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Abstract

Federated Learning (FL) faces inherent challenges in balanc-
ing model performance, privacy preservation, and commu-
nication efficiency, especially in non-IID decentralized envi-
ronments. Recent approaches either sacrifice formal privacy
guarantees, incur high overheads, or overlook quantum-
enhanced expressivity. We introduce AdeptHEQ-FL, a uni-
fied hybrid classical-quantum FL framework that integrates
(i) a hybrid CNN-PQC architecture for expressive decen-
tralized learning, (ii) an adaptive accuracy-weighted aggre-
gation scheme leveraging differentially private validation
accuracies, (iii) selective homomorphic encryption (HE)
for secure aggregation of sensitive model layers, and (iv)
dynamic layer-wise adaptive freezing to minimize communi-
cation overhead while preserving quantum adaptability. We
establish formal privacy guarantees, provide convergence
analysis, and conduct extensive experiments on the CIFAR-
10, SVHN, and Fashion-MNIST datasets. AdeptHEQ-FL
achieves a ≈ 25.43% and ≈ 14.17% accuracy improvement
over Standard-FedQNN and FHE-FedQNN, respectively, on
the CIFAR-10 dataset. Additionally, it reduces communica-
tion overhead by freezing less important layers, demonstrat-
ing the efficiency and practicality of our privacy-preserving,
resource-aware design for FL. Our code is publicly available
at: https://github.com/Abrar2652/QML-FL.

1. Introduction
Federated Learning (FL) has emerged as a transformative
paradigm for collaborative Machine Learning (ML), allow-
ing decentralized devices to train a shared model without
centralizing sensitive data [20, 26]. This approach is cru-
cial for privacy-sensitive applications, such as personalized
medicine, secure finance, and the Internet of Things (IoT),

where data privacy and resource constraints are critical. How-
ever, effectively deploying FL is challenged by a triad of
issues: statistical heterogeneity from non-Identical and non-
Independently Distributed (non-IID) data, privacy vulnera-
bilities despite data localization, and high communication
and computational overheads [20, 26]. Non-IID data among
clients often hinders model performance and slows conver-
gence. While FL inherently maintains some privacy by keep-
ing data local, model updates remain vulnerable to attacks
that can infer sensitive information. Frequent model ex-
changes between clients and servers amplify communication
costs, especially in bandwidth-constrained environments.
These interconnected issues require a unified solution to
improve the robustness and scalability of FL.

Existing approaches often address these challenges in
isolation, resulting in fragmented solutions. Quantum FL
(QFL) utilizes quantum circuits to improve model expressiv-
ity [17, 24], but many frameworks overlook formal privacy
guarantees or non-IID robustness [17]. Privacy-preserving
techniques, such as Differential Privacy (DP) [38] and Ho-
momorphic Encryption (HE) [41], protect data but compro-
mise utility in non-IID settings or incur significant overhead
[10]. Efficiency-focused methods, like model compression
[13], reduce communication but seldom integrate quantum
capabilities or comprehensively address privacy. This gap
highlights the need for a unified framework that optimizes
performance, privacy, and efficiency in a hybrid classical-
quantum context.

To bridge these identified gaps, we propose AdeptHEQ-
FL, a novel framework designed as a unified solution.
Where existing QFL approaches often lack formal privacy
or non-IID robustness, AdeptHEQ-FL synergistically com-
bines its hybrid classical-quantum architecture with adap-
tive accuracy-weighted aggregation (utilizing differentially
private validation accuracies) to explicitly improve perfor-
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mance on non-IID data while improving model expressivity.
To counter the significant overhead or utility degradation
associated with many privacy-preserving techniques, espe-
cially in non-IID settings, AdeptHEQ-FL strategically em-
ploys HE (CKKS scheme) on critical final classical layers
during aggregation, balancing strong privacy with compu-
tational feasibility, and further bolsters utility through its
adaptive aggregation that prioritizes more accurate client
models. Unlike efficiency-focused methods that typically
neglect quantum capabilities or comprehensive privacy, our
dynamic layer sparing mechanism is integrated to reduce
communication and computation, specifically exempting
quantum layers to preserve their crucial adaptability and en-
suring the overall privacy-preserving nature of the framework
is maintained. By holistically integrating these components,
AdeptHEQ-FL provides a more comprehensive approach
than existing fragmented solutions, aiming to concurrently
optimize performance, privacy, and efficiency within a hy-
brid classical-quantum FL paradigm.

Our primary contributions are: (i) We introduce a novel
adaptive aggregation mechanism for FL that employs dif-
ferentially private client validation accuracies and HE to
effectively address non-IID data and ensure privacy. (ii) We
propose a hybrid classical-quantum architecture integrating
CNNs for feature extraction with PQCs to improve model ex-
pressivity in federated settings. (iii) We develop an efficient
dynamic layer sparing technique that reduces communica-
tion overhead by adaptively freezing less impactful classical
layers while preserving the adaptability of quantum layers.
(iv) We provide a theoretical convergence analysis for the
proposed framework, accounting for adaptive aggregation,
layer sparing, and privacy mechanisms.

2. Related Works
FL enables collaborative model training across decentralized
devices while prioritizing data privacy, yet faces challenges
from non-IID, privacy vulnerabilities, and high communi-
cation costs [20, 27]. Recent efforts explore quantum com-
puting, privacy-preserving mechanisms, and efficiency opti-
mizations, often addressing these issues in isolation. We crit-
ically review these efforts across four dimensions—quantum-
improved FL, privacy preservation, communication effi-
ciency, and adaptive/specialized approaches—identifying
gaps that our AdeptHEQ-FL framework addresses through
adaptive accuracy-weighted aggregation, classical-quantum
hybridization, and formal convergence guarantees.

2.1. Quantum FL
Quantum FL (QFL) leverages quantum circuits to improve
model expressivity. FedQNN [17] employs QNNs and dis-
cusses secure data handling, but lacks formal privacy mecha-
nisms like DP, leaving potential vulnerabilities unaddressed.
Similarly, [32, 38] integrate DP into QFL but overlook com-

munication costs and provide no convergence proofs, limit-
ing their robustness. FHE-FedQNN [10] combines fully HE
(FHE) with quantum circuits, reporting results on datasets
like CIFAR-10 [23], Brain MRI [29], and PCOS [15]. Its
uniform aggregation struggles with non-IID data, and FHE’s
complexity leads to high communication overhead, a general
concern in FHE-based FL approaches, rendering it imprac-
tical for edge devices. Its extension, MQFL-FHE, while
leveraging hybrid quantum-FHE operations for multimodal
tasks, still faces computational and communication inef-
ficiencies. Theoretical studies like [6] explore Quantum
Neural Networks (QNN) for FL without empirical valida-
tion, while [24] demonstrates QFL experimentally but omits
formal convergence analysis. These works highlight QFL’s
potential but fail to unify privacy, efficiency, and theoretical
rigor, gaps AdeptHEQ-FL addresses.

2.2. Privacy-Preserving Techniques
Privacy in FL often relies on DP or HE. DP-based methods
[8, 38] add noise to updates, degrading accuracy in non-
IID settings [20]. HE-based aggregation [35, 41] ensures
security but introduces significant computational overhead,
limiting scalability. Hybrid approaches like ADPHE-FL [39]
and others [1, 2, 42] adaptively combine DP and HE to bal-
ance privacy and utility in classical FL, yet neglect quantum
improvements and communication efficiency for non-IID
data. Comparative analyses [5] evaluate DP versus HE but
offer no solutions for non-IID challenges, underscoring the
need for AdeptHEQ-FL’s quantum-aware, adaptive privacy
framework.

2.3. Efficiency in FL
Efficiency-focused FL methods aim to reduce communi-
cation and computational costs. FedSIGN [13] employs
sign-based compression to lower bandwidth and provides
convergence analysis, but lacks quantum compatibility, re-
stricting its applicability to classical settings. Multi-party
computation (MPC) approaches [7, 21, 37] reduce communi-
cation overhead, yet often compromise accuracy in non-IID
settings and ignore quantum integration, as seen in their clas-
sical focus. These methods highlight a trade-off between
efficiency and performance that AdeptHEQ-FL mitigates
through adaptive layer freezing and quantum-improved ag-
gregation.

2.4. Adaptive and Specialized Approaches
Adaptive FL frameworks like [34] explore functional encryp-
tion for security but do not address learning dynamics or non-
IID convergence. Quantum-safe FL [41] applies HE without
tackling non-IID data or providing guarantees. Quantum-
inspired methods [4, 36] optimize computation via tensor net-
works or Quantum Key Distribution (QKD) but lack formal
convergence guarantees for non-IID settings. Application-



specific FL, such as for mental healthcare [14], emphasizes
both privacy and scalability, noting trade-offs such as longer
training times for improved privacy. AdeptHEQ-FL distin-
guishes itself by integrating adaptive aggregation, quantum
advantages, and rigorous convergence analysis for non-IID
settings, offering a comprehensive solution.

3. Methodology
AdeptHEQ-FL is a novel FL framework that integrates clas-
sical and quantum neural networks to address challenges
such as non-IID, privacy preservation, and communication
efficiency. By combining performance-based adaptive ag-
gregation, layer-wise adaptive freezing, and DP, AdeptHEQ-
FL improves model performance, reduces communication
overhead, and ensures client privacy while maintaining com-
patibility with HE. A high-level overview of the complete
system of AdeptHEQ-FL is presented in Figure 1.

3.1. Problem Formulation
Consider an FL scenario with N clients, each possessing a
local dataset Di ∼ pi(x, y) that may exhibit non-IID distri-
butions. The global model parameters θ = [θc, θq] consist
of classical (θc) and quantum (θq) components. We define
the learning objective as:

min
θ

N∑
i=1

|Di|∑N
j=1 |Dj |︸ ︷︷ ︸
fixed wi

Li(θ;Di) (1)

where the fixed aggregation weights wi proportionally re-
flect each client’s dataset size, ensuring that clients with
larger datasets contribute more significantly to the global
model. While this formulation establishes a stable base-
line objective using static weights, the actual aggregation
process (detailed in Section 3.4) employs dynamic weights
w

(t)
i derived from privatized validation accuracies to address

non-IID challenges. The hybrid architecture simultaneously
optimizes both quantum and classical parameters, maintain-
ing regularization stability in classical components while
allowing quantum layers to adapt freely to complex data
patterns.

3.2. Model Architecture
The proposed AdeptHEQ-FL model integrates both classical
and quantum computing techniques, leveraging the strengths
of each. The following subsections discuss each of these
components.

3.2.1. Classical Component
The classical component of the architecture is implemented
as a CNN, which is a type of DL model that is particularly
effective for analyzing grid-like data such as images. CNNs

function by applying multiple layers of convolutional filters
that extract localized features from the input image, includ-
ing edges, textures, and shapes.

In this implementation, the CNN is composed of three
sequential convolutional blocks. Each block consists of
multiple convolutional layers, followed by a Rectified Linear
Unit (ReLU) activation function and a max-pooling layer.
The convolutional layers perform a mathematical operation
known as a discrete convolution:

s(i, j) = (I ×K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

(2)
where I(i, j) represents the input image and K(m,n) is a
learnable filter (also called a kernel), this operation slides the
kernel across the input image, producing a feature map that
highlights the presence of specific patterns detected by the
filter. The ReLU activation function is then applied element-
wise to the feature maps, transforming the values according
to: ReLU(x) = max(0, x). This introduces non-linearity
into the model, enabling it to learn complex representations
of the data. Following the activations, a max-pooling op-
eration is applied to downsample the feature maps, reduc-
ing their spatial dimensions and controlling overfitting by
summarizing the most prominent features. After the final
convolutional block, the feature maps are flattened into a
one-dimensional vector and passed through fully connected
(dense) layers to produce a final classical feature representa-
tion: fCNN(x; θ

c) ∈ R2n , where n is the number of qubits in
the quantum circuit (here, 24 = 16).

3.2.2. Quantum Component
The core innovation in AdeptHEQ-FL is the incorporation
of a PQC, which serves as a QNN for feature processing.
Unlike classical networks that manipulate continuous or
discrete numerical values, quantum circuits process data en-
coded into quantum states. In this work, the PQC operates
on 4 qubits and consists of 2 layers of Strongly Entangling
Layers — a widely-used ansatz in variational quantum algo-
rithms (Figure 2) [18, 19]. The quantum circuit performs the
following steps:

Amplitude Embedding The output from the CNN, de-
noted by fCNN(x; θ

c), is first encoded into the quantum cir-
cuit through amplitude embedding1. This encoding maps a
normalized classical vector x ∈ R2n into the amplitudes of
a quantum state:

|ψx⟩ =
2n−1∑
i=0

xi|i⟩ (3)

where |i⟩ represents the computational basis states of the
qubit system. Amplitude embedding ensures that the sum of

1
https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.

html

https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.html
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Figure 1. This flowchart provides an overview of the AdeptHEQ-FL framework and illustrates the multi-stage process, detailing the
activities conducted on both the client and server sides. Each client independently executes a local training phase using a local dataset on
the classical–quantum neural network. This is followed by local validation, adaptive layer freezing, and encryption of the final classifier
layer. The encrypted local models are then sent to a central server for global aggregation, resulting in an improved federated model. After
aggregation, the updated global model is communicated back to each client, where it is used as the local model for the next round. The
dotted line here indicates a more detailed version of the blocks in the diagram.

the squared amplitudes equals 1, maintaining a valid quan-
tum state:

2n−1∑
i=0

|xi|2 = 1 (4)

Strongly Entangling Layers After the amplitude embed-
ding step, the encoded quantum state undergoes a sequence
of parameterized transformations and entangling operations,
collectively termed as Strongly Entangling Layers. These
layers are crucial for introducing both individual qubit ro-
tations and inter-qubit correlations, allowing the quantum
circuit to model complex feature interactions.

Each Strongly Entangling Layer2 comprises two primary
components. The first component involves a series of param-

2
https : / / docs . pennylane . ai / en / stable / code / api / pennylane .

StronglyEntanglingLayers.html

eterized single-qubit rotation gates applied independently to
each qubit. Specifically, for each qubit, a cascade of three
rotations is performed in the order: Rz(θ

1) → Ry(θ
2) →

Rz(θ
3). Rz(θ

1
k,i) rotates the qubit about the Z-axis by an an-

gle θ1k,i, Ry(θ
2
k,i) rotates about the Y-axis by θ2k,i, followed

again by Rz(θ
3
k,i). The rotation operations are defined as:

Ry(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
, Rz(ϕ) =

(
e−iϕ/2 0

0 eiϕ/2

)
(5)

Here, each rotation angle θj is a trainable parameter, dy-
namically updated through the optimization process during
model training to learn an optimal data representation within
the quantum Hilbert space.

The second component involves the application of entan-
gling gates that establish quantum correlations between the
qubits. In this implementation, a Controlled-NOT (CNOT)

https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.StronglyEntanglingLayers.html
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Figure 2. 4-qubit 2-layered PQC of AdeptHEQ-FL comprising amplitude embedding, two Strongly Entangling Layers (parameterized Rz ,
Ry , Rz rotations), CNOT-based entanglement, and projective measurements. The CNOT connectivity ensures full inter-qubit interaction
within each layer.

gate is applied between selected pairs of qubits. The matrix
form of the CNOT gate is:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (6)

This operation conditionally flips the target qubit when the
control qubit is in the state |1⟩, enabling the circuit to capture
intricate interdependencies between feature dimensions that
would be challenging for classical architectures to represent
efficiently.

In this work, the quantum circuit employs n = 4 qubits
and a depth of 2 Strongly Entangling Layers. The entire
unitary operation implemented by the circuit can be mathe-
matically expressed as:

U(θq) =
∏2

l=1

[∏4
i=1

(
Rz(θ

l,1
i )Ry(θ

l,2
i )Rz(θ

l,3
i )
)
· CNOT entanglement scheme

]
(7)

where each layer l sequentially applies the parameterized
rotations to all qubits, followed by a set of CNOT gates ar-
ranged according to a predefined connectivity pattern. This
structured layering ensures that both local qubit-level trans-
formations and global qubit-qubit interactions are adequately
captured, improving the expressive capacity of the QNN.

Measurement The circuit outputs a quantum feature vec-
tor fPQC(x; θ

q) ∈ R4, calculated by measuring the expecta-
tion value of the Pauli-Z3 observable on each qubit after the

3
https://docs.pennylane.ai/en/stable/code/api/pennylane.PauliZ.html

entangling operations:

fPQC(x; θ
q) = [⟨Z1⟩, ⟨Z2⟩, ⟨Z3⟩, ⟨Z4⟩] ; ⟨Z⟩i = ⟨ψ|Zi|ψ⟩

(8)
where:

Z =

(
1 0

0 −1

)
(9)

The output of the CNN, fCNN(x; θ
c), serves as the input

to the PQC after being reshaped to match the dimensional
requirements of the amplitude embedding layer.

3.2.3. Final Fully Connected Layer and Output
The quantum feature vector is then passed through a fi-
nal fully connected classical layer, denoted as fFC4, which
maps the 4-dimensional quantum feature vector to an m-
dimensional output vector, corresponding to the m classes
in the used dataset:

fFC4(x) =WFC4 · fPQC(x; θ
q) + bFC4 (10)

The final model function thus takes the form:

f(x; θ) = fFC4(fPQC(fCNN(x; θ
c); θq); θFC4) (11)

This hybrid architecture allows the model to harness both
classical DL’s feature extraction capacity and quantum cir-
cuits’ potential for capturing complex, non-classical correla-
tions in data representations.

3.3. FL Setup
In each communication round t, a fraction of clients are
selected without replacement [26]. Each selected client i

https://docs.pennylane.ai/en/stable/code/api/pennylane.PauliZ.html


updates the model parameters from the global model θ(t−1)

to local parameters θ(t)i using their local dataset Di. Clients
optimize their local models using Adam optimizer with a
learning rate η = 10−3. Additionally, each client computes
a validation accuracy a(t)i ∈ [0, 1] on their local validation
set Dval

i , which guides the aggregation process.

3.4. Accuracy-Weighted Aggregation with Differ-
ential Privacy

3.4.1. Mechanism
To address non-IID data, each client privatizes their valida-
tion accuracy a(t)i =

∑mi

j=1 correctj/mi, wheremi = |Dval
i |,

using the Laplace mechanism [11]:

ã
(t)
i = max

(
0,min

(
1, a

(t)
i + ζ

))
, ζ ∼ Lap

(
∆i

ϵ

)
(12)

where the sensitivity is ∆i = 1/mi (as changing one sample
alters ai by at most 1/mi), and ϵ = 1.0 is the per-round
privacy budget. Over T = 20 rounds, we apply advanced
composition to bound the total privacy loss at (ϵtotal, δ) =
(10, 10−5) [11].

The server computes aggregation weights using a numeri-
cally stable tempered softmax [12]:

w
(t)
i =

exp((ã
(t)
i −maxj ã

(t)
j )/τ)∑N

k=1 exp((ã
(t)
k −maxj ã

(t)
j )/τ)

, (13)

where τ = 0.5 balances weight concentration, tuned empiri-
cally to prioritize high-performing clients while maintaining
robustness to noise. The global model is updated as:

θ(t) =

N∑
i=1

w
(t)
i θ

(t)
i . (14)

Theoretical Justification The Laplace mechanism ensures
(ϵ, 0)-DP per round, with sensitivity ∆ = 1/mi. Advanced
composition accounts for multi-round privacy loss, ensuring
a total budget of (ϵtotal, δ).

3.4.2. Privacy Guarantee
We formally state the following privacy result:

Theorem 1. Each communication round of the proposed
aggregation mechanism satisfies (ϵ, 0)-DP for each client’s
validation accuracy, where ϵ is the privacy budget per round,
and sensitivity ∆ = 1/mi. Over T rounds, using advanced
composition [11], the total privacy guarantee is (ϵtotal, δ),
where ϵtotal =

√
2T log(1/δ)ϵ+ Tϵ(eϵ − 1).

This ensures privacy amplification by composition while
maintaining model utility.

3.5. Layer-Wise Adaptive Freezing
3.5.1. Mechanism
To reduce communication overhead, we compute layer im-
portance scores based on the L2 norm of the change in the
global model parameters across rounds, consistent with our
experimental setup:

s
(t)
l =

∥∥∥θ(t)l − θ
(t−1)
l

∥∥∥
2
, (15)

where layer l indexes blocks in the model’s parameter list
(e.g., convolutional or fully connected layers). We maintain
an exponential moving average [22]:

s̄
(t)
l = αs̄

(t−1)
l + (1− α)s

(t)
l , (16)

with α = 0.9, tuned for stability. Layers are frozen if:

θ
(t)
l = θ

(t−1)
l if s̄

(t)
l < thr, (17)

where thr = 0.001 is a fixed absolute threshold used to
determine freezing. Quantum layers (θq) are exempt from
freezing to preserve their adaptability.

3.5.2. Rationale
The adaptive freezing strategy reduces communication over-
head while ensuring that model accuracy remains largely
intact. Additionally, exempting quantum layers preserves
their flexibility, contributing to consistent performance gains
in non-IID settings.

Quantum Layer Considerations In our hybrid classical-
quantum model, quantum layers contribute essential non-
linear and entangled feature transformations, crucial for mod-
eling complex patterns in decentralized data. As such, these
layers exhibit high sensitivity to client-specific data distri-
butions and model updates. To preserve this adaptability,
quantum layers are explicitly exempted from the freezing
criterion in Eq. 17. This ensures the retention of quantum
expressivity and prevents potential performance degradation
due to premature parameter freezing.

3.6. Integration with HE
The aggregation process (Eq. 14) involves linear combina-
tions, making it compatible with HE. In our current im-
plementation, HE (using the CKKS scheme) is selectively
applied to the parameters of the final fully connected layer
(FC4). Other layer parameters are aggregated in plaintext
on the server. The server uses its secret key to decrypt the
aggregated FC4 layer after the weighted summation. We
employ the CKKS scheme [9] with a polynomial modu-
lus degree of 8192 and coefficient moduli bit sizes of [60,
40, 40, 60] bits. A global scaling factor of 240 is used for
encoding the model parameters. These parameters ensure



approximately 128-bit security and support circuits with a
multiplicative depth of up to 3, which is sufficient for the
weighted aggregation. The server generates Galois keys
to facilitate efficient homomorphic operations. The server
performs homomorphic aggregation on the encrypted layer
updates without decrypting individual client contributions.
After aggregation, the server uses its secret key to decrypt
the resulting aggregated parameters for this layer before up-
dating the global model and for subsequent operations, such
as layer freezing analysis.

3.7. Convergence Analysis
We analyze convergence under the following assumptions: 1.
The loss function Li is L-smooth. 2. The gradient variance
is bounded: E∥∇Li(θ)∥2 ≤ σ2. 3. The learning rate is
ηt = µ/(L

√
t), with µ = 0.1.

Theorem 2 (Convergence of AdeptHEQ-FL). After T
rounds, AdeptHEQ-FL satisfies:

1

T

T∑
t=1

E∥∇L(θt)∥2 ≤ C1√
T

+ C2
σ2 + ϵ−2

µ2
, (18)

where C1, C2 are constants depending on τ , the freezing
threshold thr, and ϵ.

Proof Sketch: We extend the perturbed iterate frame-
work [20], bounding errors from adaptive weights and
layer freezing. The tempered softmax aligns weights with
client performance, while freezing introduces bounded
perturbations. The ϵ−2 term accounts for DP noise.

4. Experimental Setup
4.1. Simulation Tools and Environment
All experiments, including model development and FL simu-
lations, were conducted using Python 3.11.11. The computa-
tional environment included NVIDIA Tesla P100 GPUs with
CUDA 12.x support and multi-core Intel Xeon CPUs, provid-
ing up to 16 GB of GPU memory and 32 GB of system RAM.
The primary DL framework was PyTorch 2.5.1+cu124 [31].
For QML components, we utilized PennyLane 0.41.1 [3] and
Qiskit 1.2.4. HE was enabled by TenSEAL 0.3.16 [30], imple-
menting the CKKS scheme [9]. The FL protocol was custom-
implemented, with conceptual underpinnings inspired by
PySyft 0.9.5 [33]. Data serialization used protobuf 3.20.3,
numerical computations relied on NumPy 1.26.4 [16], and
data analysis utilized pandas 2.2.2 [25].

4.2. Hyperparameters and Configuration
Experiments were conducted on CIFAR-10 [23] (60,000
instances of 32×32 color images), SVHN [28] (73,257 in-
stances of 32×32 color images), and Fashion-MNIST [40]

(70,000 instances of 28×28 grayscale images), each com-
prising 10 classes. Normalization used dataset-specific
statistics: CIFAR-10 with µ = (0.5, 0.5, 0.5) and σ =
(0.5, 0.5, 0.5), SVHN with µ = (0.4377, 0.4438, 0.4728)
and σ = (0.1980, 0.2010, 0.1970), and Fashion-MNIST
with µ = 0.2860 and σ = 0.3530. The datasets were dis-
tributed among 10 clients using a Dirichlet distribution with
α = 0.1 to simulate non-IID settings.

The FL simulation involved 10 clients over 20 communi-
cation rounds. Each client executed 10 local epochs with the
Adam optimizer (learning rate 1×10−3, batch size 32). Vali-
dation accuracy was privatized using ϵ = 1.0 DP. Server-side
aggregation employed the AdeptHEQ-FL method, weight-
ing updates by privatized validation accuracies via softmax
with τ = 0.5. Layer-wise adaptive freezing monitored layer
importance with an EMA (α = 0.9) of parameter difference
norms, freezing layers with scores below 0.001 (excluding
quantum layers). Model parameters were encrypted using
HE via TenSeal (CKKS scheme). Global model evaluation
on a centralized test set reported test accuracy and loss after
each round.

5. Results and Discussion
We evaluated three variants of our AdeptHEQ-FL
framework—AdeptHEQ-FL (4-qubit, 2-layer), AdeptHEQ-
FL (4-qubit, 1-layer), and AdeptHEQ-FL (2-qubit, 1-
layer)—against a standard federated QNN (6 qubits, 6 layers)
and a state-of-the-art FHE-FedQNN (6 qubits, 6 layers) [10],
across three datasets: SVHN [28], FashionMNIST [40], and
CIFAR10 [23]. Table 1 summarizes the loss and accuracy re-
sults, revealing clear trends. The AdeptHEQ-FL variant out-
performed all others in accuracy across all datasets. While
improvements on SVHN and FashionMNIST were modest,
AdeptHEQ-FL achieved ≈ 25.43% increase in accuracy
compared to Standard-FedQNN and ≈ 14.67% compared to
FHE-FedQNN on CIFAR10, which is a comparatively com-
plex dataset. This demonstrates AdeptHEQ-FL’s strength in
handling challenging data.

We also found that performance dropped when quan-
tum resources were reduced. Reducing qubits and layers,
as seen in 4-qubit 1-layered AdeptHEQ-FL and 2-qubit 1-
layered AdeptHEQ-FL, led to noticeable declines in perfor-
mance, particularly on CIFAR10. This suggests that more
complex datasets are more sensitive to resource constraints.
Even with fewer resources (4 qubits, 2 layers) compared to
FHE-FedQNN (6 qubits, 6 layers) and Standard (6 qubits,
6 layers), AdeptHEQ-FL’s performance was quite impres-
sive. AdeptHEQ-FL’s superior performance results from its
advanced aggregation strategy. Unlike FHE-FedQNN [10],
which treats all client updates equally and amplifies noise in
skewed data. The standard method, which uses a weighted
sum of the updates, faces the same issue. AdeptHEQ-FL
weights updates based on privatized validation accuracy, pri-



Table 1. Performance comparisons of different models across three datasets are shown. The table displays the average loss and accuracy in
percentages for the models in our experiment across three different datasets. Each metric is reported as the mean ± standard deviation,
calculated over five experimental runs. Bold values indicate the best performance in each dataset column.

Model nqubits nlayers
CIFAR10 [23] SVHN [28] FashionMNIST [40]

Loss (↓) Accuracy (%) (↑) Loss (↓) Accuracy (%) (↑) Loss (↓) Accuracy (%) (↑)

Standard-FedQNN 6 6 1.503± 0.039 63.60± 0.45 0.349± 0.002 93.22± 0.05 0.313± 0.003 91.96± 0.09
FHE-FedQNN [10] 6 6 1.972± 0.042 57.89± 0.20 0.340± 0.006 92.94± 0.14 0.328± 0.003 91.78± 0.11

AdeptHEQ-FL 4 2 1.306± 0.015 72.61± 0.33 0.362± 0.004 94.05± 0.10 0.340± 0.003 92.91± 0.12
AdeptHEQ-FL 4 1 1.667± 0.009 67.22± 0.18 0.331± 0.003 93.71± 0.12 0.339± 0.007 92.76± 0.04
AdeptHEQ-FL 2 1 1.640± 0.009 62.62± 0.42 0.526± 0.006 93.58± 0.09 0.385± 0.004 92.46± 0.13

oritizing contributions from models that are better adapted.
Additionally, our adaptive layer-freezing method skips up-
dates to layers with importance scores below 0.001, reduc-
ing unnecessary computation. These innovations enable
AdeptHEQ-FL to achieve strong results with fewer resources,
making it effective for more complex and practical datasets.

6. Conclusion

This paper presents AdeptHEQ-FL, a novel FL framework
that synergistically combines hybrid classical-quantum mod-
eling, adaptive privacy-preserving aggregation, and dynamic
communication reduction strategies. By integrating a CNN-
PQC architecture with accuracy-weighted aggregation using
differentially private validation accuracies, AdeptHEQ-FL
effectively addresses the performance degradation typically
observed under non-IID client distributions. The selective
application of HE to critical model layers ensures strong
privacy guarantees without incurring prohibitive overhead,
while the layer-wise adaptive freezing strategy significantly
reduces communication costs, allowing quantum layers to
retain their expressive flexibility. Our theoretical conver-
gence analysis and empirical results on multiple datasets
confirm that AdeptHEQ-FL delivers competitive accuracy
and efficiency compared to prior QFL approaches, particu-
larly excelling on complex datasets such as CIFAR-10. The
proposed framework provides a comprehensive and scalable
solution for privacy-preserving, communication-efficient FL
in hybrid classical-quantum environments.

Limitations While AdeptHEQ-FL shows significant im-
provements in accuracy and communication efficiency under
privacy constraints, several limitations warrant discussion.
First, AdeptHEQ-FL selectively applies HE to the final fully
connected layer for tractability, leaving other layers unen-
crypted. Second, the framework is assessed in simulated
environments, and its performance on real-world quantum
hardware remains untested. Third, the convergence analysis
assumes standard smoothness and bounded gradient vari-
ance, which may not hold in highly non-convex federated
settings. Future work will extend encryption coverage, test

on physical devices, and generalize to larger, more complex
datasets.

References
[1] Rezak Aziz, Soumya Banerjee, Samia Bouzefrane, and

Thinh Le Vinh. Exploring Homomorphic Encryption and
Differential Privacy Techniques towards Secure Federated
Learning Paradigm. Future Internet, 15(9):310, 2023. 2

[2] Rezak Aziz, Soumya Banerjee, and Samia Bouzefrane. Pri-
vacy Preserving Federated Learning: A Novel Approach for
Combining Differential Privacy and Homomorphic Encryp-
tion. In Information Security Theory and Practice - 14th
IFIP WG 11.2 International Conference, WISTP 2024, Paris,
France, February 29 - March 1, 2024, Proceedings, pages
162–177. Springer, 2024. 2

[3] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin,
M. Sohaib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola,
Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McK-
iernan, Johannes Jakob Meyer, Zeyue Niu, Antal Száva, and
Nathan Killoran. PennyLane: Automatic differentiation of
hybrid quantum-classical computations, 2018. 7

[4] Amandeep Singh Bhatia, Mandeep Kaur Saggi, and Sabre
Kais. Application of quantum-inspired tensor networks to
optimize federated learning systems. Quantum Mach. Intell.,
7(1):12, 2025. 2

[5] Alessio Catalfamo, Maria Fazio, Antonio Celesti, and Mas-
simo Villari. Privacy-Preserving in Federated Learning: A
Comparison between Differential Privacy and Homomorphic
Encryption across Different Scenarios. In IEEE International
Conference on Software Testing, Verification and Validation,
ICST 2025 - Workshops, Naples, Italy, March 31 - April 4,
2025, pages 451–459. IEEE, 2025. 2

[6] Mahdi Chehimi, Samuel Yen-Chi Chen, Walid Saad, Don
Towsley, and Mérouane Debbah. Foundations of Quantum
Federated Learning Over Classical and Quantum Networks.
IEEE Netw., 38(1):124–130, 2024. 2

[7] Lvjun Chen, Di Xiao, Zhuyang Yu, and Maolan Zhang. Se-
cure and efficient federated learning via novel multi-party
computation and compressed sensing. Inf. Sci., 667:120481,
2024. 2

[8] Yue Chen, Yufei Yang, Yingwei Liang, Taipeng Zhu, and
Dehui Huang. Federated Learning with Privacy Preservation
in Large-Scale Distributed Systems Using Differential Privacy



and Homomorphic Encryption. Informatica (Slovenia), 49
(13), 2025. 2

[9] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo
Song. Homomorphic Encryption for Arithmetic of Approx-
imate Numbers. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, pages
409–437. Springer, 2017. 6, 7

[10] Siddhant Dutta, Pavana P. Karanth, Pedro Maciel Xavier,
Iago Leal de Freitas, Nouhaila Innan, Sadok Ben Yahia,
Muhammad Shafique, and David E. Bernal Neira. Feder-
ated Learning with Quantum Computing and Fully Homo-
morphic Encryption: A Novel Computing Paradigm Shift in
Privacy-Preserving ML. CoRR, abs/2409.11430, 2024. arXiv:
2409.11430. 1, 2, 7, 8

[11] Cynthia Dwork and Aaron Roth. The Algorithmic Founda-
tions of Differential Privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3-4):211–407, 2013. Pub-
lisher: Now Publishers. 6

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 6

[13] Zhenyuan Guo, Lei Xu, and Liehuang Zhu. FedSIGN: A
sign-based federated learning framework with privacy and
robustness guarantees. Comput. Secur., 135:103474, 2023. 1,
2

[14] Arti Gupta, Manish Kumar Maurya, Khyati Dhere, and Vi-
jay Kumar Chaurasiya. Privacy-Preserving Hybrid Feder-
ated Learning Framework for Mental Healthcare Applica-
tions: Clustered and Quantum Approaches. IEEE Access, 12:
145054–145068, 2024. 3

[15] Palak Handa, Anushka Saini, Siddhant Dutta, Harsh Pathak,
Nishi Choudhary, Nidhi Goel, and Jasdeep Kaur Dhanao.
Pcosgen-test dataset, 2024. 2

[16] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
et al. Array programming with NumPy. Nature, 585(7825):
357–362, 2020. 7

[17] Nouhaila Innan, Muhammad Al-Zafar Khan, Alberto Marchi-
sio, Muhammad Shafique, and Mohamed Bennai. FedQNN:
Federated Learning using Quantum Neural Networks. In
International Joint Conference on Neural Networks, IJCNN
2024, Yokohama, Japan, June 30 - July 5, 2024, pages 1–9.
IEEE, 2024. 1, 2

[18] Md Abrar Jahin, Md Sakib Hossain Shovon, Md Saiful Islam,
Jungpil Shin, Muhammad Firoz Mridha, and Yuichi Okuyama.
Qamplifynet: pushing the boundaries of supply chain backo-
rder prediction using interpretable hybrid quantum-classical
neural network. Scientific Reports, 13(1):18246, 2023. 3

[19] Md Abrar Jahin, Md. Akmol Masud, Md Wahiduzzaman
Suva, M. F. Mridha, and Nilanjan Dey. Lorentz-Equivariant
Quantum Graph Neural Network for High-Energy Physics.
IEEE Transactions on Artificial Intelligence, pages 1–11,
2025. 3

[20] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A.

Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,
Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
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