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Abstract—As IoT ecosystems continue to expand across critical
sectors, they have become prominent targets for increasingly
sophisticated and large-scale malware attacks. The evolving
threat landscape, combined with the sensitive nature of IoT-
generated data, demands detection frameworks that are both
privacy-preserving and resilient to data heterogeneity. Federated
Learning (FL) offers a promising solution by enabling decen-
tralized model training without exposing raw data. However,
standard FL algorithms such as FedAvg and FedProx often fall
short in real-world deployments characterized by class imbalance
and non-IID data distributions—particularly in the presence of
rare or disjoint malware classes. To address these challenges,
we propose FedP3E (Privacy-Preserving Prototype Exchange),
a novel FL framework that supports indirect cross-client rep-
resentation sharing while maintaining data privacy. Each client
constructs class-wise prototypes using Gaussian Mixture Models
(GMMs), perturbs them with Gaussian noise, and transmits
only these compact summaries to the server. The aggregated
prototypes are then distributed back to clients and integrated
into local training, supported by SMOTE-based augmentation
to enhance representation of minority malware classes. Rather
than relying solely on parameter averaging, our prototype-driven
mechanism enables clients to enrich their local models with
complementary structural patterns observed across the feder-
ation—without exchanging raw data or gradients. This targeted
strategy reduces the adverse impact of statistical heterogeneity
with minimal communication overhead. We evaluate FedP3E on
the N-BaIoT dataset under realistic cross-silo scenarios with
varying degrees of data imbalance. Results demonstrate that
FedP3E consistently surpasses FedAvg and FedProx in malware
detection performance, achieving accuracy ranging from 95.11%
in severe non-IID conditions to 99.57% under light heterogeneity.

Index Terms—Federated Learning, IoT Malware Detection,
Cross-Silo, Non-IID, Data Imbalance, Prototype Learning, Gaus-
sian Mixture Models

I. INTRODUCTION

THE rapid advancement of 5G and the anticipated de-
ployment of Beyond 5G (B5G) technologies are driv-

ing the proliferation of IoT devices at an unprecedented
scale [1]. This hyper-connectivity is enabling new capabilities
across healthcare, transportation, industry, and military sec-
tors—collectively referred to as the Extended IoT (XIoT) [2].
However, the expansion of these networks has also introduced
a significantly larger attack surface, accelerating both the fre-
quency and severity of cyber threats targeting IoT ecosystems.

As XIoT domains continue to evolve, so do the associated
security risks. Real-world incidents have underscored the scale
and impact of these vulnerabilities. For instance, large-scale
botnets such as Mirai and Gafgyt have been responsible for
massive service disruptions and financial damage, with global
losses estimated in the billions [3]. Additionally, the 2018

ransomware attack on the Taiwan Semiconductor Manufac-
turing Company—the world’s largest chipmaker—exposed the
fragility of Industrial IoT (IIoT) systems when operating under
insufficiently secured infrastructures [4].

The diverse and heterogeneous nature of XIoT environments
makes them especially difficult to protect. IoT devices monitor
a wide range of data sources, including sensor readings, system
logs, and control commands, often in real time. These data
streams may contain highly sensitive or private information.
Machine Learning (ML) and Deep Learning (DL) techniques
have shown promise in detecting malicious activity across
such data sources. However, conventional ML/DL approaches
rely on centralized data aggregation, requiring raw data to
be transmitted from edge devices to a central server [5].
This raises serious privacy concerns and regulatory challenges,
especially in critical domains [6] like healthcare and smart
infrastructure.

Federated Learning (FL) has emerged as a viable alterna-
tive to centralized training by enabling decentralized learning
directly at the data source. In FL, devices collaboratively train
a shared global model without exchanging raw data, thereby
preserving user privacy and reducing communication costs.
FL is commonly deployed in two paradigms: cross-device
[7], where numerous clients (e.g., smartphones) contribute
intermittently, and cross-silo [8], where a limited number of
reliable organizations (e.g., hospitals, smart factories) partic-
ipate in regular training rounds. Cross-silo FL is particularly
well-suited to IoT malware detection, where devices are often
grouped into domains with stable and trusted infrastructures.

Despite its advantages, FL faces several key challenges.
A primary issue is the presence of non-independent and
identically distributed (non-IID) data across clients. In real-
world deployments, the distribution of malware types may
vary significantly from one silo to another, leading to local
models that converge poorly and global models that underper-
form on minority classes [9]. This issue is exacerbated when
class imbalance is present—some malware families may be
underrepresented or entirely missing on specific clients.

This work is driven by two pressing challenges in feder-
ated IoT malware detection: (1) enabling effective knowledge
sharing among clients without exposing sensitive local data or
requiring overlapping class distributions, and (2) improving
generalization for rare or underrepresented malware families,
which are frequently neglected by standard FL methods. Ex-
isting approaches like FedAvg and FedProx fall short in these
scenarios, particularly under non-IID disjoint data conditions.
To overcome these limitations, we introduce FedP3E—a novel
prototype-based FL framework that transmits class-specific
statistical summaries instead of raw data or model gradients.
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This design preserves data privacy, facilitates learning across
heterogeneous silos, and enhances detection performance for
minority malware classes, all while maintaining a low com-
munication overhead.

The main contributions of this work are summarized as
follows:

• Prototype-Based Representation Sharing: Instead of
exchanging raw data or gradients, each client summarizes
its local class-wise distribution using GMM-based proto-
types. These representations are perturbed with Gaussian
noise to preserve privacy while enabling implicit knowl-
edge sharing across clients.

• Disjoint-Aware Data Augmentation: We integrate
server-aggregated prototypes into local training and apply
SMOTE-based oversampling to improve class balance.
This addresses the limitations of disjoint and imbalanced
data distributions commonly encountered in real-world
federated IoT settings.

• Adaptive Communication Mechanism: Prototype ex-
change is triggered only when the global model’s accu-
racy falls below a predefined threshold, ensuring minimal
communication overhead while preserving the benefits of
collaborative learning.

• Extensive Evaluation on N-BaIoT: We evaluate FedP3E
on the N-BaIoT dataset under both IID and varying
degrees of non-IID data imbalance, including disjoint
class distributions. The results demonstrate consistent
performance improvements over FedAvg and FedProx
across heterogeneous federated scenarios.

The rest of this paper is organized as follows. Section II
reviews state-of-the-art research on IoT malware detection
using FL, including approaches for handling heterogeneous
data and commonly used XIoT malware datasets. Section III
introduces key terminologies relevant to the FL domain. Sec-
tion IV details the proposed FedP3E framework, including its
architecture and underlying techniques. Section V presents and
analyzes the results of our experimental evaluation. Finally,
Section VI concludes the paper and outlines potential direc-
tions for future research.

II. RELATED WORK

This section presents a comprehensive review of the current
state-of-the-art in IoT malware detection using FL, examine
advanced strategies designed to address data heterogeneity in
FL environments, and summarize the most widely used public
datasets that model cyberattacks across various XIoT domains.

A. IoT malware detection using Federated Learning

FL has recently gained traction as a privacy-preserving
paradigm for IoT malware detection. A growing body of
research has proposed diverse FL-based frameworks targeting
various aspects of malware classification, including robustness,
efficiency, class imbalance, and real-world deployment chal-
lenges.

Several studies have explored IoT malware detection using
FL with real-world datasets. One framework leveraged both

supervised and unsupervised FL models—specifically a multi-
layer perceptron and autoencoder—trained on the N-BaIoT
dataset to detect malware on both seen and unseen IoT
devices. This approach demonstrated that federated models
could achieve performance comparable to centralized models
while maintaining data privacy. The study also evaluated
aggregation robustness under adversarial conditions, high-
lighting vulnerabilities in standard FedAvg and the need for
secure aggregation mechanisms [1]. Similarly, another study
addressed the increasing prevalence of botnet attacks in IoT
networks by evaluating the effectiveness of FL in detecting IoT
malware traffic while preserving user privacy. Using the N-
BaIoT dataset, the authors compared FL-based CNN, LSTM,
and GRU models against a centralized baseline. The results
showed that FL models, particularly CNN, achieved strong
performance in identifying abnormal traffic, further stressing
the value of FL in privacy-preserving IoT malware detection
[10].

In the context of the Industrial Internet of Things (IIoT), FL
has also been applied to mitigate privacy concerns and address
the heterogeneity across industrial environments. A recent
study proposed a federated botnet detection method where
multiple industrial enterprises collaboratively train models
without sharing raw data. The approach demonstrated high
adaptability to local settings and robustness against poisoning
attacks [11]. In another effort to enhance scalability and
detection performance in FL-based IoT security systems, a
study introduced a distributed optimization framework using
the Siberian Tiger Optimization (STO) algorithm to fine-tune
hyperparameters of a CNN model at the central server. These
optimized parameters were then distributed to clients for local
training [12].

To improve model robustness and label efficiency,
FedMalDE introduced a semi-supervised FL framework em-
ploying knowledge transfer techniques and a subgraph aggre-
gated capsule network to detect IoT malware [13]. Similarly,
FEDroid targeted Android malware detection using a residual
neural network combined with a genetic evolution strategy
to simulate and detect malware variants, achieving superior
performance across multiple Android datasets [14].

In another line of work, FL was integrated with Markov
chains and associative rule learning to classify IoT malware
across imbalanced and non-IID datasets. This hybrid approach
achieved near-perfect accuracy (99%) while maintaining run-
time performance comparable to centralized methods [15].
Complementing this, FED-MAL transformed malware binaries
into image representations and used a compact CNN (AM-
NET) with adversarial training to enhance generalizability on
edge devices [16].

One framework focused on minimizing latency and model
heterogeneity in FL for networked IoT systems, such as those
using Raspberry Pi devices. The authors proposed a cloud-
unification method to harmonize on-device models, achieving
performance gains between 7% and 13%, with only minor
increases in training time [17].

The SIM-FED model combined FL and a lightweight 1D
CNN to deliver a robust and privacy-preserving malware de-
tection framework. Evaluated on the IoT-23 dataset, SIM-FED
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achieved a 99.52% accuracy and showed resilience to white-
box and black-box adversarial attacks, while also reducing
computational overhead [18].

Another study focused on ransomware detection through
decentralized training across multiple clients, demonstrating
strong results across all performance metrics. The integration
of preprocessing, feature engineering, and collaborative learn-
ing led to a scalable and privacy-preserving detection solution
[19].

A CNN-based FL model was also proposed to handle
imbalanced datasets and intermittent client participation. In
this approach, malware binaries were converted into color
images to extract visual features, and data augmentation
techniques were applied to balance training samples across
clients. The system demonstrated strong results in handling
both intermittent connectivity and class imbalance [20].

Graph-based FL frameworks have also emerged, including
Fed-MalGAT, which outperformed its GCN-based counterpart
by using multi-head attention for robust classification across
federated rounds. Though it introduced additional computa-
tional cost, Fed-MalGAT consistently achieved high accuracy,
precision, and F1 scores across multiple evaluations [6].

Recent work has also emphasized control-flow-based
static analysis. One study introduced an FL framework for
IoT binary classification using CFG-derived features un-
der IID and non-IID scenarios. The models—FL-CNN and
FL-DNN—demonstrated strong performance, with FL-CNN
achieving 95.27% accuracy in the IID setting. The study fur-
ther applied threshold tuning and class weighting to improve
results under class imbalance [9].

Collectively, these works underscore the growing effec-
tiveness of FL in detecting IoT malware under realistic and
constrained conditions.

B. Heterogeneous data processing

Several advanced strategies have been proposed to address
the challenges posed by non-IID data in FL. In [21], a
novel algorithm named CSFedAvg was introduced to mitigate
accuracy degradation caused by non-IID distributions. This
method leverages weight divergence to estimate the degree of
data heterogeneity at each client and selects those with more
IID-like distributions for more frequent participation, thereby
improving global model performance. In [22], a resource-
efficient FL framework based on auction theory was proposed
to minimize training costs while addressing non-IID effects.
The approach jointly optimizes model utility, computational
overhead, and data generation expenses, demonstrating that
incorporating even a small fraction (less than 1%) of shared
IID data significantly improves training efficiency and stake-
holder profitability.

The FedSLD approach presented in [23] adjusts the con-
tribution of each local data sample to the training objective
based on the client’s label distribution. By addressing label
imbalance during optimization, the method improves train-
ing stability and convergence in heterogeneous data settings.
In [24], FedNSE quantifies label distribution skewness and
entropy to assess the non-IID characteristics of data across

clients. Based on this assessment, it selects an optimal subset
of clients for training. Results indicate a reduction of at
least 10% in training loss and improved convergence speed
compared to baseline methods.

To address non-IID data from a clustering perspective, [25]
introduced K-FL, a Kalman filter-based FL method that groups
clients with similar data distributions to produce low-variance,
cluster-specific models. It operates without prior knowledge or
initialization settings and achieves faster training and higher
accuracy than FedAvg on MNIST, FMNIST, and CIFAR-10
datasets. Lastly, [26] proposed clustered Federated Multitask
Learning (FMTL), which integrates model clustering and
multitask learning within a dual-server privacy-preserving ar-
chitecture. Secure two-party computation protocols are used to
ensure data privacy while enhancing communication efficiency
and overall model performance in non-IID environments.

C. Public datasets in XIoT malware detection
A wide array of public datasets has enabled significant

progress in malware detection across the Extended Internet of
Things (XIoT) domains, including IoT, Industrial Internet of
Things (IIoT), Internet of Medical Things (IoMT), and Internet
of Vehicles (IoV). These datasets vary in attack types, sources,
and structural characteristics, supporting diverse detection
approaches. Table I illustrates a summary of public datasets
commonly used in XIoT-based malware detection, along with
the federated splitting criterion.

To investigate Telnet-based attacks targeting IoT devices,
IoTPoT [27] introduces a honeypot-driven sandbox that cap-
tures malware activity across architectures such as ARM,
MIPS, and PPC. The dataset highlights the rapid evolution of
DDoS malware families and their cross-platform propagation
strategies. Bot-IoT [28], created within a cyber range, simu-
lates realistic network traffic comprising both normal and ma-
licious flows. Covering a broad spectrum of threats—DDoS,
keylogging, scanning, and exfiltration—it provides millions of
labeled flows for evaluating anomaly-based intrusion detection
models. Focusing on protocol-specific traffic from both benign
and infected IoT devices, IoT-23 [29] captures 23 real-world
scenarios in pcap format. Its curated mix of malware and
clean device captures supports studies on behavioral analysis
and malware fingerprinting. With a static analysis approach
tailored for Android, Drebin [30] is a well-known Android
malware dataset introduced alongside a lightweight detection
method designed to operate directly on smartphones. Given the
rising volume and diversity of malicious Android applications,
Drebin addresses the limitations of traditional defenses by
employing broad static analysis. It extracts features from
various sources—such as permissions, API calls, and network
addresses—and embeds them in a joint vector space to cap-
ture malware-specific patterns. The dataset contains 123,453
Android applications and 5,560 labeled malware samples.
Originating from a Microsoft-hosted classification challenge,
BIG 2015 [31] features a massive collection of binaries
representing nine malware families. Each sample includes
both raw hexadecimal content and disassembled metadata,
useful for signature- and behavior-based classification. Mal-
img [32] takes a visual approach by converting binary files



JOURNAL 4

TABLE I
SUMMARY OF PUBLIC DATASETS COMMONLY USED IN XIOT MALWARE

DETECTION

Dataset XIoT Domain Federated Splitting Criterion
IoT-23 [37] IoT PCAP
N-BaIoT [36] IoT IoT device
IoTPoT [27] IoT Botnet sample / traffic stream
Bot-IoT [38] IIoT Attack type
BIG 2015 [31] IoT/IIoT/IoMT Family class
WUSTL-EHMS-2020 [35] IoMT Not applicable
NSL-KDD [34] IoMT Traffic category / attack type
Drebin [30] IoT/IIoT/IoV Android malware family
Malgenome [33] IoT Malware type
Malimg [32] IIoT/IoV Malware family

into grayscale images. With over 9,000 samples across 25
families, it allows malware to be classified based on visual tex-
ture patterns without requiring disassembly. The Malgenome
dataset [33] systematizes over 1,200 Android malware samples
collected over a year. It provides deep insights into mobile
malware evolution, installation methods, and evasion tactics.
Improving upon KDD’99, NSL-KDD [34] removes redun-
dancy and balances class distribution. It remains a foundational
benchmark for intrusion detection systems with well-defined
categories like DoS, U2R, R2L, and probing. Designed for
medical environments, WUSTL-EHMS-2020 [35] integrates
biometric sensor data with network flow metrics. It captures
spoofing and data injection attacks in a real-time healthcare
testbed, reflecting IoMT-specific threats. Finally, N-BaIoT [36]
offers traffic data from nine IoT devices infected with Mirai
and BASHLITE. By using deep autoencoders to model benign
behavior, the dataset facilitates precise detection of device-
level anomalies in dynamic enterprise settings.

III. PRELIMINARIES

This section provides an overview of key terminologies
commonly used in the FL domain, including FL deployment
settings, data distribution strategies, and baseline aggregation
algorithms.

A. Federated Learning deployment settings

1) Cross-Device: Cross-device FL refers to a setting in
which numerous heterogeneous edge devices—such as smart-
phones, sensors, and embedded systems—collaboratively train
a shared model while keeping their data locally. This setting
introduces several system-level challenges that must be ad-
dressed to ensure effective deployment [7]:

• Usability and Efficiency: Participating devices often
vary significantly in hardware (e.g., x86, ARM) and soft-
ware environments. These devices typically have limited
computational power, storage capacity, and communica-
tion bandwidth, necessitating lightweight and efficient
training, inference, and model management procedures.

• Scalability and Robustness: The system must support
a vast number of devices and remain robust in the face
of unreliable participants, including those that may fre-
quently disconnect or respond slowly. As more resources
are added, the system should scale efficiently to enhance
training speed and model quality.

• Flexibility and Extensibility: Given the diversity of
software stacks and APIs across devices, FL frameworks
must allow for flexible algorithm customization and ex-
tension to optimize convergence and model performance
across various application scenarios.

2) Cross-Silo: Cross-silo FL refers to collaborative model
training among a small number of reliable and resource-
rich organizations—such as hospitals, banks, and research
institutions—where each participant holds large volumes of
private data and remains involved throughout the training
process [39]. Unlike cross-device FL, cross-silo FL faces
unique challenges stemming from the need to balance high
model performance, strict privacy requirements, and long-
term cooperation between strategically motivated clients. A
key technical challenge is statistical heterogeneity, where non-
IID data distributions across clients degrade global model
performance; this is addressed through data moderation, client
clustering, and personalization techniques, which are more
privacy-preserving. While system heterogeneity is less con-
cerning due to clients’ robust infrastructure, optimizing com-
munication and computation through model compression and
selective client participation remains important. Privacy and
security are paramount, with defenses including differential
privacy, homomorphic encryption, and secure multi-party com-
putation—all offering tradeoffs between protection strength
and computational cost. Moreover, cooperation and incentive
mechanisms such as data valuation, profit allocation, and
fairness-aware strategies are essential for sustaining client
participation [39].

B. Federated Learning data distribution strategies

1) IID data in FL: In FL, data is considered independent
and identically distributed (IID) when each client’s local
dataset follows the same underlying probability distribution
and consists of statistically similar and independent samples.
This assumption simplifies the collaborative training process
by ensuring that all clients contribute uniformly represen-
tative data. Under IID conditions, local model updates are
more aligned, reducing inter-client variability and enabling
faster and more stable convergence of the global model.
Consequently, performance discrepancies between local and
global models are minimal, limiting the need for additional
techniques such as personalization. Many foundational FL
algorithms, such as FedAvg, were initially designed under this
idealized setting, although real-world applications often devi-
ate from these assumptions. The IID scenario is typically used
as a performance baseline when evaluating FL algorithms and
protocols in both simulations and empirical studies. It offers a
controlled environment to understand the core behavior of FL
frameworks before addressing more realistic data challenges
such as statistical heterogeneity and privacy risks [40].

2) Non-IID data in FL: In practice, FL often operates under
non-IID conditions, where data distributions vary significantly
across clients. This heterogeneity stems from differences in
user behavior, application usage, geographic location, sensor
configurations, data collection frequency, and demographic
characteristics, leading to inconsistencies in data quantity,
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class representation, and feature distributions [40]. These
disparities introduce critical challenges such as increased com-
munication costs, slower model convergence, reduced general-
ization performance, and heightened risks of privacy leakage.
Non-uniform data distributions across clients require more
frequent communication with the server to reach model con-
sensus, resulting in higher latency and less efficient training.
Class imbalance across clients can cause local models to un-
derperform on underrepresented categories, which negatively
affects the global model. Moreover, conflicting local gradients
can hinder convergence, and feature-based discrepancies may
reveal sensitive client information during aggregation [41].

C. Baseline optimization and aggregation strategies in Feder-
ated Learning

FedAvg (Federated Averaging) [42] and FedProx (Federated
Proximal) [43] are foundational optimization strategies in FL,
designed to train models across decentralized data sources.
FedAvg operates by having each client perform a fixed number
of local gradient descent steps on their private data. Once
completed, clients send their updated model parameters to a
central server, which averages these updates—weighted by the
relative size of each client’s dataset—to form a new global
model. This method is simple and communication-efficient,
but it does not explicitly restrict how far local updates can
drift from the global model, which can become problematic
in the presence of non-IID data [44].

In contrast, FedProx modifies the local objective function
at each client by adding a proximal term that penalizes large
deviations from the current global model. This means each
client not only minimizes its local empirical loss but also
includes a regularization term that discourages straying too far
from the global model parameters received at the beginning
of the round. As a result, FedProx helps stabilize the training
process when client data distributions are different. While both
algorithms use a similar aggregation approach—computing a
weighted average of the client models—the key distinction
lies in how local models are updated: FedAvg relies purely
on local descent, while FedProx constrains the updates to
remain close to the shared model. This difference makes
FedProx particularly effective in handling heterogeneous data
environments where client updates may diverge significantly
[44].

IV. METHODOLOGICAL FRAMEWORK

This section presents the complete pipeline and techniques
employed in the proposed FedP3E framework. The procedural
steps are outlined in Algorithm 1.

A. Federated Learning setup

We employ a FL architecture comprising a central server
and three client devices. Each client is a powerful and reliable
machine capable of collecting traffic from IoT devices within
the same network, for example, operating as a B5G base
station—an arrangement that aligns with the cross-silo FL
paradigm [1]. Each client (silo) acquires data from three

Fig. 1. Cross-silo federated learning architecture with three client devices
collaborating under a central server.

distinct IoT devices, performs preprocessing, and conducts
local model training, as illustrated in Fig. 1. The training
process spans 20 communication rounds, with each client
training locally for 15 epochs per round and transmitting
updated model parameters to the server for aggregation.

At the beginning of each round, the server distributes the
global model to all clients. If the average accuracy of the
global model at round N falls below a predefined threshold
(which may vary depending on the specific objectives of
the application), clients are prompted to generate one-time,
class-wise feature prototypes using Gaussian Mixture Models
(GMMs). These prototypes, which capture intra-class variabil-
ity, are transmitted to the server, aggregated, and redistributed
to assist clients with missing or underrepresented classes.

To evaluate the proposed framework, we implement two
widely adopted FL baselines: FedAvg and FedProx. FedAvg
aggregates client updates through weighted averaging, while
FedProx incorporates a proximal term into the local objective
to mitigate update divergence in non-IID data settings.

B. Dataset description

To evaluate the proposed FedP3E framework, we utilize
the N-BaIoT [36] dataset, which comprises network traffic
captured from nine distinct IoT devices under both benign and
malicious conditions, as summarized in Table II. Malicious
activity was induced by infecting the devices with two malware
families: Mirai and BASHLITE (also known as Gafgyt). Each
data instance corresponds to a network packet recorded using
Wireshark and is represented by 115 numerical features that
reflect statistical properties—such as packet size, count, and
jitter—computed over various time windows (ranging from
100 milliseconds to 1 minute).

The dataset is structured such that each device maintains
a separate log, which facilitates natural partitioning for FL
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experiments. All devices include both benign and Gafgyt-
infected traffic, while seven out of the nine devices contain
Mirai-related samples. Specifically, the Ennio doorbell and
the Samsung SNH 1011 N webcam do not exhibit Mirai
infections. Table III details the distribution of Gafgyt and Mirai
variants across all IoT devices.

Why N-BaIoT?: N-BaIoT dataset is particularly suited to
our study for three reasons:

1) Cross-silo mapping — The per-device log structure
naturally maps to a cross-silo FL setting in which each
silo aggregates traffic from one or more IoT devices
managed by the same edge node.

2) Multi-class challenge — The coexistence of benign
traffic and multiple malware families yields a challenging,
realistic multi-class detection task.

3) Configurable non-IID — The dataset structure allows
for simulating varying degrees of non-IID conditions,
including: label distribution skew, where clients observe
different class proportions; quantity skew, where the num-
ber of samples per client varies significantly; and disjoint
distribution, where clients possess mutually exclusive sets
of class labels.

This flexibility is essential for systematically validating
the robustness of FedP3E under varying degrees of data
heterogeneity.

C. Client data characteristics and data distribution

To emulate realistic cross-silo FL deployments, we consider
two primary data distribution strategies across clients: IID and
non-IID scenarios.

In the IID setting, the dataset is partitioned evenly among
three clients based on device types. Specifically, all traffic data
from IoT devices 1, 2, and 3 are assigned to Client 1; devices 4,
5, and 6 to Client 2; and the remaining devices (7, 8, and 9) to
Client 3. This setup ensures that each client receives a balanced
mix of benign samples, Gafgyt variants, and Mirai variants,
thereby maintaining uniform class representation across the
federation, as illustrated in Table IV.

In contrast, the non-IID distribution is explored through
three escalating levels of statistical heterogeneity:

• Case 1: Light non-IID — Certain attack variants are
more prevalent in one client while sparsely present or
entirely absent in others. For instance, the Gafgyt variant
combo is abundant in Client 1, lightly represented in
Client 3, and completely absent in Client 2, as shown
in Table V.

• Case 2: Moderate non-IID — Some attack types are
entirely missing from one or more clients. For example,
the Mirai variant udp plain appears exclusively in Client
2 and is absent from both Clients 1 and 3, as illustrated
in Table VI.

• Case 3: Severe non-IID — This most challenging con-
figuration introduces extreme class imbalance where each
client is assigned data from only one category. Specifi-
cally, Client 1 contains only benign samples, Client 2
hosts only Gafgyt samples, and Client 3 is limited to
Mirai variants. This severe partitioning simulates a highly

heterogeneous federated environment, as illustrated in
Table VII, and poses significant challenges for model con-
vergence and generalization due to the complete absence
of overlapping classes across clients.

These non-IID scenarios introduce practical challenges
commonly encountered in distributed IoT environments. Dif-
ferences in device capabilities, usage patterns, and threat
exposure often result in skewed or incomplete local data distri-
butions. As such, our design reflects real-world heterogeneity,
where local models may struggle to learn from limited or
biased representations of the overall data distribution.

Algorithm 1 FedP3E: Federated Privacy-Preserving Prototype
Exchange
Require: Federated clients {C1, C2, ..., CK}, global rounds

T , prototype exchange threshold τ , evaluation round r∗

Ensure: Trained global model MG

1: Initialize global model M0
G

2: for each round t = 1 to T do
3: Server sends Mt−1

G to all clients
4: for each client Ck in parallel do
5: Perform local training on Ck for E epochs using local

data Dk

6: Send updated model Mt
k to the server

7: end for
8: Server aggregates {Mt

k}Kk=1 to update Mt
G

9: if t = r∗ and Accuracy(Mt
G) < τ then

10: for each client Ck in parallel do
11: for each class c ∈ Ck do
12: Fit a GMM to local features Xc

13: Extract component means µ
(c)
j as prototypes

14: Perturb each prototype: µ̃
(c)
j = µ

(c)
j + ϵ, ϵ ∼

N (0, σ2I)
15: end for
16: Send {µ̃(c)

j } to server
17: end for
18: Server aggregates all prototypes by class using Mini-

Batch K-Means
19: Server sends merged global prototypes {µ̂(c)

l } to all
clients

20: for each client Ck in parallel do
21: Apply SMOTE to {µ̂(c)

l } to generate synthetic
samples

22: Add synthetic data to local dataset Dk

23: end for
24: end if
25: end for
26: return Final global model MT

G

D. Prototype generation via GMM

To realise privacy-preserving knowledge sharing while mit-
igating class imbalance, every client succinctly encodes its
local data through class-wise prototypes. Instead of transmit-
ting raw samples or model gradients, each client fits a GMM
to the feature vectors of every local class and shares only the
perturbed component means.
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TABLE II
SUMMARY OF BENIGN AND ATTACK INSTANCES FOR EACH IOT DEVICE
IN THE N-BAIOT DATASET, INCLUDING INFECTION STATUS BY GAFGYT

AND MIRAI MALWARE [36]

IoT Device Gafgyt Mirai Benign Attacks
Danmini Doorbell ✓ ✓ 49,548 968,750
Ennio Doorbell ✓ ✗ 39,100 316,400
Ecobee Thermostat ✓ ✓ 13,113 822,763
Philips B120N/10 Baby Monitor ✓ ✓ 175,240 923,437
Provision PT-737E Security
Cam

✓ ✓ 62,154 766,106

Provision PT-838 Security Cam ✓ ✓ 98,514 738,377
SimpleHome XCS7-1002-WHT
Cam

✓ ✓ 46,585 816,471

SimpleHome XCS7-1003-WHT
Cam

✓ ✓ 19,528 831,298

Samsung SNH-1011N Webcam ✓ ✗ 52,150 323,072

Local GMM fitting: Let Ck denote the set of classes
present on client k and Xc = {xi ∈ Rd | yi = c} the feature
matrix of class c ∈ Ck. The class density is modelled as

p(x | c) =
Kc∑
j=1

π
(c)
j N

(
x; µ

(c)
j ,Σ

(c)
j

)
, (1)

where
• Kc is the (data-driven) number of mixture components,

selected via the Bayesian Information Criterion (BIC);
• π

(c)
j > 0 is the weight of component j with

∑Kc

j=1 π
(c)
j =1;

• µ
(c)
j ∈ Rd and Σ

(c)
j ∈ Rd×d are, respectively, its mean

(prototype) and covariance;
• N (·;µ,Σ) denotes the d-variate Gaussian probability den-

sity function.
Prototype extraction and perturbation: After training the

GMM, the set {µ(c)
j }Kc

j=1 serves as the class prototypes. To
protect privacy, each mean is obfuscated by additive noise:

µ̃
(c)
j = µ

(c)
j + ϵ, ϵ ∼ N

(
0, σ2Id

)
, (2)

where
• σ controls the noise amplitude (tuned empirically to bal-

ance privacy and utility);
• Id is the d× d identity matrix;
• µ̃

(c)
j is the privacy-preserving prototype that will be up-

loaded.
Conditional exchange: The prototype-sharing routine is

one-off and adaptive: the server monitors the global accuracy
during the first five rounds and triggers an exchange only if
the mean accuracy drops below a preset threshold (97 % in
our experiments). However, these hyper-parameters are con-
figurable in real-world deployments depending on the dataset
characteristics, application requirements, and the convergence
behavior of the federated system.

Rationale: Sharing perturbed GMM means fulfils three
goals simultaneously: (1) it keeps raw data local, (2) it conveys
essential class statistics to the federation, and (3) it injects pri-
vacy noise that thwarts sample reconstruction. Consequently,
each client gains statistical cues about under-represented or
unseen classes, enabling more balanced updates when local
data are skewed.

E. Prototype aggregation and redistribution

To enable scalable and privacy-aware knowledge transfer,
we introduce a centralized prototype aggregation mechanism
that consolidates noisy client-side class representations. Once
clients transmit their class-wise prototypes during the desig-
nated exchange round, the server initiates a centralized aggre-
gation process. For each class c observed across the federation,
the server collects the corresponding set of perturbed prototype
vectors {µ̃(c)

j } from all contributing clients. These vectors are
then clustered using the MiniBatch K-Means algorithm, which
is computationally efficient and well-suited for processing
large volumes of prototype data with minimal overhead. The
goal is to derive a compact yet representative set of global
prototypes {µ̂(c)

l }Lc

l=1 for each class, where Lc denotes the
number of clusters selected heuristically based on the number
of received prototypes and the dimensionality of the feature
space.

This aggregated set of global prototypes captures a more
comprehensive view of class-specific distributions across the
federated system. In the subsequent communication round, the
server redistributes these refined prototypes to all participating
clients. By integrating these global class representations into
their local training pipelines, clients obtain statistical cues for
classes that may not be present in their local datasets. This en-
hances the learning process and promotes better generalization
across heterogeneous data.

Importantly, this redistribution strategy enables clients with
skewed or disjoint data to benefit from the broader class
diversity of the federation without violating data privacy
constraints, thereby contributing to a more robust and balanced
global model.

F. Data augmentation with SMOTE

To further mitigate local class imbalance and enrich the
training corpus, clients apply the Synthetic Minority Oversam-
pling Technique (SMOTE) to the received global prototypes.
Upon receiving the set {µ̂(c)

l } for underrepresented class c,
each client generates additional synthetic samples by inter-
polating between randomly selected prototype pairs in the
feature space. The number of synthetic instances is controlled
to achieve approximately a 10% increase in the training set
size relative to the number of received prototypes.

Formally, let µ̂
(c)
a , µ̂

(c)
b ∈ Rd be two randomly chosen

prototype vectors corresponding to class c, where d is the
feature space dimension. A synthetic sample xsyn ∈ Rd is
then generated as follows:

xsyn = µ̂(c)
a + λ · (µ̂(c)

b − µ̂(c)
a ), λ ∼ U(0, 1), (3)

where λ is sampled from a continuous uniform distribution
U(0, 1). This linear interpolation preserves the geometric co-
herence of the class distribution while introducing controlled
variability, thereby enhancing the representation of minority
classes during local training.

The combination of prototype redistribution and SMOTE-
based augmentation equips each client with a synthesized and
more balanced perspective of the data space. This approach
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TABLE III
DISTRIBUTION OF GAFGYT AND MIRAI ATTACK VARIANTS ACROSS IOT DEVICES IN THE N-BAIOT DATASET

IoT device Benign Gafgyt variants Mirai variants
IoT1 (Danmini Doorbell) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT2 (Ecobee Thermostat) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT3 (Ennio Doorbell) Benign combo junk scan tcp udp ✗ ✗ ✗ ✗ ✗
IoT4 (Philips B120N/10 Baby Monitor) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT5 (Provision PT-737E Security Cam) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT6 (Provision PT-838 Security Cam) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT7 (Samsung SNH-1011N Webcam) Benign combo junk scan tcp udp ✗ ✗ ✗ ✗ ✗
IoT8 (SimpleHome XCS7-1002-WHT Cam) Benign combo junk scan tcp udp ack scan syn udp udp plain
IoT9 (SimpleHome XCS7-1003-WHT Cam) Benign combo junk scan tcp udp ack scan syn udp udp plain

TABLE IV
SCENARIO 1: IID DISTRIBUTION OF IOT TRAFFIC AMONG CLIENTS. EACH CLIENT RECEIVES A BALANCED, REPRESENTATIVE SUBSET OF BENIGN

PACKETS AND EVERY GAFGYT / MIRAI VARIANT, EMULATING AN IDEAL FEDERATED LEARNING ENVIRONMENT. THE NUMBERS REPORTED IN THE
TABLE DENOTE THE EXACT INSTANCE COUNTS FOR BENIGN TRAFFIC AND EACH MALWARE FAMILY

Client IoT Benign Gafgyt variants Mirai variants
Combo Junk Scan Tcp Udp Ack Scan Syn Udp Udp

plain

Client1
IoT1 ✓49,548 ✓59,718 ✓29,068 ✓29,849 ✓92,141 ✓105,874 ✓102,195 ✓107,685 ✓122,573 ✓237,665 ✓81,982
IoT2 ✓13,113 ✓53,012 ✓30,312 ✓27,494 ✓95,021 ✓104,791 ✓113,285 ✓43,192 ✓116,807 ✓151,481 ✓87,368
IoT3 ✓39,100 ✓53,014 ✓29,797 ✓28,120 ✓101,536 ✓103,933 ✗ ✗ ✗ ✗ ✗

Client2
IoT4 ✓175,240 ✓58,152 ✓28,349 ✓27,859 ✓92,581 ✓105,782 ✓91,123 ✓103,621 ✓118,128 ✓217,034 ✓80,808
IoT5 ✓62,154 ✓61,380 ✓30,898 ✓29,297 ✓104,510 ✓104,510 ✓60,554 ✓96,781 ✓65,746 ✓156,248 ✓56,681
IoT6 ✓98,514 ✓57,530 ✓29,068 ✓28,397 ✓89,387 ✓104,658 ✓57,997 ✓97,096 ✓61,851 ✓158,608 ✓53,785

Client3
IoT7 ✓52,150 ✓58,669 ✓28,305 ✓27,698 ✓97,783 ✓110,617 ✗ ✗ ✗ ✗ ✗
IoT8 ✓46,585 ✓54,283 ✓28,579 ✓27,825 ✓88,816 ✓103,720 ✓111,480 ✓45,930 ✓125,715 ✓151,879 ✓78,244
IoT9 ✓19,528 ✓59,398 ✓27,413 ✓28,572 ✓98,075 ✓102,980 ✓107,187 ✓43,674 ✓122,479 ✓157,084 ✓84,436

TABLE V
SCENARIO 2 – CASE 1: LIGHT NON-IID DISTRIBUTION OF ATTACK VARIANTS ACROSS CLIENTS. THIS SETTING INTRODUCES MILD STATISTICAL
HETEROGENEITY, WHERE CERTAIN MALWARE VARIANTS ARE UNEVENLY DISTRIBUTED AMONG CLIENTS. THE NUMBERS SHOWN IN THE TABLE

INDICATE THE NUMBER OF INSTANCES PER CLIENT FOR BOTH BENIGN SAMPLES AND SPECIFIC MALWARE VARIANTS

Client IoT Benign Gafgyt variants Mirai variants
Combo Junk Scan Tcp Udp Ack Scan Syn Udp Udp

plain

Client1
IoT1 ✓49,548 ✓59,718 ✗ ✗ ✓92,141 ✗ ✗ ✓107,685 ✗ ✓237,665 ✓81,982
IoT2 ✓13,113 ✓53,012 ✗ ✗ ✓95,021 ✗ ✗ ✓43,192 ✓116,807 ✗ ✓87,368
IoT3 ✓39,100 ✓53,014 ✗ ✗ ✓101,536 ✗ ✗ ✗ ✗ ✗ ✗

Client2
IoT4 ✓175,240 ✗ ✓28,349 ✓27,859 ✗ ✓105,782 ✗ ✓103,621 ✓118,128 ✓217,034 ✗
IoT5 ✓62,154 ✗ ✓30,898 ✓29,297 ✗ ✗ ✗ ✗ ✓65,746 ✗ ✗
IoT6 ✓98,514 ✗ ✓29,068 ✓28,397 ✗ ✗ ✗ ✗ ✓61,851 ✗ ✗

Client3
IoT7 ✓52,150 ✓58,669 ✗ ✗ ✓97,783 ✗ ✗ ✗ ✗ ✗ ✗
IoT8 ✓46,585 ✗ ✗ ✗ ✗ ✓103,720 ✓111,480 ✗ ✗ ✗ ✓78,244
IoT9 ✓19,528 ✗ ✓27,413 ✗ ✗ ✓102,980 ✓107,187 ✗ ✗ ✓157,084 ✓84,436

indirectly enhances model robustness—particularly in the pres-
ence of highly skewed or disjoint local datasets—without ever
transmitting raw data samples or client-specific features.

Together, these components form the backbone of the pro-
posed FedP3E framework, offering a scalable and privacy-
preserving mechanism for indirect knowledge transfer across
non-IID and imbalanced IoT malware datasets within cross-
silo FL environments.

V. EXPERIMENTS AND ANALYSIS

A. Experimental setup

This subsection outlines the data–preprocessing pipeline, the
hardware/software stack, and the FL configuration. The full set
of training hyper-parameters is listed in Table VIII.

1) Preprocessing: Each client loads its local CSV partition,
scales all features to [0, 1] with Min–Max normalisation,

and performs an 80/20 stratified split to create training and
test subsets. No further feature engineering or dimensionality
reduction is applied, resulting in an input dimension of 115
features.

2) Hardware and software environment: Experiments run
on a Linux workstation equipped with two NVIDIA GeForce
RTX 4090 GPUs (24 GB each) and CUDA 12.2. Implemen-
tation uses Python 3.11.5, TensorFlow 2.15 (Keras API), and
the Flower FL framework v1.15.2.

3) FL Configuration: We follow a cross-silo FL setup con-
sisting of three high-capacity clients and a central server. All
clients participate in every round, training the model locally
for 15 epochs per round across 20 communication rounds.
After the initial five rounds, if the global model’s average
accuracy falls below 97%, a one-time prototype exchange is
triggered at round 6. In this step, each client transmits class-
wise GMM centroids with added Gaussian noise to preserve
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TABLE VI
SCENARIO 2 – CASE 2: MODERATE NON-IID DISTRIBUTION OF ATTACK VARIANTS ACROSS CLIENTS. THIS SETTING INTRODUCES A HIGHER LEVEL OF

STATISTICAL HETEROGENEITY COMPARED TO CASE 1. CERTAIN MALWARE VARIANTS ARE ENTIRELY ABSENT FROM ONE OR MORE CLIENTS, CREATING
NOTICEABLE CLASS IMBALANCE. THE NUMBERS PRESENTED IN THE TABLE REFLECT THE INSTANCE COUNTS OF BENIGN AND MALWARE SAMPLES

DISTRIBUTED ACROSS CLIENTS

Client IoT Benign Gafgyt variants Mirai variants
Combo Junk Scan Tcp Udp Ack Scan Syn Udp Udp

plain

Client1
IoT1 ✓49,548 ✓59,718 ✗ ✗ ✗ ✓105,874 ✓102,195 ✗ ✓122,573 ✗ ✗
IoT2 ✓13,113 ✓53,012 ✗ ✗ ✗ ✗ ✓113,285 ✗ ✓116,807 ✗ ✗
IoT3 ✓39,100 ✓53,014 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Client2
IoT4 ✓175,240 ✗ ✓28,349 ✗ ✓92,581 ✗ ✗ ✓103,621 ✓118,128 ✗ ✓80,808
IoT5 ✗ ✗ ✓30,898 ✗ ✓104,510 ✓104,510 ✗ ✓96,781 ✓65,746 ✗ ✓56,681
IoT6 ✗ ✗ ✓29,068 ✗ ✓89,387 ✗ ✗ ✓97,096 ✓61,851 ✗ ✓53,785

Client3
IoT7 ✗ ✗ ✗ ✓27,698 ✗ ✗ ✗ ✗ ✗ ✗ ✗
IoT8 ✗ ✗ ✗ ✓27,825 ✗ ✗ ✓111,480 ✗ ✗ ✓151,879 ✗
IoT9 ✓19,528 ✗ ✗ ✓28,572 ✗ ✓102,980 ✓107,187 ✗ ✗ ✓157,084 ✗

TABLE VII
SCENARIO 2 – CASE 3: SEVERE NON-IID DISTRIBUTION OF ATTACK VARIANTS ACROSS CLIENTS. IN THIS SETTING, EACH CLIENT IS EXPOSED TO A
DISJOINT SUBSET OF THE CLASS SPACE: CLIENT 1 CONTAINS ONLY BENIGN SAMPLES, CLIENT 2 OBSERVES EXCLUSIVELY GAFGYT MALWARE, AND

CLIENT 3 IS LIMITED TO MIRAI MALWARE. THE NUMBERS REPORTED IN THE TABLE INDICATE THE INSTANCE COUNTS FOR EACH CLASS TYPE (BENIGN,
GAFGYT, AND MIRAI) ASSIGNED TO THE RESPECTIVE CLIENTS

Client IoT Benign Gafgyt variants Mirai variants
Combo Junk Scan Tcp Udp Ack Scan Syn Udp Udp

plain

Client1
IoT1 ✓49,548 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
IoT2 ✓13,113 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
IoT3 ✓39,100 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Client2
IoT4 ✗ ✓58,152 ✓28,349 ✓27,859 ✓92,581 ✓105,782 ✗ ✗ ✗ ✗ ✗
IoT5 ✗ ✓61,380 ✓30,898 ✓29,297 ✓104,510 ✓104,510 ✗ ✗ ✗ ✗ ✗
IoT6 ✗ ✓57,530 ✓29,068 ✓28,397 ✓89,387 ✓104,658 ✗ ✗ ✗ ✗ ✗

Client3
IoT7 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
IoT8 ✗ ✗ ✗ ✗ ✗ ✗ ✓111,480 ✓45,930 ✓125,715 ✓151,879 ✓78,244
IoT9 ✗ ✗ ✗ ✗ ✗ ✗ ✓107,187 ✓43,674 ✓122,479 ✓157,084 ✓84,436

TABLE VIII
P3E FEDERATED-LEARNING HYPER-PARAMETERS

Component / Setting Configuration

Neural Network Architecture
Input layer 115 numeric features
Dense layer 1 128 units, ReLU, L2= 0.001
Batch normalization After Dense 1
Dropout p = 0.5 after Dense 1
Dense layer 2 64 units, ReLU, L2= 0.001
Batch normalization After Dense 2
Output layer 3 units, Softmax

Local Training Settings
Optimizer Adam, learning rate = 0.0001
Loss function Sparse categorical cross-entropy
Epochs per round 15
Batch size 32

Federated Learning Setup
FL strategy FedAvg (full participation)
Number of rounds 20
Prototype exchange Triggered if mean accuracy (rounds 1–5)

< 0.97
Gaussian noise Added to prototypes, σ = 0.01

Total trainable parameters 23,683

data privacy, which the server reclusters the received centroids
via MiniBatch K-Means and broadcasts the resulting global
prototypes. Clients then apply SMOTE to augment minority
classes by 10 % (relative to the original training size) and
continue training.

B. Baseline methods

To benchmark the performance of the proposed P3E frame-
work, we conduct comparative experiments under both IID
and non-IID data distributions using two widely adopted FL
algorithms: FedAvg and FedProx. These baseline methods are
configured with the same training-level hyperparameters as
FedP3E, excluding the prototype exchange mechanism and the
incorporation of Gaussian noise. For FedProx, we evaluate
its performance under varying values of the proximal term
µ, specifically µ ∈ {0.1, 0.3, 1.0}, to assess its sensitivity to
different regularization strengths.

C. Results and analysis

This subsection presents a comprehensive evaluation of the
proposed FedP3E framework across various data distribution
scenarios. We compare its performance with FedAvg and
FedProx using standard classification metrics, including accu-
racy, precision, recall, F1-score, and communication efficiency.
Table IX summarizes the end-of-training performance of all
FL methods under both IID and non-IID conditions.

1) IID scenario: In the IID scenario, both FedAvg and
FedP3E rapidly exceed 99.5% accuracy within the first 10
communication rounds, with FedP3E attaining the lowest
final loss (0.0168) and a slightly smoother learning curve. In
contrast, FedProx with µ = 0.1 trails slightly and plateaus
at 98.9% accuracy. As the regularization strength increases
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TABLE IX
END-OF-TRAINING PERFORMANCE OF ALL FEDERATED LEARNING METHODS UNDER IID AND NON-IID DATA-DISTRIBUTION SCENARIOS

Method Accuracy Precision Recall F1-score Loss Training time (s)

Scenario 1: IID

FedP3E 0.9971 0.997 0.997 0.997 0.0168 17,346.7
FedAvg 0.9974 0.997 0.997 0.997 0.0214 17,171.2
FedProx (µ = 0.1) 0.9890 0.989 0.989 0.989 0.0423 17,186.4
FedProx (µ = 0.3) 0.9059 0.906 0.906 0.906 0.4927 17,414.6
FedProx (µ = 1.0) 0.1267 0.127 0.127 0.127 1.1750 16,937

Scenario 2 - Case 1: Light non-IID

FedP3E 0.9957 0.996 0.995 0.996 0.0199 12,338.3
FedAvg 0.9379 0.940 0.935 0.938 0.3870 7,553
FedProx (µ = 0.1) 0.9278 0.930 0.925 0.928 0.3486 7,599.7
FedProx (µ = 0.3) 0.9610 0.961 0.960 0.961 0.1443 7,493.2
FedProx (µ = 1.0) 0.3328 0.330 0.330 0.331 1.1667 7,571.5

Scenario 2 - Case 2: Moderate non-IID

FedP3E 0.9940 0.994 0.994 0.994 0.0283 12,040.9
FedAvg 0.9196 0.920 0.918 0.919 0.3921 8,052.6
FedProx (µ = 0.1) 0.9247 0.926 0.923 0.925 0.3407 7,949.9
FedProx (µ = 0.3) 0.9402 0.941 0.940 0.940 0.2167 8,103.2
FedProx (µ = 1.0) 0.5911 0.590 0.590 0.590 1.1379 7,971.4

Scenario 2 - Case 3: Severe non-IID

FedP3E 0.9511 0.951 0.950 0.951 0.7251 8 663.3
FedAvg 0.4939 0.494 0.494 0.494 1.3466 5 788
FedProx (µ = 0.1) 0.4939 0.494 0.494 0.494 1.3556 5 785.5
FedProx (µ = 0.3) 0.4939 0.494 0.494 0.494 1.3637 5 791.1
FedProx (µ = 1.0) 0.0485 0.049 0.048 0.048 1.2224 5 707.7

to µ = 0.3, convergence further degrades, and the final
accuracy drops to 90.6%. With µ = 1.0, FedProx struggles to
learn altogether. These trends underscore that heavy proximal
regularization is unnecessary in balanced data environments.
The detailed accuracy and loss trends are shown in Fig. 2
and 3, respectively.

Takeaway: In balanced IID settings, FedP3E operates
comparably to FedAvg without activating its prototype-
exchange mechanism, which remains dormant unless
a performance drop is observed. This allows the
framework to maintain high performance with minimal
communication overhead. In contrast, FedProx exhibits
slower convergence and reduced final accuracy, indicat-
ing that proximal regularization offers limited value in
such balanced environments.

2) Light non-IID: In the light non-IID setting, label distri-
bution skew is mild: while all clients observe samples from
both malware families, the frequency of individual variants
differs across them. This setup reflects realistic deployments,
where certain IoT environments experience uneven exposure to
specific attack types. As shown in Fig. 4, FedP3E experiences
a slight initial drop in accuracy—due to the deliberate class
imbalance—but once the average global accuracy at round
5 falls below the 97% threshold, the one-time prototype ex-
change is triggered. This immediately improves performance,

Fig. 2. Comparison of accuracy across 20 rounds under the IID data
distribution scenario for FedP3E, FedAvg, and FedProx with varying µ values.

with accuracy rising from 93.3% (round 6) to 99.5% (round
7), and remaining above 99% thereafter.

Fig. 5 further illustrates that this adjustment also leads to
a significant drop in cross-entropy loss, reinforcing the stabi-
lizing effect of prototype redistribution. In contrast, FedAvg
and FedProx (with µ = 0.1 and 0.3) converge more slowly
and plateau between 93–96% accuracy, while FedProx with
strong regularization (µ = 1.0) fails to learn, stalling at just
33.28% accuracy. By round 20, FedP3E achieves an F1-score
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Fig. 3. Evolution of training loss across 20 rounds under the IID data
distribution scenario for FedP3E, FedAvg, and FedProx with varying µ values.

Fig. 4. Comparison of accuracy across 20 rounds under the light non-IID
data distribution scenario for FedP3E, FedAvg, and FedProx with varying µ
values.

of 99.6% and a loss of 0.020—improving by approximately 3.5
percentage points in F1-score and 86% in loss relative to the
next-best baseline (FedProx, µ = 0.3). The performance gain
is most pronounced on minority variants, with recall improving
by about 6 percentage points compared to FedAvg, indicating
that prototype redistribution effectively compensates for mild
class imbalance.

Takeaway: Under light heterogeneity, a one-time,
privacy-preserving prototype exchange is sufficient to
close the statistical gap between clients, enabling near-
optimal global performance without data exposure or
heavy communication. These results illustrate the prac-
ticality of FedP3E in scenarios where mild non-IID
label imbalance exists.

3) Moderate non-IID: In the moderate non-IID setting,
several malware variants are entirely absent from one or
more clients. This heavier statistical skew (Table VI) emulates
scenarios where clients operate in isolation or lack exposure
to specific threat categories—for example, udp plain (Mirai)
appears only at Client 2, while combo (Gafgyt) is limited to
Client 1.

FedP3E demonstrates strong resilience to this form of

Fig. 5. Evolution of training loss across 20 rounds under the light non-IID
data distribution scenario for FedP3E, FedAvg, and FedProx with varying µ
values.

Fig. 6. Comparison of accuracy across 20 rounds under the moderate non-IID
data distribution scenario for FedP3E, FedAvg, and FedProx with varying µ
values.

heterogeneity. As illustrated in Fig.6, it steadily improves
throughout the training process, achieving an accuracy and
F1-score of 99.4% by round 20, along with the lowest final
loss (0.028) as shown in Fig. 7. These gains are supported
by a single round of prototype redistribution, which provides
indirect exposure to unseen classes and facilitates inter-client
knowledge transfer.

Among baseline methods, FedProx with µ = 0.3 delivers
the closest performance, plateauing near 96.1% accuracy,
while FedAvg struggles with fluctuating accuracy and higher
loss values. FedProx with µ = 1.0 fails to converge entirely,
indicating that aggressive regularization may be counterpro-
ductive in class imbalanced environments.

Importantly, FedP3E yields notable improvements in
minority-class recall—achieving gains of approximately 7
percentage points over FedAvg and around 5 points over
FedProx (µ = 0.3). This highlights the effectiveness of
targeted prototype exchange in moderating distribution skew
while preserving both communication efficiency and client
data privacy.
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Fig. 7. Evolution of training loss across 20 rounds under the moderate non-
IID data distribution scenario for FedP3E, FedAvg, and FedProx with varying
µ values.

Takeaway: Under moderate non-IID conditions,
FedP3E demonstrates strong generalization by using a
one-time prototype redistribution to ensure all clients
benefit from class information missing in their lo-
cal datasets. Its consistent performance and improved
recall on minority variants outperform all baselines,
including the best FedProx variant (µ = 0.3), highlight-
ing its effectiveness in handling statistical heterogene-
ity without compromising privacy or communication
efficiency.

4) Severe non-IID: The severe non-IID scenario repre-
sents the most challenging distribution setting, where each
client holds data from a mutually exclusive class subset,
resulting in complete label disjointness across the federation.
Specifically, Client 1 contains only benign samples, Client 2
processes Gafgyt-infected traffic, and Client 3 receives only
Mirai instances. This setting emulates highly siloed deploy-
ments—such as separate enterprise departments, segmented
sensor networks, or distinct security zones—where operational
roles and device types lead to drastically different threat
exposures and data profiles.

Under this setting, baseline FL methods struggle to gener-
alize due to the absence of overlapping label spaces across
clients. As shown in Fig. 8, FedAvg fails to learn meaningful
patterns, with global accuracy plateauing around 50% through-
out. Similarly, FedProx across all tested µ values shows poor
convergence, as clients lack exposure to any class diversity
and the aggregation process struggles to align incompatible
local models.

In contrast, FedP3E exhibits remarkable resilience. Despite
the lack of overlapping label spaces, its one-time exchange of
class-wise prototypes allows each client to gain semantically
enriched representations of unseen categories. Following this
exchange, SMOTE is applied locally to synthesize a small
number (10%) of new training samples for missing classes
based on the received prototypes. This enhancement empowers
each client to update its model with representative features of
all classes, enabling the server to aggregate a more coherent
and generalizable global model.

As illustrated in Fig. 9, FedP3E significantly reduces loss
after the prototype phase and maintains stable convergence
thereafter. While the approach incurs a modest increase in
communication due to prototype sharing, the performance

Fig. 8. Comparison of accuracy across 20 rounds under the severe non-IID
data distribution scenario for FedP3E, FedAvg, and FedProx with varying µ
values.

Fig. 9. Evolution of training loss across 20 rounds under the severe non-IID
data distribution scenario for FedP3E, FedAvg, and FedProx with varying µ
values.

gain—in both accuracy and convergence—is substantial, mak-
ing FedP3E a practical solution for real-world federated de-
ployments characterized by severe non-IID.

Takeaway: FedP3E effectively addresses the limita-
tions of baseline FL algorithms in severe non-IID
settings by introducing cross-client semantic context
through prototype sharing and local SMOTE-based
augmentation. This strategy enables robust convergence
even in completely disjoint class distributions, where
client datasets are inherently isolated and unbalanced.
In contrast, baseline methods such as FedAvg and
FedProx fail to generalize under such conditions, as
they lack mechanisms to compensate for the absence
of shared label space across clients.

5) FedAvg vs. FedProx: Comparative analysis across µ
variants: FedAvg operates by averaging client model updates
without regularization, while FedProx introduces a proximal
term governed by the parameter µ to constrain local updates
from drifting too far from the global model. This design aims
to stabilize training in non-IID scenarios by aligning local
objectives more closely with the global model.
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However, our results reveal significant limitations in Fed-
Prox’s performance across different levels of data hetero-
geneity. Even under balanced IID conditions—where clients
share identical class distributions—FedProx with µ = 1.0
performs poorly, reaching only 12% accuracy. This drastic
underperformance results from overly restrictive regulariza-
tion, which severely limits local model updates and prevents
the model from learning even in well-aligned data settings.
Such behavior suggests that strong proximal constraints can
be counterproductive in scenarios where client data is already
consistent and does not require additional stabilization. In
the light non-IID scenario, FedProx with µ = 0.3 achieves
slightly better final accuracy than both FedAvg and FedProx
with µ = 0.1, while maintaining a comparable convergence
rate. In the moderate non-IID setting, FedProx with µ = 0.1
and 0.3 outperform FedAvg in terms of accuracy, although all
three approaches experience instability across rounds. This is
primarily due to the absence of specific variant-level on certain
clients. Without a mechanism to compensate for these missing
variants, the locally-trained models struggle with consistent
predictions on under-represented categories. In the severe non-
IID case, where each client has access to only a single class, all
FedProx variants exhibit a dramatic collapse in performance.
The proximal term, which is intended to keep local models
aligned with the global model, ends up restricting their ability
to learn from the limited data available. At the same time, it
provides no mechanism for handling unseen classes, which are
entirely absent from local datasets.

Takeaway: FedProx’s effectiveness depends heavily on
the data distribution and the choice of µ. Its perfor-
mance drops significantly in both balanced and skewed
settings when regularization is too aggressive. In feder-
ated environments with high class imbalance or disjoint
label spaces, stronger strategies like FedP3E—which
actively enhance each client’s view of the global class
distribution—are required to ensure stable training and
generalization.

6) Communication cost: To evaluate the communication
efficiency of FedP3E, we quantify the transmission overhead
associated with its prototype exchange mechanism relative to
standard FL protocols. Let the communication payloads be
defined as:

W ∈ Rdw , Pi =
{
µk,j

}
k=1,...,C
j=1,...,mk

, µk,j ∈ Rdx ,

where:

• dw = 23,683 — total number of trainable model parame-
ters,

• C — number of classes observed locally by client i,
• mk — number of GMM prototypes per class k,
• dx = 115 — dimensionality of the input feature space,
• |W| = dw — size of the model update in floats,
• |Pi| =

∑C
k=1 mk · dx — total size of prototype vectors

uploaded by client i.

Regular FL Communication: In each FL round, clients
upload their local model and receive the global model:

Upload: W, Download: W(global) ⇒ Total: 2·|W| floats.

Prototype Exchange Overhead: If the global model fails
to reach a predefined accuracy threshold (97%) after five
communication rounds, a one-time prototype exchange is initi-
ated. Each client uploads class-wise perturbed GMM centroids
Pi and receives a global prototype set P̂ aggregated and
reclustered by the server:

Upload: Pi, Download: P̂.

Upload Size: Assuming each client observes C = 3
classes and generates mk = 3 prototypes per class, the total
prototype upload size becomes:

|Pi| = C ·mk · dx = 3 · 3 · 115 = 1035 floats.

Relative to the full model, this represents an upload cost of:

|Pi|
|W|

=
1035

23,683
≈ 4.37%.

Download Size: Following aggregation, the server sends
back P̂ consisting of m′

k = 4 prototypes per class for Cglobal =
3 global classes:

|P̂| = Cglobal ·m′
k · dx = 3 · 4 · 115 = 1380 floats,

yielding a relative download cost of:

|P̂|
|W|

=
1380

23,683
≈ 5.83%.

Total Prototype Communication.: The total cost of the
one-time prototype exchange, accounting for both upload and
download, is:

|Pi|+ |P̂|
|W|

=
1035 + 1380

23,683
≈ 9.58%.

Takeaway: FedP3E introduces a one-time prototype
exchange mechanism that incurs less than 10% of
the communication volume of a full model round.
This lightweight overhead enables statistically enriched
updates under non-IID conditions while preserving the
communication efficiency of standard FL protocols in
all other rounds.

7) Training overhead: In addition to communication effi-
ciency and model accuracy, we evaluate the training overhead
of FedP3E across varying degrees of data heterogeneity. All
methods were executed on identical hardware to ensure fair
comparison, and Fig. 10 presents the total training time under
IID, light, moderate, and severe non-IID scenarios.

Under the IID scenario, all approaches yield nearly identical
training durations, indicating that FedP3E introduces no com-
putational penalty when prototype exchange remains inactive.
This confirms its ability to remain lightweight under balanced
conditions.

However, as data heterogeneity increases, FedP3E incurs a
higher training cost compared to FedAvg and FedProx. This
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Fig. 10. Training time comparison across IID and non-IID scenarios.

is attributed to the additional steps of prototype generation,
centralized aggregation, and SMOTE-based data augmenta-
tion triggered by non-IID conditions. While this overhead
is non-negligible, it reflects a deliberate trade-off: enhanced
generalization and robustness in challenging settings, achieved
without any repeated exchange or raw data sharing.

Takeaway: FedP3E remains lightweight in IID settings
and activates its additional components only when
performance falls below a threshold. Although this
introduces moderate computational overhead in skewed
scenarios, the improved robustness justifies the cost in
real-world deployments.

D. Comparison with existing federated learning methods on
N-BaIoT

To further highlight the performance of FedP3E, Table X
provides a comparative analysis against existing FL-based
methods evaluated on the N-BaIoT dataset. Most prior studies
focus on standard IID or mildly skewed non-IID scenarios and
do not explicitly account for fully disjoint class distributions.
As a result, their effectiveness diminishes as data heterogeneity
increases. In contrast, FedP3E is explicitly designed to oper-
ate across the full spectrum of data distributions, including
extreme cases where each client possesses samples from only
one class. It achieves 99.71% accuracy in the IID setting,
99.57% under light non-IID, 99.40% in moderate non-IID,
and maintains a strong 95.11% accuracy under severe non-
IID conditions. This consistent performance across increasing
degrees of heterogeneity underscores FedP3E’s adaptability
and robustness, making it a practical and scalable solution for
federated IoT malware detection in highly diverse and siloed
environments.

VI. CONCLUSION AND FUTURE WORK

This study proposed FedP3E, a prototype-based FL frame-
work tailored to address the challenges of non-IID data
distributions in IoT malware detection. Unlike conventional
aggregation methods such as FedAvg and FedProx, FedP3E
leverages class-wise prototype exchange to bridge the data

TABLE X
COMPARISON OF PROPOSED FEDP3E WITH EXISTING FEDERATED

LEARNING-BASED METHODS ON N-BAIOT DATASET

Ref. IID OR
Non-IID?

Disjoint
Class
Considered?

Accuracy (%)

[1] Non-IID ✗ Supervised: 99.42–99.92
Unsupervised: ≈97.4

[11] IID ✗ 99.63
[10] Non-IID ✗ 90.00
[12] Non-IID ✗ 89.90

FedP3E Both ✓ IID: 99.71
Non-IID: 95.11–99.57

heterogeneity gap across clients without compromising data
privacy.

Extensive experiments were conducted across four data
distribution scenarios—IID, light, moderate, and severe non-
IID. The results demonstrate that FedP3E consistently achieves
faster convergence, higher accuracy, and improved robustness
compared to existing baselines, particularly under severe non-
IID conditions. Notably, while FedProx is designed for non-
IID settings, our experiments revealed its limitations in more
skewed scenarios, where it failed to recover performance.

The findings underscore the effectiveness and scalability
of prototype-based communication in real-world cross-silo FL
settings where data imbalance and heterogeneity are prevalent.
FedP3E offers a lightweight and privacy-preserving mecha-
nism that enhances collaborative learning among distributed
IoT devices, contributing to more secure and adaptive malware
detection.

Looking ahead, we plan to deploy FedP3E in real-world on-
device FL settings to assess its efficiency on lightweight IoT
devices. This will enable us to evaluate the framework under
more stringent constraints, including limited computational re-
sources, constrained memory and communication bandwidth,
and a vast number of dynamically selected heterogeneous
devices with varying hardware capabilities. In parallel, we
intend to explore more complex forms of data heterogeneity,
particularly feature-space skew, where clients have access to
different subsets of input features. This presents new chal-
lenges for collaborative learning, requiring novel strategies
for model alignment and robust generalization across diverse
feature representations.
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