llama 3.3 70B were then featured in the user study as described
in Section 4.1.

3.4. Claude vs Llama
While selecting the two LLMs to be used in the study, we identified some

general characteristics of the generated explanation text.
Claude tends to produce detailed and elaborate explanations. Its feature-

based explanations frequently embed causal logic and downstream outcomes:
for instance, a warning is issued that supplying data on a spoofed website
risks account takeover. Within counterfactual scenarios, Claude employs
conditional phrasing (“The email would have been safe if. . . ”) while offering
idealized reference links illustrating what a genuine message might look like.
This is a continually organized discussion that incorporates technical pointers
and a clear emphasis on the user experience that may occur.

Instead, Llama delivers explanations that are somewhat more concise and
technical in tone. Its feature-based outputs highlight specific anomalies (e.g.,
numeric IP addresses, suspicious domain extensions) with minimal elabora-
tion. The counterfactuals follow a similar structure to Claude’s but are gener-
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Figure 2: Average understandability and readability metrics for the feature-based expla-
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ally more direct and less descriptive, focusing on the change required to alter
the classification without extending into consequences. Llama also tends to
use simpler language and more neutral phrasing, which may be more mechan-
ical but still effective. These stylistic differences are illustrated in Figure 4.
The top row includes examples generated with Claude 3.5 Sonnet, while the
bottom row includes examples generated with Llama 3.0 70B.

The link shown as 'protect your account' may take you 
somewhere different than what you see. Attackers use 
this trick to make you think you’re going to Facebook 
when you're not. This could lead to your Facebook 
password being stolen.

Feature-Based Explanations Counterfactual Explanations

Ll
am

a 
3.

0 
70

B
C

la
ud

e 
3.

5
So

nn
et

The email shows a Facebook link but actually takes you 
to a different website: appears as 'facebook.com/hacked' 
but leads to 'phish-site.net/fake-login'.
The email would have been safe if the link you see 
matched exactly where it takes you, which helps ensure 
you're going to the real Facebook website. A safe link 
would show and lead to the same place, like:
facebook.com/help/security

The link "https://www.facebook.com/hacked/disavow?
u=100000125023309&nArdInDS2&lit_|T&ext154853815
9" is an imitation of the original Facebook link. This site 
might be intended to take you to a different place. You 
might be disclosing private information.

The link text "protect your account" hides the actual link 
https://www.facebook.com/hacked/disavow?
u=100000125023309&nArdInDS2&lit_IT&ext154853815
9. The email would have been considered safe if the link 
text matched the actual link, which helps ensure the link 
is trustworthy and not trying to trick you. A safe link might 
have looked like: https://www.facebook.com/account-
security.

Figure 4: Four versions of the warning dialogue for the same deceptive link. Rows corre-
spond to the text generated by the two LLMs employed in this study (Claude 3.5 Sonnet
and Llama 3.0 70B), while columns refer to explanation styles (feature-based and coun-
terfactual).

4. Methods

In this section, we present a controlled experiment that compares the ef-
fectiveness of various explanations displayed in warning dialogues to protect
users from phishing emails. The study specifically focused on evaluating ex-
planations based on two factors we identified and discussed in the previous
section: the explanation style (either feature-based or counterfactual) and the
LLM model used to generate the explanation message (LLama 3.3 or Claude
3.5 Sonnet). We also considered a baseline warning including manually-
generated messages that was empirically demonstrated to outperform all the
existing warnings for phishing attacks (Greco et al., 2025). The study proce-
dure and materials (i.e., warning design and emails included) were identical
to the study in Greco et al. (2025) to make the comparison with the baseline
as fair and rigorous as possible.
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4.1. Study Design
This study adopted a between-subjects design with the explanation style

and LLM used to generate the explanations as the independent variables.
Five total between-subject levels were considered, four experimental warnings
plus a baseline:

1. Llama Feature-based: warnings containing feature-based explana-
tions generated by the open-weight LLM Llama 3.3 70B.

2. Llama Counterfactual: warnings containing counterfactual explana-
tions generated by the open-weight LLM Llama 3.3 70B.

3. Claude Feature-based: warnings containing feature-based explana-
tions generated by the commercial LLM Claude 3.5 Sonnet.

4. Claude Counterfactual: warnings containing counterfactual expla-
nations generated by the commercial LLM Claude 3.5 Sonnet.

5. Baseline: warnings that included feature-based explanations, which
were manually written by experts (existing dataset - from Greco et al.
(2025))

To improve the external validity of the study, for each experimental condi-
tion, we generated three explanations related to three different features. The
complete list of explanation messages contained in each warning is reported
in Appendix A.

4.2. Participants
A total of 750 participants were involved, with equal allocation (n =

150) to each condition. The manually generated feature-based explanation
condition included existing data (collected separately, n = 150), while the
remaining 600 participants were recruited specifically for this study through
the Prolific online platform2. The inclusion criteria for participants were as
follows: i) fluency in English, ii) an even split between men and women (50-
50), and iii) 18 or more years of age. A total of 61 participants either failed
attention checks or were identified as inattentive and were thus excluded.
To balance participation across the experimental conditions, we recruited 61
more participants to reach a final sample of exactly 750 participants. The
final sample had an average age of 32.98 years (sd = 11.01) and reported

2https://www.prolific.co
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spending 7.94 hours per day on the Internet (sd = 3.95). Participants were
375 males and 375 females. The participation in the study lasted approxi-
mately 20 minutes, and participants were rewarded with £3.00, in line with
Prolific’s recommended participation fee of £9.00/hour.

4.3. Materials
We developed a web platform with Laravel 93 to conduct the study online.

A total of 14 emails were included in the study: 2 of them were (harmless)
phishing emails, while the remaining 12 were genuine ones designed starting
from legitimate services/companies.

A warning dialogue, such as that shown in Figure 1, was shown to users
who clicked on a phishing link. To simulate the case in which the system
mistakenly classifies a genuine email as phishing, i.e., a false positive situa-
tion, we forced the platform to show a warning also for one of the genuine
emails. After the study, each user may have seen a maximum of three warning
dialogues.

A full suite of user interactions was recorded in this study: hovering over
phishing links, clicking on them, visiting associated URLs, and responding
to warnings, which allowed calculating the click-through rate (CTR) for each
participant. The CTR was the proportion of accessed suspicious links to
the number of displayed warnings, and it was an objective measure of the
effectiveness of the warning.

The survey instrument employed by Desolda et al. (2023) was adminis-
tered to comprehend users’ perceptions of the warnings. All the questions
and their formats of responses are given in Table 1.

To test for the effects of users’ knowledge about basic cybersecurity con-
cepts, a 10-item test questionnaire was used (Olmstead and Smith, 2017).

Finally, a short, 6-item version of the Need for Cognition Scale (NCS-6)
(Coelho et al., 2020) was used to measure users’ Need for Cognition, which is
the tendency to engage in and enjoy effortful cognitive activities (Cacioppo
and Petty, 1982). Previous work highlighted that individual differences like
NFC might significantly impact the effectiveness of AI support and expla-
nations in terms of performance, overreliance on AI, and learning (Cacioppo
et al., 1996; Buçinca et al., 2021; Gajos and Mamykina, 2022; Buçinca et al.,
2024)

3https://github.com/IVU-Laboratory/llm_warnings_explantions
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Table 1: The questionnaire used to evaluate the warnings (warning questionnaire)

# Questionnaire item Possible Answers

1 Did you read the entire text of the
warning dialogue?

[yes; partially; no]

2 When you saw the warning dialogue,
what was your first reaction?

[free text]

3 I understood the warning dialogue. [5-point Likert scale, from
“Strongly disagree” to
“Strongly agree”]

4 I am familiar with this warning dia-
logue.

[5-point Likert scale, from
“Strongly disagree” to
“Strongly agree”]

5 I am not interested in this warning di-
alogue.

[5-point Likert scale, from
“Strongly disagree” to
“Strongly agree”]

6 Which word(s) did you find confusing
or too technical?

[free text]

7 Please rate the extent of risk you feel
you were warned about.

[very low risk; low risk; no risk;
risky; very high risk]

8 What action, if any, did the warning
dialogue want you to take?

[to continue to the website; to
be careful while continuing to
the website; to not continue to
the website; I did not feel any-
thing]

9 What do you think this warning dia-
logue means?

[free text]

10 Please rate your level of trust in this
warning dialogue.

[not at all confident; not very
confident; neutral; confident;
very confident]

11 What is the first word in this warning
dialogue?

[free text]
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4.4. Procedure
The study procedure followed the same one in Greco et al. (2025) and is

depicted in Figure 7. To prevent priming effects regarding the experiment’s
true objective, participants were initially deceived about the study’s real
purpose (Sotirakopoulos et al., 2011; Distler et al., 2021). Participants were
told the aim was to evaluate the user experience of a new email client.

After the Prolific task was accepted, the participants were redirected to
a web platform where the study was hosted. The (deceptive) purpose of the
study, the data usage policies, and the withdrawal right were described on
the landing page. According to the ethical guidelines, the participants were
asked for their informed digital consent. All the data on participants and
interactions were completely anonymized and safely kept on the university
servers. Any concerns of the participants could be addressed after the study,
and the design was such that it did not cause excessive psychological stress,
e.g., phishing scenarios were realistic yet not too alarming.

Once consent was given, all the participants were randomly assigned to
four experimental conditions with balanced participation across conditions.
Then, participants were requested to follow a case of a fictional user named
Alice, who was testing a new email client she had adopted in her workplace.
The respondents were asked to interact with the email client by reading
messages in the inbox and trying the functionality of embedded links.

The scenario was presented in a banner above the simulated email client
interface, which displayed randomised email previews, including the sender’s
name, title, and subject (Figure 5). Clicking an email revealed its content;
phishing links triggered warnings (Figure 6). After each interaction with a
phishing message (via link click or by navigating back), participants answered
two attention-check questions: “Who was the sender of the email?” and “Were
there links in the email?”. These checks help identify inattentive respondents,
which are especially typical in remote settings (Matsuura et al., 2021).

Upon completing their interactions, participants were debriefed and in-
formed of the actual goal of the study: assessing user responses to warnings
triggered by clicks on suspicious links. The debriefing step is a critical ethical
practice in studies involving deception (Sotirakopoulos et al., 2011). After
the debriefing, participants were asked to reconfirm their consent. Those
choosing not to continue would have had their data deleted, though all par-
ticipants opted to proceed. They then completed a series of questionnaires:
first, the warning perception questionnaire from Desolda et al. (2023), fol-
lowed by the Raw NASA TLX workload assessment (Hart, 1986), a cyberse-
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Figure 5: Web platform used for the study.

curity proficiency questionnaire (Olmstead and Smith, 2017), and the Need
for Cognition Scale (Coelho et al., 2020). Finally, participants completed a
demographic survey stating their age, gender, and average daily internet use.
Participants were thanked for their involvement and redirected to Prolific to
claim compensation.

The study procedure was approved by the Research Ethics Committee of
King’s College London, reference number HR-23/24-41353.

4.5. Data Analysis
To answer RQ1 (“Can LLMs generate explanations that are as effective as

manually-generated ones in protecting users in warning dialogues?”) and RQ2
(“Are feature-based explanations as effective as counterfactual explanations
in warning dialogues?”), we applied the Chi-Square test of independence.
When differences emerged, Bonferroni adjustment for pairwise comparisons
was used as a post-hoc test to analyse differences among individual condi-
tions.

For answering RQ3 (“How do users perceive LLM-generated warnings?”),
we employed the Kruskal-Wallis test to analyse differences across the exper-
imental conditions for items 3, 4, 5, 7, and 10 of the warning questionnaire
(regarding understandability, familiarity, interest, felt risk, and trust, respec-
tively) and items of the NASA-TLX questionnaire. In the case of statistical
significance, Dunn’s test was applied to analyse differences between individ-
ual conditions. The Chi-Square test of independence was used to analyse
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Figure 6: Warning shown during the study for a fake Amazon email that includes a
mimicking URL with a suspicious domain (“.com.cz”).

item 8 of the warning questionnaire (relative to the intended action to take).
Moreover, to answer RQ3, a deductive thematic analysis (TA) was also

conducted to examine qualitative responses from open-ended questions of the
warning questionnaire (see items 2, 6, and 9 in Table 1) following Braun and
Clarke’s six-step framework (Braun and Clarke, 2006).

Finally, for RQ4 (“How user-related factors affect CTR?”), we employed a
binomial logistic regression to analyse the effect of user-related factors, such
as demographics, need for cognition, and warning perception, on CTR.

In each analysis of the RQs, three splits of the dataset were considered:
firstly, the whole dataset to analyse the general CTR; secondly, only the
data relative to the True Positive emails to examine the warning’s level of
protection against actual phishing emails; and thirdly, only the data relative
to the False Positive email, to gain insights about the interaction with a
warning dialogue that is wrong. Lower CTRs in the case of true positive
emails indicate a higher level of protection, as the user is effectively avoiding
actual phishing links. On the other hand, a lower CTR in the case of the false
positive indicates that the warning does not support the user in recognising
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Figure 7: Study Procedure - adapted from Greco et al. (2025).

when the system is incorrect; thus, a higher CTR is preferable for the false
positive condition only. All the quantitative data were analysed using R
4.2.2. An alpha level of .05 was used for all statistical tests.

5. Results and Discussion

In this section, we report the results of the controlled experiment to an-
swer each research question. The results of the statistical tests are reported
only when significant differences emerged; the full results of the statistical
analysis are reported as additional resources in our GitHub repository.

5.1. RQ1 - LLM vs Manual Explanations
To answer the first research question, we compared the results of experi-

mental conditions with the baseline from Greco et al. (2025), which employed
warnings with manually generated explanations. To obtain a fair comparison,
we excluded from this analysis the conditions that employed counterfactual
explanations, as the baseline included a feature-based explanation (n = 300
for the aggregated experimental conditions, n = 150 for the baseline sample,
n = 450 in total). The CTRs for the baseline and LLM feature-based condi-
tions (both individual and aggregated) are reported in Figure 8. As it can be
observed, LLM-generated warnings generally led to a higher CTR when ag-
gregated, compared to the baseline. A more in-depth analysis revealed that
the Claude FB condition had the lowest CTR (9.39%), especially for true
positive emails (7.48%), while the baseline led to the lowest CTR in the case
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of the false positive (9.78%). On the contrary, Llama FB led to the highest
CTR in all cases (14.65% in total, 14.62% for true positives, and 14.43% for
false positives).

9.94% 10.00% 9.78%9.39%

7.48%

13.68%
14.56% 14.62% 14.43%

11.97%
11.05%

14.06%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Total True Positives False Positive

CTR

Baseline Claude FB Llama FB LLM aggregate FB

Figure 8: CTRs in the baseline condition (manually-generated, feature-based explana-
tion) and for the LLM-generated feature-based explanations, presented both individually
(Claude FB, Llama FB) and aggregated.

The Chi-square test of independence revealed no significant statistical
difference between the baseline and the LLM feature-based conditions, both
individually and when aggregated (p > 0.05). This indicates that LLM-
generated warnings are at least as effective as manually-generated ones in
protecting users. However, comparing the baseline, Claude FB, and Llama
FB led to a significant difference (χ2 = 5.86, df = 2, p = 0.05) for the True
Positive emails. Although pairwise comparisons did not reveal differences,
a trend emerged between Claude-generated feature-based warnings (8.90%)
and Llama-generated ones (14.29%), as the post-hoc test indicates a marginal
difference between the two (p = 0.084).

5.2. RQ2 - Feature-based vs Counterfactual Explanations
The second research question regarded the effectiveness of explanations

in warning dialogues based on their type (feature-based or counterfactual).
Therefore, we aggregated the conditions according to the explanation type
they included and made a direct comparison (n=300 for both samples, n=600
in total). To have a balanced analysis, we excluded the baseline from this
comparison. The CTRs for the conditions included in this analysis are re-
ported in Figure 9.
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Compared to the feature-based explanations, the warnings with counter-
factual explanations led to a lower CTR in general (11.41% vs 11.97%) and
for the false positive email (10.00% vs 14.06%), while slightly increased the
CTR for the true positives (12.04% vs 11.03%).

11.97%
11.03%

14.06%

11.41%
12.04%

10.00%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Total True Positives False Positive

CTR

Feature-based (FB) Counterfactual (CF)

Figure 9: CTRs for the aggregated conditions with feature-based and counterfactual ex-
planations. The baseline is not included.

The Chi-Square test did not highlight any statistically significant differ-
ence between the two types of explanation, using the same LLM. This is true
when either considering all the emails (χ2 = 0.05, df = 1, p = 0.827), only
the true positives (χ2 = 0.12, df = 1, p = 0.724), or only the false positives
(χ2 = 1.13, df = 1, p = 0.288).

To deepen the analysis of RQ2, we investigated the CTR for the ex-
perimental conditions taken individually (n=150 for each sample, n=600 in
total). Figure 10 reports the results. It is noticeable how feature-based ex-
planations from Claude led to the highest level of protection (CTR = 9.39%
in general and CTR = 7.48% for true positives). In contrast, feature-based
explanations from Llama led to the highest CTR (14.56% in general, 14.62%
for true positives, and 14.43% for the false positives). In the case of the false
positive email, the baseline led to the lowest CTR (9.78%).

The Chi-Square test highlighted no significant differences. However, the
true positive emails led to a slight statistical difference (χ2 = 6.97, df =
3, p = 0.073). This result might suggest a difference in CTR between the
Claude FB (7.48%) and Llama FB (14.62%) conditions.
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Figure 10: CTRs for the individual experimental conditions and the baseline.

5.3. RQ3 - User Perception of Warnings
The third research question explored how users perceive warnings with

LLM-generated explanations. To do this, we examined the results of the
warning questionnaire (see Table 1) and the raw NASA-TLX. Responses to
the NASA-TLX were considered to measure the workload caused by the ex-
perimental condition. Moreover, to get more insights, we also computed the
six sub-dimensions of the NASA-TLX, i.e., mental demand, physical demand,
temporal demand, perceived performance, perceived effort, and frustration
level.

The results of the extracted dimensions for the baseline, the four experi-
mental conditions, and the aggregation based on explanation type and LLM
are reported in Figures 11 and 12.

From the Kruskal-Wallis test between the four experimental conditions
and the baseline (n=150 each, n=750 in total), a statistically significant
difference emerged for warnings’ understandability (H = 15.76, df = 4,
p = 0.003). Dunn’s post-hoc test revealed that warnings generated with
Llama were perceived as significantly more understandable than the baseline,
both in the case of feature-based (Z = 3.53, p = 0.002) and counterfactual
explanations (Z = 3.29, p = 0.005). No other significant differences emerged.

Item 8 of the warning questionnaire (“What action, if any, did the warning
dialogue want you to take?”) required a separate analysis, as the data type
was not numeric but categorical. The Chi-square test did not reveal any
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Figure 11: Average values of perceived characteristics emerging from the results of the
warning questionnaire.
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Figure 12: Average values of each dimension of the Raw NASA-TLX and overall scores
for each condition and aggregation.

significant difference (χ2 = 9.68, df = 5, p = 0.644).

5.4. RQ4 - How User-Related Factors Affect CTR
To investigate how user-related factors affect CTR, we built a series of

binomial logistic regression models including demographic measures (age,
gender, expertise, average hours online per day, Need-for-Cognition) and
warning-perception variables (understandability, familiarity, trust, perceived
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Table 2: Answers to Item 8 of the warning questionnaire by warning condition. Percentages
represent the proportion of participants selecting each response option.

Condition “Don’t
continue”

“Be care-
ful”

“Continue” “None”

Baseline 74.0% 24.0% 0.0% 2.0%
Claude CF 71.3% 25.3% 2.7% 0.7%
Claude FB 78.0% 18.7% 2.7% 0.7%
Llama CF 74.0% 21.3% 3.3% 1.3%
Llama FB 74.0% 24.0% 1.3% 0.7%
FB aggregate 76.0% 21.3% 2.0% 0.7%
CF aggregate 72.7% 23.3% 3.0% 1.0%
Claude aggregate 74.7% 22.0% 2.7% 0.7%
Llama aggregate 74.0% 22.7% 2.3% 1.0%

suggested action, mental workload). Different models were trained for three
outcomes: CTR across all emails (ALL), true positives (TP), and false posi-
tives (FP), across all conditions and LLM variants.

Moreover, odds ratios (OR) were computed by exponentiating the esti-
mated coefficients from the logistic regression models, by applying the for-
mula OR = eβ. This transformation allows interpreting each β coefficient as
the multiplicative change in the odds of clicking associated with a one-unit
increase in the predictor. An OR greater than 1 indicates a higher likelihood
of clicking, whereas an OR below 1 indicates a lower probability. To further
simplify the interpretation of the OR, we mapped the ORs into effect sizes,
categorised as small (OR 1.2–1.5 / 0.67–0.83), moderate (1.51–2 / 0.5–0.66),
and large (>2 / <0.5), following the guidelines suggested by Chen et al.
Chen et al. (2010). The majority of significant effects observed in our data
fell either into the "small" (OR 1.2–1.3) or "large" (OR>2 or <0.5) cate-
gories, with relatively few predictors yielding odds ratios in the moderate
range. Odds ratios of 0.84 to 1.19 were considered as negligible because they
show a difference in odds of less than 20% in clicking (which will practically
be insignificant even in the case of a significant difference). This strategy
is guided by the prescriptions of the applied behavioural research to differ-
entiate between the statistical and practical significance of the requirements
(Kirk, 1996; Fritz et al., 2012).

Familiarity with warnings showed consistent large effects: higher famil-
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iarity was associated with markedly higher CTR in multiple conditions. ORs
ranged from 1.8 to 3.24, with significant effects in Counterfactual aggregate
(ALL, TP, FP), Claude Counterfactual (ALL, TP, FP), Claude aggregate
TP, and Llama Counterfactual (ALL, TP).

Interpreting the warning as suggesting “don’t continue” led to
large decreases in CTR across different conditions: ORs between 0.10 and
0.41, significant in Counterfactual aggregate (ALL, TP), NoLLM (ALL, TP),
Llama aggregate (ALL, TP), and Claude aggregate (ALL, TP).

Gender showed large and asymmetric effects. Female participants con-
sistently had much lower CTR: ORs as low as 0.0003 (NoLLM FP) and
generally below 0.05 in several conditions (Counterfactual, NoLLM, Llama
aggregate, Claude aggregate, Claude Counterfactual, Llama Counterfactual).
Male participants had higher CTR in some conditions: OR=2.62 (Counter-
factual aggregate TP), OR=2.13 (Llama aggregate TP), while in one case,
male gender was associated with lower CTR (NoLLM FP, OR=0.13).

NASA-TLX (mental workload) was associated with moderate to signif-
icant reductions in CTR: ORs between 0.45 and 0.74, significant in Feature-
based FP, Llama aggregate (ALL, TP), Counterfactual aggregate (ALL, TP),
Claude aggregate (ALL, FP), Claude Feature-based FP, and Llama Feature-
based FP.

Understandability also showed protective effects: higher scores corre-
lated with lower CTR, with ORs between 0.48 and 0.51 across Counterfactual
aggregate (ALL, TP) and Claude aggregate FP.

Trust in warning (Llama Feature-based FP) also showed a significant
reduction in CTR (OR=0.44).

Average hours online per day had small positive effects: OR=1.24
(NoLLM ALL) and OR=1.22 (NoLLM TP).

Interactions between being male and need-for-cognition produced small
to large effects: OR=1.44 in Counterfactual aggregate for false positives,
OR=2.15 in Claude Counterfactual for false positives, OR=1.33 in Claude
Counterfactual for all emails, OR=1.32 in Claude Counterfactual for true
positives, a smaller effect of OR=1.21 in Counterfactual aggregate for all
emails.

Other smaller effects were observed for the interaction between expertise
trust in warning (OR=0.44).

Full results, including ORs, p-values, and effect size categorisations, are
detailed in Table A.4 reported in Appendix A.6.
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5.5. Qualitative results
This subsection describes the themes identified through deductive the-

matic analysis of Items 2, 6, and 9, as presented in Table 1. This analysis
strictly followed Braun and Clarke’s six-step framework (Braun and Clarke,
2006): data familiarisation, code generation, theme identification, theme re-
view, theme definition and naming, and report production. The deductive
approach was selected to align the coding framework with the prior study
that inspired our experimental design and provided the baseline warning con-
dition (Greco et al., 2025). Two independent researchers with a background
in Human-Computer Interaction and qualitative research methods carried
out the process. They were blind to the participants’ experimental condi-
tions during the first phases to avoid bias. In particular, the researchers first
familiarized themselves with the data by repeatedly reading transcripts and
noting initial impressions. Then, they independently coded relevant excerpts.
Inter-rater reliability was evaluated using Cohen’s kappa (κ) values: Item 2 =
.81, Item 6 = .84, and Item 9 = .79. These values indicate good agreement
(Landis and Koch, 1977). Discrepancies were resolved through discussion
until a consensus was reached. Related codes were grouped into preliminary
themes (80% initial agreement), which were collaboratively refined to ensure
an accurate representation of the data. Each theme was then clearly defined
and named, and the final report included interpretive commentary and sup-
porting data excerpts. For each of the three items, the themes captured the
essence and meaning of the users’ answers, namely, the users’ initial reac-
tions to the warnings (item 2), terms perceived as confusing (item 6), and
interpretations of warning meanings (item 9).

In particular, Figures 13 and 14 show the frequencies for Item 2 and
Item 9 across our experimental conditions, while Table 3 reports the themes,
counts, and participants’ example responses emerged from the thematic anal-
ysis considering confusing words for Item 2.

5.5.1. First reaction to warning (Item 2)
In Item 2, participants answered the question: “When you saw the warn-

ing, what was your first reaction?”. Five recurring themes were identified
across the four experimental conditions: Perceived threat, Take safe action,
Further checking, Warning not trusted, and Positive reaction to the warn-
ing. These themes are reported in Figure 13, which shows their frequency
across the four experimental conditions defined by the LLM (LLaMA or
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Figure 13: Distribution of first reaction themes (Item 2) across experimental conditions,
including the manually crafted feature-based baseline from Greco et al. (2025), and the
combination of LLM (LLaMA, Claude), explanation style (feature-based, counterfactual).
Each theme’s total number of instances is indicated on top of each bar.

Claude), the explanation style (feature-based or counterfactual), and the
manual feature-based explanation from Greco et al. (2025).

Perceived threat. This theme captured participants’ immediate percep-
tion of danger, often accompanied by feelings of uncertainty or concern. For
instance, one participant (Claude, feature-based) remarked: “It was strange,
but I thought it had something to do with some particular links not being rec-
ognized by the computer” (P290). Another (LLaMA, counterfactual) noted:
“That the site I am potentially about to visit is malicious and may cause
harm to my computer.” (P393). Claude FB tends to elicit this perception
more than the other conditions (91 times), whereas the baseline elicits this
perception to a lesser extent (73 times).

Take safe action. Many users responded by choosing the safest path,
typically avoiding interaction with the email or the suspicious link. A par-
ticipant (Claude, counterfactual) stated: “To click on ’Back to safety”’ (P9),
while another (LLaMA, feature-based) wrote: “That the site I am about to
visit is at a high risk of being a scam site and I am advised to be careful”
(P512). Here, it is evident that in the baseline condition, this action is elicited
very often (67 times). In contrast, for LLM-generated conditions, this idea
is much less considered by users (35 to 46 times).
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Further checking. Some participants described their intention to ver-
ify the warning by inspecting the email or sender. For example, a partici-
pant (Claude, feature-based) commented: “Stop and think about what to do”
(P518), and another (LLaMA, counterfactual) shared: “I wanted to verify
who the sender was and if the link made sense” (P120). The feature-based
conditions elicit this action less frequently (13 times Claude FB, 11 times
Lama FB) than the other conditions (from 18 to 23 times).

Warning not trusted. A subset of responses expressed scepticism or
confusion about the alert. One user (Claude, counterfactual) admitted: “I
was a bit worried if this is not a real warning, but of course it is not.”,
while another (LLaMA, feature-based) stated: “I didn’t trust the warning,
it seemed like a false alarm” (P263). In this case, the results appear more
balanced across all the experimental conditions.

Positive reaction to the warning. Some users welcomed the alert
or found it informative. A participant (LLaMA, counterfactual) reflected:
“It was helpful to get an alert like that, made me feel safer” (P370). In
this theme, the results are generally more balanced across all experimental
conditions, except for the Claude FB, which elicited a positive reaction from
participants (15 times).

5.5.2. Confusing words (Item 6)
With this item, we asked participants to indicate which words they found

confusing or too technical in the warning dialogue with an open question.
Overall, four themes emerged4, summarized in Table 3. The most common
theme was “Warning is clear”, highlighting that participants did not find any
word confusing or too technical. The second theme, “Unclear general word”,
includes responses where participants reported confusion about general terms
used in the warning text (e.g., “deceptive”, “harmful”, or “suspicious”). The
third theme, “Unclear technical term”, refers to participants who reported
difficulties with technical terms included in the warning (e.g., “IP address”,
or “https”). The last theme is “Unclear UI element”, referring to participants
who found the words and buttons of the warning dialogue misleading (e.g.,
the function of the button “click here (not safe) to read” was sometimes
misinterpreted by participants).

4Please note that 179 participants did not respond, as answering was optional.
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Table 3: Themes, counts, and example answers for confusing words item: “Which word/s
did you find confusing or too technical? ”.

Themes Theme
count

Answer examples

Warning is clear 282 “I didn’t find any part too confusing or
technical.” (P230)

Unclear general word 109 “The numbers provided in the texts, such
as the email points” (P52), “The word De-
ceptive” (P41)

Unclear technical term 5 “The word https” (P230)
Unclear UI element 13 “To still have to click the link clearly spec-

ified not to be safe at the end of the warn-
ing” (P11)

5.5.3. Warning meaning (Item 9)
In this item, participants responded to the question “What do you think

this warning means?”. Thematic analysis revealed eight distinct themes,
presented in Fig. 14, along with their frequencies across the four conditions
and the manually crafted feature-based explanation (baseline).

Clear threat. Participants indicated the presence of a generic threat in
the suspicious email or website, prompting them to avoid clicking on links or
accessing the content (e.g., “It means that the website you’re trying to enter
is a scam and not real. ”, P77). Here, the feature-based conditions elicit this
perception more frequently (54 times Claude FB and 46 times Lama FB)
than the other conditions (from 35 to 38 times).

Possible threat. Participants interpreted the warning as indicating that
the content could be dangerous or lead to undesirable consequences, though
not with certainty, prompting a need for further investigation (e.g., “It warns
me against a possible phishing scam ”, P80). It is noticeable that the base-
line, with a manually crafted feature-based explanation, instils less perceived
threat (45 times) than LLM-generated explanations (from 76 to 99 times).

Malicious website. Participants’ interpretations of the warning varied,
particularly concerning the specific source of danger. The threat was often
associated with the website linked in the email. Additionally, some partici-
pants perceived the warning as indicating a particular threat (e.g., “ That the
link takes you to a deceptive website and not to the one that was supposed
to be.”, P85) while others saw it as more general (e.g., “ It’s letting you know
that it is fake and that you can potentially be hacked.”, P532). Participants
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Figure 14: Distribution of warning meaning themes (Item 9) across experimental condi-
tions, including the manually crafted feature-based baseline from Greco et al. (2025), and
the combination of LLM (LLaMA, Claude), explanation style (feature-based, counterfac-
tual). Each theme’s total number of instances is at the top of each bar.

had a similar impression across all conditions (from 50 to 59 times), except
for Claude FB, which resulted in a lesser impression of a malicious website
(37 times).

Malicious email. In some cases, participants interpreted the warning as
indicating that the threat resided in the content of the email itself or a scam-
mer sender. Interpretations within this theme varied in terms of perceived
threat certainty, ranging from a definitive assessment of maliciousness (e.g.,
“It means that the email has been identified as being sent from a scammer.”,
P244) to more tentative assessments of potential risk (e.g., “Warns users to
be careful of suspicious links/emails that can take their data”, P214). This
theme was mentioned infrequently across conditions.

Malicious link. In some instances, participants understood the warning
as indicating that the threat was embedded in the link. The perceived level of
risk varied, ranging from a clear and immediate danger (e.g., “That the link
I clicked leads to a site that doesn’t belong to Facebook and they will steal
the information I type.”, P361) to a more cautious interpretation of potential
harm (e.g., “Warns users to be careful of suspicious links/emails that can
take their data”, P215). This theme was more frequent for counterfactual
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(26 times in the case of Claude CF and 32 times for Llama CF) and baseline
explanations than for feature-based (14 times in the case of Claude FB and
15 times for Llama FB).

Device at risk. The warning was interpreted as an indication that
the user’s device could be at risk, for example, due to potential malware
contained within the email content or linked website (e.g., “It means the
webpage or link you are about to enter may harm your computer of breach
data”, P513). This theme was generally less frequent than others, and quite
balanced across all conditions.

Personal information at risk. Some participants interpreted the warn-
ing as suggesting that their data, such as login credentials, were at risk of
being stolen by cybercriminals (e.g., “This warning means the website you’re
attempting to visit is likely a fake site that’s designed to steal login details.”,
P157). This theme was more frequent for feature-based explanations (32
times in the case of Claude FB and 29 times for Llama FB) than for the
baseline and counterfactual ones (12 times in the case of Claude CF and 17
times for Llama CF).

Wrong understanding. The final theme encompasses all instances
where participants misinterpreted the warning (e.g., “It means the website
has a bug”, P131; “That I can not continue with whatever I was doing then”,
P326). Overall, this was the most infrequent theme, where the manually
crafted explanations (baseline) achieved the highest counts.

6. Threats to validity

In this section, we analyse some potential issues that might threaten the
study’s validity.

6.1. Internal Validity
Internal validity can be threatened by hidden factors that can compromise

the achieved conclusions.
Confounding Variables. Latent factors such as prior knowledge and

experience with phishing may have influenced behaviour and response to
warnings. We used a between-subjects design to mitigate this threat, and
participants were randomly assigned to conditions.

Deception and priming. At the beginning of the experiment, partic-
ipants were informed that the study aimed to evaluate a new email client
interface, thus hiding the true objective of the study, which was revealed at
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the end to avoid biasing participants towards unnatural behaviour. Even if
this procedure was ethically approved to reduce demand characteristics, such
framing may have influenced attentiveness and perceived task seriousness.

6.2. External Validity
External validity regards the extent to which the results can be general-

ized to broader contexts, populations, and real-world settings.
Ecological validity. The email client we created mimics real and com-

mon features of web clients; however, users knew that they were involved in
a study, thus in a safe environment. This reduced-risk setting can lead to
unnatural behaviours that users exhibit when facing phishing attacks. This
risk was mitigated by asking users to behave as naturally as possible.

Participant recruiting. To make the study population as representa-
tive as possible of a generic population to a phishing attack, we used Prolific
by setting only gender and English knowledge as inclusion criteria. This
guaranteed that participants were recruited worldwide and of different ages.
However, considering the typical Prolific users, our sample may not include
older adults, cybersecurity professionals, or individuals with low digital lit-
eracy.

Device and context effects. Participants attended the study remotely
on their devices in uncontrolled environments. Factors such as device, screen
size, multitasking, or ambient noise may have affected attention and decision-
making.

6.3. Construct Validity
Construct validity examines whether the study accurately measures its in-

tended concepts, namely, the effectiveness and perception of LLM-generated
phishing explanations.

Behavioral measures. We adopted the click-through rate (CTR), the
most widely adopted metric to measure the phishing vulnerability. However,
clicks may occur in a controlled and safe setting for various reasons, including
curiosity or misunderstanding. Thus, this behaviour may not always reflect
a failure to detect phishing intent.

6.4. Statistical Validity
Statistical validity refers to the appropriateness of the data analysis meth-

ods and the robustness of the inferences drawn.
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Multiple comparisons. In our study, different statistical tests such as
Chi-square analyses, Kruskal-Wallis tests, and logistic regressions were con-
ducted. However, while Bonferroni correction was applied where applicable,
the risk of Type I errors was reduced, but it marginally remained.

7. Lessons learned

Triangulating qualitative and quantitative findings, we distilled lessons
learned and directly provided guidance to design and implement future de-
cisions. The four research questions are correlated with these lessons, thus
determining the practical implications of our studies. They explain how the
interaction between various design options, methods of explanation, and user
differences affects the effectiveness and the perceived utility of AI-produced
phishing warning messages.

Lesson 1 (RQ1): Automating warnings generation with LLMs without losing
effectiveness

Feature-based explanations generated by LLM proved to be in line, or
sometimes better, than the phishing protection of manually written expla-
nations. To be more precise, the CTR of the Claude-generated explanations
was even lower than that of the baseline and the Llama, thus indicating that
a quality LLM-generated explanation is as effective as one written by experts
in defending users.

These results align with past studies examining the automatic perfor-
mance of explanations when used in security settings. For example, Chen
et al. (2021) found users deemed automated phishing explanations benefi-
cial and credible, but not all were protective. Similarly, Liao et al. (2020)
showed that the overall meaning of an explanation, as opposed to its stylistic
structure, has more influence on user trust and behaviour. All these results
together demonstrate that properly fine-tuned LLM outputs exceed (or are
on par with) human efforts in that area when considering causal reasoning.

Takeaway. If applying high-quality LLMs along with focused prompt
engineering, explanation messages on phishing warnings can achieve the per-
formance of an expert-created message, thus making it possible to create
explanation systems at scale.
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Lesson 2 (RQ2): Feature-based explanations may enhance the accuracy in
identifying actual phishing emails.

In investigating feature-based explanation styles, the present study re-
veals that in the case of true positive emails, feature-based resulted in a
lower CTR (11.03%) with respect to counterfactual ones (12.04%). This dif-
ference was more pronounced in the case of Claude-generated explanations
(Claude FB: 7.48% vs. Claude CF: 10.27%), although this should be inter-
preted as an observed trend rather than a statistically significant effect, given
the p-value exceeding conventional thresholds. These insights are consistent
with the recent study by Zhao et al. (2024), showing that slight differences in
language model tuning may trigger strong behavioural outcomes. The anal-
ysis of Item 9 further illustrates that explanations issued by Claude more
frequently prompted interpretations invoking data theft or credential loss,
thus suggesting a heightened salience of risk.

Takeaway. Feature-based explanations may help reduce clicks on phish-
ing attempts, although further research is needed to deepen the investigation
of this trend; in particular, LLMs such as Claude appear to convey a greater
sense of threat.

7.1. Lesson 3 (RQ2): Counterfactuals may reduce false alarm overrides
Even if counterfactuals showed no overall CTR advantage, it emerged that

they might reduce false positive overrides (10.00% vs. 14.06% for feature-
based). Also, qualitative responses (e.g., “The email would have been safe
if. . . ” [P393]) indicate counterfactuals help users distinguish true threats from
benign anomalies. Thus, counterfactuals help users reason about why the
content may or may not be dangerous.

Takeaway. Adopt counterfactual explanations when the risk of false
positives is high, such as in sensitive domains (e.g., internal communication
or finance), where false alarms can disrupt workflows.

Lesson 4 (RQ2, RQ3): Explanation style shapes the user’s mental model of
phishing risk

The analysis of Item 9 revealed that feature-based and counterfactual ex-
planations elicit different sources of threats in users. In the case of feature-
based explanations, users tend to identify the outcome of the threat, for
example, stolen credentials or leaked data. On the contrary, in the case of
counterfactual explanations, users often pinpoint the mechanism of decep-
tion, especially deceptive links and their mismatch with the related labels.
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This finding aligns with findings in literature Djatsa (2020); Greco et al.
(2025), which revealed that the explanations of the threat influence the users’
beliefs about where the risk resides.

Takeaway. Counterfactual explanations should be presented to highlight
manipulation tactics, while feature-based explanations should be visualized
to reinforce the severity of potential consequences.

Lesson 5 (RQ3): Static metrics and user perceptions can signal warning
efficacy.

Empirical evidence indicates that better readability scores (according to
the SMOG index and Flesch-Kincaid grade level scores) are usually associ-
ated with low CTRs. Two contrasting sets of explanatory messages illustrate
this phenomenon: Claude’s feature-based phrases, which achieved a SMOG
score of 7.9 and a Flesch-Kincaid grade level of 5.6, registered a CTR of
9.39%, whereas Llama’s analogous constructs, with a SMOG score of 8.9 and
a Flesch-Kincaid grade level of 6.9, demonstrated a higher CTR of 14.65%.
The above observations provide tentative support for the hypothesis that
adopting less complicated wording might enhance the effectiveness of the
warning message.

Moreover, the questionnaire results showed that perceived trust and per-
ceived risk were important predictors of CTR. In the false-positive subset,
higher values of perceived trust in the warning significantly decreased the
odds of clicking (OR=0.44, p=0.038), suggesting an overconfidence effect in
the warning, which may lead to discarding genuine emails.

The strongest individual predictor across all logistic regression models
was how users interpreted the action prescribed in the warning: those who
reported that the message instructed them to “don’t continue” were 78% less
likely to click (OR = 0.22, p < .001). This effect remained robust across all
subsets, including true and false positives, and was consistent across models
using both Claude and Llama LLMs.

Takeaway. A combination of readability measures and user-based assess-
ment, such as perceived trust, perceived risk, and message clarity, represents
a promising approach to enhancing the efficacy of warnings and minimizing
the vulnerability to phishing.

Lesson 6 (RQ4): Habituation and high online exposure both increase risk
The study results suggest that familiarity with warnings and the extended

use of the internet daily are both highly significant predictors of clicking on

37



phishing emails. In particular, the odds of clicking were more than doubled by
a one-point increase in familiarity (OR = 2.20, p = .001), which indicates that
habituation is a direct detriment to the effectiveness of warnings. Similarly,
each extra hour spent online per day increased click probability by about
25% (OR = 1.25, p = .024), implying that individuals exposed to a lot of
online content have a high chance of adopting automatic or shortcut browsing
behaviours. These findings are consistent with prior studies on habituation
in warning design literature (Amran et al., 2018, Akhawe and Felt, 2013,
Egelman et al., 2008), which proved that familiarity may reduce people’s
sensitivity to a familiar warning signal.

Takeaway. Warning designs should disrupt habitual browsing by intro-
ducing visual or semantic variability, especially for users with high exposure
to online content. For example, designers can rotate, refresh, or personalise
warning designs to sustain user attention and reduce the risks posed by the
habituation effect.

Lesson 7 (RQ4): Mind the (cognitive) gap – workload slows risky clicks
The data from the NASA-TLX questionnaire revealed a significant nega-

tive correlation between the perceived workload and total click-through rate
(β = −0.029, p = 0.002). In particular, the increased mental effort was asso-
ciated with a decline in the probability of impulsive clicks. This observation
was supported via logistic regression models, which showed that the odds
of clicking reduced by 34% (OR=0.66, p = 0.012) with each increment of
workload. Further, the impact was similar across the explanations and data
subsets styles, such as true-positive (OR=0.65, p = 0.012) and false-positive
conditions (e.g., Claude aggregate FP; OR=0.53, p = 0.004).

The findings are congruent with past results by Sheahan et al. (2024)
who state that constructive friction promotes reflection before doing some-
thing. Our finding is also in line with Kahneman (2011), which illustrates
how shifting from fast (impulsive) to slow (deliberative) thinking improves
judgment in risk-laden contexts.

Takeaway. Introducing mild cognitive friction, such as a prompt or
delay, might help prevent impulsive decisions on phishing links.

Lesson 8 (RQ4): Gendered clicks - demographics matter
Logistic regressions revealed that gender had significant and systematic

effects on click behaviour. The likelihood of female participants clicking on
phishing emails was significantly lower, and the odds ratios averaged almost
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zero in true-positive and false-positive phishing email conditions. On the
contrary, male participants with higher values of Need for Cognition (NFC)
were over twice as likely to click in the false-positive conditions with coun-
terfactual warnings (OR = 2.16, p = .012). The gender-by-NFC interaction
indicates that some cognitive characteristics, in combination with gender,
can increase vulnerability, perhaps due to over-trusting of the reasoning abil-
ity when subjected to ambiguous cues by the user. These results support
the findings obtained by Greitzer et al. (2021), who also observed that male
participants were more susceptible to phishing attacks in simulated attacks;
they explained the trend with increased overconfidence or lowered caution.

Takeaway. Security messaging may benefit from adaptive targeting that
accounts for demographic factors like gender.

8. Conclusions

This study offers empirical evidence that LLMs can automatically pro-
duce phishing warning explanations that are as effective as, and in certain
circumstances, more effective than, those crafted by humans. Notably, warn-
ings generated by Claude 3.5 Sonnet markedly reduced click-through rates on
phishing links compared with Llama 3.3 70B and human-composed messages,
especially when a feature-based explanation style was used. Counterfactual
explanations showed initial potential in reducing false positives, yet feature-
based explanations remained more reliable for identifying genuine threats.

The viability of LLM-generated warnings was supported with user-perception
measures: participants found them clear, trustworthy, and actionable, espe-
cially those generated by Claude. The study also found that mental work-
load, gender, and familiarity with warning dialogues significantly affected
the warning efficacy. These results stress the role of individualisation and
flexibility of security interfaces.

Overall, employing LLMs in phishing-defence systems can improve the
scalability, responsiveness, and user interaction without reducing effective-
ness. Future work should examine real-time deployment, user-personalisation
strategies, and broader applications of LLM-generated explanations in cyber-
security interfaces.
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Appendix A. Warning Messages

In the following are reported the explanation messages contained in the
warnings for each condition. Each condition had three warnings, one per
email: IP address, Top-level domain mispositioned, and Link mismatch.
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Appendix A.1. Claude feature-based explanations
• IP address. The link shows numbers (92.233.24.33) instead of “insta-

gram.com” like real Instagram emails would use. This is a deceptive
trick to send you to a fake website. If you enter your account details
there, attackers will gain control of your Instagram account

• Top-level domain mispositioned. The website amazonservices.com.cz is
trying to look like a real Amazon page by using ’amazon’ in its address.
This is a trick to make you think you’re visiting Amazon when you’re
not. If you enter your login details, scammers could take control of
your real Amazon account.

• Link mismatch. The link shown as ’protect your account’ may take
you somewhere different from what you see. Attackers use this trick to
make you think you’re going to Facebook when you’re not. This could
lead to your Facebook password being stolen.

Appendix A.2. Llama feature-based explanations
• IP address. The link http://92.233.24.33 is a string of numbers instead

of a normal website name. This site might be fake and try to trick you.
You might be giving away your private information.

• Top-level domain mispositioned. The link https://amazonservices.com.cz/
account.php has a strange company name extension. This site might
be pretending to be something it’s not. You might be disclosing private
information.

• Link mismatch. The link “https://www.facebook.com/hacked/disavow?
u=100000125023309&nArdInDS2&lit_IT&ext1548538159” is an imi-
tation of the original Facebook link. This site might be intended to
take you to a different place. You might be disclosing private informa-
tion.

Appendix A.3. Claude counterfactual explanations
• IP address. The link in the email points to a string of numbers (92.233.

24.33/instagram/login.php) instead of the official Instagram website
name. The email would have been safe if the link used Instagram’s ac-
tual website name, which helps users verify they’re going to the real In-
stagram site. A safe link would have looked like: https://instagram.com
/account/reset

52



• Top-level domain mispositioned. The link ’amazonservices.com.cz’ tries
to trick you by putting ’.com’ in the middle instead of at the end. The
email would have been considered safe if the website address ended with
’.com’ or matched Amazon’s official website format. A safe link from
Amazon would look like: https://amazon.com/account or https://amaz
on.it/account

• Link mismatch. The email shows a safe link but leads to ’facebook.com/hacked’.
The email would have been safe if the link you see matched exactly
where it takes you, which helps ensure you’re going to the real Face-
book website. A safe link would show and lead to the same place, like:
facebook.com/help/security

Appendix A.4. Llama counterfactual explanations
• IP address. The link http://92.233.24.33 is a string of numbers instead

of a normal website name. The email would have been considered safe
if it used a recognisable website name, like a company’s official name,
which helps verify the link’s authenticity. A safe link might have looked
like: https://instagram.com/login

• Top-level domain mispositioned. The link https://amazonservices.com.
cz/account.php has a suspicious web address with a “.com” in the
wrong place. The email could have been considered safe if the “.com”
was at the end of the address. A safe link might have looked like:
https://amazon.com/account-update

• Link mismatch. The link text “protect your account” hides the actual
link “https://www.facebook.com/hacked/disavow?u=100000125023309
&nArdInDS2&lit_IT&ext1548538159” The email would have been con-
sidered safe if the link text matched the actual link, which helps ensure
the link is trustworthy and not trying to trick you. A safe link might
have looked like: https://www.facebook.com/account-security.

Appendix A.5. Baseline - Manually-generated feature-based explanations
• IP address. Usually, websites use the URL instead of the IP address

to make it easier for you to browse the web. However, an IP address
was found in the email. Similar emails are harmful and steal private
information. There is a potential risk of being cheated if you proceed.”
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• Top-level domain mispositioned. In the URL present in the email
(“https://amazonservices.com.cz/ account.php”), the top-level domain
(e.g., “.com“) is in an abnormal position. This could indicate that the
URL leads to a fake website. Such websites might steal your personal
information.

• Link mismatch. This email reports a link that is different from the ac-
tual one “https://www.facebook.com/hacked/disavow? u=1000001250
23309&nArdInDS2&lit_IT&ext1548538159”. This site might be in-
tended to take you to a different place. You might be disclosing private
information.

Appendix A.6. Logistic Regression Detailed Results

Table A.4: Logistic regression results on CTR. OR>1
increases click likelihood; OR<1 reduces it. Ef-
fect sizes: Small (OR 1.2–1.5/0.67–0.83), Moderate
(1.51–2/0.5–0.66), Large (>2/<0.5). ORs between 0.84
and 1.19 are reported as Negligible.

Variable Condition Emails OR p Effect

Familiarity

CF agg ALL 2.20 .001 Large
CF agg TP 2.34 .001 Large
CF agg FP 2.53 .012 Large
Claude agg TP 1.83 .028 Large
Claude CF ALL 2.23 .033 Large
Claude CF TP 2.69 .022 Large
Claude CF FP 3.24 .050 Large
Llama CF ALL 2.14 .021 Large
Llama CF TP 2.05 .030 Large

Action=“don’t
continue”

CF agg ALL 0.21 <.001 Large
CF agg TP 0.18 <.001 Large
NoLLM ALL 0.14 <.001 Large
NoLLM TP 0.10 <.001 Large
Llama agg ALL 0.26 .002 Large
Llama agg TP 0.23 .001 Large

(continued on next page)

54



(continued from previous page)

Variable Condition Emails OR p Effect

Claude agg ALL 0.41 .034 Large
Claude agg TP 0.34 .023 Large

Gender=female

CF agg ALL 0.006 .023 Large
CF agg FP 0.005 .003 Large
CF agg TP 0.041 .012 Large
NoLLM FP 0.0003 .001 Large
NoLLM TP 0.0038 <.001 Large
Llama agg FP 0.03 .011 Large
Claude agg TP 0.035 .022 Large
Claude CF ALL 0.012 .023 Large
Llama CF FP 0.010 .041 Large

Gender=male CF agg TP 2.62 .020 Large
Llama agg TP 2.13 .037 Large
NoLLM FP 0.13 .036 Large

NASA-TLX

FB agg FP 0.52 .004 Moderate
Llama agg ALL 0.63 .008 Moderate
Llama agg TP 0.64 .013 Moderate
CF agg ALL 0.65 .012 Moderate
CF agg TP 0.64 .012 Moderate
Claude agg ALL 0.74 .050 Moderate
Claude agg FP 0.61 .018 Moderate
Claude FB FP 0.47 .033 Large
Llama FB FP 0.45 .036 Large

Understandability
CF agg ALL 0.53 .044 Moderate
CF agg TP 0.51 .042 Moderate
Claude agg FP 0.48 .046 Large

Trust warning Llama FB FP 0.44 .038 Large

Avg hours
online/day

NoLLM ALL 1.24 .024 Small
NoLLM TP 1.22 .006 Small

Age: Avg hours
online/day

FB agg ALL 1.007 .025 Negligible
CF agg ALL 1.007 .025 Negligible

(continued on next page)
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(continued from previous page)

Variable Condition Emails OR p Effect

Llama agg ALL 1.007 .025 Negligible
Claude agg ALL 1.007 .025 Negligible
NoLLM TP 1.02 .027 Negligible
Claude CF FP 0.93 .014 Negligible

Expertise:Avg
hours online/day

Claude FB ALL 1.07 .042 Negligible
Llama CF ALL 1.11 .039 Negligible

Gender=Male:
Need-for-Cognition

CF agg FP 1.44 .001 Moderate
CF agg ALL 1.21 .008 Small
Claude CF ALL 1.33 .023 Small
Claude CF FP 2.15 .012 Large
Claude CF TP 1.32 .024 Small
Llama agg ALL 1.04 .032 Negligible

Expertise:Need-
for-Cognition

Llama agg ALL 1.03 .032 Negligible

Age:Expertise CF agg ALL 0.98 .048 Negligible
CF agg FP 0.97 .045 Negligible

Gender=Male:Age Llama agg TP 0.88 .02 Negligible
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