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Abstract—This paper presents a novel approach to intrusion
detection by integrating traditional signature-based methods with
the contextual understanding capabilities of the GPT-2 Large
Language Model (LLM). As cyber threats become increasingly
sophisticated, particularly in distributed, heterogeneous, and
resource-constrained environments such as those enabled by the
Internet of Things (IoT), the need for dynamic and adaptive
Intrusion Detection Systems (IDSs) becomes increasingly urgent.
While traditional methods remain effective for detecting known
threats, they often fail to recognize new and evolving attack
patterns. In contrast, GPT-2 excels at processing unstructured
data and identifying complex semantic relationships, making it
well-suited to uncovering subtle, zero-day attack vectors. We
propose a hybrid IDS framework that merges the robustness of
signature-based techniques with the adaptability of GPT-2-driven
semantic analysis. Experimental evaluations on a representative
intrusion dataset demonstrate that our model enhances detection
accuracy by 6.3%, reduces false positives by 9.0%, and maintains
near real-time responsiveness. These results affirm the potential
of language model integration to build intelligent, scalable, and
resilient cybersecurity defences suited for modern connected
environments.

Index Terms—Intrusion Detection System (IDS), Large Lan-
guage Model (LLM), Internet of Things (IoT)

I. INTRODUCTION

The exponential growth of interconnected digital systems
has elevated the complexity and scale of cybersecurity threats.
As organizations increasingly rely on digital infrastructure
for mission-critical operations, the risk of sophisticated and
undetected intrusions escalates. The increasing adoption of
Internet of Things (IoT) devices in critical sectors, such
as healthcare [1], industrial automation, and smart cities,
has expanded the attack surface and complexity of secur-
ing digital infrastructures. IoT networks are characterized
by their heterogeneity, constrained resources, and frequent
communication over public or unsecured channels, making
them particularly susceptible to zero-day exploits and multi-
vector attacks [2]. These conditions demand IDS solutions
that are lightweight, responsive, context-aware, and capable of
semantic reasoning [3], [4]. IDSs have thus become founda-
tional to network security architectures, aiming to identify and
neutralize unauthorized access, malicious activities, and data
exfiltration attempts. Traditional Intrusion Detection Systems
(IDSs), primarily classified into signature-based and anomaly-
based systems, have provided a reliable first-line defence.

Signature-based systems rely on predefined attack patterns,
making them effective for known threats, whereas anomaly-
based systems leverage statistical models and behavioural
baselines to detect deviations. However, both approaches have
limitations, particularly in adapting to zero-day exploits and
polymorphic attacks that deviate from established patterns [5].
Artificial Intelligence (AI) and Machine Learning (ML) have
been extensively explored in recent years to address these
challenges. Techniques ranging from decision trees to deep
neural networks have been employed to learn patterns from
traffic and log data, thereby improving detection performance
[6]. Yet, many of these models struggle with contextual
understanding and generalization beyond their training dis-
tributions. In this context, LLMs, such as OpenAI’s GPT-2,
represent a paradigm shift. Initially developed for natural lan-
guage processing tasks, LLMs have demonstrated remarkable
capabilities in understanding complex semantics, identifying
contextual anomalies, and generalizing across domains [7].
This paper proposes a hybrid IDS framework that integrates
the robustness of traditional detection mechanisms with the
semantic intelligence of LLMs. By combining the determin-
istic accuracy of signature-based methods and the adaptive
strengths of GPT-2, the proposed system aims to reduce false
positives while maintaining high detection accuracy, especially
against novel threats. This integration enables context-aware
intrusion analysis, leveraging the linguistic patterns learned
by LLMs to interpret network events more holistically. In
contrast to prior works that treat ML and NLP models as
standalone enhancements, our approach fuses conventional
IDS heuristics with deep language-based analysis to build
a layered, synergistic defence. This improves threat detec-
tion coverage, reduces response latency, and enhances the
model’s interpretability. The key contributions of this study
are threefold: (i) the development of a novel hybrid intrusion
detection framework that fuses traditional IDS and LLM-
based contextual reasoning, (ii) a comprehensive evaluation
demonstrating improved accuracy and a substantial reduction
in false positives using the CSE-CIC-IDS2018 dataset, and (iii)
a performance analysis that validates the system’s suitability
for near real-time applications through latency and AUC-
ROC metrics. The remainder of this paper is structured as
follows: Section II provides a comprehensive background and
literature review on IDS and LLM applications in cyberse-
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curity. Section III details the proposed hybrid methodology,
including the system architecture and decision fusion strategy.
Section IV describes the experimental setup and evaluates the
performance using real-world datasets and the results. Finally,
Section V concludes the paper and outlines directions for
future research.

II. BACKGROUND

A. Literature Review

Several researchers have proposed enhancements to tra-
ditional IDS by integrating modern intelligence-driven tech-
niques. For example, the authors in [8] explored signature-
based and anomaly-based methods as foundational IDS ap-
proaches. However, their work revealed that these methods
often fall short in dealing with the dynamic and rapidly
evolving nature of modern cyber threats, especially those
capable of bypassing static rule-based defences. The work [9]
introduced the GPT series of LLMs, demonstrating remarkable
capabilities in understanding and generating human-like text.
Their research opened the door to applying LLMs in domains
such as cybersecurity, where analyzing and interpreting un-
structured data is crucial. The authors in [10] later proposed
training LLMs on network traffic and system logs to recog-
nize patterns indicative of malicious activity. This approach
effectively identified known threats and detected novel and
complex attack vectors, thereby reducing false positives and
enhancing IDS robustness. Furthermore, the authors of [11]
have suggested that LLMs such as GPT-2 and GPT-3 offer
substantial advantages for real-time threat detection due to
their ability to learn and adapt continuously. Their work
emphasized that integrating LLMs into cybersecurity infras-
tructures can foster more proactive and intelligent defence
mechanisms capable of evolving alongside threat landscapes.
In the context of the IoT, the authors in [12] proposed a
hybrid IDS tailored for resource-constrained IoT environ-
ments, combining lightweight ML models with rule-based
filtering to enhance detection efficiency. Meanwhile, the paper
[13] examined various deep learning-based IDS architectures
specifically for IoT networks, noting that their adaptability and
scalability make them promising candidates for detecting com-
plex multi-vector attacks in heterogeneous IoT infrastructures.
At some point, the authors of [14] presented an edge-based
IDS framework that utilizes federated learning to minimize
latency and safeguard data privacy across IoT nodes. These
studies highlight the pressing need for adaptable and context-
aware IDS solutions that address the specific constraints and
attack surfaces of IoT deployments. These efforts underscore a
growing consensus in the research community: that traditional
IDS approaches can be significantly enhanced through the
intelligent, context-aware reasoning capabilities of LLMs and
the application of hybrid AI strategies tailored for modern IoT
ecosystems [15].

B. Traditional Detection

1) Signature-Based Detection (SBD): Longstanding and
widely implemented techniques in IDS. This method relies

on a database of predefined patterns or signatures of known
threats, similar to antivirus software. Each signature contains
a set of rules about a specific attack, which could include
byte sequences in network traffic, known malicious instruction
sequences used by malware, or characteristic headers in email
spam. The operational model of signature-based IDS can be
mathematically represented as a function:

Detect(x) =

{
1 if x ∈ S

0 otherwise
(1)

where x represents a piece of network data, and S is the set
of signatures. The function returns 1 if the data matches a
signature (indicating a detection), and 0 otherwise. Despite its
reliability in detecting known threats, this method performs
poorly against zero-day exploits or polymorphic threats that
do not match existing signatures. The effectiveness of a
signature-based IDS is heavily dependent on the currency and
comprehensiveness of its signature database.

2) Anomaly-Based Detection (ABD): Anomaly-based de-
tection systems, by contrast, are designed to identify unusual
patterns or behaviours that deviate from a norm. This approach
does not rely on known signatures but instead uses machine
learning algorithms to model a system’s normal behaviour.
Any significant deviation from this baseline behaviour is
flagged as potentially malicious. The typical process involves
creating a profile of regular activities over time and using
statistical methods to define normal behaviour. The detection
function can be outlined as follows:

AnomalyScore(x) = Distance(x, µ) (2)

Detect(x) =

{
1 if AnomalyScore(x) > θ

0 otherwise
(3)

Here, x is a new observation, µ represents the established
profile of normal behaviour, and θ is a threshold determined
during the training phase. The function Distance quantifies
how far x is from the expected behaviour µ, and if this score
exceeds θ, the system flags it as an anomaly. Anomaly-based
systems are particularly effective against previously unknown
threats and can adapt to environmental changes by updating
the behavioural profile. However, they can be prone to higher
false-positive rates, especially in highly dynamic networks
where normal behaviour frequently changes. In practice, hy-
brid systems that combine signature-based and anomaly-based
detection are commonly used to leverage the strengths of
each approach. Such systems utilize signature-based detection
for high accuracy and speed in identifying known threats
and anomaly detection for their robustness against novel
attacks. The integration of these methods involves an ensemble
approach where outputs from both systems are combined to
improve the overall detection accuracy:

HybridDetect(x) = max(DetectSBD(x),DetectABD(x))
(4)



This function uses the maximum operator to combine the
decisions from the signature-based and anomaly-based models,
ensuring that the system flags a threat if either method detects
one.

C. Large Language Models

LLMs are advanced AI systems that learn from massive
text corpora to understand and generate human language.
Built on Transformer architectures, they have transformed
Natural Language Processing (NLP) by efficiently handling
long sequences at scale. With deep networks and billions of
parameters, LLMs capture grammar, context, and semantics,
enabling them to perform diverse tasks, such as translation,
summarization, question answering, and text generation, with-
out requiring task-specific programming. A prominent exam-
ple is OpenAI’s Generative Pre-trained Transformer (GPT)
series. GPT-1 (117M parameters) trained on BooksCorpus
demonstrated the effectiveness of unsupervised pre-training
for generalization across tasks. GPT-2 scaled this further
with 1.5B parameters and training on WebText (8M pages),
achieving state-of-the-art performance in generating coherent,
human-like text. Its architecture is designed as follows:

• Model Architecture: GPT-2 utilizes a stacked Transformer
model architecture, comprising multiple layers of self-
attention and feed-forward neural networks. Each layer
processes the input sequence and passes its output to
the next layer, allowing the model to build a deep
representation of the input data.

• Training Objective: The training objective of GPT-2 is to
predict the next word in a sentence given all the previous
words, optimizing the likelihood of the next word using
the cross-entropy loss function. This training is performed
across a diverse range of internet texts, enabling the
model to learn a broad array of language patterns and
styles.

III. METHODOLOGY

The goal of GPT-2 is to train a word vector model with
stronger generalization ability. It does not significantly in-
novate or alter the structure of GPT-1’s network; instead, it
utilizes more network parameters and a larger dataset. So, we
will first introduce how GPT-1 works.

A. GPT-1

The training of GPT-1 is divided into unsupervised pre-
training and supervised model fine-tuning. GPT-1 uses maxi-
mum likelihood estimation to train its neural networks. Given
a sequence of tokens U = {u1, . . . , un}, the likelihood of the
sequence is given by the following formula:

L1(U) =
∑
i

logP (ui | ui−k, . . . , ui−1; Θ) (5)

where k is the context window size, P is the probability func-
tion, and Θ are the model parameters. The model parameters
are optimized using the SGD algorithm. In GPT-1, the model
consists of 12 transformer blocks. Each block is essential to

the transformer architecture and contributes to the model’s
powerful capabilities.

Fig. 1. GPT-based Next Token Language Model

h0 = UWe +Wp (6)

hl = transformer block(hl−1) ∀l ∈ [1, n] (7)

P (u) = softmax(hnW
T
e ) (8)

Here, U = (u1, . . . , uk) denotes the input sequence of
tokens, n is the sequence length, We is the token embedding
matrix, and Wp is the positional encoding matrix used to
preserve token order information within the sequence. During
optimization, the model computes the sequence loss over a
sample C, which consists of m tokens {x1, . . . , xm}, where
the objective is to predict the next token y. The architec-
tural structure of the GPT-based next-token prediction model,
including token embedding, transformer layers, and output
generation, is illustrated in Fig. 1. The conditional probability
of the target token y given the preceding context is defined as:

P (y | x1, . . . , xm) = softmax(hm
l Wy) (9)

where Wy is the matrix associated with the target y. The
following formula is used to calculate the sequence loss:

L2(C) =
∑
x,y

logP (y | x1, . . . , xn) (10)

To further optimize the loss function L2, we incorporate
it with L1 from a different process, adding them with a
coefficient λ to adjust their relative importance:

L3(C) = L2(C) + λL1(C) (11)

Note: The softmax function uses the matrix Wy without any
delimiter (delimiter) symbol.



B. GPT-2

GPT-2 is designed to perform a variety of supervised tasks
by leveraging knowledge learned during unsupervised pre-
training. Owing to the sequential nature of textual data, the
probability of a sequence can be expressed as a product of
conditional probabilities:

p(s1, s2, . . . , sn) =

n∏
i=1

p(si | s1, s2, . . . , si−1) (12)

GPT-2 adopts an autoregressive framework, generating co-
herent outputs by conditioning on previously seen tokens.
This enables it to handle diverse NLP tasks, such as question
answering, summarization, and classification, by reformulating
them as conditional text generation problems through the use
of Prompt Engineering. The TACL Decathlon NLP (TDec-
NLP) competition popularized this paradigm, where models
like MQAN achieved strong generalization across ten tasks
using a unified architecture. GPT-2 advances this concept,
demonstrating that large-scale language models trained on
diverse corpora can perform new tasks without task-specific
fine-tuning. For instance, when prompted with “Who is the
best basketball player in history?”, the model may generate
“Michael Jordan,” showcasing zero-shot inference. GPT-2’s
architecture and training enable it to internalize patterns that
support robust generalization, reframing supervised tasks as
language modelling objectives.

C. Hybrid IDS

Integrating traditional intrusion detection methods with
GPT-2 can be conceptualized as a multi-layered approach,
where each technique complements the other by leveraging
its respective strengths. This hybrid system aims to enhance
detection accuracy, reduce false positives, and adapt dynami-
cally to new threats. The outputs from traditional IDS (both
SBD and ABD) and GPT-2 can be combined using a decision-
level fusion strategy. This fusion is designed to leverage the
high accuracy of traditional methods for known threats and
the adaptability of GPT-2 for unknown patterns:

HybridDetect(x) = max(SBD(x),ABD(x),GPT2(x)) (13)

Here, GPT2(x) is a function that assesses whether the
contextual analysis by GPT-2 indicates a threat, converting
its output into a binary decision. This function estimates
the probability of threat-related keywords or phrases being
generated in response to the input sequence:

GPT2(x) =

{
1 if P (threat | x) > τ

0 otherwise
(14)

GPT-2 was used in a zero-shot capacity without fine-
tuning. Tokenized network logs were framed as input prompts,
and threat probabilities were inferred based on the model’s
generated likelihood scores. The threshold τ is optimized over
time using gradient descent based on performance metrics.

IV. EXPERIMENTS

A. Experimental Design

The CSE-CIC-IDS2018 dataset [16] was utilized for this
experiment. The Canadian Institute for Cybersecurity has
developed this dataset, which features a comprehensive range
of simulated attack scenarios that accurately reflect modern
intrusion tactics, combined with benign traffic. The dataset was
chosen due to its detailed labelling and diverse array of attack
vectors, making it an excellent candidate for training and
evaluating an IDS based on the GPT model. The initial step
in dataset preparation involved splitting the data into two sets:
70% for training and 30% for testing, ensuring a substantial
amount of data for both training the model and evaluating its
performance under varied conditions. Before feeding the data
into the model, a series of preprocessing steps was undertaken:

• Categorical Data Conversion: Network event features
categorized as strings were converted into numerical
identifiers.

• Feature Normalization: Numerical features were scaled
using Min-Max scaling to ensure that feature magnitudes
did not bias the model.

• Tokenization: Network traffic logs were transformed into
tokens. These tokens represent discrete parsed elements
from the logs, such as IP addresses, timestamps, and
protocol types, which are crucial for understanding the
context of network communications. While the use of
tokenized log data is reasonable, GPT-2 is pre-trained on
natural language corpora. Strengthening this aspect would
benefit from clarifying whether the network logs were
converted into descriptive text or structured prompts to
better align with the model’s linguistic expectations.

TABLE I
MODEL HYPERPARAMETERS FOR HYBRID IDS

Parameter Value
GPT-2 Configuration Pre-trained, adjusted for IDS
Learning Rate Initial: 5× 10−5, dynamically adjusted
Batch Size 32
Epochs Up to 10, with early stopping

Table I presents the hyperparameters set for the hybrid
model used in our intrusion detection system experiment.
These settings were carefully chosen to optimize the model’s
performance for detecting network intrusions. The table details
the hybrid model’s configuration, learning rate adjustments,
batch size, and training epochs. To thoroughly evaluate the ef-
fectiveness of our hybrid GPT-2 and traditional method-based
intrusion detection system, we employed a suite of metrics
designed to assess various aspects of system performance in a
real-world cybersecurity environment. Accuracy measures the
model’s overall correctness, precision indicates the ability to
avoid false positives, and recall assesses the model’s capability
to identify all genuine threats. The F1 score, which balances
precision and recall, is significant in environments where
false positives and negatives have substantial consequences.



Fig. 2. Performance metrics comparison across Traditional IDS, GPT-2, and Hybrid models.

Additionally, the Area Under the Receiver Operating Char-
acteristic Curve (AUC-ROC) provides a comprehensive view
of the model’s ability to discriminate between classes across
different thresholds, a crucial metric for binary classification
tasks. The performance of our hybrid model was compared
with that of traditional intrusion detection systems, which
rely on signature-based or anomaly-based detection methods.
This comparison is essential for demonstrating the advanced
capabilities and improvements by integrating GPT-2 with
traditional detection techniques.

B. Experimental Results

The experimental evaluation of our hybrid GPT-2 and
traditional methods-based intrusion detection system produced
compelling results, indicating a significant enhancement in de-
tection capabilities over traditional IDS approaches. Utilizing
the CSE-CIC-IDS2018 dataset, the hybrid model demonstrated
high accuracy, precision, recall, and F1 score, suggesting
robust performance across all major metrics. Fig. 2 illustrates
a comparative analysis of the performance metrics Precision,
Recall, F1 Score, and Accuracy across three intrusion detec-
tion approaches: Traditional IDS, GPT-2, and the proposed
Hybrid model. As shown, the Hybrid model consistently
outperforms both the traditional and LLM-only setups across
all metrics. It achieves a Precision of 97.5%, Recall of 96.8%,
F1 Score of 97.1%, and Accuracy of 98.3%, reflecting its en-
hanced ability to identify threats while minimizing false alarms
accurately. The GPT-2 model also performs significantly better
than the Traditional IDS, especially in Recall (91.2% vs.
85.0%) and F1 Score (92.1% vs. 86.7%), underscoring the
LLM’s strength in semantic reasoning and pattern detection.
However, it still falls short of the Hybrid model, indicating
that the combination of rule-based reliability and contextual
understanding yields a more robust and generalizable detection
system. These results substantiate the effectiveness of inte-

grating LLMs with traditional methods for building adaptive,
accurate, and future-proof cybersecurity defences.

Fig. 3. Average detection time per sample for different IDS approaches.

Fig. 3 illustrates the average detection time per sample for
the three evaluated intrusion detection approaches: Traditional
IDS, GPT-2, and the proposed Hybrid model. The Traditional
IDS demonstrates the lowest latency at approximately 2.1 mil-
liseconds, followed by the Hybrid model at 9.3 milliseconds
and GPT-2 at 18.7 milliseconds. Although the Traditional IDS
exhibits the lowest detection latency, this comes at the cost
of limited adaptability to novel threats. The proposed Hybrid
model balances latency and intelligence, offering near real-
time performance (9 ms) while significantly enhancing detec-
tion accuracy. This trade-off represents a practical and scalable
advancement over traditional IDS solutions, particularly for
environments requiring robust defences against zero-day and
evolving threats. While more computationally intensive, the
GPT-2-based model delivers enhanced detection performance



but with latency nearly double that of the Hybrid model.
This underscores the advantage of the proposed framework,
which strategically fuses traditional efficiency with LLM-
driven intelligence to achieve both responsive and resilient
cybersecurity.

Fig. 4. AUC-ROC score comparison between Traditional IDS and the Hybrid
model.

Fig. 4 compares the Area Under the Receiver Operating
Characteristic (AUC-ROC) scores of the proposed Hybrid
model, GPT-2-based IDS, and the baseline Traditional IDS.
The AUC-ROC score is a critical metric for evaluating a
model’s ability to distinguish between attack and benign traffic
across varying decision thresholds. As depicted, the Hybrid
model achieves an AUC-ROC of 0.99, followed by GPT-
2 at 0.96 and the Traditional IDS at 0.94. This progressive
improvement highlights the enhanced discriminative power of
models that incorporate language model-based intelligence.
The near-perfect AUC-ROC of the Hybrid model demon-
strates its effectiveness in both identifying true intrusions and
minimizing false positives, even under varying classification
conditions. These results validate the robustness and adapt-
ability of the proposed framework, emphasizing its suitabil-
ity for deployment in complex and dynamic cybersecurity
environments. The high AUC-ROC of 0.99 further confirms
the model’s robustness across decision thresholds, indicating
its generalizability across different intrusion scenarios with
minimal compromise on either false positives or false nega-
tives. Collectively, these results demonstrate that the proposed
hybrid intrusion detection framework significantly outperforms
conventional methods in both accuracy and adaptability. By
fusing the structured detection strength of traditional IDS with
the semantic intelligence of GPT-2, the model establishes a
scalable and future-ready approach to proactive cyber defence.

V. CONCLUSION

This paper presented a hybrid intrusion detection frame-
work that integrates traditional signature-based methods with
the semantic intelligence of GPT-2 to enhance cybersecurity
resilience, particularly in IoT-driven environments. Through
extensive experiments on the CSE-CIC-IDS2018 dataset, the
proposed model demonstrated substantial improvements over

conventional IDS approaches, achieving 98.3% accuracy, a
0.99 AUC-ROC score, and marked reductions in false pos-
itives. These results validate the effectiveness of combining
rule-based precision with LLM-driven contextual analysis in
detecting both known and novel threats more efficiently. The
hybrid design not only preserves near real-time responsiveness
but also enhances detection adaptability, making it especially
suitable for dynamic, resource-constrained infrastructures such
as IoT networks. Looking ahead, we plan to refine the pro-
posed IDS framework to address the inherent limitations of
IoT environments better. Specifically, future work will focus
on improving energy efficiency and computational scalability
to support deployment on lightweight edge devices. These
enhancements will help ensure the model’s viability for large-
scale, real-time intrusion detection across heterogeneous IoT
networks, where responsiveness and minimal resource con-
sumption are essential.
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