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Device-independent (DI) cryptography represents the highest level of security, enabling cryp-
tographic primitives to be executed safely on uncharacterized devices. Moreover, with successful
proof-of-concept demonstrations in randomness expansion, randomness amplification, and quantum
key distribution, the field is steadily advancing toward commercial viability. Critical to this contin-
ued progression is the development of tighter finite-size security proofs. In this work, we provide a
simple method to obtain tighter finite-size security proofs for protocols based on the CHSH game,
which is the nonlocality test used in all of the proof-of-concept experiments. We achieve this by
analytically solving key-rate optimization problems based on Rényi entropies, providing a simple
method to obtain tighter finite-size key rates.

I. INTRODUCTION

Quantum theory exhibits certain correlations between
distant agents that cannot be explained classically [1].
These so-called nonlocal correlations have far-reaching
implications beyond fundamental physics. In particular,
by observing certain nonlocal correlations, it is possi-
ble to make statements about the underlying quantum
systems used to produce them. This leads to device-
independent information processing, which guarantees
the successful completion of information processing tasks
without detailed characterization of the underlying hard-
ware. Such protocols have already been demonstrated in
practice, with recent implementations of DI randomness
expansion [2, 3], amplification [4] and quantum key dis-
tribution (QKD) [5–7].

DIQKD protocols provide a method to generate shared
secret key whilst relying on minimal assumptions. Here,
one can leverage the fact that if two honest parties, Al-
ice and Bob, observe a shared nonlocal distribution, then
they can information-theoretically verify that their out-
puts are random from the perspective of an eavesdropper,
Eve. There has been significant effort in designing pro-
tocols that are secure and efficient in practice [8, 9], and
whilst proof-of-principle demonstrations of DIQKD have
been achieved, the current achievable rates remain far
from practical.

Protocols based on the CHSH inequality [10] have
been studied extensively for DIQKD, owing to its sim-
plicity both theoretically and experimentally. In par-
ticular, when considering security against collective at-
tacks, [11] provides a tight analytical lower bound on the
von Neumann entropy (and hence the asymptotic key-
rate) in terms of the expected CHSH violation. Apply-
ing techniques like the Entropy Accumulation Theorem
(EAT) [12–14], one can elevate these bounds to finite-size
key rates against general adversaries. Recently, a new

Rényi EAT (REAT) was proven in [15], which is based
on the more general family of entropies known as Rényi
entropies, and has the potential to yield tighter finite-size
key-rates resulting in more practical protocols. However,
in order to reap these benefits, tight and efficient meth-
ods for bounding Rényi entropies in a device-independent
manner must be developed.

In this work, we derive a tight analytical relationship
between the expected CHSH value and the amount of
Rényi entropy in the output. This can be seen as a broad
generalization of the expression derived in [11], which we
recover as a special case. Crucially, our results unlock
the potential of [15] and we demonstrate significantly
improved finite-size key-rates for protocols based on the
CHSH inequality. We further discuss how our results can
be modified to include noisy preprocessing [16] and gener-
alized to the asymmetric CHSH inequalities [17], further
boosting the key rates and applicability of the technique.
Overall, our work pushes DIQKD towards a new level of
practicality.

II. ANALYTIC RÉNYI ENTROPY BOUNDS

We now present the main technical contribution of this
work, which is a tight analytical relationship between
the CHSH value and the accumulated Rényi entropy. To
more precisely state the problem at hand, consider the
following setup. We have two honest parties Alice and
Bob, and an eavesdropper Eve. Alice and Bob each hold
a device which can receive binary inputs X,Y and pro-
duce binary outputs A,B respectively. The behavior of
the boxes may be modeled in the following way: a shared
tripartite state ρQAQBE is distributed to Alice, Bob and
Eve; upon receiving the input X = x, Alice’s box mea-
sures QA with a POVM {Mx

a }a and outputs the measure-
ment outcome A = a; upon receiving the input Y = y,
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Bob’s box measures QB with the POVM {Ny
b }b and out-

puts the measurement outcome B = b. Given inputs
X = x, Y = y, we can compute a post-measurement
state ρxyABE =

∑
ab |ab⟩⟨ab|AB ⊗ ρabxyE , where

ρabxyE = TrQAQB
[ρQAQBE(M

x
a ⊗Ny

b ⊗ IE)] . (1)

We call a tuple (QAQBE, ρQAQBE , {Mx
a }, {N

y
b }) of

Hilbert spaces, a shared state, and POVMs a quantum
strategy.

From the perspective of the honest parties, Alice and
Bob, their devices are black boxes. As such, the exact
Hilbert spaces, shared state, and POVMs used are un-
known to them. On the other hand, we allow the eaves-
dropper Eve to have full control over the implementation
of the devices, i.e., she can choose the quantum strategy.
Despite the black-box nature of their devices, Alice and
Bob are able to learn information about the correlations
produced by their devices. In this work, we shall focus on
protocols based on estimating the expected CHSH value
of their devices, which is defined as

S =
∑
abxy

(−1)xy+a+bTr [ρQAQBE (Mx
a ⊗Ny

b ⊗ 1)] . (2)

For any S > 2, the correlations produced by
the devices are nonlocal and can be used to pro-
duce device-independent randomness. Moreover, the
maximal achievable value using quantum systems
is S = 2

√
2 [18]. Given a quantum strategy

Λ = (QAQBE, ρQAQBE , {Ma|x}, {Nb|y}) we denote its
expected CHSH value, computed using Eq. (2), by
SCHSH(Λ).

In this section we are interested in solving the follow-
ing optimization problem. Given a conditional entropy
H (see Appendix A for the formal definitions) and an ex-
pected CHSH value S = [2, 2

√
2], find the minimal value

of H(A|X = 0, E) over all possible quantum strategies
that have an expected CHSH value of S. In other words,
we are interested in computing an H rate function for
the CHSH Bell-inequality, as made precise in the follow-
ing definition.

Definition 1 (H rate function for CHSH). Let H be a
conditional entropy and let S ∈ [2, 2

√
2]. We say that a

function fH : [2, 2
√
2] → R is a tight H rate function for

the CHSH Bell inequality if

fH(S) := inf
Λ

H(A|X = 0, E)

s.t. SCHSH(Λ) = S ,
(3)

where the infimum is over all quantum strategies Λ.

We note that the case of the von Neumann entropy,
H, was solved in [11] (see also [19]), where it was shown
that

fH(S) = 1− h

(
1

2
+

1

2

√
S2

4
− 1

)
, (4)

where h(x) := −x log2 x−(1−x) log2(1−x) is the binary
entropy. Similarly, in [20] it was shown that for the min-
entropy, Hmin, one has

fHmin(S) = 1− log

(
1 +

√
2− S2

4

)
. (5)

Our main technical result is an exact analytical form
of the rate functions for multiple major families of Rényi
conditional entropy. In Theorem 2 below, we focus on
presenting our results for two particular families of “sand-
wiched Rényi entropies” (see Appendix A or [21, 22] for
full details), denoted as H̃↑

α and H̃↓
α. We focus on these

for now as they are the most relevant entropies for our
finite-size analysis; however, we highlight that significant
generalizations of this theorem are also possible. For in-
stance, as we show in Appendix B, we can extend it to
the family of asymmetric CHSH inequalities [17], mod-
ify fH̃↓

α
(S) to include noisy preprocessing [16], and de-

rive analogous results for the Petz-Rényi entropies [23].
The generalizations that include noisy preprocessing and
the asymmetric CHSH inequalities have the potential to
boost the achievable key-rates for DIQKD even further.

Theorem 2. Let α > 1 and S ∈ [2, 2
√
2]. Then we have

fH̃↑
α
(S) = 1 +

2α− 1

1− α
log ϕ α

2α−1
(S) , (6)

fH̃↓
α
(S) = 1 +

α

1− α
log ϕ 1

α
(S) , (7)

where

ϕµ(S) =

1−
√

S2

4 − 1

2

µ

+

1 +
√

S2

4 − 1

2

µ

. (8)

We provide the proof in Appendix B, together with the
generalizations. As expected, in the limit α → 1, both
fH̃↑

α
and fH̃↓

α
converge to Eq. (4). Moreover, by setting

α = 2, one recovers the fact that fH̃↓
2

equals the rate
function for the min-entropy in Eq. (5), a result that was
first observed in [24].

Interestingly, the optimal strategy for Eve that
achieves the infimum in Eq. (3) is the same for all α ≥ 1
and both entropy families. In particular, for an expected
CHSH value, S, the optimal strategy for Eve is to pro-
gram Alice and Bob’s devices to measure the observables

A0 = σz, A1 = σx, B0,1 =
σz ± gSσx√

1 + g2S
, (9)

where gS =
√

S2

4 − 1, on the state√
P+ |ϕ+⟩QAQB

|0⟩E +
√
P− |ϕ−⟩QAQB

|1⟩E , (10)

for |ϕ±⟩ = 1√
2
(|00⟩ ± |11⟩), and P± = 1

2 (1± gS).
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III. IMPROVED FINITE-SIZE KEY RATES

A. Protocol Description

In addition to the CHSH set-up from the previous sec-
tion, for DIQKD one generally allows Bob an extra mea-
surement input, Y = 2, which he uses to generate secret
key (his other settings are used to test the device). This
additional measurement improves the key rates by reduc-
ing the cost of error correction, and due to non-signaling
conditions, will not affect the validity of the rate func-
tions described in the previous section, see e.g. [11]. This
extended set-up is what will be considered here.

Each round of the DIQKD protocol is either a test or
a key-generation round. During test rounds, which occur
with some probability γ ∈ [0, 1], each party chooses their
measurement inputs X,Y uniformly at random from the
set {0, 1} and generates some measurement outputs A,B.
During a subsequent public announcement step, Bob will
announce a value B̄ that is set equal to his output value
B whenever it is a test round, which allows Alice to pro-
duce an additional test-data value for each round, C̄, as
follows:

C̄ =

{
0, if A⊕B ̸= X · Y
1, if A⊕B = X · Y .

(11)

For single-round quantum strategies, the distribution of
C̄ can directly be related to the corresponding CHSH
value, S. As such, the test data encodes the relevant in-
formation needed for applying Theorem 2. During gen-
eration rounds, Alice and Bob use the inputs X = 0 and
Y = 2, respectively. No test data is produced and so Bob
sets his public announcement B̄ to some arbitrary value
(say, B̄ = 0), while Alice sets C̄ to a special symbol ⊥.

After n rounds, both parties conduct two further clas-
sical postprocessing steps. First, they verify that the dis-
tribution of the test data lies within some predetermined
set of probability distributions, SΩ. By aborting the pro-
tocol whenever the observed distribution lies outside SΩ,
this step essentially ensures that Alice’s and Bob’s mea-
surements produce (at least) weakly random bits, see
e.g. [19, 25]. Afterwards, the protocol concludes with
a post-processing step, which converts Alice’s and Bob’s
raw measurement data, into (almost) ideal states accord-
ing to a suitable DIQKD security definition [19, 25].

For clarity, we present an overall summary of this pro-
cedure as Protocol 1 below. More information regarding
the classical post-processing steps can be found in Ap-
pendix D. Note that this protocol structure can also ac-
commodate DI randomness expansion with only small
changes, mostly in these classical post-processing steps;
see e.g. [26] for such a description.

1 Cryptographic Protocol
1: For all rounds, i ∈ {1, . . . , n}:

1.1. Alice and Bob generate a common random bit Ti,
such that P (Ti = 0) = 1− γ and P (Ti = 1) = γ.
1.2. If Ti = 0, both parties will choose generation inputs
(Xi, Yi) = (0, 2). If Ti = 1, both parties will choose test
inputs (Xi, Yi) ∈ {0, 1}2 uniformly at random. They sup-
ply the inputs to the devices and obtain outputs (Ai, Bi).

2: Public announcements: Both parties announce all the in-
put values (Xi, Yi). Bob also announces some other reg-
isters B̄i for i ∈ [n] as follows. If Ti = 0, Bob announces
B̄i = 0 and Alice sets C̄i =⊥. If Ti = 1, Bob announces
B̄i = Bi, then Alice computes C̄i according to the speci-
fied function of (Ai, Bi, Xi, Yi).

3: Acceptance test: Alice checks if the observed frequency
distribution freqc̄n1

lies inside some predetermined set SΩ,
and aborts the protocol (via a public announcement) if it
does not.

4: Classical postprocessing: Alice and Bob perform some ad-
ditional classical operations such as error correction and
privacy amplification (see Appendix D for details) to gen-
erate their final keys.

B. Rényi EAT and Key Rate

We provide a more detailed description of the finite-
size security proof in Appendix D; here, we just out-
line the key steps of the proof. The global n-round
state in the protocol after the public announcements is
of the form ρAn

1B
n
1 C̄

n
1 X

n
1 Y

n
1 T

n
1 E, with E denoting quan-

tum side-information Eve holds about the states in the
devices (she also has access to the public announcements
Xn

1 Y
n
1 T

n
1 ). Using the REAT, it was shown in [15, Lem-

mas 5.1 and 6.1] that as long as the set SΩ is convex,
the total accumulated Rényi entropy (conditioned on the
acceptance test accepting, which we shall denote as the
event ΩAT) can be bounded by

H̃↑
α

(
An1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

≥ nhα − α

α− 1
log

1

Pr[ΩAT]
,

(12)

where hα is a quantity satisfying

hα ≥ inf
Λ

inf
q∈Sacc

1

α− 1
D (q∥pΛ) + q(⊥)H̃↓

α (A|X = 0, E) .

(13)

Here, the optimization takes place over all single-round
quantum strategies Λ, and probability distributions q (on
a single-round test-data register C̄) within the acceptance
set SΩ. For each single-round strategy, H̃↓

α (A|X = 0, E)
refers to the corresponding Rényi entropy of the state
produced from that strategy, and the D(q∥pΛ) term de-
notes the Kullback-Leibler (KL) divergence (see e.g. [28])
between q and the distribution pΛ produced by that
quantum strategy.

Qualitatively, the above optimization has an intu-
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Figure 1. Plot of achievable finite-size key rates for the DIQKD experimental demonstration in [27], as a function of number of
rounds n in two different ranges. The solid black curves show the results we obtain from our approach, the dashed black curves
show the results previously computed in [27], and the solid red line displays the asymptotic rate (omitted in Fig. 1a due to
the lower key rates in that plot). Note that we have kept the protocol and parameter choices (other than the final key length)
nearly identical to the one in [27], except for minor changes and improvements we describe in Appendix D. We see there is a
significant improvement in both the finite-size rate at the number of rounds used in that experiment (n = 1.5× 106), and the
minimum n required to achieve nonzero finite-size rates.

itive informal interpretation, as follows. Observe that
if the device behavior across the rounds were inde-
pendent and identically distributed (IID), then in the
asymptotic large-n limit, the best bound we could hope
for on the global entropy H̃↑

α

(
An1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)

would
be simply n times of the minimal single-round entropy
H̃↓
α (A|X = 0, E) over all strategies Λ “compatible with”

the accept condition SΩ (more formally, such that the dis-
tribution pΛ lies in SΩ). The above optimization is simi-
lar in spirit to computing this minimal value, except that
rather than the “hard” constraint of requiring pΛ ∈ SΩ,
the KL divergence term serves to impose a “soft” version
of this constraint, in that it acts as a “penalty” if pΛ is
far from SΩ — see [15, Sec. 5.2] for more detailed expo-
sition. We emphasize however that while this intuitive
interpretation is informal, the bounds (12)–(13) consti-
tute a rigorous lower bound on the global Rényi entropy,
against general (non-IID) attacks.

In Appendix D, we explain how this bound can be
used to compute finite-size key rates. Essentially, the
LHS of Eq. (12) describes the Rényi entropy that Alice
generates over all rounds of the protocol (including the
test data), conditioned on the side-information registers
Xn

1 Y
n
1 T

n
1 E. Other side-information that Eve obtains,

such as B̄n1 , can be accounted for separately by using
appropriate chain rules; see Appendix D for details. The
rate function derived in Theorem 2 can then be used to
provide tight bounds on the H̃↓

α (A|X = 0, E) term in hα,
hence allowing us to compute finite-size key rates based
on Rényi entropies.

In Fig. 1, we show the finite-size key rates obtained
from this approach, as applied to the experimental pa-
rameters achieved in a DIQKD demonstration in [27]. We
follow the parameters and implementation choices used
in that work as closely as possible, apart from minor
modifications we describe in Appendix D. (For Fig. 1a

we also used exactly the same testing probability γ as
in that work, whereas for Fig. 1b we optimized over the
γ value; we discuss the details of this choice in that ap-
pendix as well.) We see that at the value n = 1.5 × 106

used in that experiment, we improve the finite-size key
rate by about a factor of 3. Similarly, we also reduce
the minimum n required for nonzero finite-size key by
nearly a factor of 3. Such improvements are critical in
the context of practical demonstrations of DIQKD, as
they significantly reduce the experimental requirements
for a desired length of final key.

As a final remark, we note that in [29], a framework was
developed to prove security for variable-length protocols,
which do not simply make a binary accept/abort decision
but rather adjust the length of the final key depending
on the observed values. The key concept considered in
their analysis is a “weighted” version of Rényi entropy;
refer to e.g. [30] for further details. Our bound in Theo-
rem 2 can also be applied to bound these weighted Rényi
entropies, and would hence also be able to prove security
for variable-length protocols, though we leave a detailed
analysis for future work.

IV. CONCLUSION

This work represents an important step towards a prac-
tical implementation of DIQKD which represents the
highest level of security, allowing for secret key genera-
tion using untrusted hardware. We leverage the Rényi
Entropy Accumulation Theorem [15] and demonstrate
that it yields significantly tighter finite-size key rates for
DIQKD protocols based on the CHSH inequality. To
do this, we derive tight analytical bounds on Rényi en-
tropies in a device-independent manner, which in turn
provide a tight relationship between the CHSH value and
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the amount of Rényi entropy accumulated. Our results
can be seen as a generalization of the expression derived
in [11], which we recover as a special case. In Figure 1,
we demonstrate the improvement in finite-size key rates
for DIQKD protocols by comparing the rates from the
DIQKD experimental demonstration in [27] to those that
are achievable using our approach. In particular, we show
that the work of [27] could triple their key-rates by using
our technique, with no modifications to the experimental
setup.

Our work prompts several pertinent questions towards
the end goal of practical DI cryptography. Firstly, whilst
we were also able to derive a tight analytical bound for
the H̃↑

α entropy, that bound is currently not applicable to
improving finite-size analysis, as the current tools (e.g.,
[15]) use H̃↓

α in their key rate expressions. Looking at
the analogous results for device-dependent QKD [29–31],
the key rates are actually computed in terms of H̃↑

α, pro-
viding tighter bounds on the finite-size rates. If we could
develop similar results in the DI setting, we would then
be able to use the bound fH̃↑

α
(S) to obtain even higher

finite-size key rates. In a second direction, the proofs of
the analytical key rate formulae follow closely the work
of [17] and are fairly generic in nature, hence it is likely

that they could be extended to other families of Bell in-
equalities to obtain further analytical key rate formulae,
providing simpler and tighter security proofs for proto-
cols beyond CHSH. It may also be of some interest to see
whether our techniques apply to the broader family of
Rényi conditional entropies in [32] that unifies the cases
considered in this work.

ACKNOWLEDGMENTS

TH acknowledges support from the Peter and Patricia
Gruber Award and by the Air Force Office of Scientific
Research under award number FA9550-22-1-0391. AP
acknowledges support from the National Science Centre
Poland (Grant No. 2022/46/E/ST2/00115). EYZT con-
ducted research at the Institute for Quantum Computing,
at the University of Waterloo, which is supported by In-
novation, Science, and Economic Development Canada;
support was also provided by NSERC under the Discov-
ery Grants Program, Grant No. 341495. PB acknowl-
edges support from the European union’s Horizon Europe
research and innovation programme under the project
“Quantum Secure Networks Partnership” (QSNP, grant
agreement No. 101114043).

[1] John Stewart Bell, “On the Einstein-Podolsky-Rosen
paradox,” Physics 1, 195 (1964).

[2] Wen-Zhao Liu, Ming-Han Li, Sammy Ragy, Si-Ran Zhao,
Bing Bai, Yang Liu, Peter J Brown, Jun Zhang, Roger
Colbeck, Jingyun Fan, et al., “Device-independent ran-
domness expansion against quantum side information,”
Nature Physics , 1–4 (2021).

[3] Lynden K Shalm, Yanbao Zhang, Joshua C Bienfang,
Collin Schlager, Martin J Stevens, Michael D Mazurek,
Carlos Abellán, Waldimar Amaya, Morgan W Mitchell,
Mohammad A Alhejji, et al., “Device-independent ran-
domness expansion with entangled photons,” Nature
Physics , 1–5 (2021).

[4] Anatoly Kulikov, Simon Storz, Josua D Schär, Mar-
tin Sandfuchs, Ramona Wolf, Florence Berterottière,
Christoph Hellings, Renato Renner, and Andreas Wall-
raff, “Device-Independent Randomness Amplification,”
(2024), arXiv:2412.17931.

[5] Wei Zhang, Tim van Leent, Kai Redeker, Robert
Garthoff, René Schwonnek, Florian Fertig, Sebastian Ep-
pelt, Wenjamin Rosenfeld, Valerio Scarani, Charles C-W
Lim, et al., “A device-independent quantum key distri-
bution system for distant users,” Nature 607, 687–691
(2022).

[6] David P Nadlinger, Peter Drmota, Bethan C Nichol,
Gabriel Araneda, Dougal Main, Raghavendra Srinivas,
David M Lucas, Christopher J Ballance, Kirill Ivanov,
EY-Z Tan, et al., “Experimental quantum key distribu-
tion certified by Bell’s theorem,” Nature 607, 682–686
(2022).

[7] Wen-Zhao Liu, Yu-Zhe Zhang, Yi-Zheng Zhen, Ming-
Han Li, Yang Liu, Jingyun Fan, Feihu Xu, Qiang Zhang,

and Jian-Wei Pan, “Toward a Photonic Demonstration of
Device-Independent Quantum Key Distribution,” Physi-
cal Review Letters 129, 050502 (2022).

[8] Víctor Zapatero, Tim van Leent, Rotem Arnon-
Friedman, Wen-Zhao Liu, Qiang Zhang, Harald We-
infurter, and Marcos Curty, “Advances in device-
independent quantum key distribution,” npj quantum in-
formation 9, 10 (2023).

[9] Ignatius W Primaatmaja, Koon Tong Goh, Ernest Y-Z
Tan, John T-F Khoo, Shouvik Ghorai, and Charles C-W
Lim, “Security of device-independent quantum key distri-
bution protocols: a review,” Quantum 7, 932 (2023).

[10] John Clauser, Michael Horne, Abner Shimony, and
R. Holt, “Proposed Experiment to Test Local Hidden-
Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).

[11] Stefano Pironio, Antonio Acín, Nicolas Brunner, Nico-
las Gisin, Serge Massar, and Valerio Scarani, “Device-
independent quantum key distribution secure against
collective attacks,” New Journal of Physics 11, 045021
(2009).

[12] Frédéric Dupuis, Omar Fawzi, and Renato Renner, “En-
tropy Accumulation,” Communications in Mathematical
Physics 379, 867–913 (2020).

[13] F. Dupuis and O. Fawzi, “Entropy accumulation with
improved second-order term,” IEEE Transactions on In-
formation Theory , 1–1 (2019), 1805.11652.

[14] Tony Metger, Omar Fawzi, David Sutter, and Renato
Renner, “Generalised entropy accumulation,” in 2022
IEEE 63rd Annual Symposium on Foundations of Com-
puter Science (FOCS) (2022) pp. 844–850.

[15] Amir Arqand, Thomas A. Hahn, and Ernest Y.Z. Tan,
“Generalized Rényi entropy accumulation theorem and

http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/10.1038/s41567-020-01147-2
http://dx.doi.org/10.1038/s41567-020-01153-4
http://dx.doi.org/10.1038/s41567-020-01153-4
http://arxiv.org/abs/2412.17931
http://dx.doi.org/10.1038/s41586-022-04891-y
http://dx.doi.org/10.1038/s41586-022-04891-y
http://dx.doi.org/10.1038/s41586-022-04941-5
http://dx.doi.org/10.1038/s41586-022-04941-5
http://dx.doi.org/10.1103/PhysRevLett.129.050502
http://dx.doi.org/10.1103/PhysRevLett.129.050502
http://dx.doi.org/10.1038/s41534-023-00684-x
http://dx.doi.org/10.1038/s41534-023-00684-x
http://dx.doi.org/10.22331/q-2023-03-02-932
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1088/1367-2630/11/4/045021
http://dx.doi.org/10.1088/1367-2630/11/4/045021
http://dx.doi.org/10.1007/s00220-020-03839-5
http://dx.doi.org/10.1007/s00220-020-03839-5
http://dx.doi.org/10.1109/tit.2019.2929564
http://dx.doi.org/10.1109/tit.2019.2929564
http://arxiv.org/abs/1805.11652
http://dx.doi.org/10.1007/s00220-024-05121-4
http://dx.doi.org/10.1007/s00220-024-05121-4
http://dx.doi.org/10.1007/s00220-024-05121-4


6

generalized quantum probability estimation,” (2024),
arXiv:2405.05912v3.

[16] M Ho, P Sekatski, EY-Z Tan, R Renner, J-D Ban-
cal, and N Sangouard, “Noisy Preprocessing Facilitates
a Photonic Realization of Device-Independent Quantum
Key Distribution,” Physical Review Letters 124, 230502
(2020).

[17] Erik Woodhead, Antonio Acín, and Stefano Piro-
nio, “Device-independent quantum key distribution with
asymmetric CHSH inequalities,” Quantum 5, 443 (2021).

[18] Boris S Cirel’son, “Quantum generalizations of Bell’s
inequality,” Letters in Mathematical Physics 4, 93–100
(1980).

[19] Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi,
Renato Renner, and Thomas Vidick, “Practical device-
independent quantum cryptography via entropy accumu-
lation,” Nature Communications 9, 459 (2018).

[20] Lluis Masanes, Stefano Pironio, and Antonio Acín, “Se-
cure device-independent quantum key distribution with
causally independent measurement devices,” Nature com-
munications 2, 238 (2011), 1009.1567.

[21] Martin Müller-Lennert, Frédéric Dupuis, Oleg Szehr,
Serge Fehr, and Marco Tomamichel, “On quantum Rényi
entropies: A new generalization and some properties,”
Journal of Mathematical Physics 54 (2013), 1306.3142.

[22] Mark M Wilde, Andreas Winter, and Dong
Yang, “Strong converse for the classical capacity of
entanglement-breaking and Hadamard channels via a
sandwiched Rényi relative entropy,” Communications in
Mathematical Physics 331, 593–622 (2014).

[23] Dénes Petz, “Quasi-entropies for finite quantum sys-
tems,” Reports on Mathematical Physics 23, 57–65
(1986).

[24] G Murta, S B van Dam, J Ribeiro, R Hanson, and
S Wehner, “Towards a realization of device-independent
quantum key distribution,” Quantum Science and Tech-
nology 4, 035011 (2019).

[25] Ernest Y.-Z. Tan, Pavel Sekatski, Jean-Daniel Bancal,
René Schwonnek, Renato Renner, Nicolas Sangouard,
and Charles C.-W. Lim, “Improved DIQKD protocols
with finite-size analysis,” Quantum 6, 880 (2022).

[26] Thomas A. Hahn, Ernest Y. Z. Tan, and Peter Brown,
“Bounds on Petz-Rényi Divergences and their Applica-
tions for Device-Independent Cryptography,” (2024),
arXiv:2408.12313.

[27] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda,
D. Main, R. Srinivas, D. M. Lucas, C. J. Ballance,
K. Ivanov, E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke,
R. Renner, N. Sangouard, and J.-D. Bancal, “Experi-
mental quantum key distribution certified by Bell's the-
orem,” Nature 607, 682–686 (2022).

[28] Thomas M. Cover and Joy A. Thomas, Elements of In-
formation Theory 2nd Edition (Wiley Series in Telecom-
munications and Signal Processing) (Wiley-Interscience,
2006).

[29] Thomas van Himbeeck and Peter Brown, “Tight and
general finite-size security of quantum key distribution,”
(2025), in preparation.

[30] Omar Fawzi, Jan Kochanowski, Cambyse Rouzé, and
Thomas Van Himbeeck, “Additivity and chain rules for
quantum entropies via multi-index Schatten norms,”
(2025), arXiv:2502.01611.

[31] Amir Arqand and Ernest Y. Z. Tan, “Marginal-
constrained entropy accumulation theorem,” (2025),

arXiv:2502.02563.
[32] Roberto Rubboli, Milad M. Goodarzi, and Marco

Tomamichel, “Quantum Conditional Entropies,” (2024),
arXiv:2410.21976v1 [quant-ph].

[33] Pavel Sekatski, Jean-Daniel Bancal, Xavier Valcarce,
Ernest Y.-Z. Tan, Renato Renner, and Nicolas San-
gouard, “Device-independent quantum key distribution
from generalized CHSH inequalities,” Quantum 5, 444
(2021).

[34] Marco Tomamichel, Quantum Information Processing
with Finite Resources (Springer International Publishing,
2016).

[35] F.B. Hildebrand, Introduction to Numerical Analysis
(McGraw-Hill, 1956).

[36] Andreas Bluhm, Ángela Capel, Paul Gondolf, and An-
tonio Pérez-Hernández, “Continuity of quantum entropic
quantities via almost convexity,” IEEE Transactions on
Information Theory 69, 5869–5901 (2023).

[37] Renato Renner, Nicolas Gisin, and Barbara Kraus,
“Information-theoretic security proof for quantum-key-
distribution protocols,” Phys. Rev. A 72, 012332 (2005).

[38] Wei Dai and Ted Krovetz, “VHASH Security,” Cryptol-
ogy ePrint Archive, Paper 2007/338 (2007).

[39] Christopher Portmann and Renato Renner, “Security in
quantum cryptography,” Reviews of Modern Physics 94,
025008 (2022), 2102.00021.

[40] Frédéric Dupuis, “Privacy Amplification and Decoupling
Without Smoothing,” IEEE Transactions on Information
Theory 69, 7784–7792 (2023).

[41] Anindya De, Christopher Portmann, Thomas Vidick,
and Renato Renner, “Trevisan’s Extractor in the Pres-
ence of Quantum Side Information,” SIAM Journal on
Computing 41, 915–940 (2012).

[42] Wolfgang Mauerer, Christopher Portmann, and
Volkher B. Scholz, “A modular framework for ran-
domness extraction based on Trevisan’s construction,”
(2012), arXiv:1212.0520.

http://arxiv.org/abs/2405.05912v3
http://dx.doi.org/10.1103/physrevlett.124.230502
http://dx.doi.org/10.1103/physrevlett.124.230502
http://dx.doi.org/10.22331/q-2021-04-26-443
http://dx.doi.org/10.1038/s41467-017-02307-4
http://dx.doi.org/10.1038/ncomms1244
http://dx.doi.org/10.1038/ncomms1244
http://arxiv.org/abs/1009.1567
http://arxiv.org/abs/1306.3142
http://dx.doi.org/10.1007/s00220-014-2122-x
http://dx.doi.org/10.1007/s00220-014-2122-x
http://dx.doi.org/https://doi.org/10.1016/0034-4877(86)90067-4
http://dx.doi.org/https://doi.org/10.1016/0034-4877(86)90067-4
http://dx.doi.org/10.1088/2058-9565/ab2819
http://dx.doi.org/10.1088/2058-9565/ab2819
http://dx.doi.org/10.22331/q-2022-12-22-880
http://arxiv.org/abs/2408.12313
http://arxiv.org/abs/2502.01611
http://arxiv.org/abs/2502.02563
https://arxiv.org/abs/2410.21976v1
http://arxiv.org/abs/2410.21976v1
http://dx.doi.org/10.22331/q-2021-04-26-444
http://dx.doi.org/10.22331/q-2021-04-26-444
http://dx.doi.org/10.1007/978-3-319-21891-5
http://dx.doi.org/10.1007/978-3-319-21891-5
http://dx.doi.org/10.2307/2005338
http://dx.doi.org/10.1103/PhysRevA.72.012332
https://eprint.iacr.org/2007/338
http://dx.doi.org/10.1103/RevModPhys.94.025008
http://dx.doi.org/10.1103/RevModPhys.94.025008
http://arxiv.org/abs/2102.00021
http://dx.doi.org/10.1109/TIT.2023.3301812
http://dx.doi.org/10.1109/TIT.2023.3301812
http://dx.doi.org/10.1137/100813683
http://dx.doi.org/10.1137/100813683
https://arxiv.org/abs/1212.0520
https://arxiv.org/abs/1212.0520
http://arxiv.org/abs/1212.0520


7

Appendix A: Notation and definitions

We begin by introducing the notation that we will be using. Quantum systems and their associated Hilbert spaces
will often be denoted by capital letters, e.g. A. Given a space A, we denote the set of positive semidefinite operators
acting on A by Pos(A). An operator ρ ∈ Pos(A) is called a quantum state if we have Tr [ρ] = 1. The set of
quantum states on A is denoted by S=(A). For two operators ρ, σ ∈ Pos(A) we write ρ ≪ σ if kerσ ⊆ ker ρ, where
ker τ := {|v⟩ : τ |v⟩ = 0}. Further, we say ρ is orthogonal to σ, denoted by ρ ⊥ σ, if Tr [ρσ] = 0. The function log
denotes the logarithm base 2. We conclude this section with formal definitions of the conditional entropies considered
in this work.
Definition 3. Given any two positive semi-definite operators ρ, σ ∈ Pos(A) with Tr [ρ] > 0, and α ∈ (1,∞), the
sandwiched Rényi divergence and Petz-Rényi divergence between ρ, σ are, respectively, given by:

D̃α(ρ||σ) :=

{
1

α−1 log
Tr∥σ

1−α
2α ρσ

1−α
2α ∥α

α

Tr[ρ] ρ≪ σ

+∞ otherwise ,
(A1)

and

D̄α(ρ||σ) :=

{
1

α−1 log
Tr[ρασ1−α]

Tr[ρ] ρ≪ σ

+∞ otherwise .
(A2)

These definitions are extended to α = 1 and α = ∞ by taking the respective limits.
Definition 4. For any bipartite, normalized state ρ ∈ S=(AB), and α ∈ [1,∞], we define the following conditional
Rényi entropies:

H̃↓
α(A|B)ρ := −D̃α(ρAB ||1A ⊗ ρB) (A3)

H̃↑
α(A|B)ρ := sup

σ∈S=(B)

−D̃α(ρAB ||1A ⊗ σB) (A4)

H̄↓
α(A|B)ρ := −D̄α(ρAB ||1A ⊗ ρB) (A5)

H̄↑
α(A|B)ρ := sup

σ∈S=(B)

−D̄α(ρAB ||1A ⊗ σB) . (A6)

It is these four conditional Rényi entropy families that we focus on in this work. For the Petz-Rényi entropies, i.e.
the latter two expressions, we do not further consider α > 2, as data-processing inequalities do not generally hold in
this range. Also note that H̃↑

∞ is often referred to as the min-entropy Hmin (some works instead refer to H̃↓
∞ as the

min-entropy, though we shall not use this convention in this work).

Appendix B: Analytic Bounds and Proofs

Our main result, which encompasses the asymmetric CHSH score1

Sβ =
∑
abxy

(−1)xy+a+bβ1−xTr [ρQAQBE (Mx
a ⊗Ny

b ⊗ 1)] (B1)

for all β ∈ R [17, 33], is given by the following theorem, which summarizes the results we obtain in the rest of
this section. The result for the CHSH inequality is recovered by setting β = 1. We discuss how to include noisy
preprocessing in Appendix C.

Theorem 5. Let |β| ≥ 1, Sβ ∈
[
2|β|, 2

√
1 + β2

]
, and gS =

√
S2
β

4 − β2. Then, we have

fH̃↓
α
(Sβ) = 1 +

α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
(B2)

1 We will refer to the expected value of a Bell-inequality as a “score”, despite it not being formulated as a nonlocal game, as the term
“value” is ambiguous in certain places.
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fH̃↑
α
(Sβ) = 1 +

(
2α− 1

1− α

)
log

[(
1− gS

2

) α
2α−1

+

(
1 + gS

2

) α
2α−1

]
(B3)

for all α ∈ (1,∞). Similarly,

fH̄↓
α
(Sβ) = 1 +

1

1− α
log

[(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α
]

(B4)

fH̄↑
α
(Sβ) = 1 +

α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
(B5)

for all α ∈ (1, 2).

Remark 6. The above rate functions can be validly extended to α = ∞ (for the first pair of formulas) and α = 2
(for the second pair of formulas) by taking the limits α→ ∞ and α↗ 2 respectively, as we prove and discuss further
in Sec. B 8. (Though for the case of fH̄↑

2
, taking this limit is slightly unnecessary, in that one can directly substitute

α = 2 to obtain a well-defined expression which also matches the limiting value.) Note that the resulting formulas for
fH̃↓

∞
and fH̄↓

2
are discontinuous with respect to the CHSH score: more precisely, we have fH̃↓

∞
(S) = fH̄↓

2
(S) = 0 for

all S < 2
√
2 and fH̃↓

∞
(S) = fH̄↓

2
(S) = 1 for S = 2

√
2.

The same bounds hold for α < 1, in suitable parameter ranges. However, this regime is not generally useful for
QKD, so we omit it for brevity. We also note that this approach can be extended to |β| ≤ 1 by instead replacing
the expression for gS with that in Eq. (B18) and then taking a concave envelope at an appropriate point in the
formula, essentially the same as what was done in [17]. Note that taking this concave envelope is indeed necessary
in this regime, as the formula resulting from only replacing the gS expression does not generally satisfy the required
convexity properties.

We note that the rate functions fH̃↓
α

and fH̃↑
α

are in fact related and we have fH̃↑
α

= fH̃↓
2−1/α

. From this, it
immediately follows that our bounds satisfy fH̃↑

∞
= fH̃↓

2
, which gives a reasoning for this special case that was

observed in [24].

1. Qubit Reductions

This section contains several known results, which are necessary for future calculations. When both honest parties
are restricted to two-input two-output projective measurements, Jordan’s lemma, see e.g. [11], can be used to claim
that it is sufficient to consider states and projective measurements of the form

ρIQAQB
=
∑
i

Pr [I = i] |i⟩⟨i|I ⊗ ρiQAQB
(B6)

Mx
a =

∑
i

|i⟩⟨i|I ⊗M i,x
a (B7)

Ny
b =

∑
i

|i⟩⟨i|I ⊗N i,y
b , (B8)

where QA, QB are single-qubit Hilbert spaces on which the projective measurements M i,x
a , N i,y

b act. Moreover, Eve’s
side-information consists of the classical register I, as well as the purification of the state ρiQAQB

, for any value I = i.
We denote this pure tripartite state by ρiQAQBE

, and the post-measurement state is given by

ρxyIABE =
∑
i

Pr [I = i] |i⟩⟨i|I ⊗
∑
ab

[
|ab⟩⟨ab|AB ⊗ ρiabxyE

]
. (B9)

Using this qubit reduction, the asymmetric CHSH score Sβ will similarly be expressed as a convex mixture over all i,
i.e.

Sβ =
∑
i

Pr [I = i]Siβ (B10)



9

Siβ =
∑
abxy

(−1)xy+a+bβ1−xTr
[
ρiQAQBE

(
M i,x
a ⊗N i,y

b ⊗ 1
)]

. (B11)

After applying the key-generation measurement, Alice’s and Eve’s joint post-measurement state is given by

ρIAE =
∑
i

Pr [I = i] |i⟩⟨i|I ⊗
∑
a

[
|a⟩⟨a|A ⊗ ρiaE

]
, (B12)

where the measurement input X = 0 is kept implicit and ρiaE = TrQA

[
ρiQAE

(M i,0
a ⊗ IE)

]
.

Our goal is now to lower bound H(A|I = i, E)ρ for each value I = i; or, in other words, to lower bound the
entropy for states generated by qubit strategies. We note that by using the methods from [17], one can easily show
the following (see Lemma 7 below for a general version of this property): each such state satisfies

H(A|I = i, E)ρ ≥ H(A|I = i, E)σ , (B13)

where

σIAE =
∑
i

Pr [I = i] |i⟩⟨i|I ⊗ σiAE (B14)

σiAE =
1

2
|0⟩⟨0| ⊗ |ψ=⟩⟨ψ=|+

1

2
|1⟩⟨1| ⊗ |ψ̸=⟩⟨ψ ̸=| , (B15)

for a pair of vectors {|ψ=⟩ , |ψ̸=⟩} that can be written in the following form (for some basis vectors {|0⟩ , |1⟩} of a
two-dimensional subspace containing the span of {|ψ=⟩ , |ψ ̸=⟩}):

|ψ=⟩ = |0⟩ (B16)

|ψ̸=⟩ = giS |0⟩+
√
1− gi2S |1⟩ , (B17)

where giS =

√
Si2
β

4 − β2 for |β| ≥ 1. For |β| ≤ 1, one instead uses giS = Eβ(S
i
β), where

Eβ =


√

Si2
β

4 − β2, if |Siβ | ≥ 2
√

1 + β2 − β4√
1−

(
1− 1

|β|

√
(1− β2)

(
Si2
β

4 − 1
))2

, if |Siβ | ≤ 2
√
1 + β2 − β4 .

(B18)

More generally, the above property of qubit strategies is an instance of the following lemma. Here, one should view
Q as the function for which (depending on which case we are considering) either H↓ (A|B) = 1

1−α logQ (A|B) or
H↑ (A|B) = α

1−α logQ (A|B) holds, using H to generically represent either Petz or sandwiched entropy.

Lemma 7. Suppose Q(A|B) : S=(AB) → R is a function satisfying

1. (Local unitary invariance): For any unitary V on A we have Q(A|B)ρAB
= Q(A|B)V ρABV † .

2. (Classical linearity): For any state ρABC =
∑
c Pr[C = c]ρcAB⊗|c⟩⟨c|C classical on C, we have Q(A|BC)ρABC

=∑
c Pr[C = c]Q(A|B)ρcAB

.

3. (Data processing): For any ρABC ∈ S=(ABC) we have Q(A|BC)ρABC
≥ Q(A|B)ρAB

.

Let |ψ⟩ ∈ QAQBE with QA and QB being qubit systems, let {Ma}a be a rank-one projective measurement on QA
and let

ρAE =
∑
a

|a⟩⟨a|A ⊗ ρaE (B19)

be the post-measurement state such that gS ≥ 0. Then there exists a state

σAE =
1

2
|0⟩⟨0| ⊗ |ψ=⟩⟨ψ=|+

1

2
|1⟩⟨1| ⊗ |ψ ̸=⟩⟨ψ̸=| (B20)
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such that | ⟨ψ=|ψ ̸=⟩ | ≥ gS and

Q(A|E)ρAE
≤ Q(A|E)σAE

, (B21)

where gS is as defined above and, for any β ∈ R, depends on the asymmetric CHSH score, Sβ, achieved by the above
system.

Proof. The proof is detailed for the special case of the von Neumann entropy in [17]. We extend it to the more general
setting considered here but we note that it remains almost exactly the same proof. Without loss of generality, let us
assume that {Ma}a is a measurement in the computational basis.2 Let

ρAE =
∑
a

|a⟩⟨a|A ⊗ ρaE (B22)

ρ′AE =
∑
a

|a⊕ 1⟩⟨a⊕ 1|A ⊗ ρaE . (B23)

Due to local unitary invariance, we have that Q(A|E)ρAE
= Q(A|E)ρ′AE

. Moreover, using classical linearity, it holds
that

Q(A|EF )ρ̄AEF
= Q(A|E)ρAE

, (B24)

where

ρ̄AEF =
1

2
ρAE ⊗ |0⟩⟨0|F +

1

2
ρ′AE ⊗ |1⟩⟨1|F (B25)

=
1

2
|0⟩⟨0|A ⊗

(∑
a

ρaE ⊗ |a⟩⟨a|F

)
+

1

2
|1⟩⟨1|A ⊗

(∑
a

ρa⊕1
E ⊗ |a⟩⟨a|F

)
. (B26)

Furthermore, the initial state can be written as

|ψ⟩QAQBE
= |0⟩QA

⊗ |ψ0⟩BE + |1⟩QA
⊗ |ψ1⟩BE , (B27)

and |ψa⟩BE can be viewed as purifications of ρaE . One potential extension of ρ̄AEF is thus

ρ̄ABEFF ′ =
1

2
|0⟩⟨0|A ⊗ |ψ=⟩⟨ψ=|BEFF ′ +

1

2
|1⟩⟨1|A ⊗ |ψ̸=⟩⟨ψ ̸=|BEFF ′ , (B28)

where

|ψ=⟩ = |ψ0⟩BE ⊗ |00⟩FF ′ + |ψ′
1⟩BE ⊗ |11⟩FF ′ (B29)

|ψ ̸=⟩ = |ψ′
1⟩BE ⊗ |00⟩FF ′ + |ψ0⟩BE ⊗ |11⟩FF ′ , (B30)

and |ψ′
1⟩BE = (σX ⊗ 1) |ψ1⟩BE , where σX denotes the corresponding Pauli operator. Due to the data processing

inequality, it holds that

Q(A|E)ρAE
≤ Q(A|BEFF ′)ρ̄ABEFF ′ . (B31)

We have thus identified a state for which the desired inequality holds. The states {|ψ=⟩ , |ψ ̸=⟩} span (at most) a
two-dimensional subspace, which can be embedded in the Hilbert space E, yielding the state in Eq. (B20). Moreover,
by [17, Eqs. (73) and (95)] it must hold that | ⟨ψ=|ψ ̸=⟩ | ≥ gS .

Remark 8. Since {|ψ=⟩ , |ψ ̸=⟩} span at most a two-dimensional subspace, they can always be written as

|ψ=⟩ = eiϕ |0⟩ (B32)

|ψ ̸=⟩ = | ⟨ψ=|ψ ̸=⟩ | |0⟩+
√
1− | ⟨ψ=|ψ̸=⟩ |2 |1⟩ . (B33)

2 Any two-output projective measurement on a qubit is related to it via a unitary, which we can implicitly apply a priori.
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However, as can be seen in Eq. (B20), the angle ϕ disappears. As such, one can without loss of generality set it to
ϕ = 0. Moreover, in principle, the rate functions we derive in the following sections should depend on | ⟨ψ=|ψ̸=⟩ |
rather than gS. However, all our rate functions are monotonically increasing in the score (also in | ⟨ψ=|ψ ̸=⟩ |), and
one can thus further lower bound the entropy by replacing | ⟨ψ=|ψ̸=⟩ | with gS. This is a property that is also implicitly
used in [17], and it is this feature that allows us to simply consider states of the form given by Eq. (B15). In our case,
monotonicity is proven in Appendix B 6.

Remark 9. The last two properties we wish to mention are as follows. Due to the relation between Q(A|E), and
H(A|E), Eq. (B21) immediately implies Eq. (B13). Also, we do not consider degenerate measurements, which only
have one potential outcome, in Lemma 7. The reason for this is simple, and also discussed in [17]: not only can such a
measurement never be part of a CHSH set-up that violates the (asymmetric) CHSH inequality, but Alice’s output would
be deterministic. By choosing {|ψ=⟩ , |ψ̸=⟩} such that | ⟨ψ=|ψ̸=⟩ | = 0, we have H(A|I = i, E)ρ = H(A|I = i, E)σ = 0.
Eq. (B13) is thus trivially satisfied. Similarly, without loss of generality, we only consider set-ups for which gS is
well-defined. As an example, for β = 1, a well-defined gS corresponds to achieving a CHSH score of S ≥ 2. These
other cases would not violate the desired (asymmetric) CHSH inequality. By instead choosing Sβ such that gS = 0,
one achieves a higher score and we still bound any Rényi entropy by 0.

2. Derivation of f
H̃

↓
α
(Sβ)

Theorem 10. Let α ∈ (1,∞), |β| ≥ 1, and Sβ ∈
[
2|β|, 2

√
1 + β2

]
. Then

fH̃↓
α
(Sβ) = 1 +

α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
, (B34)

where gS =

√
S2
β

4 − β2.

Proof. For any ρIAE of the form given by Eq. (B14), we first prove that Alice’s measurement outcome after a key-
generation measurement satisfies

H̃↓
α(A|X = 0, IE)ρ ≥ 1 +

α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
. (B35)

We now consider Alice’s and Eve’s bipartite state for some I = i. For any such σAE (we omit the index i for now) as
in Eq. (B15), Eve’s reduced density matrix is given by

σE =
1− gS

2
|v1⟩⟨v1|+

1 + gS
2

|v2⟩⟨v2| , (B36)

where

|v1⟩ = −
√

1− gS
2

|0⟩+
√

1 + gS
2

|1⟩ (B37)

|v2⟩ =
√

1 + gS
2

|0⟩+
√

1− gS
2

|1⟩ . (B38)

Plugging this directly into σ
1−α
2α

E σAEσ
1−α
2α

E gives us that

σ
1−α
2α

E σAEσ
1−α
2α

E (B39)

=
1

2
|0⟩⟨0|A ⊗

[(
1− gS

2

) 1
α

|v1⟩⟨v1|E −
(
1− g2S

4

) 1
2α

(|v1⟩⟨v2|E + |v2⟩⟨v1|E) +
(
1 + gS

2

) 1
α

|v2⟩⟨v2|E

]

+
1

2
|1⟩⟨1|A ⊗

[(
1− gS

2

) 1
α

|v1⟩⟨v1|E +

(
1− g2S

4

) 1
2α

(|v1⟩⟨v2|E + |v2⟩⟨v1|E) +
(
1 + gS

2

) 1
α

|v2⟩⟨v2|E

]
(B40)
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=
1

2
|0⟩⟨0|A ⊗

[((
1− gS

2

) 1
2α

|v1⟩E −
(
1 + gS

2

) 1
2α

|v2⟩E

)((
1− gS

2

) 1
2α

⟨v1|E −
(
1 + gS

2

) 1
2α

⟨v2|E

)]

+
1

2
|1⟩⟨1|A ⊗

[((
1− gS

2

) 1
2α

|v1⟩E +

(
1 + gS

2

) 1
2α

|v2⟩E

)((
1− gS

2

) 1
2α

⟨v1|E +

(
1 + gS

2

) 1
2α

⟨v2|E

)]
. (B41)

This can alternatively be expressed as

σ
1−α
2α

E σAEσ
1−α
2α

E =
1

2

((
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

)
|0⟩⟨0|A ⊗ |w1⟩⟨w1|E

+
1

2

((
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

)
|1⟩⟨1|A ⊗ |w′

1⟩⟨w′
1|E , (B42)

where {|w1⟩ , |w′
1⟩} are normalized vectors. It then directly follows from this that

H̃↓
α(A|E)σ =

1

1− α
log

[
Tr

[(
σ

1−α
2α

E σAEσ
1−α
2α

E

)α]]
(B43)

=
1

1− α
log

2
[(

1−gS
2

) 1
α +

(
1+gS

2

) 1
α

]α
2α

(B44)

=
1

1− α
log

[(
1−gS

2

) 1
α +

(
1+gS

2

) 1
α

]α
2α−1

(B45)

= 1 +
α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
. (B46)

This concludes the calculations for the individual qubit block related to some index I = i. We now explicitly write
the index for rest of the calculation. Let h(Siβ) denote the function

h(Siβ) :=

[(
1− giS

2

) 1
α

+

(
1 + giS

2

) 1
α

]α
. (B47)

Using both Eq. (B13) and [34, Prop. 5.1], it holds that

H̃↓
α(A|X = 0, IE)ρ ≥

1

1− α
log

[∑
i

Pr [I = i] 2(1−α)H̃
↓
α(A|I=i,E)σi

]
(B48)

= 1 +
1

1− α
log

[∑
i

Pr [I = i]h(Siβ)

]
. (B49)

We show in Appendix B 6 that h(Siβ) is concave for α > 1. The desired lower bound then follows from this property,
together with the monotonicity of the logarithm, i.e.

H̃↓
α(A|X = 0, IE)ρ ≥ 1 +

1

1− α
log [h(Sβ)] (B50)

= 1 +
α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
, (B51)

where gS =

√
S2
β

4 − β2 and Sβ = Pr [I = i]Siβ . This inequality is saturated if Alice and Bob share the state√
P+ |ϕ+⟩QAQB

|0⟩E +
√
P− |ϕ−⟩QAQB

|1⟩E , (B52)
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where P± = 1
2 (1± gS), and measure the observables A0 = σz, A1 = σx, B0 = βσz+gSσx√

β2+g2S
, B1 = βσz−gSσx√

β2+g2S
(see

Appendix B 7 for more details). The derived rate function is thus tight.

3. Derivation of f
H̃

↑
α
(Sβ)

Theorem 11. Let α ∈ (1,∞), |β| ≥ 1, and Sβ ∈
[
2|β|, 2

√
1 + β2

]
. Then

fH̃↑
α
(Sβ) = fH̃↓

2− 1
α

(Sβ) . (B53)

Proof. For any ρIAE of the form given by Eq. (B14), we first consider Alice’s and Eve’s bipartite state for some I = i.
Due to Eq. (A4), for any such σAE (we omit the index i for now) as in Eq. (B15), it must hold that

H̃↑
α (A|E)σ ≥ −D̃α(σAE ||1A ⊗ τE) , (B54)

where we pick the following choice of state in the second argument:

τE =
σ

α
2α−1

E

Tr[σ
α

2α−1

E ]
. (B55)

For this state, however, one finds that

−D̃α(σAE ||1A ⊗ τE) =
1

1− α
log

[
Tr

[(
τ

1−α
2α

E σAEτ
1−α
2α

E

)α]]
(B56)

=
1

1− α
log

Tr
[(
σ

1−α
2(2α−1)

E σAEσ
1−α

2(2α−1)

E

)α]
Tr
[
σ

α
2α−1

E

]1−α
 (B57)

=
1

1− α
log

Tr
[(
σ

1−α′
2α′
E σAEσ

1−α′
2α′
E

)α]
Tr
[
σ

1
α′
E

]1−α
 , (B58)

where α′ = 2− 1
α . Moreover, it holds that

Tr

[(
σ

1−α′
2α′
E σAEσ

1−α′
2α′
E

)α]
= 2

( 1−gS2

) 1
α′ +

(
1+gS

2

) 1
α′

2

α

=
1

2α−1

((
1− gS

2

) 1
α′

+

(
1 + gS

2

) 1
α′
)α

(B59)

Tr
[
σ

1
α′
E

]1−α
=

((
1− gS

2

) 1
α′

+

(
1 + gS

2

) 1
α′
)1−α

, (B60)

where the first equation directly follows from Eq. (B42) and the second equation is due to the decomposition
σE = 1−gS

2 |v1⟩⟨v1|+ 1+gS
2 |v2⟩⟨v2|, where {|v1⟩ , |v2⟩} are orthonormal vectors given by Eqs. (B37)–(B38). This then

gives us that

H̃↑
α (A|E)σ ≥ 1

1− α
log

Tr
[(
σ

1−α′
2α′
E σAEσ

1−α′
2α′
E

)α]
Tr
[
σ

1
α′
E

]1−α
 (B61)

=
1

1− α
log

21−α((1− gS
2

) 1
α′

+

(
1 + gS

2

) 1
α′
)2α−1

 (B62)
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= 1 +
1

1− α
log

((1− gS
2

) 1
α′

+

(
1 + gS

2

) 1
α′
)2α−1

 (B63)

= 1 +
2α− 1

1− α
log

[(
1− gS

2

) 1
α′

+

(
1 + gS

2

) 1
α′
]

(B64)

= 1 +
α′

1− α′ log

[(
1− gS

2

) 1
α′

+

(
1 + gS

2

) 1
α′
]
. (B65)

This, however, is simply fH̃↓
α′
(Sβ). This concludes the calculations for the individual qubit block related to some

index I = i. We now explicitly write the index for rest of the calculation. Let h(Siβ) denote the function

h(Siβ) :=

[(
1− giS

2

) 1
α′

+

(
1 + giS

2

) 1
α′
]α′

. (B66)

Using both Eq. (B13) and [34, Prop. 5.1], it holds that

H̃↑
α(A|X = 0, IE)ρ ≥

α

1− α
log

[∑
i

Pr [I = i] 2
(1−α)

α H̃↑
α(A|I=i,E)σi

]
(B67)

=
1

1− α′ log

[∑
i

Pr [I = i] 2(1−α
′)H̃↑

α(A|I=i,E)σi

]
(B68)

≥ 1 +
1

1− α′ log

[∑
i

Pr [I = i]h(Siβ)

]
. (B69)

We show in Appendix B 6 that h(Siβ) is concave for α′ > 1. The desired lower bound then follows from this property,
together with the monotonicity of the logarithm, i.e.

H̃↑
α(A|X = 0, IE)ρ ≥ 1 +

1

1− α′ log [h(Sβ)] (B70)

= 1 +
α′

1− α′ log

[(
1− gS

2

) 1
α′

+

(
1 + gS

2

) 1
α′
]

(B71)

= fH̃↓
α′
(Sβ) , (B72)

where gS =

√
S2
β

4 − β2 and Sβ = Pr [I = i]Siβ . This inequality is saturated if Alice and Bob share the state

|ψ⟩ =
√
P+ |ϕ+⟩QAQB

|0⟩E +
√
P− |ϕ−⟩QAQB

|1⟩E , (B73)

where P± = 1
2 (1± gS), and measure the observables A0 = σz, A1 = σx, B0 = βσz+gSσx√

β2+g2S
, B1 = βσz−gSσx√

β2+g2S
. To see

this, we first note it can be readily verified that this achieves the desired score, Sβ . Moreover, after Alice applies
measurement A0, the classical output (stored in register A) satisfies

H̃↑
α (A|E)ψ ≤ H̃↓

2− 1
α

(A|E)ψ , (B74)

due to [34, Cor. 5.3]. The latter, however, is simply equal to fH̃↓
2− 1

α

(Sβ) (see Appendix B 7 for more details). The

derived upper and lower bounds are thus equal and the rate function must therefore be tight.
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4. Derivation of f
H̄

↓
α
(Sβ)

Theorem 12. Let α ∈ (1, 2), |β| ≥ 1, and Sβ ∈
[
2|β|, 2

√
1 + β2

]
. Then

fH̄↓
α
(Sβ) = 1 +

1

1− α
log

[(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α
]
, (B75)

where gS =

√
S2
β

4 − β2.

Proof. For any ρIAE of the form given by Eq. (B14), we first prove that Alice’s measurement outcome after a key-
generation measurement satisfies

H̄↓
α(A|X = 0, IE)ρ ≥ 1 +

1

1− α
log

[(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α
]
. (B76)

We now consider Alice’s and Eve’s bipartite state for some I = i. For any such σAE (we omit the index i for now) as
in Eq. (B15), one can readily verify that

σαAE =
1

2α
|0⟩⟨0| ⊗ |ψ=⟩⟨ψ=|+

1

2α
|1⟩⟨1| ⊗ |ψ̸=⟩⟨ψ ̸=| (B77)

σ
1−α
2

E =

(
1− gS

2

) 1−α
2

|v1⟩⟨v1|+
(
1 + gS

2

) 1−α
2

|v2⟩⟨v2| , (B78)

where {|ψ=⟩ , |ψ ̸=⟩} are given by Eqs. (B16)–(B17) and {|v1⟩ , |v2⟩} by Eqs. (B37)–(B38). Using the fact that√
1− g2S

√
1±gS

2 = (1± gS)
√

1∓gS
2 , we thus find that

σ
1−α
2

E σαAEσ
1−α
2

E =
1

2α

(
1− gS

2

)2−α

(|0⟩⟨0|+ |1⟩⟨1|)⊗ |v1⟩⟨v1|+
1

2α

(
1 + gS

2

)2−α

(|0⟩⟨0|+ |1⟩⟨1|)⊗ |v2⟩⟨v2| . (B79)

We note that one could alternatively have calculated σαAEσ
1−α
E . Using this, we can express the Petz-Rényi entropy as

H̄↓
α(A|E)σ =

1

1− α
log
[
Tr
[
σαAEσ

1−α
E

]]
(B80)

=
1

1− α
log
[
Tr
[
σ

1−α
2

E σαAEσ
1−α
2

E

]]
(B81)

=
1

1− α
log

[
1

2α−1

(
1− gS

2

)2−α

+
1

2α−1

(
1 + gS

2

)2−α
]

(B82)

= 1 +
1

1− α
log

[(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α
]

(B83)

This concludes the calculations for the individual qubit block related to some index I = i. We now explicitly write
the index for rest of the calculation. Let h(Siβ) denote the function

h(Siβ) :=

(
1− giS

2

)2−α

+

(
1 + giS

2

)2−α

. (B84)

Using both Eq. (B13) and [34, Prop. 5.1], it holds that

H̄↓
α(A|X = 0, IE)ρ ≥

1

1− α
log

[∑
i

Pr [I = i] 2(1−α)H̄
↓
α(A|I=i,E)σi

]
(B85)

= 1 +
1

1− α
log

[∑
i

Pr [I = i]h(Siβ)

]
. (B86)
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We show in Appendix B 6 that h(Siβ) is concave for α > 1. The desired lower bound then follows from this property,
together with the monotonicity of the logarithm, i.e.

H̄↓
α(A|X = 0, IE)ρ ≥ 1 +

1

1− α
log [h(Sβ)] (B87)

= 1 +
1

1− α
log

[(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α
]
, (B88)

where gS =

√
S2
β

4 − β2 and Sβ = Pr [I = i]Siβ . This inequality is saturated if Alice and Bob share the state√
P+ |ϕ+⟩QAQB

|0⟩E +
√
P− |ϕ−⟩QAQB

|1⟩E , (B89)

where P± = 1
2 (1± gS), and measure the observables A0 = σz, A1 = σx, B0 = βσz+gSσx√

β2+g2S
, B1 = βσz−gSσx√

β2+g2S
(see

Appendix B 7 for more details). The derived rate function is thus tight.

5. Derivation of f
H̄

↑
α
(Sβ)

Theorem 13. Let α ∈ (1, 2), |β| ≥ 1, and Sβ ∈
[
2|β|, 2

√
1 + β2

]
. Then

fH̄↑
α
(Sβ) = 1 +

α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
, (B90)

where gS =

√
S2
β

4 − β2.

Proof. From [34, Lemma 5.1], we know that

H̄↑
α (A|E)σ =

α

1− α
log
[
Tr
[
TrA (σαAE)

1
α

]]
. (B91)

For any ρIAE of the form given by Eq. (B14), we first consider Alice’s and Eve’s bipartite state for some I = i. Recall
that, for any σAE (we omit the index i for now) as in Eq. (B15), one can readily verify that

σαAE =
1

2α
|0⟩⟨0| ⊗ |ψ=⟩⟨ψ=|+

1

2α
|1⟩⟨1| ⊗ |ψ̸=⟩⟨ψ ̸=| (B92)

TrA (σαAE) =
1

2α
|ψ=⟩⟨ψ=|+

1

2α
|ψ ̸=⟩⟨ψ̸=| =

1

2α−1

(
1− gS

2
|v1⟩⟨v1|+

1 + gS
2

|v2⟩⟨v2|
)
, (B93)

where {|ψ=⟩ , |ψ ̸=⟩} are given by Eqs. (B16)–(B17) and {|v1⟩ , |v2⟩} by Eqs. (B37)–(B38).

H̄↑
α (A|E)σ =

α

1− α
log
[
Tr
[
TrA (σαAE)

1
α

]]
(B94)

=
α

1− α
log

[
2

1−α
α

((
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

)]
(B95)

= 1 +
α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
. (B96)

This concludes the calculations for the individual qubit block related to some index I = i. We now explicitly write
the index for rest of the calculation. Let h(Siβ) denote the function

h(Siβ) :=

(
1− giS

2

) 1
α

+

(
1 + giS

2

) 1
α

. (B97)
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Using both Eq. (B13) and [34, Prop. 5.1], it holds that

H̄↑
α(A|X = 0, IE)ρ ≥

α

1− α
log

[∑
i

Pr [I = i] 2
(1−α)

α H̄↑
α(A|I=i,E)σi

]
(B98)

= 1 +
α

1− α
log

[∑
i

Pr [I = i]h(Siβ)

]
. (B99)

We show in Appendix B 6 that h(Siβ) is concave for α > 1. The desired lower bound then follows from this property,
together with the monotonicity of the logarithm, i.e.

H̄↑
α(A|X = 0, IE)ρ ≥ 1 +

α

1− α
log [h(Sβ)] (B100)

= 1 +
α

1− α
log

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]
, (B101)

where gS =

√
S2
β

4 − β2 and Sβ = Pr [I = i]Siβ . This inequality is saturated if Alice and Bob share the state

|ψ⟩ =
√
P+ |ϕ+⟩QAQB

|0⟩E +
√
P− |ϕ−⟩QAQB

|1⟩E , (B102)

where P± = 1
2 (1± gS), and measure the observables A0 = σz, A1 = σx, B0 = βσz+gSσx√

β2+g2S
, B1 = βσz−gSσx√

β2+g2S
(see

Appendix B 7 for more details). The derived rate function is thus tight.

6. Monotonicity and Concavity Properties

In this section, we aim to prove the monotonicity and concavity of the following three functions for certain regions
of α > 1 and |β| ≥ 1:

h1(Sβ) =

[(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

]α
(B103)

h2(Sβ) =

(
1− gS

2

)2−α

+

(
1 + gS

2

)2−α

(B104)

h3(Sβ) =

(
1− gS

2

) 1
α

+

(
1 + gS

2

) 1
α

, (B105)

where gS =

√
S2
β

4 − β2. These functions can alternatively be expressed as

hi(Sβ) = fi(ḡ(Sβ)) , (B106)

where

f1(x) =

[(
1−

√
x

2

) 1
α

+

(
1 +

√
x

2

) 1
α

]α
(B107)

f2(x) =

(
1−

√
x

2

)2−α

+

(
1 +

√
x

2

)2−α

(B108)

f3(x) =

(
1−

√
x

2

) 1
α

+

(
1 +

√
x

2

) 1
α

, (B109)

and ḡ(Sβ) =
S2
β

4 − β2. The first derivative of h(Sβ) is given by h′i(Sβ) = f ′i(ḡ(Sβ)) · ḡ′(Sβ). Since ḡ′(Sβ) > 0 in the

regime Sβ ∈
[
2|β|, 2

√
1 + β2

]
, the monotonicity of hi(S) is purely determined by fi(x). We now show that f ′i(x) ≤ 0
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in the relevant regimes α > 1. In particular this ensures that the rate functions are monotonically increasing, a
property which is relevant for the discussion in Appendix B 1.

Proposition 14. For all x ∈ [0, 1], the functions f1(x) and f3(x) are monotonically decreasing for α ∈ (1,∞).
Moreover, for all x ∈ [0, 1], the function f2(x) is monotonically decreasing for α ∈ (1, 2).

Proof. Note that because f1(x) = f3(x)
α,

f ′1(x) = αf3(x)
α−1f ′3(x) . (B110)

However, because f3(x) ≥ 0, f ′1(x) must have the same sign as f ′3(x). We will now prove that f ′3(x) ≤ 0 for all
x ∈ (0, 1). The continuity of f3(x) then ensures that f ′3(x) is monotonic over the entire regime x ∈ [0, 1]. For α > 1,
it follows that

f ′3(x) =
(1 +

√
x)

1
α−1 − (1−

√
x)

1
α−1

2α
√
x

(B111)

≤ 0 , (B112)

thus ensuring monotonicity. For f2(x), one can either prove monotonicity by noting that it is equivalent to f3(x) after
a suitable modification of the Rényi parameter α, or alternatively one can see it via

f ′2(x) =
(2− α)

(
(1 +

√
x)

1−α − (1−
√
x)

1−α
)

2α
√
x

(B113)

≤ 0 , (B114)

which holds for all x ∈ (0, 1). Again one can extend the result to x ∈ [0, 1] via a continuity argument.

As was argued in [17], to prove concavity of hi(Sβ), it is sufficient to prove that fi(x) is concave and monotonically
decreasing and that ḡ(Sβ) is convex. Since ḡ(Sβ) is clearly convex and we have shown that all fi(x) are decreasing,
it simply remains to show that each fi(x) is concave.

Proposition 15. For all x ∈ [0, 1], the function

f3(x) =
(
1−

√
x
) 1

α +
(
1 +

√
x
) 1

α (B115)

is concave for α ∈ (1,∞).

Proof. Due to continuity arguments, it is sufficient to prove it for all x ∈ (0, 1). The second derivative of this function
is given by

f ′′3 (x) =
(1−

√
x)

1
α−1

4αx
3
2

− (1 +
√
x)

1
α−1

4αx
3
2

−
(α− 1)

(
(1 +

√
x)

1
α−2

+ (1−
√
x)

1
α−2

)
4α2x

(B116)

=
1

4αx
3
2

((
1−

√
x
) 1

α−2
(
1−

√
x− α− 1

α

√
x

)
−
(
1 +

√
x
) 1

α−2
(
1 +

√
x+

α− 1

α

√
x

))
(B117)

=
1

4αx
3
2

((
1−

√
x
) 1

α−2
(
1−

(
2− 1

α

)√
x

)
−
(
1 +

√
x
) 1

α−2
(
1 +

(
2− 1

α

)√
x

))
. (B118)

Note that, for any α > 1 and y ∈ [0, 1),

(1− y)2−
1
α ≥ 1−

(
2− 1

α

)
y +

(α− 1) (2α− 1)

2α2
y2 (B119)

(1 + y)2−
1
α ≤ 1−

(
2 +

1

α

)
y +

(α− 1) (2α− 1)

2α2
y2 . (B120)

The right-hand-side are simply Taylor approximations of the left-hand-side. These inequalities follow from the fact
that the error arising from these Taylor approximations are proportional to the third derivatives of the left-hand-side
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at some value ξ ∈ [0, y]; see e.g. [35, Eq. (1.3.2)]. The third derivative, i.e.

d3

dy3
(1− y)2−

1
α =

(2α− 1) (α− 1)

α3
(1− y)

−1− 1
α (B121)

d3

dy3
(1 + y)2−

1
α = − (2α− 1) (α− 1)

α3
(1 + y)

−1− 1
α , (B122)

are positive and negative, respectively, for all y ∈ [0, 1), thus ensuring that the bounds hold. Using this and setting
y =

√
x, we find that for all α > 1,

f ′′3 (x) ≤
1

4αx
3
2

(
1−

√
x
) 1

α−2
((

1−
√
x
)2− 1

α − (α− 1) (2α− 1)

2α2
x

)
− 1

4αx
3
2

(
1 +

√
x
) 1

α−2
((

1 +
√
x
)2− 1

α − (α− 1) (2α− 1)

2α2
x

)
(B123)

=
1

4αx
3
2

((
1−

(
1−

√
x
) 1

α−2 (α− 1) (2α− 1)

2α2
x

)
−
(
1−

(
1 +

√
x
) 1

α−2 (α− 1) (2α− 1)

2α2
x

))
(B124)

=
1

4αx
3
2

(α− 1) (2α− 1)

2α2
x
((

1 +
√
x
) 1

α−2 −
(
1−

√
x
) 1

α−2
)

(B125)

≤ 0 . (B126)

This concludes the concavity proof for α > 1.

Proposition 16. For all x ∈ [0, 1], the function

f1(x) =
((

1−
√
x
) 1

α +
(
1 +

√
x
) 1

α

)α
(B127)

is concave for α ∈ (1,∞).

Proof. Due to continuity arguments, it is sufficient to prove it for all x ∈ (0, 1). The second derivative of this function
is given by

f ′′1 (x) =
k(x)

(1− x)2

(
(1− x)

1
α

(
(4− 2α)

√
x− 2αx

3
2

)
− α

(
1−

√
x
) 2

α

(
−1−

√
x+ x+ x

3
2

)
−α

(
1 +

√
x
) 2

α

(
1−

√
x− x+ x

3
2

))
, (B128)

where k(x) =

(
(1−

√
x)

1
α +(1+

√
x)

1
α

)α−2

4αx
3
2

≥ 0. This can be simplified as follows.

f ′′1 (x) =
k(x)

(1− x)2

(
(1− x)

1
α

(
(4− 2α)

√
x− 2αx

3
2

)
+ α

(
1−

√
x
) 2

α
(
1 +

√
x
)
(1− x)− α

(
1 +

√
x
) 2

α
(
1−

√
x
)
(1− x)

)
=

k(x)

(1− x)2

(
(1− x)

1
α

(
(4− 2α)

√
x− 2αx

3
2

)
+ α (1− x)

2
((

1−
√
x
) 2

α−1 −
(
1 +

√
x
) 2

α−1
))

(B129)

= k(x)
(
(1− x)

1
α−2

(
(4− 2α)

√
x− 2αx

3
2

)
+ α

((
1−

√
x
) 2

α−1 −
(
1 +

√
x
) 2

α−1
))

(B130)

For the regime α ≥ 2, we find that for any y ∈ [0, 1)

α
(
1− y2

)2− 1
α

(
(1 + y)

2
α−1 − (1− y)

2
α−1

)
≥ (4− 2α) y . (B131)

Note that equality holds when y = 0. The inequality then follows from the fact that

d

dy

(
α
(
1− y2

)2− 1
α

(
(1 + y)

2
α−1 − (1− y)

2
α−1

)
− (4− 2α) y

)
(B132)
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=
(
1− y2

)1− 1
α

(
(3αy − α+ 2) (1− y)

2
α−1 − (3αy + α− 2) (1 + y)

2
α−1

)
− (4− 2α) (B133)

≥
(
1− y2

)1− 1
α

(
(2− α) (1− y)

2
α−1

+ (2− α) (1 + y)
2
α−1

)
− (4− 2α) (B134)

= (2− α)
(
1− y2

)1− 1
α

(
(1− y)

2
α−1

+ (1 + y)
2
α−1

)
− (4− 2α) (B135)

≥ (2− α)
(
1− y2

)1− 2
α

(
(1− y)

2
α−1

+ (1 + y)
2
α−1

)
− (4− 2α) (B136)

= (2− α)
(
(1 + y)

1− 2
α + (1− y)

1− 2
α

)
− (4− 2α) (B137)

≥ 2 (2− α)− (4− 2α) (B138)
= 0 . (B139)

The second-to-last line holds with equality for y = 0. For y > 0, the inequality holds because
(1 + y)

1− 2
α + (1− y)

1− 2
α ≥ 0 and

d

dy

(
(1 + y)

1− 2
α + (1− y)

1− 2
α

)
= −

(α− 2)
(
(1− y)

− 2
α − (1 + y)

− 2
α

)
α

(B140)

≤ 0 . (B141)

Using Eq. (B131) and setting y =
√
x, it follows that

f ′′1 (x) ≤ −2αx
3
2 k(x) (1− x)

1/a−2 (B142)
≤ 0 . (B143)

For 1 < α ≤ 2, we instead use the inequality

α
(
1− y2

)2− 1
α

(
(1 + y)

2
α−1 − (1− y)

2
α−1

)
≥ (4− 2α) y +

2 (α− 2)
(
3α2 + 2α− 2

)
3α2

y3 . (B144)

The right-hand-side should be viewed as a third-order Taylor approximation, and the bound holds because the error
arising from this Taylor approximation is proportional to the fourth derivative at some ξ ∈ [0, y], see [35, Eq. (1.3.2)],
and

d4

dy4

(
α
(
1− y2

)2− 1
α

(
(1 + y)

2
α−1 − (1− y)

2
α−1

))
(B145)

=
16 (α− 1) (α+ 1) (2α− 1)

(
1− y2

)− 1
α−2

(
(1 + y)

2
α−1 − (1− y)

2
α−1

)
a4

(B146)

≥ 0 . (B147)

It then holds that

f ′′1 (x) ≤ x
3
2 k(x) (1− x)

1/a−2

(
2 (2− α)

(
3α2 + 2α− 2

)
3α2

− 2α

)
≤ 0 . (B148)

The last inequality follows from the fact that

2 (2− α)
(
3α2 + 2α− 2

)
= 6α3 (B149)

has the three solutions α ∈ {−1, 23 , 1}. The fraction(
2 (2− α)

(
3α2 + 2α− 2

)
3α2

− 2α

)
(B150)

must thus have the same sign for all 1 < α ≤ 2. Explicitly verifying the sign for one such α then suffices to prove the
claim. This concludes the proof that f1(x) is concave for all α > 1.
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Proposition 17. For all x ∈ [0, 1], the function

f2(x) =
(
1−

√
x
)2−α

+
(
1 +

√
x
)2−α (B151)

is concave for α ∈ (1, 2).

Proof. For this function, one can either prove concavity by noting that this statement is equivalent to Proposition 15
after a suitable modification of the Rényi parameter α, or alternatively one can prove it as follows. Due to continuity
arguments, it is sufficient to prove it for all x ∈ (0, 1). The second derivative is given by

f ′′2 (x) =
2− α

4x
3
2

[(
1− α

√
x
) (

1−
√
x
)−α −

(
1 + α

√
x
) (

1 +
√
x
)−α]

. (B152)

Note that, for any α ∈ (1, 2) and y ∈ [0, 1),

(1− y)α ≥ 1− αy +
α (α+ 1)

2
y2 (B153)

(1 + y)α ≤ 1 + αy +
α (α+ 1)

2
y2 . (B154)

The right-hand-side are simply Taylor approximations of the left-hand-side, and the bound holds because the errors
arising from such Taylor approximations are proportional to the third derivative at some ξ ∈ [0, y], see [35, Eq. (1.3.2)],
and

d3

dy3
(1− y)α = α (α− 1) (2− α) (1 + y)

α−3 (B155)

d3

dy3
(1 + y)α = −α (α− 1) (2− α) (1− y)

α−3
, (B156)

which are positive and negative, respectively, for all y ∈ [0, 1). Setting y =
√
x and using the inequalities from

Eqs. (B154)–(B153), then yields

f ′′2 (x) ≤
(2− α)α (α+ 1)

8
√
x (1− x)

α

[(
1−

√
x
)α −

(
1 +

√
x
)α] (B157)

≤ 0 (B158)

This concludes the proof that f2(x) is concave for all α ∈ (1, 2).

7. Tightness of Rate Bounds

It can be shown that all inequalities are tight by considering the following attack which saturates the bound. First,
it is easy to verify that measuring that state√

P+ |ϕ+⟩QAQB
|0⟩E +

√
P− |ϕ−⟩QAQB

|1⟩E , (B159)

where P± = 1
2 (1± gS) and gS =

√
S2
β

4 − β2, in the observables A0 = σz, A1 = σx, B0 = βσz+gSσx√
β2+g2S

, B1 = βσz−gSσx√
β2+g2S

achieves a score of Sβ . Moreover, if Alice measures this state in the observable A0, one finds that the post-measurement
state is given by

ρAE =
1

2
|0⟩⟨0|A ⊗ |ψ0⟩⟨ψ0|+

1

2
|1⟩⟨1|A ⊗ |ψ1⟩⟨ψ1| , (B160)

where

|ψ0⟩ =
√
P+ |0⟩+

√
P− |1⟩ (B161)

|ψ1⟩ =
√
P+ |0⟩ −

√
P− |1⟩ . (B162)
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In the basis

|0′⟩ := |ψ0⟩ =
√
P+ |0⟩+

√
P− |1⟩ (B163)

|1′⟩ :=
√
P− |0⟩ −

√
P+ |1⟩ , (B164)

one finds that

|ψ0⟩ = |0′⟩ (B165)

|ψ1⟩ = | ⟨ψ0|ψ1⟩ | |0′⟩+
√
1− | ⟨ψ0|ψ1⟩ |2 |1′⟩ , (B166)

where

| ⟨ψ0|ψ1⟩ | = P+ − P− (B167)
= gS . (B168)

This post-measurement state thus has the same form as those from Eq. (B15). However, it is precisely on these states
that we prove explicit bounds on H (A|E). Whenever we provide an exact expression for H (A|E) for these states, the
same proof must also hold for Eq. (B159). The only key difference is that the score of Eq. (B159) is already Sβ . We
note that although one can technically calculate H̃↑

α(A|E) for such states, we use a slight variation of this argument
to prove tightness in Appendix B 3.

The proofs for deriving tight rate functions require that Q satisfies the properties mentioned in Lemma 7 and that
the bounds we derive for Q are monotonically decreasing in gS . These two conditions are necessary to reduce the
analysis to states of the form of Eq. (B15). For α > 1, concavity is necessary to derive an expression which no longer
depends on the index I. Whenever these properties hold and one derives an exact expression for H (A|E) for states
of the form of Eq. (B15), then the bounds on the corresponding rate function must be tight. We additionally note
that if the bound on Q were not concave for α > 1, but satisfied the properties of Lemma 7 and monotonicity, then
one can still achieve tight bounds; however they would depend on the bound’s concave envelope. We discuss and
explicitly use this property in Appendix C, when incorporating noisy preprocessing into the analysis.

8. Discontinuity Behavior for Edge Cases

In this subsection, we justify the claim that the Theorem 5 bounds can be extended to the right-endpoints of
the α ranges by taking the respective limits from below. As briefly mentioned previously, some of the resulting
formulas are discontinuous with respect to Sβ (for |β| ≥ 1). Specifically, fH̃↓

∞
(Sβ) and fH̄↓

2
(Sβ) have a discontinuity

at Sβ = 2
√
1 + β2, taking the value 1 at that point and 0 elsewhere. We further note that these discontinuities are

a genuine property of H̃↓
∞(A|E)ρ and H̄↓

2 (A|E)ρ, respectively, and not a result of the methods used to obtain these
bounds — we shall show this by constructing a family of states saturating these discontinuous bounds.

To prove the claim, we simply note that for all of the Rényi entropies Hα in Definition 4, for any α⋆ ∈ (1,∞] we
have Hα⋆ = limα↗α⋆ Hα = infα∈(1,α⋆) Hα because they are monotone decreasing with respect to α. Given this, we
can freely interchange the infimum over α with the infimum over quantum strategies in the definition of the rate
functions, from which we can conclude the desired claim fHα⋆ (Sβ) = infα∈(1,α⋆) fHα

(Sβ) = limα↗α⋆ fHα
(Sβ) (the

second equality holds because fHα
immediately inherits the monotonicity in α from Hα).

In fact, for the cases fH̃↓
∞

and fH̄↓
2
, we can instead prove this via a more direct analysis of the optimal attack

for each Sβ , which also shows that the discontinuities are a genuine feature of the bounds. Specifically, to calculate

H̃↓
α(A|E)ρ for the optimal attack from Eq. (B160), we need to first calculate ρ

1−α
2α

E ρAEρ
1−α
2α

E . From Eq. (B42), we see
that as α→ ∞ for Sβ < 2

√
1 + β2,

ρ
1−α
2α

E ρAEρ
1−α
2α

E → |0⟩⟨0|A ⊗ |w1⟩⟨w1|E + |1⟩⟨1|A ⊗ |w′
1⟩⟨w′

1|E , (B169)

where {|w1⟩ , |w′
1⟩} are normalized vectors. Thus,

lim
α→∞

H̃↓
α(A|E)ρ = lim

α→∞

1

1− α
· lim
α→∞

log

[
Tr

[(
σ

1−α
2α

E σAEσ
1−α
2α

E

)α]]
(B170)

= lim
α→∞

1

1− α
log 2 (B171)
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= 0 , (B172)

where the first lines follows from the fact that both limits are finite and well-defined. Hence, we get that H̃↓
∞(A|E)ρ = 0

is indeed an achievable bound. Conversely, for the maximal score, one can lower bound H̃↓
∞(A|X = 0, IE)ρ as follows.

Recall that

H̄↓
α(A|X = 0, IE)ρ ≥

1

1− α
log

[∑
i

Pr [I = i] 2(1−α)H̄
↓
α(A|I=i,E)σi

]
(B173)

were the states σiAE are defined in Eq. (B15). Each σiAE has to achieve the maximum score and therefore must be of
the form

σiAE =
1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|E +

1

2
|1⟩⟨1|A ⊗ |0⟩⟨0|E . (B174)

Using (
σiE
) 1−α

2α σiAE
(
σiE
) 1−α

2α =
1

2
|0⟩⟨0|A ⊗ |0⟩⟨0|E +

1

2
|1⟩⟨1|A ⊗ |0⟩⟨0|E , (B175)

we get that

lim
α→∞

H̃↓
α(A|E)σi = lim

α→∞

1

1− α
log

[
Tr

[((
σiE
) 1−α

2α σiAE
(
σiE
) 1−α

2α

)α]]
(B176)

= lim
α→∞

1

1− α
log 21−α (B177)

= lim
α→∞

1 (B178)

= 1 . (B179)

It follows from this that H̃↓
∞(A|X = 0, IE)ρ = 1 as well.

To calculate H̄↓
α(A|E)ρ for the optimal attack from Eq. (B160), we need to calculate ρ

1−α
2

E ραAEρ
1−α
2

E . From Eq. (B80),
we see that as α↗ 2 for Sβ < 2

√
1 + β2,

ρ
1−α
2

E ραAEρ
1−α
2

E → 1

4
(|0⟩⟨0|+ |1⟩⟨1|)⊗ |v1⟩⟨v1|+

1

4
(|0⟩⟨0|+ |1⟩⟨1|)⊗ |v2⟩⟨v2| . (B180)

where {|v1⟩ , |w2⟩} are normalized vectors. Thus,

lim
α↗2

H̄↓
α(A|E)ρ = lim

α↗2

1

1− α
· lim
α↗2

log
[
Tr
[
ρ

1−α
2

E ραAEρ
1−α
2

E

]]
(B181)

= lim
α↗2

1

1− α
log 1 (B182)

= 0 . (B183)

Conversely, if we witness a maximal score, then we again simply need to consider the state from Eq. (B174). For this
state, we find that (

σiE
) 1−α

2
(
σiAE

)α (
σiE
) 1−α

2 =
1

2α
|0⟩⟨0|A ⊗ |0⟩⟨0|E +

1

2α
|1⟩⟨1|A ⊗ |0⟩⟨0|E , (B184)

and

lim
α↗2

H̄↓
α(A|E)σi = lim

α↗2

1

1− α
log

[
Tr

[(
σiE
) 1−α

2
(
σiAE

)α (
σiE
) 1−α

2

]]
(B185)

= lim
α↗2

1

1− α
log 21−α (B186)

= 1 (B187)
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It again follows that H̄↓
∞(A|X = 0, IE)ρ = 1.

From the calculations presented above, it is evident that the discontinuities of fH̃↓
∞
(Sβ) and fH̄↓

2
(Sβ) at

Sβ = 2
√
1 + β2 arise due to the edge-case behaviors of H̃↓

∞(A|E)ρ and H̄↓
2 (A|E)ρ. Hence, our bounds are tight

even at these discontinuities. Such behavior can also be found in the Belavkin-Staszewski conditional entropy which is
discontinuous on states that are not full-rank [36]. One can then show that this implies it has the same rate function
as H̃↓

∞ and H̄↓
2 . Finally, we note that the functions fH̃↑

α
(Sβ) and fH̄↑

α
(Sβ) have no discontinuities for α > 1 (within

their respective domains of validity, i.e. α ≤ 2 for the latter).

9. Alternative Concavity Proofs

Proposition 18. For all x ∈ [0, 1], the function

f3(x) =
(
1−

√
x
) 1

α +
(
1 +

√
x
) 1

α (B188)

is concave for α ∈ (1, 2).

Proof. Due to continuity arguments, it is sufficient to consider x ∈ (0, 1). To prove that Eq. (B188) is concave, we
need to calculate its second derivative. The second derivative of Eq. (B188) is as follows:

1

4αx
3
2

(
−
(
1 +

√
x
) 1

α−2
[
1 +

(
2− 1

α

)√
x

]
+
(
1−

√
x
) 1

α−2
[
1−

(
2− 1

α

)√
x

])
. (B189)

To show that Eq. (B188) is concave, we need to show that Eq. (B189) is non-positive. The first term in the above
expression is negative. The second term is negative when x > x′, where x′ is the root of d(x) = 1− (2− 1/α)

√
x

between x = 0 and x = 1. We can see that the x′ exists by observing that d(x) switches signs and is a decreasing
between x = 0 and x = 1. Let us consider the case when α > 1 and x < x′. For concavity of Eq. (B188),

1

4αx
3
2

(
−
(
1 +

√
x
) 1

α−2
[
1 +

(
2− 1

α

)√
x

]
+
(
1−

√
x
) 1

α−2
[
1−

(
2− 1

α

)√
x

])
≤ 0 (B190)

=⇒
(
1 +

√
x
) 1

α−2
[
1 +

(
2− 1

α

)√
x

]
≥
(
1−

√
x
) 1

α−2
[
1−

(
2− 1

α

)√
x

]
(B191)

=⇒
(
1 + (2− 1/α)

√
x

1− (2− 1/α)
√
x

)(
1−

√
x

1 +
√
x

)2− 1
α

≥ 1 . (B192)

Note that as x → 0, the left-hand-side tends to 1. Also when x → x′, the left-hand-side tends to ∞. The above
inequality holds for x < x′ if, additionally,(

1 + (2− 1/α)
√
x

1− (2− 1/α)
√
x

)(
1−

√
x

1 +
√
x

)2− 1
α

(B193)

is a monotone function. To show this, let t :=
√
x, where t ∈ [0, 1). Then(

1 + (2− 1/α)
√
x

1− (2− 1/α)
√
x

)(
1−

√
x

1 +
√
x

)2− 1
α

=

(
1 + (2− 1/α) t

1− (2− 1/α) t

)(
1− t

1 + t

)2− 1
α

, (B194)

and the first derivative of Eq. (B193) is as follows:

d

dt

[(
1 + (2− 1/α) t

1− (2− 1/α) t

)(
1− t

1 + t

)2− 1
α

]
(B195)

=
[(2− 1/α) (1− t)2−

1
α − (1 + (2− 1/α) t)(2− 1/α)(1− t)1−

1
α ](1− (2− 1/α) t)(1 + t)2−

1
α )

(1− (2− 1/α) t)2(1 + t)4−
2
α
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+
[(2− 1/α) (1 + t)2−

1
α − (1− (2− 1/α) t)(2− 1/α)(1 + t)1−

1
α ](1 + (2− 1/α) t)(1− t)2−

1
α )

(1− (2− 1/α) t)2(1 + t)4−
2
α

(B196)

=
2 (2− 1/α) (1− t2)2−

1
α − 2(1− (2− 1/α)

2
t2)(2− 1/α)(1− t2)1−

1
α

(1− (2− 1/α) t)2(1 + t)4−
2
α

(B197)

=

(
4− 2

α

)
(1− t2)1−

1
α

((2− 1/α)2 − 1)t2

(1− (2− 1/α) t)2(1 + t)4−
2
α

≥ 0 , (B198)

when t ∈ [0,
√
x′). Hence, Eq. (B193) is monotone when x ∈ [0, x′). Therefore, we have shown that Eq. (B189) is

non-positive and thus Eq. (B188) is concave.

Proposition 19. For all x ∈ [0, 1], the function

f2(x) =
(
1−

√
x
)2−α

+
(
1 +

√
x
)2−α (B199)

is concave for α ∈ (1, 2).

Proof. To prove that Eq. (B199) is concave, we need to calculate its second derivative. Due to continuity arguments,
it is sufficient to consider x ∈ [0, 1). The second derivative is given by

2− α

4x
3
2

[
−
(
1 + α

√
x
) (

1 +
√
x
)−α

+
(
1− α

√
x
) (

1−
√
x
)−α]

. (B200)

To show that Eq. (B199) is concave, we need to show that Eq. (B200) is non-positive. The first term in the above
expression is negative. The second term is negative when x > x′, where x′ is the root of h(x) = 1 − α

√
x between

x = 0 and x = 1. We can see that the x′ exists by observing that h(x) switches signs and is a decreasing between
x = 0 and x = 1. Let us consider the case when, α > 1 and x < x′

2− α

4x
3
2

[
−
(
1 + α

√
x
) (

1 +
√
x
)−α

+
(
1− α

√
x
) (

1−
√
x
)−α] ≤ 0 (B201)

=⇒
(
1 + α

√
x
) (

1 +
√
x
)−α ≥

(
1− α

√
x
) (

1−
√
x
)−α (B202)

=⇒ (1 + α
√
x) (1−

√
x)
α

(1− α
√
x) (1 +

√
x)
α ≥ 1 . (B203)

Note that as x → 0, the left-hand-side tends to 1. Also when x → x′, the left-hand-side tends to ∞. The above
inequality holds for x < x′ if, additionally,

(1 + α
√
x) (1−

√
x)
α

(1− α
√
x) (1 +

√
x)
α (B204)

is a monotone function. To show this, let t :=
√
x, where t ∈ [0, 1). Then

(1 + α
√
x) (1−

√
x)
α

(1− α
√
x) (1 +

√
x)
α =

(1 + αt) (1− t)
α

(1− αt) (1 + t)
α , (B205)

and the first derivative of Eq. (B204) is as follows:

d

dt

[
(1 + αt) (1− t)

α

(1− αt) (1 + t)
α

]
(B206)

=
[α(1− t)α − α(1 + αt)(1− t)α−1]((1− αt)(1 + t)α)

(1− αt)2(1 + t)2α
+

[α(1 + t)α − α(1− αt)(1 + t)α−1]((1 + αt)(1− t)α)

(1− αt)2(1 + t)2α

=
2α(1− t2)α + 2α(1− t2)α−1(α2t2 − 1)

(1− αt)2(1 + t)2α
= 2α(1− t2)α−1 (α2 − 1)t2

(1− αt)2(1 + t)2α
≥ 0 . (B207)

when t ∈ [0,
√
x′). Hence, Eq. (B204) is monotone when x ∈ [0, x′). Therefore, we have shown that Eq. (B200) is

non-positive and thus Eq. (B199) is concave.
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Appendix C: Incorporating Noisy Preprocessing

Noisy preprocessing is a technique to boost key rates by injecting randomness into Alice’s raw string during gen-
eration rounds [37]. The intuition is that in certain settings this can decrease Eve’s information about Alice’s raw
string more than it decreases Bob’s information, overall leading to an increase in the key rate. It has already been
shown for the CHSH-based DIQKD protocol that this can lower the minimal detection efficiencies [16]. To implement
noisy preprocessing, Alice simply flips her output bit with some probability q in generation rounds, using private
local randomness. After incorporating such a step, the resulting classical-quantum state ρIAE is no longer given by
Eq. (B14); rather it is of the form

ρIAE =
∑
i

Pr [I = i] |i⟩⟨i|I ⊗
∑
a

[
|a⟩⟨a|A ⊗

(
(1− q)ρiaE + qρ

i(a⊕1)
E

)]
. (C1)

Following the same arguments as those used to prove Lemma 7, to lower bound H(A|I, E)ρ it suffices to consider
states of the form

σIAE =
∑
i

Pr [I = i] |i⟩⟨i|I ⊗ σiAE (C2)

σiAE =
1

2
|0⟩⟨0| ⊗ ((1− q) |ψ=⟩⟨ψ=|+ q |ψ̸=⟩⟨ψ ̸=|) +

1

2
|1⟩⟨1| ⊗ (q |ψ=⟩⟨ψ=|+ (1− q) |ψ̸=⟩⟨ψ ̸=|) , (C3)

such that | ⟨ψ=|ψ̸=⟩ | ≥ gS . In the following theorem, we will use the notation that for gS =

√
S2
β

4 − β2, we define the
following quantities:

N1 =

√(
gS −

√
g2S + (1− 2q)

2
(1− g2S)

)2

+ (1− 2q)
2
(1− g2S) (C4)

N2 =

√(
gS +

√
g2S + (1− 2q)

2
(1− g2S)

)2

+ (1− 2q)
2
(1− g2S) . (C5)

Theorem 20. Let |β| ≥ 1, Sβ ∈
[
2|β|, 2

√
1 + β2

]
, and gS =

√
S2
β

4 − β2. Then, for any q ∈ [0, 1], we have (writing “h

to denote the concave envelope of an arbitrary function h :
[
2|β|, 2

√
1 + β2

]
→ R):

fH̃↓
α
(Sβ) = 1 +

1

1− α
log
[
“hH̃↓

α
(Sβ)

]
(C6)

for all α ∈ (1,∞), where

hH̃↓
α
(Sβ) =

1

2α+1

[(
(1− gS)

1
α + (1 + gS)

1
α +

√(
(1− gS)

1
α + (1 + gS)

1
α

)2
− 16 (1− g2S)

1
α (q − q2)

)α

+

(
(1− gS)

1
α + (1 + gS)

1
α −

√(
(1− gS)

1
α + (1 + gS)

1
α

)2
− 16 (1− g2S)

1
α (q − q2)

)α]
. (C7)

Similarly,

fH̄↓
α
(Sβ) = 1 +

1

1− α
log
[
“hH̄↓

α
(Sβ)

]
(C8)

fH̄↑
α
(Sβ) = 1 +

α

1− α
log
[
“hH̄↑

α
(Sβ)

]
(C9)

for all α ∈ (1, 2], where



27

hH̄↓
α
(Sβ) =

2∑
j=1

1

2

(
1 + (−1)j+1

√
g2S + (2q − 1)2(1− g2S)

)α
(1− gS)

1−α

(
gS + (−1)j

√
g2S + (2q − 1)2(1− g2S)

Nj

)2

+

2∑
j=1

1

2

(
1 + (−1)j+1

√
g2S + (2q − 1)2(1− g2S)

)α
(1 + gS)

1−α

(
(2q − 1)

√
1− g2S

Nj

)2

(C10)

and

hH̄↑
α
(Sβ) =

 2∑
j=1

(
1 + (−1)

j+1
√
g2S + (2q − 1)2(1− g2S)

2

)α1−

(
(2q − 1)

√
1− g2S

Nj

)2
 1

α

+

 2∑
j=1

(
1 + (−1)

j+1
√
g2S + (2q − 1)2(1− g2S)

2

)α(
(2q − 1)

√
1− g2S

Nj

)2
 1

α

. (C11)

A proof of Theorem 20 can be found in Appendix C 1. Note that the final bounds fH are presented in terms of the
concave envelopes “hH of the functions hH — in order to avoid having to take this concave envelope, it would suffice to
show that all hH are concave. We note that, up to numerical precision, these functions indeed appear to be concave.
We leave a rigorous proof of concavity for future work, and highlight that a consequence of this concavity would be
that the equality fH̃↓

α
= fH̄↑

α
does not generally hold for every q ∈ [0, 1] and α ∈ (1, 2].

1. Proof of Theorem 20

Proof. For any σIAE of the form given by Eq. (C2), we first consider Alice’s and Eve’s bipartite state for some I = i.
For any σAE as in Eq. (C3), Eve’s reduced density matrix is given by

σE =
1− gx

2
|v1⟩⟨v1|+

1 + gx
2

|v2⟩⟨v2| , (C12)

where gx = | ⟨ψ=|ψ ̸=⟩ | and3

|v1⟩ = −
√

1− gx
2

|0⟩+
√

1 + gx
2

|1⟩ (C13)

|v2⟩ =
√

1 + gx
2

|0⟩+
√

1− gx
2

|1⟩ . (C14)

We first derive an exact expression for H̃↓
α(A|E)σ. Plugging the above expressions directly into σ

1−α
2α

E σAEσ
1−α
2α

E gives
us that

σ
1−α
2α

E σAEσ
1−α
2α

E (C15)

=
1

2
|0⟩⟨0|A ⊗

[(
1− gx

2

) 1
α

|v1⟩⟨v1|E +

(
1− g2x

4

) 1
2α

(q − q̄) (|v1⟩⟨v2|E + |v2⟩⟨v1|E) +
(
1 + gx

2

) 1
α

|v2⟩⟨v2|E

]

+
1

2
|1⟩⟨1|A ⊗

[(
1− gx

2

) 1
α

|v1⟩⟨v1|E +

(
1− g2x

4

) 1
2α

(q̄ − q) (|v1⟩⟨v2|E + |v2⟩⟨v1|E) +
(
1 + gx

2

) 1
α

|v2⟩⟨v2|E

]
,

(C16)

3 Note that we work with gx, rather than gS , as we do not explicitly prove the fact that hH(Sβ) is monotonically decreasing. Rather, at
an appropriate point, we use the fact that its concave envelope is monotonically decreasing.



28

where q̄ = 1− q. This expression is diagonalizable, and it is easily verifiable that

σ
1−α
2α

E σAEσ
1−α
2α

E = 2−1− 1
α (|0⟩⟨0|A ⊗ [λ1 |w1⟩⟨w1|E + λ2 |w2⟩⟨w2|E ] + |1⟩⟨1|A ⊗ [λ′1 |w′

1⟩⟨w′
1|E + λ′2 |w′

2⟩⟨w′
2|E ]) ,

(C17)

where {|w1⟩ , |w2⟩} and {|w′
1⟩ , |w′

2⟩} are pairwise orthonormal vectors, and

λ1,2 =
(1− gx)

1
α + (1 + gx)

1
α

2
±

√√√√( (1− gx)
1
α + (1 + gx)

1
α

2

)2

− (1− g2x)
1
α (4q − 4q2) (C18)

λ′1,2 =
(1− gx)

1
α + (1 + gx)

1
α

2
±

√√√√( (1− gx)
1
α + (1 + gx)

1
α

2

)2

− (1− g2x)
1
α (4q̄ − 4q̄2) . (C19)

Note that because q − q2 = q̄ − q̄2, it must also hold that λ1,2 = λ′1,2. It then directly follows that

H̃↓
α(A|E)σ =

1

1− α
log

[
Tr

[(
σ

1−α
2α

E σAEσ
1−α
2α

E

)α]]
(C20)

=
1

1− α
log

[λα1 + λα2 + λ′α1 + λ′α2 ]

2α+1
(C21)

=
1

1− α
log

[2λα1 + 2λα2 ]

2α+1
(C22)

=
1

1− α
log

[λα1 + λα2 ]

2α
. (C23)

This thus yields

H̃↓
α(A|E)σ = 1+

1

1− α
log

[
1

2α+1

[(
(1− gx)

1
α + (1 + gx)

1
α +

√(
(1− gx)

1
α + (1 + gx)

1
α

)2
− 16 (1− g2x)

1
α (q − q2)

)α

+

(
(1− gx)

1
α + (1 + gx)

1
α −

√(
(1− gx)

1
α + (1 + gx)

1
α

)2
− 16 (1− g2x)

1
α (q − q2)

)α]]
. (C24)

Up to the use of the concave envelope and the difference between gx and gS , this is the expression from Eq. (C6).
Next, we consider H̄↓

α(A|E)σ. For any σAE as in Eq. (C3), it holds that

σαAE = |0⟩⟨0| ⊗

[(
1 +

√
g2x + (q − q̄)2(1− g2x)

4

)α
|u1⟩⟨u1|+

(
1−

√
g2x + (q − q̄)2(1− g2x)

4

)α
|u2⟩⟨u2|

]

+ |1⟩⟨1| ⊗

[(
1 +

√
g2x + (q − q̄)2(1− g2x)

4

)α
|u′1⟩⟨u′1|+

(
1−

√
g2x + (q − q̄)2(1− g2x)

4

)α
|u′2⟩⟨u′2|

]
, (C25)

where

|u1⟩ =
gx −

√
g2x + (q − q̄)2(1− g2x)

N1
|v1⟩ −

(q − q̄)
√
1− g2x

N1
|v2⟩ (C26)

|u2⟩ =
gx +

√
g2x + (q − q̄)2(1− g2x)

N2
|v1⟩ −

(q − q̄)
√
1− g2x

N2
|v2⟩ (C27)

|u′1⟩ =
gx −

√
g2x + (q − q̄)2(1− g2x)

N1
|v1⟩+

(q − q̄)
√
1− g2x

N1
|v2⟩ (C28)

|u′2⟩ =
gx +

√
g2x + (q − q̄)2(1− g2x)

N2
|v1⟩+

(q − q̄)
√
1− g2x

N2
|v2⟩ . (C29)
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It then holds that

H̄↓
α(A|E)σ =

1

1− α
log
[
Tr
[
σαAEσ

1−α
E

]]
(C30)

=
1

1− α
log

 2∑
j=1

2

(
1 + (−1)j+1

√
g2x + (q − q̄)2(1− g2x)

4

)α(
1− gx

2

)1−α
(
gx + (−1)j

√
g2x + (q − q̄)2(1− g2x)

Nj

)2

+

2∑
j=1

2

(
1 + (−1)j+1

√
g2x + (q − q̄)2(1− g2x)

4

)α(
1 + gx

2

)1−α
(
(q − q̄)

√
1− g2x

Nj

)2
 . (C31)

Slightly rewriting this equality, we then attain that this is equal to

1 +
1

1− α
log

 2∑
j=1

1

2

(
1 + (−1)j+1

√
g2x + (2q − 1)2(1− g2x)

)α
(1− gx)

1−α

(
gx + (−1)j

√
g2x + (2q − 1)2(1− g2x)

Nj

)2

+

2∑
j=1

1

2

(
1 + (−1)j+1

√
g2x + (2q − 1)2(1− g2x)

)α
(1 + gx)

1−α

(
(2q − 1)

√
1− g2x

Nj

)2
 . (C32)

To calculate H̄↑
α (A|E)σ, we again use [34, Lemma 5.1], i.e.

H̄↑
α (A|E)σ =

α

1− α
log
[
Tr
[
TrA (σαAE)

1
α

]]
. (C33)

A consequence of the above calculations is that

TrA[σ
α
AE ] =

2∑
j=1

(
1 + (−1)

j+1
√
g2x + (q − q̄)2(1− g2x)

4

)α (
|uj⟩⟨uj |+ |u′j⟩⟨u′j |

)
(C34)

=

2∑
j=1

2

(
1 + (−1)

j+1
√
g2x + (q − q̄)2(1− g2x)

4

)α

·

(gx + (−1)
j
√
g2x + (q − q̄)2(1− g2x)

Nj

)2

|v1⟩⟨v1|+

(
(q − q̄)

√
1− g2x

Nj

)2

|v2⟩⟨v2|

 (C35)

=

2∑
j=1

2

(
1 + (−1)

j+1
√
g2x + (q − q̄)2(1− g2x)

4

)α

·

1−

(
(q − q̄)

√
1− g2x

Nj

)2
 |v1⟩⟨v1|+

(
(q − q̄)

√
1− g2x

Nj

)2

|v2⟩⟨v2|

 . (C36)

The eigenvalues of TrA[σαAE ] are given by

µ1 =2

2∑
j=1

(
1 + (−1)

j+1
√
g2x + (q − q̄)2(1− g2x)

4

)α1−

(
(q − q̄)

√
1− g2x

Nj

)2
 (C37)

µ2 =2

2∑
j=1

(
1 + (−1)

j+1
√
g2x + (q − q̄)2(1− g2x)

4

)α(
(q − q̄)

√
1− g2x

Nj

)2

, (C38)

and therefore
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H̄↑
α (A|E)σ = 1 +

α

1− α
log


 2∑
j=1

(
1 + (−1)

j+1
√
g2x + (2q − 1)2(1− g2x)

2

)α1−

(
(2q − 1)

√
1− g2x

Nj

)2
 1

α

+

 2∑
j=1

(
1 + (−1)

j+1
√
g2x + (2q − 1)2(1− g2x)

2

)α(
(2q − 1)

√
1− g2x

Nj

)2
 1

α

 . (C39)

Again, up to the use of the concave envelope and the difference between gx and gS , these expressions for the Petz-Rényi
entropies are equal to Eqs. (C8) − (C9). Let us now reintroduce the index I = i. We prove in Appendix C 2 that all
three functions “hH are monotonically decreasing. By upper bounding hH with “hH and then using the fact that, due
to the monotonicity of “hH, one can provide a subsequent upper bound by replacing gx with gS , the following must be
true. For any ρIAE of the form given by Eq. (C1), it must hold that

H̃↓
α(A|X = 0, IE)ρ ≥

1

1− α
log

[∑
i

Pr [I = i] 2(1−α)H̃
↓
α(A|I=i,E)σi

]
(C40)

≥ 1 +
1

1− α
log

[∑
i

Pr [I = i] “hH̃↓
α
(Siβ)

]
(C41)

≥ 1 +
1

1− α
log
[
“hH̃↓

α
(Sβ)

]
, (C42)

where we use [34, Prop. 5.1] in the first inequality. To prove that this bound is tight, first note that, by construction,
for any Sβ ∈

[
2|β|, 2

√
1 + β2

]
, there must exist a set of {Siβ}i and a distribution defined by the elements {pi}i such

that ∑
i

piS
i
β = Sβ (C43)∑

i

pihH̃↓
α

(
Siβ
)
= “hH̃↓

α
(Sβ) . (C44)

For any such Siβ , the explicit attack from Appendix B 7 produces a post-measurement state, σiAE , of the form as in
Eq. (C3). However, for such states, we have explicitly calculated the Rényi entropy, and

H̃↓
α(A|X = 0, E)σi = 1 +

1

1− α
log
(
hH̃↓

α

(
Siβ
))

. (C45)

If, with probability pi, Eve constructs the attack from Appendix B 7 that achieves a score of Siβ and stores the index
I = i on a classical register, then she can generate the post-measurement state σIAE =

∑
i pi |i⟩⟨i|I ⊗ σiAE . For this

state,

H̃↓
α(A|X = 0, IE)σ = 1 +

1

1− α
log

(∑
i

pihH̃↓
α
(Siβ)

)
(C46)

= 1 +
1

1− α
log
(

“hH̃↓
α
(Sβ)

)
, (C47)

due to [34, Prop. 5.1] (or else see the classical linearity property in Lemma 7). This attack thus saturates our bounds.
Using the same arguments, it must also hold that

H̄↓
α(A|X = 0, IE)ρ = 1 +

1

1− α
log
[
“hH̄↓

α
(Sβ)

]
(C48)

H̄↑
α(A|X = 0, IE)ρ = 1 +

α

1− α
log
[
“hH̄↑

α
(Sβ)

]
. (C49)
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2. Monotonicity Properties

In this section, we show that all three functions “hH(Sβ) described in Theorem 20 are monotonically decreasing in
the score, Sβ (for α, β in the appropriate ranges).

Proposition 21. For all α ∈ (1,∞) and q ∈ [0, 1], the function “hH̃↓
α
(Sβ) is monotonically decreasing in the in-

terval Sβ ∈
[
2|β|, 2

√
1 + β2

]
. Similarly, for all α ∈ (1, 2) and q ∈ [0, 1], the functions “hH̄↓

α
(Sβ) and “hH̄↑

α
(Sβ) are

monotonically decreasing in the interval Sβ ∈
[
2|β|, 2

√
1 + β2

]
.

Proof. Intuitively, the monotonicity will be a consequence of the fact that “hH(Sβ) is concave and non-increasing
at the point Sβ = 2|β|. More concretely, for any hH(Sβ), we are evaluating (up to a multiplicative constant) the
corresponding quantity Q(A|E) for a classical-quantum state of the form in Eq. (C3) such that | ⟨ψ=|ψ̸=⟩ | = gS . For
these classical-quantum states, we shall show that

hH(Sβ) ≤ hH(2|β|) . (C50)

In other words, at gS = 0 (i.e. Sβ = 2|β|), Eve only needs to guess the noisy preprocessing bit; for all other gS > 0,
the conditional entropy, H(A|E), cannot be lower than that value. To prove this, let A′ contain Alice’s output bit
before applying noisy preprocessing, let Q contain the noisy preprocessing bit that is added to A′, and let A contain
the bit Alice stores after incorporating noisy preprocessing. It must hold that

H(Q) = H(Q|A′E) = H(AQ|A′E) = H(A|A′E) ≤ H(A|E) . (C51)

The first inequality holds, as Q is sampled independently and not related to the registers A′ and E. The second
equality holds, because A can be constructed deterministically from A′ and Q, in the sense of [12, Lemma B.7].
The third equality holds for the same reason, i.e. Q can be constructed deterministically from A′ and A. The last
inequality holds due to data processing [34, Corollary 5.1].

For any H, the constant function l(Sβ) = hH(2|β|) is an upper bound on hH(Sβ) that is (trivially) concave, and
tight at the endpoint Sβ = 2|β|; this implies that the concave envelope of hH(Sβ) also satisfies

“hH(2|β|) = hH(2|β|) . (C52)

We are now ready to prove monotonicity. For any a, b ∈
[
2|β|, 2

√
1 + β2

]
such that a ≤ b, it must hold due to

concavity that

“hH(a) ≥
b− a

b− 2|β|
“hH(2|β|) +

a− 2|β|
b− 2|β|

“hH(b) =
b− a

b− 2|β|
l(b) +

a− 2|β|
b− 2|β|

“hH(b) . (C53)

Moreover, as l(Sβ) is concave, it must also be an upper bound on “hH(Sβ). It then follows that

“hH(a) ≥
b− a

b− 2|β|
“hH(b) +

a− 2|β|
b− 2|β|

“hH(b) = “hH(b) . (C54)

This proves that all three functions are monotonically decreasing.

Appendix D: Finite-size key rates

We first elaborate on the classical postprocessing used in the last steps. For a DIQKD protocol, this consists of the
following procedures:

1. Error correction and error verification: In error correction, Alice sends a string LEC (of some fixed length ℓEC)
to Bob, who uses it to produce a guess for Alice’s string An1 . Then in error verification, Alice draws some choice
of hash function HEV from a δ-almost-universal hash family [38] (with fixed output length ℓEV), then applies
it to An1 and sends the resulting value LEV to Bob, along with the choice of hash function HEV. Bob then
computes the corresponding hash of his guess and aborts if it does not match.

2. Privacy amplification: Alice applies a privacy amplification procedure to An1 to produce a final key of length
ℓkey, and Bob does the same to his guess for An1 .
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When designing a protocol for the finite-size regime, there are two critical “overall” parameters that should be
considered. We briefly outline them here, deferring the details to e.g. [27, 39].

1. The completeness parameter ϵcom: this is an upper bound on the probability that the honest behavior aborts.
Since this protocol might abort during either the acceptance test or the error verification step, it is convenient
to construct upper bounds ϵAT

com and ϵEV
com on the abort probabilities in each of those two steps respectively, after

which one can validly take ϵcom = ϵAT
com + ϵEV

com due to the union bound. Here we design the protocol such that
ϵAT
com = 10−3 and ϵEV

com ≤ 10−3 in an essentially similar fashion to [27]4 (we elaborate on this in Sec. D 1 below).
We emphasize that this parameter does not affect the security properties of the protocol in any way, which are
instead quantified by the next parameter.

2. The soundness parameter ϵsound: informally, this quantifies the “security” of the final key; refer to [27, 39] for
a rigorous definition. As discussed in those works, to analyze this parameter it suffices to separately consider
a correctness parameter ϵcorr and a secrecy parameter ϵsecret, then set ϵsound = ϵcorr + ϵsecret. Basically,
ϵcorr is an upper bound on the probability that the final keys do not match and the protocol accepts, while
roughly speaking ϵsecret quantifies how well Alice’s final key is decoupled from Eve; again, see [27, 39] for details.
Following [27], we design the protocol such that ϵsound = 10−10, by setting ϵcorr = 2−61 and ϵsecret = ϵsound−ϵcorr.

We now discuss the details of our protocol in terms of the above parameters. For the testing probability γ, in Fig. 1a
we followed the value γ = 13/256 used in [27] for all data points, whereas in Fig. 1b we optimized over γ in units
of 1/256 (as was done in [27] so that the test/generation decision could be straightforwardly determined by drawing
8 uniformly random bits). We did so because we found that for the range of n values in the former, optimizing the
choice of γ only improved the finite-size key rates by less than 0.002. In contrast, for the larger n values considered
in the latter, we found that it was important to optimize over the choice of γ to obtain better finite-size key rates —
this is due to some subtle limitations we discuss in Appendix D4 later.

We emphasize that apart from the above point regarding γ, our protocol only differs from the protocol in [27] in
terms of using a slightly different accept condition (see Remark 22), a technical point in privacy amplification (see
Remark 23), and having Bob directly announce the values B̄n1 for Alice to compute C̄n1 (which slightly simplifies the
analysis without sacrificing key rate; see Remark 24).

1. Completeness

To discuss completeness, we need to specify some honest behavior for the devices. We suppose that the honest
behavior is IID, and each round produces some distribution qhon on the register C̄j for that round. For our protocol,
this distribution would have the form

qhon(0) = γ(1− ωhon), qhon(1) = γωhon, qhon(⊥) = 1− γ, (D1)

where ωhon is the expected CHSH winning probability of the honest behavior in test rounds. Furthermore, let Qerr
hon

denote the probability of Alice and Bob getting different outcomes in generation rounds. Following [27], we set

ωhon = 0.83, Qerr
hon = 0.018, (D2)

where the ωhon value corresponds to the expected CHSH “correlator” score of S = 2.64 used in that work (as a
somewhat conservative estimate of the device performance in that experiment).

For a given ϵAT
com, we need to choose the set Sacc in the accept condition such that the probability of the honest

behavior yielding a frequency distribution outside Sacc is at most ϵAT
com. We shall focus on Sacc of the following form:

for each value c̄ ∈ {0, 1,⊥} we take some values δlowc̄ , δuppc̄ > 0, and set Sacc to be the set of distributions q satisfying

∀c̄ ∈ {0, 1,⊥}, qhon(c̄)− δlowc̄ ≤ q(c̄) ≤ qhon(c̄) + δuppc̄ . (D3)

For Sacc of this form, to achieve some desired ϵAT
com, it suffices to choose the values δlowc̄ , δuppc̄ such that for the honest

behavior we have

∀c̄ ∈ {0, 1,⊥}, Pr[freqC̄n
1
(c̄) < qhon(c̄)− δlowc̄ ] ≤ ϵAT

com

6
and Pr[freqC̄n

1
(c̄) > qhon(c̄) + δuppc̄ ] ≤ ϵAT

com

6
, (D4)

4 While the final completeness parameter reported in that work was ϵcom = 10−2, that was a somewhat conservative estimate.
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since by the union bound, the probability of violating one or more of the inequalities is upper bounded by the sum of
the individual probabilities of violating each one. (It would of course be possible to “distribute” ϵAT

com in some other
fashion across the terms; however, we found heuristically that this appears to give better performance as compared
to e.g. distributing it such that all the values δlowc̄ , δuppc̄ are equal.) Since the honest behavior is IID, the probabilities
in (D4) can be written in terms of the CDF of a binomial distribution, which allows us to use the inverse CDF
(available in most computational software) to solve for δlowc̄ , δuppc̄ in terms of ϵAT

com.

Remark 22. This choice of accept condition differs slightly from [27], which used an accept condition with only a
one-sided bound on q(1). We chose to use the form presented here because in some cases it seems to improve the key
rates from the REAT (albeit usually only by a small amount), and also because a lower bound on q(⊥) in the accept
condition is needed to apply an improved chain rule we use later (in the first line of Eq. (D9) below).

Furthermore, the accept condition in [27] was based on a 3-standard-deviation “tolerance”, rather than exactly
computing the CDF of a binomial distribution to achieve a desired ϵAT

com. For this work we choose to conservatively
match this by setting ϵAT

com = 10−3, since a (one-sided) 3-standard-deviation fluctuation in a normal distribution occurs
with probability 1.35× 10−3 > 10−3.

As for ϵEV
com, we first observe that error verification can only abort if Bob’s guess for An1 is wrong, thus any upper

bound on the probability of the latter (under the honest behavior) is a valid choice of ϵEV
com. We then note that a

specialized error correction procedure was developed in [27] with the following properties: for an IID honest behavior
of the described form, an error-correction string of length

ℓEC = n ((1− γ)hbin(Q
err
hon) + γhbin(1− ωhon)) + 50

√
n (D5)

suffices to ensure that Bob’s guess is correct with probability over 99.9%, as estimated by simulations. (While this
value is a somewhat heuristic estimate, recall that it only affects the probability that the honest behavior aborts, not
any of the security properties of the protocol.) Hence performing error correction according to this procedure suffices
to heuristically ensure ϵEV

com ≤ 10−3.

2. Correctness

In [27], error verification was performed using a δ-almost-universal hash with δ = 2−61 and ℓEV = 64 (under the
condition that the message length in bits is at most 264 ≈ 1019, which is indeed the case here). We leave this aspect
entirely unchanged, which suffices to ensure a correctness parameter of ϵcorr = 2−61 as proven in [27].

3. Secrecy

This is the part of our analysis that differs the most from [27], in that apart from improving the entropy accumulation
bound, we simplify or improve a number of other steps in the analysis. We shall show that to achieve a desired secrecy
parameter ϵsecret, it suffices to take the length of the final key to be

ℓkey = nhα − n
(
γ + δlow⊥

)
− ℓEC − ℓEV − α

α− 1
log

1

ϵsecret
+ 2, (D6)

where hα is computed in terms of the Sacc choice defined in Sec. D 1, while ℓEC and ℓEV are as described in (D5) and
Sec. D 2 respectively. Note that to evaluate hα, we used generic heuristic numerical methods rather than a convex
solver that returns explicit dual bounds, because our bounds on the Rényi entropy do not fall within the standard
disciplined-convex-programming ruleset for such solvers. However, as the optimization is convex with respect to each
of the individual variables, every local minimum is a global minimum and hence we believe it is unlikely that the
resulting value we obtain for hα is a significant overestimate of its true value.

Remark 23. In order for the following analysis to hold, we currently require an implementation difference between
the protocol described here and the protocol in [27], in that privacy amplification would have to be performed using
2-universal hashing [40] rather than Trevisan’s extractor [27, 41, 42] as used in that work. This is because a Rényi
privacy amplification theorem has currently only been proven for the former, not the latter. However, it seems likely
that it should be possible to obtain such a result for the latter, and it would be a useful question to investigate in future
work.
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Let ΩAT denote the event that the protocol accepts during the acceptance test, and let ΩEV denote the event that
it accepts during error verification (so the event of the protocol accepting overall is ΩAT ∧ ΩEV. By applying the
REAT (specifically [15, Lemma 5.1 with Lemma 6.1]), the state conditioned on ΩAT satisfies

H̃↑
α

(
An1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

≥ nhα − α

α− 1
log

1

Pr[ΩAT]
. (D7)

However, in order to apply the relevant privacy amplification theorem from [40], we would need to account for various
other publicly announced registers, such as B̄n1 , LEC, LEV and HEV, as well as further conditioning on ΩEV. (In fact
the REAT by itself technically allows us to directly condition on ΩAT ∧ ΩEV instead; however, doing so in this proof
would obstruct the last line in (D8) later where we need to “factor off” HEV.) Furthermore, since Alice performs
privacy amplification only on An1 , the relevant Rényi entropy should only have An1 (not C̄n1 ) on the left side of the
conditioning.

To address these points, we first handle the conditioning on ΩEV, and remove the error-correction and error-
verification registers from the conditioning:

H̃↑
α

(
An1 |B̄n1LECLEVHEVX

n
1 Y

n
1 T

n
1 E
)
ρ|ΩAT∧ΩEV

≥H̃↑
α

(
An1 |B̄n1LECLEVHEVX

n
1 Y

n
1 T

n
1 E
)
ρ|ΩAT

− α

α− 1
log

1

Pr[ΩEV|ΩAT]

≥H̃↑
α

(
An1 |B̄n1HEVX

n
1 Y

n
1 T

n
1 E
)
ρ|ΩAT

− ℓEC − ℓEV − α

α− 1
log

1

Pr[ΩEV|ΩAT]

=H̃↑
α

(
An1 |B̄n1Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− ℓEC − ℓEV − α

α− 1
log

1

Pr[ΩEV|ΩAT]
. (D8)

where the second line is [12, Lemma B.5], the third line is a standard chain rule5 for classical conditioning registers,
and the fourth line holds because ρAn

1 B̄
n
1HEVXn

1 Y
n
1 T

n
1 E can be viewed as the state immediately after the choice of hash

function HEV was drawn, in which case HEV is independent of all other registers (even conditioned on ΩAT) due to
how it was generated.

Next, we relate this to H̃↑
α

(
An1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

following the approach in [15]: observe that

H̃↑
α

(
An1 |B̄n1Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

≥ H̃↑
α

(
An1 B̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− n(γ + δlow⊥ ) log dim(B̄i)

= H̃↑
α

(
An1 B̄

n
1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− n(γ + δlow⊥ ) log dim(B̄i)

≥ H̃↑
α

(
An1 C̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− n(γ + δlow⊥ ) log dim(B̄i) , (D9)

where the first line is proven in [15, Remark 8.1] (noting that the number of test rounds conditioned on ΩAT is at
most γ+δlow⊥ ), the second line holds because C̄n1 can be “projectively reconstructed” from An1B

n
1X

n
1 Y

n
1 T

n
1 in the sense

described in [12, Lemma B.7], and the last line holds because classical registers have non-negative contributions to
entropy [34, Lemma 5.3] (this last step is not necessary in general, but we employ it here since our analytic bounds
are only for the entropy of Alice’s output, not Bob’s). Putting all the above bounds together, we conclude (since
dim(B̄i) = 2 and Pr[ΩAT] Pr[ΩEV|ΩAT] = Pr[ΩEV ∧ ΩAT]):

H̃↑
α

(
An1 |B̄n1LECLEVX

n
1 Y

n
1 T

n
1 E
)
ρ|ΩAT∧ΩEV

≥ nhα − n(γ + δlow⊥ )− ℓEC − ℓEV − α

α− 1
log

1

Pr[ΩEV ∧ ΩAT]
. (D10)

With this, we note that if we let KA denote Alice’s final key and Efin denote Eve’s final side-information after
privacy amplification, then we have

Pr[ΩEV ∧ ΩAT] d

(
ρKAEfin|ΩEV∧ΩAT

,
IKA

|KA|
⊗ ρEfin|ΩEV∧ΩAT

)
≤Pr[ΩEV ∧ ΩAT]2

2
α−22

α−1
α

(
ℓkey−H̃↑

α(A
n
1 |B̄

n
1 LECLEVHEVX

n
1 Y

n
1 T

n
1 E)

ρ|ΩEV∧ΩAT

)

5 Specifically, [21, Prop. 8] together with the fact that classical registers have non-negative contributions to entropy [34, Lemma 5.3].
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=Pr[ΩEV ∧ ΩAT]2
α−1
α

(
ℓkey−H̃↑

α(A
n
1 |B̄

n
1 LECLEVHEVX

n
1 Y

n
1 T

n
1 E)

ρ|ΩEV∧ΩAT

−2

)

≤Pr[ΩEV ∧ ΩAT]2
log 1

Pr[ΩEV∧ΩAT]
−log 1

ϵsecret

=ϵsecret , (D11)

where the second line is the Rényi privacy amplification theorem in [40, Theorem 9 with Lemma 7] (noting that
the 1-norm distance and trace distance differ by a factor of 1/2), the third line simply regroups the exponents, and
the fourth line follows from combining (D6) with (D10). This fulfills the definition of ϵsecret-secrecy as described in
e.g. [19, 25].

Remark 24. Comparing the above analysis to that in [27], apart from the main change of the former being based on
Rényi entropies6 (which also simplified some points regarding event conditioning), the other notable difference is the
chain rule used above to obtain the first line of (D9). We believe it is likely to yield better results than the chain rules
used in [27] to handle the B̄n1 registers. Moreover, this chain rule also places B̄n1 directly in the conditioning registers,
which allowed us to modify the protocol such that Bob publicly announces the B̄n1 registers for Alice to compute C̄n1 —
this simplifies the analysis compared to [27], where instead Bob computes C̄n1 using his guess for Alice’s An1 registers,
and extra steps had to be taken in that proof to accommodate the possibility that his guess could be wrong.

4. Possible modifications

Finally, we make some informal comments regarding some potential for slightly sharpening the above analysis.
Namely, the way we computed the lower bound on hα is slightly suboptimal, in that we were effectively “sacrificing”
entropy contributions from test rounds (in that comparing to the REAT statement in [15, Lemma 5.1], we have handled
the entropy contributions from terms with c̄ ̸=⊥ by trivially lower bounding them with zero). In contrast, the earlier
security proofs in e.g. [19, 27] using previous EAT versions (based on von Neumann entropy in single rounds) were
able to incorporate the entropy contributions from those rounds, due to certain properties of von Neumann entropy
that did not carry over to the REAT. Due to this, we found that at the larger n values studied in Fig. 1b (where the
rates are closer to the asymptotic values), the REAT-based approach here gives worse rates than those in [27] when
using the same value of γ — to obtain the improved rates in that figure, we instead had to optimize the choice of γ,
using a smaller value that “sacrifices” less of the key rate to the test-round component.

From a theoretical point of view, one way to overcome this drawback would be to use [15, Theorem 5.1] rather
than [15, Lemma 5.1], in that it “retains” entropy contributions from test rounds. However, the former involves some
slightly elaborate Rényi divergence terms that do not seem straightforward to analyze using the methods in this work.
It would be an interesting task for future work to generalize these methods to handle those Rényi divergence terms.
Another prospect could be to note that [15, Lemma 5.1] itself technically involves Rényi entropy terms conditioned
on each value of c̄ that could be individually analyzed (here we have basically only retained the c̄ =⊥ term); however,
that approach seems less promising for future use, because those terms would all be zero if the protocol is one where
c̄ contains the full input-output values in test rounds.

Alternatively, from a practical perspective it might seem expedient to address this by having Alice perform privacy
amplification on only the generation-round data (since the test-round entropy is anyway “sacrificed”), in which case she
would not need to include test-round data in the error correction information (as implicitly accounted for in (D5)) —
this would reduce the value of ℓEC accordingly and also make that step practically easier to implement. However, due
to the structure of the above proof (mainly the use of the “projective reconstruction” property from [12, Lemma B.7]
in the second line of (D9), which requires Alice’s test-round outputs to appear at some point in the entropy terms),
it does not seem entirely straightforward to “directly” get a bound for the final entropy of Alice’s generation-round
registers only.

We observe that technically, one way to obtain a bound would be as follows: define registers Āi that are equal to
Ai in test rounds and set to 0 in generation rounds, and define registers Âi that are equal to Ai in generation rounds
and set to 0 in test rounds. Then

H̃↑
α

(
Ân1 |B̄n1Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

≥ H̃↑
α

(
Ân1 |Ān1 B̄n1Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

≥ H̃↑
α

(
Ân1 Ā

n
1 B̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− n(γ + δlow⊥ ) log dim(ĀiB̄i)

6 Refer to [26, Fig. 1] for an analysis of the effect of making only this change, without any of the other improvements we employ here.
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= H̃↑
α

(
An1 B̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

− n(γ + δlow⊥ ) log dim(ĀiB̄i) , (D12)

where the second line is again via [15, Remark 8.1], and the third line is again via [12, Lemma B.7], observing that
An1 can be “projectively reconstructed” from Ân1 Ā

n
1T

n
1 (and vice versa, Ân1 Ān1 can also be “projectively reconstructed”

from An1T
n
1 ).

With this we can continue on exactly the same way as in the second and third lines of (D9). However, observe
that this results in 2n

(
γ + δlow⊥

)
in place of n

(
γ + δlow⊥

)
in the final key length formula. In order to obtain an overall

benefit from this approach, we would need a more detailed analysis of how much the O(
√
n) term in ℓEC (Eq. (D5))

can be improved by not having to include the test-round data, which is a somewhat more specialized coding-theory
question that we shall not consider within this work. (Furthermore, we informally note that this proposed approach
still ends up reducing the analysis to H̃↑

α

(
An1 B̄

n
1 |Xn

1 Y
n
1 T

n
1 E
)
ρ|ΩAT

, which again includes Alice’s test-round data and
hence does not really “exploit” the fact that our single-round analysis excludes the entropy contributions from those
terms.)
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