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Abstract—Phishing attacks are becoming increasingly sophis-
ticated, underscoring the need for detection systems that strike
a balance between high accuracy and computational efficiency.
This paper presents a comparative evaluation of traditional
Machine Learning (ML), Deep Learning (DL), and quantized
small-parameter Large Language Models (LLMs) for phishing
detection. Through experiments on a curated dataset, we show
that while LLMs currently underperform compared to ML and
DL methods in terms of raw accuracy, they exhibit strong
potential for identifying subtle, context-based phishing cues. We
also investigate the impact of zero-shot and few-shot prompting
strategies, revealing that LLM-rephrased emails can significantly
degrade the performance of both ML and LLM-based detectors.
Our benchmarking highlights that models like DeepSeek R1 Dis-
till Qwen 14B (Q8_0) achieve competitive accuracy, above 80%,
using only 17 GB of VRAM, supporting their viability for cost-
efficient deployment. We further assess the models’ adversarial
robustness and cost-performance tradeoffs, and demonstrate how
lightweight LLMs can provide concise, interpretable explanations
to support real-time decision-making. These findings position
optimized LLMs as promising components in phishing defence
systems and offer a path forward for integrating explainable,
efficient AI into modern cybersecurity frameworks.

Index Terms—Phishing Attacks Detection, Large Language
Models (LLMs), Cybersecurity, Deep Learning (DL), Machine
Learning (ML)

I. INTRODUCTION

Phishing is a prevalent cyberthreat that manipulates users
into divulging sensitive information, such as credentials and
financial data. Between November 2023 and January 2024, the
Cybercrime Information Center collected approximately one
million phishing reports [1]. With the increasing sophistication
of phishing tactics, traditional detection approaches struggle
to keep pace with evolving attack techniques. Phishing has
become more challenging in the 2020s due to the increased
use of social media and multi-vector attacks that combine
various methods, including email, text messages, and social
media platforms. They have evolved from simple, deceptive
emails to highly sophisticated social engineering schemes. At-
tackers leverage Artificial Intelligence (Al) generated content,
deepfake techniques, and multi-channel deception strategies to
exploit human vulnerabilities. Integration of Al, particularly
Machine Learning (ML) and Natural Language Processing
(NLP), has shown promising results in alleviating some of
this burden. Several recent studies published between 2021
and 2024 have demonstrated the effectiveness of deep learning
models, including Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs) [2], in detecting
phishing attempts with higher accuracy compared to classical
approaches, with XGBoost achieving the highest accuracy
at 99.89%, followed by PILFER with 99.5% [3]. However,
recent advancements in Large Language Models (LLMs) and
Generative Al (GenAl) [4], [5] further exacerbate the threat,
enabling automated and highly targeted phishing campaigns.
The authors of [6] found that while traditional phishing
detectors, such as Gmail Spam Detector, SpamAssassin, Proof-
point, and State-of-the-Art LLMs perform well on original
phishing emails, their accuracy and recall decline notably
when dealing with LLM-rephrased versions of the duplicate
emails. The study displayed a significantly better classification
performance from LLMs with rephrased emails, and even with
the original emails, the performance was still marginally more
accurate. Unfortunately, the performance gains of LLMs come
at a significant cost in terms of energy and computational
resources. The total energy consumption for training a trans-
former model with 6B parameters to completion is estimated
to be around 103.5M W h [7], and given that the computational
cost of training an LLM depends on the number of parameters,
modern alternatives like GPT-1, GPT-2, and GPT-3 featuring
117 million, 1.5 billion, and 175 billion parameters, respec-
tively, the question arises whether the marginal performance
gain is worth it. And if and how the LLMs or Traditional
approaches can be evolved to provide a more optimal solution.
This paper presents a structured review of such next-generation
phishing detection techniques and their cost-to-performance
ratio, focusing on the following contributions:

o A comparative analysis of traditional, Machine Learning,
Deep Learning, and LLM-based phishing detection ap-
proaches.

« Exploration of adversarial phishing tactics, LLM rephras-
ing, and AI/LLM-driven countermeasures.

o Comparative analysis of model performances and
marginal performance gain against supplemental time and
resource consumption.

« Identification of research gaps and future directions in
phishing detection.

The remainder of this paper is organized as follows: Sec-
tion II reviews related works across ML, DL, and LLM-based
phishing detection, identifying key research gaps. Section III
presents the proposed models and methodologies, including
experimental setup and dataset details. Section IV summarizes
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the findings, highlights cost-performance trade-offs, and out-
lines future research directions for robust, efficient phishing
detection.

II. LITERATURE REVIEW
A. Related Works

Phishing detection has evolved from traditional ML/NLP
methods to deep learning models, and recently to LLM-
driven approaches. Studies such as [8] and [9] highlight
how LLMs both amplify phishing sophistication and enhance
detection under adversarial conditions. Recent work also in-
tegrates LLLMs into Security Awareness Training (SAT) [10]
and cybersecurity policy formulation [11], reducing phishing
susceptibility. The authors of [12] proposed early malicious
prompt detection transferable across major LLMs, achieving
high accuracy, up to 96%. Despite initial successes, con-
ventional ML/NLP approaches [13], [14] remain inadequate
against evolving phishing attacks, motivating the development
of hybrid solutions that combine LLM contextual reasoning
with the proven robustness of traditional methods [15].

B. Comparative Work

1) Adversarial Prompting: Using LLMs to Subvert Detec-
tion Models: Using LLMs to reword emails effectively reduces
the efficiency of phishing detectors, with traditional Machine
Learning models losing a significant amount of accuracy.
LLMs such as GPT-4, however, were shown to be able to
retain more detection accuracy despite the reworded emails
[6]. As shown in Fig. 1, all models achieve very high accuracy
when classifying the unmodified (“original”) emails. GPT-4
tops the list at around 98.5% accuracy, while traditional
models like Naive Bayes and Logistic Regression are just
behind at 97.2% and 96.8%, respectively.
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Fig. 1. Comparative results of phishing-detection models on original emails.

As illustrated in Fig. 2, zero-shot rephrasing of phishing
emails leads to a noticeable decline in detection performance
across all evaluated models. Specifically, Naive Bayes exhibits
a drop of approximately 5.3 percentage points, Logistic Re-
gression declines by 6.1 percentage points, and GPT-4 experi-
ences a reduction of about 3.2 percentage points in accuracy.
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Fig. 2. Comparative results of phishing-detection models on zero-shot
rephrased emails.

This performance degradation underscores the vulnerability
of both traditional and LLM-based detectors to simple LLM-
generated paraphrasing techniques.
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Fig. 3. Comparative results of phishing-detection models on few-shot
rephrased emails.

Fig. 3 illustrates the impact of few-shot rephrasing on
phishing detection performance, revealing a more pronounced
decline than zero-shot rephrasing. Naive Bayes accuracy drops
by 6.5 percentage points, Logistic Regression by 8.25 points,
and SVM by 9.0 points. In contrast, GPT-4 demonstrates
greater resilience, with a relatively modest decrease of 4.24
percentage points. These results highlight the comparative
robustness of LLM-based detectors against paraphrased inputs.
However, the significant degradation observed across tradi-
tional models highlights their limitations when confronted with
advanced LLM-based evasion strategies, such as reflection and
beam search, which effectively preserve malicious intent while
obfuscating linguistic patterns.

o Debnath et al. [16] achieved 99.14% accuracy using

BERT on the Enron Email Dataset

o Ali et al. [17] achieved an overall classification accuracy

of 99% on the Lingspam dataset, retaining 96% accuracy



against adversarial samples

o Shahrivari et al. (2020) [18] demonstrated the effective-
ness of various machine learning techniques for phishing
detection

The research collectively indicates that while traditional ML
approaches can be highly effective against conventional phish-
ing attempts, they require significant enhancement to counter
emerging LLM-generated threats. The defensive algorithm
proposed by Fairbanks demonstrated a 97% improvement
in mitigating these sophisticated attacks. This comparative
analysis highlights the importance of developing specialized
defenses against LLM-generated phishing, as traditional meth-
ods may be insufficient against these increasingly sophisticated
threats.

2) Traditional ML Models Performance: The “David ver-
sus Goliath” paper by Greco et al. [19] demonstrates that
smaller, traditional machine learning models can be highly
effective for detecting LLM-generated phishing emails. Their
experimental results show that neural networks achieved the
highest accuracy at 99.78% but with the highest resource cost,
closely followed by SVM (99. 2%) and logistic regression
(99. 03%), while other models like KNNs (97.67%), Random
Forest (98.16%) and Naive Bayes (94.1%) showed relatively
lower accuracy but much stronger performance. These results
are further reinforced by our performance benchmarks. The
authors concluded that Logistic Regression provides the best
balance of accuracy, performance, and explainability making
it the best fit for practical implementations.

3) Deep Learning Models Performance and Optimization:
Deep learning (DL) models offer superior capabilities in
extracting complex patterns from data but are inherently more
resource-intensive than traditional machine learning methods.
Their success in cybersecurity applications, including phish-
ing detection, has led to the development of numerous DL-
based solutions [20]. Models such as BERT, DistilBERT, and
ANN variants have demonstrated high accuracy levels across
datasets like Enron and Lingspam, often exceeding 98%.
However, these gains come at the cost of significantly larger
model sizes, with baseline BERT models containing over 100
million parameters. Given the emphasis on cost-efficiency in
this study, we deliberately avoided using large pre-trained
models. Our approach instead utilized lightweight architec-
tures totaling 4.7 million parameters, offering a substantial
reduction in computational demand while maintaining strong
predictive performance. This design choice was inspired by the
work [20], which demonstrated that augmenting a 1D-CNNPD
model with LSTM, GRU, and their bi-directional variants
could achieve high accuracy without excessive resource re-
quirements. Our methodology builds on these findings to strike
a balance between performance, scalability, and deployment
feasibility.

4) Small Vs Large LLMs: The results below, comparing
the small LLMs to Claude, show that there is significant
room for improvement for the small LLMs. While not a 1-1
comparison due to different testing parameters, it still shows
that with an accuracy of up to 80%, small LLMs are capable

of understanding if emails have phishing content. An LLM
trained specifically on phishing datasets would understand
phishing emails much better, as its parameters would be
trained on phishing data rather than irrelevant information,
such as the ability to code.
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Fig. 4. Performance comparison between Full & Small LLMs. The bar marked
with * indicates the result for Claude taken from [12].

As shown in Fig. 4, quantized small LLMs can get close to
a large model’s phishing-detection performance. For example,
Qwen 2.5 32B Q8 achieves 81% accuracy, which is only
12% below the significantly larger Claude model. Although
these results are obtained from slightly different test sets, they
still demonstrate that a modern, carefully tuned LLM would
be capable of delivering a highly accurate phishing detection
model while requiring fewer resources.

C. Current Research Gaps

Despite notable progress in ML, DL, and LLM-driven
phishing detection, several critical gaps persist that limit the
robustness, adaptability, and real-time deployment of these
approaches.

1) Lack of Specialized Phishing Detection Models: Current
LLMs are general-purpose and not optimized for phishing-
specific patterns. Training LLMs exclusively on phishing-
related data could enhance sensitivity to subtle deception
tactics such as spear phishing and lateral attacks [8].

2) Deployment Inefficiencies and Quantization Needs:
Large LLM-based phishing models are resource-intensive,
which hinders their deployment in real-time and at the edge.
Quantizing models into smaller, energy-efficient variants is
crucial to balance performance and operational cost [8].

3) Outdated and Limited Datasets: Existing phishing
datasets are often static, brand-specific, and fail to capture
evolving attack vectors. Updated datasets, incorporating LLM-
generated phishing samples and adversarial variants, are essen-
tial for developing resilient models [9].

4) Incomplete Hybridization of Detection Techniques:
Standalone LLMs could be more effective when integrated
with traditional rule-based or ML classifiers. Hybrid architec-
tures can leverage the adaptability of LLMs and the precision



of classical methods to improve resilience against evolving
threats [9].

5) Limited Research on Adversarial Robustness: The ad-
versarial vulnerabilities of phishing detection LLMs remain
underexplored. Investigations into adversarial training, red-
teaming, and watermarking techniques are crucial for enhanc-
ing their reliability in attack scenarios [8].

6) Insufficient Early Detection of Malicious Prompts:
Recent studies show promise in detecting malicious prompts
that manipulate LLMs into generating phishing content [12].
Early intervention mechanisms can prevent automated phish-
ing attacks and reduce the need for complex downstream
detection, substantially improving system efficiency.

III. PROPOSED MODEL
A. Methodologies

1) Small LLMs: The evaluation system for testing small
LLMs is implemented using a Python script that loads a
subset of phishing emails from the dataset into a CSV file. It
automatically discovers the GGUF-formatted LLM checkpoint
with the MODEL_FILES mapping. Using llama-cpp-python,
each model is initialized with the appropriate number of
GPU layers and an 8,000-context window. The script has
two versions, for the thinking and non-thinking models. The
thinking models can complete their thinking portion, which
may take some time due to the number of tokens it requires.
In contrast, the normal models are only given 100 tokens to
respond with, which is enough for a True or False response
and a brief explanation. For the tests conducted in this paper,
the LLM’s explanation is not required, and thus, the LLMs
are cut off early to save time during testing, which is part of
the reason the thinking models have longer run times in our
tests. The script then calls the LLM and provides a prompt
with instructions and the email’s body.

Test Prompt Text

You are an Al email security assistant specializing in
phishing detection. Your task is to analyze the email
below and decide whether it is a phishing or scam
attempt.

”Please follow these strict instructions:”

1. Your response must be a single line starting with
either "TRUE:” or 'FALSE:*”

”2. "'TRUE:” means you believe the email is a phish-
ing/scam attempt; "FALSE:” means you do not.”

”3. Immediately after the colon, provide a concise
explanation for your decision (do not include any extra
text or commentary).”

“For example, if the email asks you to click a suspi-
cious link for account verification, you might respond:”
"TRUE: The email contains urgent language and a
suspicious link, typical of phishing attempts.”

”Now, analyze the following email:”

”Email Content: ...”

Metrics such as total generation time, time to first token,
and tokens per second are recorded at the end of every
response. Using a regular expression (regex) parser, the first
valid classification of True or False is identified and recorded.
If none are found, then the response is considered “Failed.”
Every result is saved periodically to a CSV file to track the
raw data for each response. When testing is completed, the
scikit-learn library calculates two metric sets: one that includes
all failures and one that excludes them, including accuracy,
precision, recall, F1 Score, and AUC-ROC. Once the program
is completed, the remaining raw data is appended to the raw
data CSV file, and the final results are saved as a normal text
file. All the LLM tests were run using Python 3.13.2 with the
following libraries llama_cpp_python 0.3.8, pandas 2.2.3, and
scikit-learn 1.6.1.

2) Machine Learning: The model evaluation pipeline was
implemented using Python with libraries such as Pandas,
NumPy, scikit-learn, and Matplotlib. The dataset was imported
from the phishing email dataset CSV file, labels were bina-
rized, and the data was split into training and testing sets. Text
inputs were vectorized using TF-IDF with a 1000-feature limit
and English stop-word removal. Logistic Regression, Naive
Bayes, Random Forest, and SVM were trained and tested
on the transformed data. The models were evaluated using
accuracy, precision, recall, F1-score, AUC, and prediction time
per 1000 emails. ROC curves were plotted for each model.
The more robust the model in accuracy and speed, the more
suitable it was for real-time phishing detection scenarios.

3) Deep Learning: Almost all the libraries used in the
Machine Learning experimentation were also used in the
Deep Learning approach. The same dataset and a relatively
similar preprocessing pipeline were used to ensure the ultimate
outcomes were more directly comparable. The maximum
token limit for vectorization was set to 20,000, and padding
was introduced to create a uniform input size for the neural
networks. A factory class was designed to generate the model
layer definitions, and functions were developed to iteratively
run the models, test them, collect model metrics, and create
visualizations, such as confusion matrices and ROC curves.
Finally, each model was run five times to calculate the average
expected performance, thereby avoiding biased results from
random spikes, as the model’s intended use is for practical
applications. The Keras library was used to create the RNN
models, and the training was conducted on two separate
platforms. The training time was relatively short, with a total
training time of less than 10 minutes for the four models. Even
the most resource-intensive model, the Bi-Directional LSTM
model, took only approximately 200 seconds to complete
training. A Second training set was conducted on Google
Colab to allow comparisons with the ML models’ training
and inference time. Multiple rounds of optimizations were
performed on the code to ensure minimal resource waste.

B. Dataset & Resources

The dataset used for testing is a classification dataset
containing 83,446 emails, sourced from the 2007 TREC Public



Spam Corpus and the Enron-Spam Dataset. It includes labeled
data, where 1 indicates spam and 0O indicates legitimate emails
for any given body text. The combined dataset was curated
and made publicly available by Purusinghvi on Kaggle [21].
All the models were trained on a MacOS Sequoia 15.3.2
system using an M4 Max with 64GB of RAM, 48GB usable
as VRAM.

C. Results & Analysis

1) Small LLM Performance: Across the tests, the quantized
small LLMs showed a wide level of performance variation.
The DeepSeek R1 Distill Qwen models outperformed their
same-size non-thinking Qwen 2.5 counterparts, achieving up
to 79% accuracy in the 14B variant, versus the 55% accuracy
for the Qwen 2.5 14B. This result suggests that small thinking
LLM models may offer substantially better performance for
phishing detection compared to their normal counterparts.
However, they also take longer to output an answer, as
shown in the runtime variation between the two types of
models. This underscores that higher parameter counts do
not necessarily mean a substantially better result. When the
invalid responses are also included as wrong, the drop in
performance is substantial in all models, but the 14B DeepSeek
R1 Distill Qwen model had a lower drop in accuracy at 4%,
compared to Qwen 32B’s drop of 10%. These results show that
even without fine-tuning existing models, small LLMs such as
DeepSeek R1 Distill Qwen 7B Q4_K_M are capable of detect-
ing phishing emails at a higher rate than guessing, suggesting
there is considerable room for improvement in a specially
trained phishing detection model. When invalid responses are
included, the other core metrics (F1 score, AUC-ROC, and
Recall) exhibit commensurate declines. The smallest models,
Qwen 2.5 7B, and 14B variant, performed very poorly with
accuracies as low as 49% and 55%, akin to flipping a coin.
This poor performance is likely due to not enough phishing
related data in their parameters. In comparison, the distilled
DeepSeek R1 7B Q4_K_M model had a 72% Accuracy, a
76% F1 score, 72% Precision, and 82% Recall while only
using around 5 GB of VRAM. When invalid responses were
included, the model still had a higher level of accuracy at
63%, which is a 9% drop. The LLMs were also able to explain
why an email may or may not be phishing, in addition to the
TRUE/FALSE classification. For example: "FALSE: The email
appears to be a legitimate weather advisory from the National
Weather Service, providing information about coastal hazards
and surf conditions without requesting personal information or
including suspicious links.” DeepSeek R1 Distill Qwen 14B,
in this instance, not only correctly labeled the sample as non-
phishing but also provided a good summary of why the email
is likely legitimate. Providing such explanations to users by
highlighting key indicators or a lack thereof can reduce the
likelihood of a person being fooled by a phishing email. The
resource trades offs are high, for instance Qwen 32B used
around 127% more VRAM than DeepSeek R1 Qwen 14B,
but offered only a small 2% increase in accuracy (81% vs
79%). While the deepseek generated tokens faster, it still ran

significantly slower since it needed more tokens overall to
think with 5.95 hours vs 2.67 hours, a 122.8% increase in
time. The “Thinking” models took longer to complete in our
testing setup because we let them generate their full chain of
thought before outputting a True/False decision. In contrast,
the standard models were cut off a few tokens after their
True/False response. This was done to limit runtime due to
hardware and time constraints. Allowing the reasoning models
to complete their internal thinking steps naturally added a
significant amount of time to the testing, which explains part
of the duration difference. DeepSeek R1 Distill Qwen is more
capable in VRAM-constrained scenarios, as the 14B model
only requires around 15 GB of VRAM, while the 32B version
of Qwen uses more than double that, at around 34 GB. This
shows several trade-offs between each model that need to be
considered when implementing LLMs in a phishing detection
system. Overall, both the 32B Qwen and 14B DeepSeek
R1 Distill Qwen models demonstrate significant potential for
phishing detection, remarkably when fine-tuned to enhance
their performance. The Tables I and II illustrate the same
set of results from the LLMs, however Table II includes
invalid responses. When invalid outputs are excluded (Table I),
each model’s Accuracy and F1 score are higher—for example,
Qwen 2.5 32B Q8 achieves 81% accuracy (F1 0.82). Including
those invalid responses as errors (Table II) uniformly lowers
performance. Qwen 2.5 32B Q8 drops to 71% accuracy (F1
0.73), with similar 5 to 10 point declines seen in the other
models. This demonstrates further prompt tuning, and LLM
training would likely help improve the instruction-following
capabilities of these models. One limitation is that the LLMs
were not finetuned on the dataset, meaning the parameters
aren’t optimized to find nuanced linguistic patterns. Fine
tuning the models on a phishing specific dataset would likely
provide substantial performance improvements and allow for
a better comparison against the ML and DL models.

2) Deep Learning Performance: Each of the proposed
models is developed by augmenting the 1D-CNNPD layer with
LSTM, GRU, Bi-LSTM and Bi-GRU as suggested by the work
[20]. Additionally, the models were tested with a leaky ReLu
activation in the fully connected layer, as the initial outcomes
in the training epochs displayed stagnation and subsequent
degradation. Note that all the results shown and plotted were
generated from an average of 5 subsequent model executions
and evaluations. As apparent from the ROC curve in Fig. 5,
even the regular Deep Learning models provide a significant
performance boost over regular Machine Learning models,
with almost all the models displaying an AUC over 0.998.
There are some marginal gains among the models as well, with
Bi-Directional LSTM performing the best in terms of accuracy
(98.74%) and GRU performing the worst (98.62%), although
only slightly. Although this is acceptable, the loss metrics
during the training epochs showed room for improvement.

During training, it was observed that performance gains
began to plateau after the seventh epoch. One of the possible
diagnoses was dying neurons, which is a common problem
when using ReLu activation. The dying ReLU refers to a



TABLE I
COMPARATIVE ANALYSIS OF Al MODELS FOR PHISHING DETECTION (INVALID RESPONSES EXCLUDED)

Model Accuracy F1 Score Precision Recall AUC-ROC Avg. TPS Runtime (hr) VRAM Usage
Qwen 2.5 7B Q4 0.49 0.34 0.58 0.24 0.52 27.94 0.54 5 GB
Qwen 2.5 14B Q8 0.55 0.39 0.74 0.27 0.58 11.97 0.84 15 GB
Qwen 2.5 32B Q8 0.81 0.82 0.84 0.80 0.81 6.54 2.67 34 GB
DeepSeek R1 Distill Qwen 7B Q4 0.72 0.76 0.72 0.82 0.71 35.00 4.08 5 GB
DeepSeek R1 Distill Qwen 14B Q8 0.79 0.80 0.84 0.76 0.79 15.16 5.95 15 GB
TABLE II
COMPARATIVE ANALYSIS OF Al MODELS FOR PHISHING DETECTION (INVALID RESPONSES INCLUDED)
Model Accuracy F1 Score Precision Recall AUC-ROC Avg. TPS Runtime (hr) VRAM Usage
Qwen 2.5 7B Q4 0.45 0.31 0.51 0.22 0.48 27.00 0.54 5 GB
Qwen 2.5 14B Q8 0.52 0.37 0.68 0.25 0.55 11.71 0.84 15 GB
Qwen 2.5 32B Q8 0.71 0.73 0.76 0.69 0.71 6.34 2.67 34 GB
DeepSeek R1 Distill Qwen 7B Q4 0.63 0.68 0.65 0.71 0.62 33.83 4.08 5 GB
DeepSeek R1 Distill Qwen 14B Q8 0.75 0.76 0.81 0.72 0.76 14.94 5.95 15 GB

shown in Fig. 6, this improvement enhanced the overall model
performance, particularly for GRU-based models. Table III
supports the outcome displayed in Fig. 6, Leaky ReLU activa-
tion provides marginal performance gains for most models. It
produces the best performing model so far, the Bi-Directional
GRU, with an accuracy of 98.77% and an AUC of 0.9987
(non-rounded). As a GRU model, it also has shorter training
and inference times. This model was the most optimal in terms
of cost-to-performance among all the models tested.

TABLE III
MODEL PERFORMANCE COMPARISON: RELU vs LEAKY RELU
ACTIVATION

ReLU Activation Leaky ReLU Activation

Model

Accuracy ROC-AUC Accuracy ROC-AUC
LSTM 0.98664 0.99859 0.98706 0.99872
Bi-LSTM 0.98736 0.99875 0.98730 0.99866
GRU 0.98628 0.99824 0.98748 0.99871
Bi-GRU 0.98748 0.99857 0.98766 0.99874
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Fig. 6. ROC curves for Deep Learning models with Leaky ReL.U Activation

situation in which ReLU neurons become inactive due to
their lower limit of 0. There are many empirical and heuristic
explanations of why ReLU neurons die. However, little is
known about its theoretical analysis [22]. To remedy this issue,
we used the suggested Leaky ReLu activation function. As

3) ML Performance: Among the evaluated models for
phishing detection, Random Forest stands out as having the
highest overall performance in our tests. Fig. 7 and Fig. 8
show that it achieves top scores across all metrics, accu-
racy (0.9801), precision (0.9862), recall (0.9718), and F1-
score (0.9789), indicating strong reliability and minimal error
rates. However, its prediction time of 0.0276 seconds per
1000 emails, though reasonable, is higher compared to faster
models. Logistic Regression offers a more balanced solution,
combining solid performance accuracy of 0.9704, F1-score of
0.9686, and an unmatched prediction speed of 0.0001 seconds.
This makes it especially suitable for real-time or large-scale
deployments where speed and accuracy are essential. It re-
mains a practical and efficient choice for phishing detection
systems. Naive Bayes, with the lowest accuracy (0.9466) and
F1-score (0.9435), excels in speed, processing 1000 emails in
only 0.0002 seconds. It is ideal for constrained environments
requiring high throughput, but can be less reliable in terms of
Precision. SVM performs well in terms of accuracy (0.9711)



and Fl-score (0.9694); however, its major limitation is slow
processing time, which takes 1.3934 seconds for 1000 emails,
making it less practical for real-time applications.
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In summary, Random Forest is the most accurate, Logistic
Regression is the most balanced and scalable, Naive Bayes is
the fastest, and SVM offers high precision but at a cost of
efficiency.

4) Resource Consumption: One of the primary objectives of
this research was to identify the overall resource consumption
of each approach and the resultant performance gain. This idea
was prompted by the massive reported costs of training and
deploying LLMs, as well as the impact of such expenses on
their applicability in practical scenarios.

Table IV shows the inference time for each of the LLM,
ML, and DL models tested in the paper. The ML models
are approximately 1308 times faster than the DL models in
inference, with nearly the same performance, but with an
average of 2% less accuracy. The ML models are also approx-
imately 1.38 million times faster than the LLMs, illustrating
that using LLMs to check every email is significantly less
efficient. Instead, LLMs are best suited for complex cases that
require contextual reasoning and human-readable explanations.

TABLE IV
MODEL EFFICIENCY COMPARISON

Model Name® Inference Time (s)®  Best Accuracy

Qwen 2.5 7B Q4 1944 49%
Qwen 2.5 14B Q8 3024 55%
Qwen 2.5 32B Q8 9612 81%
DeepSeek R1 7B Q4 14688 72%
DeepSeek R1 14B Q8 21420 79%
Logistic Regression 0.0001 97%
Naive Bayes 0.0003 95%
Random Forest 0.0033 98%
Linear SVM 0.0006 97%
GRU 0.3850 98.75%
Bi-GRU 1.4250 98.77%
LSTM 0.4400 98.71%
Bi-LSTM 1.4458 98.74%

However, in order to accommodate this sophisticated function-
ality, LLMs consume a massive amount of precious resources
such as water and energy. Moreover, the resulting carbon
footprint poses a significant concern. In a comprehensive
research conducted by Jegham et al. [23], where 30 major
LLMs were analyzed, it was found that the most resource-
intensive LLMs, such as ChatGPT-O3 and DeepSeek R1, can
consume up to 30Wh per long prompt. More significantly,
the research estimates that with the measured 0.43Wh per
query and the reported 700 million queries per day, annually,
ChatGPT-40 uses energy comparable to approximately 35,000
US households and evaporates freshwater matching the annual
drinking needs of 1.2 million people, concluding a chicago-
sized forest would be needed to offset the carbon footprint.
Wong V. [24] calculated that serving a single prompt in
ChatGPT produces more than 4 grams of COseq, which
is over 20 times the operational carbon footprint of a web
search query. The environmental impact becomes even more
concerning when considering that findings published by Chien
et al. [25] show the energy consumption of LLM serving
has now surpassed that of training. This shift toward serving-
dominated energy consumption creates a complex sustainabil-
ity problem that requires comprehensive solutions such as
hardware lifecycle management and energy efficiency opti-
mization as proposed by Ding et al. [26]. The results from
our tests align well with these observations: during inference,
the 14 billion—parameter DeepSeek R1 Distill Qwen Q8_0
model required approximately 6 hours of compute and 15
GB of VRAM to identify phishing emails. In comparison, the
best-performing deep learning model Leaky ReLU Bi-GRU
achieved better performance, with an accuracy of 98.77%
versus 79% for DeepSeek R1 Distill Qwen 14B Q8_0 in just
15.33 seconds, substantially less than the 5.95 hours DeepSeek
R1 Distill Qwen 14B Q8_0 took. While the testing platforms
were not identical, the substantial difference in performance
far exceeds what could be explained by hardware alone.
Classical machine learning approaches performed similarly to
DL, with models such as random forest requiring only a few
seconds to run and providing around 98% accuracy. These
findings suggest a hybrid approach for real-world deployments
where ML and DL models handle the bulk of cases. At
the same time, a fine-tuned small LLM intervenes in the



most challenging scenarios, optimizing accuracy, cost, and
environmental impact simultaneously.

IV. CONCLUSION

This study evaluated phishing detection approaches across
traditional ML, DL, and small LLMs. Our findings reveal
that models like DeepSeek R1 Distill Qwen 14B achieve
over 79% accuracy using only 15 GB of VRAM, while Bi-
GRU models exceed 98% accuracy with minimal inference
time, highlighting their cost-effectiveness. Despite their limi-
tations in raw accuracy, LLMs provide contextual explanations
and resilience against adversarial rephrasing, key advantages
for real-time phishing detection. A hybrid framework that
combines the strengths of ML/DL with context-aware LLMs
can deliver improved accuracy, interpretability, and efficiency.
Future work should focus on specialized LLM training using
phishing-centric datasets, robust adversarial defence strategies,
and real-time threat integration. This hybrid approach offers
a practical path toward scalable, interpretable, and environ-
mentally conscious phishing detection systems in the Gen-
Al era. To improve future phishing detection, work should
focus on developing specially trained LLMs that primarily use
phishing-related content to enhance their detection of nuanced
and context-driven attacks. Creating large, fully trained models
for phishing detection and then quantizing them can also be
done to strengthen computational requirements. The results
from this paper are limited by the reliance on English-only
sources in the dataset. This fails to account for linguistic
and cultural diversity of global phishing attacks, incorporating
modern multilingual datasets could produce a universally ef-
fective model. Finally, combining trained LLMs and traditional
detection methods, such as ML, in a hybrid approach would
be the most optimal overall scenario. Ultimately, focus should
be on enhancing adversarial resilience and facilitating early
detection of malicious prompts, thus significantly mitigating
misuse while reducing computational costs.
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