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Abstract—In the ever-evolving landscape of cybersecurity,
the rapid identification and mitigation of Advanced Persistent
Threats (APTs) is crucial. Security practitioners rely on de-
tailed threat reports to understand the tactics, techniques, and
procedures (TTPs) employed by attackers. However, manually
extracting attack testflows from these reports requires elusive
knowledge and is time-consuming and prone to errors. This
paper proposes FLOWGUARDIAN, a novel solution leveraging
language models (i.e., BERT) and Natural Language Processing
(NLP) techniques to automate the extraction of attack testflows
from unstructured threat reports. FLOWGUARDIAN systemati-
cally analyzes and contextualizes security events, reconstructs
attack sequences, and then generates comprehensive testflows.
This automated approach not only saves time and reduces human
error but also ensures comprehensive coverage and robustness
in cybersecurity testing. Empirical validation using public threat
reports demonstrates FLOWGUARDIAN’s accuracy and efficiency,
significantly enhancing the capabilities of security teams in
proactive threat hunting and incident response.

Index Terms—Cybersecurity, Security Automation, Testflow
Extraction, Advanced Persistent Threats

I. INTRODUCTION

Advanced Persistent Threats (APTs) [1] pose a complex
security challenge due to their stealthy nature. APTs execute
multi-stage campaigns, using Living off the Land strategies
to evade detection and persist. To counteract these threats,
threat intelligence companies (e.g., Mandiant, CrowdStrike)
and organizations meticulously document their encounters
with APTs in threat reports'. These reports detail the specific
observed campaigns, including the tactics, techniques, and
procedures (TTPs) employed by the attackers. For example,
Mandiant has extensively documented APT41’s activities, de-
tailing a specific campaign exploiting CVE-2019-3396 in [2], a
campaign leveraging CVE-2019-19781 in [3], and the attack
TTPs alongside the vulnerabilities the threat actor exploited
in [4]. Moreover, Google has offered insights into new APT41
variants [5] which utilize Google C2C, Google Sheets, and
Google Drive. Each of these reports provides crucial observ-
ables from the respective campaigns.

Understanding those reports is crucial to security practition-
ers, especially for extracting testflow (e.g., security playbook)
to verify if the organization is under such an attack. A testflow
is a structured set of information that helps practitioners
understand the sequence of steps an attacker takes during a

Throughout this paper, the term threat report is used broadly to describe
any document that details a threat (e.g., cyber threat reports, security/assess-
ment reports, security troubleshooting reports).
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cyber attack. Security practitioners start by thoroughly reading
and understanding the report to grasp the scope, nature of
the threat, affected systems, and exploitation details. After
identifying the attack steps and objectives, they extract critical
technical details (e.g., specific software versions, configura-
tions, and necessary conditions for the threat) which will
guide the development of a detailed testflow. The process is
inherently complex and demands not only advanced technical
knowledge and analytical skills which are elusive, but also
a significant time investment. The process becomes more
complicated and cumbersome when multiple threat reports are
released leading to further efforts to generate a comprehensive
testflow. Therefore, automating testflow extraction from threat
reports helps in ensuring consistency, accuracy, and efficiency.
By implementing automation, security practitioners can parse
through extensive and diverse reports coming from different
sources simultaneously, identify common vulnerabilities that
might lead to the attack, and consolidate similar testflow.
This not only saves time and reduces the effort required by
security teams but also minimizes human error and enhances
the thoroughness of the testing process.

Generated testflows serve as essential resources for Security
Operation Center (SOC) teams: (i) they enable proactive threat
hunting by providing a framework to systematically search for
signs of APTs (e.g., Indicators of Compromise — IoCs) that
match the behaviors described in the threat reports; and (ii) the
testflows facilitate a more informed and efficient incident
response. When an attack is detected, SOC teams can use the
specific testflows relevant to the observed attack to quickly
understand the nature of the threat and trace its origin and
impact.

Unlike existing studies that concentrate on deriving at-
tack techniques from threat reports (e.g., [6]) or from CVEs
(e.g., [7]), our work primarily targets the extraction of attack
testflows from previously observed attack campaigns docu-
mented in threat reports. This approach aims to enrich the
cybersecurity playbook. Thus, in this paper, we make the
following contributions: (1) we introduce a novel solution,
FLOWGUARDIAN, tailored specifically for extracting testflows
from threat reports (unstructured documents). Our solution
is the first that uses language models to perform security
contextual analysis and sequence analysis to systematically
break down the attack into actionable steps and thus generate
an accurate attack testflow. (2) we design an automated frame-
work that integrates entity extraction and, sequence analysis,
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enabling efficient extraction of testflows from raw text without
manual intervention. (3) we validate our solution through em-
pirical studies using public APT threat reports. The obtained
results, reviewed and confirmed by security practitioners, show
that FLOWGUARDIAN is able to extract accurate testflows and
enrich the cybersecurity playbook.

II. MOTIVATION AND PROBLEM STATEMENT

Motivation: Whenever a new threat report is released, security
analysts have a critical responsibility to review the document
and assess whether their organization is subject to the reported
attack. This process underscores the importance of testflow
extraction from security reports. To effectively, yet proactively,
secure their networks/systems, they must thoughtfully identify
the attack infrastructure outlined in the report and meticulously
construct the attack sequence and steps. This enables SOC
teams to test if their organization is vulnerable to the doc-
umented attack steps. The ability to quickly and accurately
extract attack testflow is crucial for proactive defense measures
and ensuring that security postures are capable of withstanding
current and emergent threats. This not only helps in identifying
potential breaches but also assists in fortifying the organiza-
tion’s defenses against similar future attacks.

Problem Statement: The extraction of attack testflow from
report is a critical but time-intensive task requiring extensive
cybersecurity knowledge and analytical skills. Currently, the
process is predominantly manual [8], leading to inefficiencies
and potential for oversight. This is particularly problematic
when considering the need for a comprehensive understanding
of different APT campaigns, where integrating insights from
multiple reports is essential. Fig. 1 presents an excerpt of
APT41 reports from Mandiant published in 2024 [2], where
security experts need to identify specific elements involved in
the attacks.

Automating the extraction of testflow from diverse and
unstructured threat reports would dramatically streamline this
process, reduce time and resource expenditure, and increase
the accuracy and comprehensiveness of the testflow. APT
attacks are very sophisticated, and extracting the right testflow
from the reports could be cumbersome and error-prone [1], re-
sulting in incomplete, incorrect, or misinterpreted information.
The process requires a lot of time and human resources, which
can be costly and inefficient in the long run.

To address these concerns, it is important to consider how to
automate the extraction of attack steps and generate testflows
corresponding to attack vectors to improve the effectiveness of
the incident response. Our approach does not focus on high-
level testflow based on techniques (i.e., TTPs) instead, we
prioritize low-level testflow that captures the granular details
of an attack to provide more comprehensive information and
a more detailed testflow.

Starting on January 20, 2020, APT41 used the IP address 66.42.98[.]220 to attempt exploits of Citrix Application Delivery
Controller (ADC) and Citrix Gateway devices with CVE-2019-19781 (published December 17, 2019).

The initial CVE-2019-19781 exploitation activity on January 20 and January 21, 2020, involved execution of the command
“file /bin/pwd’, which may have achieved two objectives for APT41. First, it would confirm whether the system was
vulnerable and the mitigation wasn’t applied. Second, it may return architecture-related information that would be required
knowledge for APT41 to successfully deploy a backdoor in a follow-up step.

Figure 1: Mandiant’s APT41 threat report [2].

III. RELATED WORK

Cyber Threat Intelligence (CTI): CTI plays a crucial role
in cybersecurity by enabling organizations to anticipate, pre-
vent, and respond to cyber threats through structured in-
telligence sharing. Recent advancements focus on dynamic
intelligence extraction, mapping attack patterns to frameworks
(e.g., MITRE ATT&CK), and leveraging machine learning
for automation. However, existing CTI frameworks primarily
address knowledge representation rather than attack testflow
generation. While prior work (e.g., [9]) has explored CTI
sharing challenges, frameworks for structured intelligence
extraction remain a gap in integrating language models for
real-time, automated cybersecurity response. While threat re-
ports compile insights into detailed narratives tailored for
security practitioners, the increasing complexity and volume
of these reports have outpaced the capabilities of traditional
approaches, requiring the use of new efficient methods.

Language Models in Cybersecurity: LMs (e.g., BERT [10],
RoBERTa [11], MUM [12]) have been widely explored in
cybersecurity for tasks such as intrusion detection, malware
analysis, phishing detection, and vulnerability assessment [13].
While these studies demonstrate the potential of language
models in various security applications, they primarily focus
on general cybersecurity challenges rather than the automa-
tion of attack testflow extraction from CTI reports. Despite
advances in generative Al for cybersecurity [14], there remains
a gap in using them for attack testflow generation.

Attack Testflow Extraction: A testflow represents the se-
quence of attack steps, allowing organizations to assess vul-
nerabilities and validate security measures [15]. Several ap-
proaches exist for extracting attack testflows such as, infor-
mation extraction [16], ontology-based Methods [17], and
Machine Learning-based extraction [18]. Building on these
foundational approaches, several systems have been proposed
to further automate this process. EXTRACTOR [19] for-
malizes attack steps into evidence graphs but relies heavily
on NLP accuracy, limiting its robustness for unstructured
CTI. IC-SECURE [20] facilitates playbook generation but
does not generalize to real-time attack testflow extraction.
Similarly, THREATRAPTOR [21] and TTPDrill [22] focus
on IoC extraction and ATT&CK mapping, yet their rule-
based techniques lack adaptability to evolving threats, while
LADDER [9] aims to extract attack patterns from CTI and
map them to the MITRE ATT&CK framework. Despite these
advancements, automated attack testflow extraction from un-
structured reports remains an underexplored area. Current
methods focus on structured knowledge representation rather
than real-time adaptive testflow generation. Addressing this
gap would enhance security operations by transforming un-
structured knowledge from CTI into actionable intelligence
for proactive defense.

Our approach, FLOWGUARDIAN, systematically combines
domain-trained language models (e.g., BERT) for contextual
analysis with sequence analysis to extract structured testflows
directly from unstructured threat reports. FLOWGUARDIAN



focuses not only on identifying entities and actions but also on
reconstructing their order and contextual meaning to generate
relevant testflows. This allows FLOWGUARDIAN to generate
testflows with semantic coherence and operational relevance.

IV. AUTOMATED ATTACK TESTFLOW EXTRACTION

A. System Overview

Overview: FLOWGUARDIAN, depicted in Fig. 2, has four
main steps: (1) text pre-processing: involve standardizing the
text to be ready for testflow extraction. (2) contextual analysis:
interpret its context using semantics and word relationships.
Language model (e.g., BERT) is used to extract relevant
information, detect subtexts, and identify key elements such as
named entities and action verbs that are crucial for generating
relevant testflows. (3) sequence analysis: the identified entities
and their context are analyzed to reconstruct the sequence and
logic of the attack steps, providing a clearer understanding
of the attack pattern and assisting in the testflow genera-
tion. (4) The final step is testflow generation. Using insights
from the contextual analysis, we automatically build testflows.
These are generated using LM guided by rules trained on the
analyzed data, resulting in a concrete list of testflows for the
APT attack sequences listed in the report. To improve this
process, we further include a testflow validator to filter out
invalid or redundant testflows and refine those that can be
adjusted to meet validity criteria.

Novelty: The core solution of FLOWGUARDIAN involves three
novel steps: (1) Threat Contextualization: refers to analyzing
and understanding security events, incidents, or threats in
the report. To define the security context, we include how
a particular vulnerability or threat affects an organization in
terms of its network configurations, software usage, business
processes, and protective measures. (2) Attack Steps Analysis:
refers to the systematic examination of all activities performed
by the threat actor to achieve their objectives. The goal is
to identify the various stages through which attackers move
from the initial point of breaching security measures to their
ultimate goal, such as stealing data, compromising systems,
or achieving persistent presence. This method goes beyond
existing approaches by offering a complete, contextualized,
and actionable understanding of an adversary’s movements.
(3) Automated Testflow Extraction: refers to the process of
using extracted information in combination with various tech-
niques to generate testflows. Current methods often generate
generic testflow, lacking relevance to specific cybersecurity
scenarios. FLOWGUARDIAN uses cybersecurity-specific data
and techniques to ensure that the generated testflows are
directly aligned with the described attack.

Design Challenges: We present below the main challenges
and how we address each. (i) Complexity of Cybersecurity
Language: the complexity involved in using specific terms
related to cyber protection. In addition, this language often
requires deep knowledge of technical concepts, making it
difficult for NLP efforts. (ii) Data Scarcity and Low-Quality
reports: insufficient relevant data poses a significant challenge
in training machine learning models and conducting mean-

ingful analysis. Additionally, reports with low-quality, incom-
plete, or complex language further complicate the analysis
process. Standard language models, struggle to handle such
reports, failing to generate meaningful outputs. (iii) Extraction
of Relevant Information: general purpose NLP models, are
designed for broad language tasks. However, they lack spe-
cialized capabilities for cybersecurity contexts. In our work,
we use LM and NLP to perform contextual analysis to extract
cybersecurity entities and actions. FLOWGUARDIAN integrates
spaCy and fine-tunes them with BERT to enable accurate
recognition of all the relevant entities in the cybersecurity
domain. We also use sequence analysis to understand the
context and relationships between entities, which helps in
extracting testflows. Finally, we use semantic mapping of these
sequences into a related test.
B. Text Processing

This phase involves several NLP techniques [23] to refine
raw, unstructured data such as: a) text cleaning, which prepares
raw text data for further processing and analysis, b) normaliza-
tion, which converts data into a consistent and standard format,
simplifies analysis and c¢) segmentation, which simplifies and
enhances the effectiveness of data processing. The result of
the text processing is a pre-processed text, which has been
both cleaned and structured. This prepared text serves as the
input for the contextual analysis, enabling more sophisticated
analytical processes.
C. Contextual Analysis

Extracting and interpreting the meaning of text requires con-
sidering its cybersecurity context, whether within a sentence,
paragraph, or broader document. Contextual analysis is vital
for understanding both the content and implications of the text.
FLOWGUARDIAN employs LM to extract key threat-related
entities and action verbs within the threat reports.

FLOWGUARDIAN NER Approach: Traditional NER often
struggles to recognize and extract emerging cybersecurity
entities [24] such as threat actors, malware names, attack
types, and techniques, which are essential for generating mean-
ingful testflows. FLOWGUARDIAN addresses this limitation
by: (i) Pre-training models using general datasets like spacy.
(i1) Fine-tuning BERT on our custom cybersecurity dataset,
enabling the extraction of cybersecurity-specific entities.

LM Training and Fine-Tuning: To train models that mimic
the expertise of security experts, a security dataset is required
for LM training. FLOWGUARDIAN leverages BERT [10] to
analyze and extract security information from threat reports,
enabling precise identification of hidden threats. BERT’s ad-
vanced contextual comprehension allows FLOWGUARDIAN
to detect subtle linguistic nuances in cyber threat reports.
By utilizing BERT’s pre-trained language representations, we
enhance the accuracy and efficiency of our threat intelligence
and analysis.

For cybersecurity applications, BERT is fine-tuned on la-
beled NER datasets to extract domain-specific entities from
CTI reports with high precision. Unlike large generative
models (e.g., ChatGPT, LLaMA), which are prone to hal-
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Figure 2: High-level overview of FLOWGUARDIAN.

lucinations, producing plausible but incorrect or unverifiable
information. BERT offers greater stability and reliability. Since
BERT is designed for discriminative tasks rather than text
generation, it avoids the unpredictability of generative LLMs
and produces consistent outputs. This makes BERT a strong
and justified choice for structured information extraction
in the cybersecurity context. Additionally, FLOWGUARDIAN
remains compatible with other LM-based models, ensuring
adaptability across various industries and applications.

During the fine-tuning (see Fig. 3), we used SpaCy, an
NLP model specifically designed for named entity recognition
(NER). However, despite being tailored for NER tasks, the
model struggled to accurately identify certain entities. To
overcome this, we fine-tuned the model with a customized
dataset (see subsection V-B), significantly enhancing our entity
recognition accuracy. The customized dataset refines cyberse-
curity entity categorization into eight key groups to better cap-
ture underrepresented concepts, such as: (i) TEC (Technique):
methods or strategies employed by threat actors to exploit
vulnerabilities or execute malicious actions, e.g., phishing.
(i) TAC (Tactic): attack strategies from MITRE ATT&CK,
e.g., initial access. (iii) THA (Threat Actor): known adversarial
groups like APT41. Additionally, we also trained the model to
map attack steps into the testflow using a set of predefined
mapping rules (see subsection IV-E). The objective is to
efficiently correlate the analyzed text with specific attack
descriptions, leveraging the accurately identified entities from
the previous step.

Cybersecurity Action Identification: This process focuses
on finding action verbs within sentences, and helps uncover
behavior patterns, automate analysis, and understand the re-
lationships between entities. Action identification involves
pinpointing verbs and verb phrases, such as “downloading
file”, “adding new services”, “exploiting vulnerabilities”,
and understanding how these actions related to entities in
the context — which is very challenging using traditional
NLP. Leveraging LMs for action verb extraction enhances the
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Figure 3: Overview of steps to train/fine-tune the BERT model.

analysis of threat reports by identifying relevant actions based
on the used language and learned patterns.

D. Sequence Analysis

This involves examining text to extract valuable informa-
tion. A sequence is an ordered list of elements or events
following a specific pattern, whether temporal or sequential.
Analyzing the identified NER entities and action verbs within
their context helps reconstruct the sequence and logic of
attack steps. Advanced techniques focus on entity aggregation,
sequence reconstruction, step identification, and step aggrega-
tion, each playing a distinct role in interpreting structured data.

Entity Aggregation: Entity aggregation combines related
entities based on their occurrence and context within the
text by grouping them into a single aggregated entity. This
process reduces redundancy, enhances analysis efficiency, and
simplifies the management of entities. The primary goal is to
minimize the number of entities for easier analysis. Using the
extracted NER and identified action verbs, we can aggregate
entities based on their types and associated actions. For
example, “The attacker” and the pronoun “he” are recognized
as the same entity, despite the shift in reference.

Sequence Reconstruction: Sequence reconstruction involves
assembling segments into a coherent order in order to arrange
attack steps based on their narrative flow or temporal cues like
“first”, “then”, or “finally”. The narrative flow from the text
provides the order of operations that the attacker followed,
and we map each action to an appropriate phase and tactic
based on MITRE ATT&CK framework. To achieve sequence
reconstruction, we rely on a natural process that mimics how
humans understand the flow of events by interpreting their
relationships and context.

Step Identification: This step involves detecting and parsing
distinct actions or events within a sequence, highlighting each
step’s characteristics and role. This step clarifies the sequence
by identifying relationships between steps, such as how initial
access through a phishing email leads to malware installation.
This process is essential for tracing the flow of activities,
enabling a deeper understanding of attack schemes, patterns, or
workflows within complex sequences. To accomplish this task,
FLOWGUARDIAN firstly, analyzes the relationships between
the identified NER and the corresponding action verbs, as well
as labeled with step identifiers (e.g., Step 1, Step 2); and then
orders the steps using natural step and logical flow based on
temporal sequence indicators such as “First”, “Next”, “Then”,



and “Finally”. In this process, the relationships between NER
and actions guide the step ordering. This relationship is what
drives the logical flow of attack, helping to determine which
step comes before or after another.

Step Aggregation: This step is similar to entity aggregation
but focuses on action verbs. Texts may describe similar steps
differently or repeat them, so consolidating these avoids redun-
dancy and emphasizes unique attack vectors. One key method
is combining identified steps into broader stages or phases,
making the sequence more concise and easier to understand.
Grouping smaller actions into strategic categories simplifies
the attack or testflow analysis. For this, we use a clustering
algorithm to group related steps based on feature similarity.

In doing so, we follow the following process: (i) Grouping:
When multiple steps involve the same entity, they can be
grouped into one single aggregated step. (ii) Labeling: we
label each aggregated step with a phase name according
to MITRE ATT&CK framework to each aggregated step.
Rule-based matching (defined based on tactics in MITRE
ATT&CK) is used to match specific actions or keywords to
the corresponding tactic. (iii) Validation: we ensure that the
steps are logically grouped and represent meaningful phases of
the attack. The validation consists of comparing the steps and
aggregated phases against the MITRE tactics and techniques
to ensure that all relevant stages of the attack are covered.
E. Testflow Generation

Testflow generation involves creating detailed tests or se-
quences to verify whether the described attack exists within a
system, ensuring security measures are effective.

Semantic Mapping: To enhance semantic understanding,
context-based action verbs are linked directly to the identified
entities. We created a set of labeling rules for generating test-
flow, detailing how entities and actions should be structured.
These rules are used to train the BERT model, enabling it
to automatically generate detailed, contextually appropriate
testflows.

Mapping rules: BERT is meticulously trained using a set
of mapping rules that convert detailed security incident de-
scriptions into specific, actionable testflow instructions (see
Fig. 3). These rules help verify the presence and impact of
various cybersecurity threats. Each rule is linked to a particular
security issue (e.g., malware, ransomware) and defines the
corresponding action (e.g., run, encrypt) along with a related
test command. These mapping rules are integral to the model’s
ability to effectively verify the presence and assess the impact
of various cybersecurity threats within a system. Each rule
is carefully linked to a specific security issue, such as mal-
ware infections, ransomware attacks, or unauthorized access
attempts. The rules define the corresponding actions required
to address these issues, such as executing a script, encrypting
data, or initiating a network scan. Furthermore, these rules are
not arbitrarily chosen; they are carefully selected and designed
based on the core primitives of testflow, ensuring that they
align with fundamental security operations. By grounding the
rules in these core primitives, we ensure that the testflows

generated by the LM model are not only relevant but also
comprehensive in covering the essential aspects of testflow
generation.

Testflow Validator: To improve the quality and reliability of
our testflow generation process, we introduce a tesflow val-
idator component. This component serves two main purposes:
(a) filtering out invalid tests: ensure that testflow generated by
FLOWGUARDIAN are valid and meet the required criteria, and
(b) eliminating redundancy: remove duplicate or redundant
testflow to streamline the output. The output of this component
is manually cross-validated to confirm the effectiveness of the
filtering and refinement process. During this manual iteration,
any remaining redundant or invalid testflows are identified and
removed.

Fig. 4 shows examples of testflows generated by FLOW-
GUARDIAN. The generated testflows align with standard se-
curity operations and highlight how FLOWGUARDIAN effec-
tively proposes relevant testflow for the used threat report.

@ Administer an assessment to identify if
cve-2020-10189 has been deployed.

© Launch an assessment to identify if
cgp_decode_shellcode49 has been installed.

©) Administer an assessment to identify if
fe_loader_win_rockboot_1 has been deployed.

@ Arrange an assessment to identify if
apt4l is propagating through the network.

Figure 4: Example of testflows generated by FLOWGUARDIAN.

V. IMPLEMENTATION

A. Environment

We implemented FLOWGUARDIAN using Python 3 pro-
gramming language. Our experiments were conducted on
Intel Xeon E312xx, 6 vCPU @ 2.69Ghz, with 32GB RAM
running Ubuntu 20.04. For linguistic analysis, we employed
the spaCy? library, a comprehensive tool for natural language
processing in Python, to extract action verbs. Specifically, we
utilized the en_core_web_sm model.
B. Datasets
Threat Reports: We use threat reports from the APTNotes
repository®, which gathers different threat intelligence from
vendors like Mandiant and TrendMicro. Given the lack of
comprehensive testflows in existing reports and the difficulty
of manual extraction, we focus solely on APT41 for the exper-
iment discussion, a sophisticated APT with diverse techniques
and multiple public reports. Indeed, we use five different
APT41 reports published by different threat intelligence com-
panies describing different APT41 campaigns. For example,
the Mandiant #1 [4] is 68 pages long and covers backdoors,
reconnaissance, and credential theft in some detail. This detail
allows for the extraction of highly detailed and valid testflows,
reducing redundancy. Other reports, such as Mandiant #2 [3]
and Mandiant #4 [25] are shorter 9 pages each and often

2spaCy: https://spacy.io/
3 APTNotes repository: https://github.com/aptnotes/data/
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do not have the level of granularity required to produce
comprehensive testflows. Consequently, the extracted testflows
may be more general and tend to be redundant because of the
small amount of usable detail.

Quality of threat reports: The quality and structure of the
reports play a critical role in the reliability of the testflows
that are extracted from them. BertScore [26] is a metric that
uses deep contextual embeddings from pre-trained models like
BERT to evaluate semantic similarity. In contrast to traditional
metrics that focus on syntactic matches, BERTScore captures
nuanced relationships between words and phrases, taking into
account synonyms, paraphrases, and contextual shifts. This
makes it an ideal tool for assessing the semantic similarity of
texts. We use BERTScore to assess the semantic similarity of
reports processed by our solution, ensuring meaningful and co-
herent outputs. Additionally, we compare testflows generated
by our system with those manually created by practitioners to
validate their alignment with domain expertise.

Fig. 5 shows the BertScore of the used threat report. We
can see that reports Mandiant #2 and Mandiant #4 have
the highest similarity (0.84), indicating shared patterns in
their testflows. In contrast, Mandiant #3 exhibits the lowest
similarity, particularly with Mandiant #1 and Mandiant #4,
suggesting distinct attack scenarios (see Section VI-D for fur-
ther analysis). Indeed, the report quality significantly impacts
generated testflows. Well-structured, detailed reports improve
accuracy and relevance, while similar reports yield consistent
testflows, reinforcing the importance of high-quality input
data.

Testflow Primitives: In this work, we focused on the core
functions of attack steps and derived 30 core cybersecurity
primitives through NERs. Using specific mapping rules, NER
entities were linked to action verbs in security testing sce-
narios. We also developed 44 mapping rules to structure
testflows based on the identified NER and action verbs. These
fine-tuned primitives target various security issues, enhancing
the system’s ability to identify and mitigate vulnerabilities
effectively.
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Figure 5: Semantic Similarity between reports using BertScore [26].

C. Benchmarked Models

In the absence of established tools for generating testflows
from threat reports, we introduce four distinct models to
benchmark and compare their performance against FLOW-
GUARDIAN’s results. These models leverage the capabilities
of ChatGPT-40-mini* and L1ama3-70b° as foundational
components:

o Off-the-shelf Models: ChatGPT-off-the-shelf
and Llama-off-the-shelf utilize the raw power
of the underlying LLMs without any modifications. In
these configurations, the threat report is directly fed into
the LLM, and the outputted testflows are analyzed to
gauge the baseline performance.

o Off-the-shelf Models with Partial FLOWGUARDIAN’s
Pipeline: we integrated the pipeline of FLOWGUARDIAN
(PFG), as depicted in Fig. 2, into Off-the-shelf mod-
els ChatGPT-with-PFG and Llama-with-PFG to
demonstrate the impact of FLOWGUARDIAN’s architec-
ture on testflow generation, providing a clear evaluation
of our system’s design efficacy.

D. Ground truth data

In the absence of a public testflow dataset, we enlisted
the expertise of two security practitioners to manually create
testflows for APT41’s threat report. Table I shows the number
of manually generated testflow (i.e., ground truth) of both
security practitioners per each report. We also verified the
combined testflows to eliminate any redundant or duplicate
testflows, and then applied a cross-validation by both security
practitioners to ensure the accuracy of our results. The unique
testflows are used as a ground truth. To simulate real-world
scenarios, we instructed one security practitioner to focus
on creating high-level and generalized testflows, while the
other security practitioner concentrated on developing more
granular and specific testflows. This dual approach mirrors the
diversity in practices among security practitioners. Seasoned
practitioners often prioritize fewer and more targeted tests,
whereas less experienced practitioners may employ a larger
number of tests to ensure comprehensive coverage.

Table I: Summary manual generated testflow and their characteristics
(i.e., redundant and unique).

Threat Report Mandiant #1  Mandiant #2 Mandiant #3  Mandiant #4  TrendMicro #5

Manual Testflows 27 16 42 48 33
Redundant Testflow 3 5 9 6 8
Unique Testflow 24 11 33 42 25

VI. EVALUATION

A. Evaluated Metrics

To evaluate the testflows generated either by an automated
solution or a security practitioner, we introduce four metrics:
testflow coverage, testflow validity, newly discovered testflow,
and quality testflow.
Testflow Coverage: The testflow coverage is defined as the
proportion of manually generated testflows that are success-
fully captured by the testflows produced by a given model.

4GPT-40 mini: https:/platform.openai.com/docs/models/gpt-4o-mini
SLlama3: https://ai.meta.com/blog/meta-llama-3/
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Figure 6: Comparison of testflows generated by FLOWGUARDIAN and Off-the-Shelf Models across five APT41 reports.

A valid testflow exact match or through semantic equivalence
with the manually generated testflow. A semantic equivalence
means that more than one testflow will collectively match one
testflow.

Testflow Validity: The testflow validity refers to testflow
that aligns with the practical requirements and expectations
of security practitioners, and satisfies both of the following
conditions: (i) relevance: testflow is relevant and makes sense
from the security perspective, reflecting real-world scenarios;
(ii) applicability: testflow is applicable in the context of testing
APT in question.

Newly Discovered Testflow: The newly discovered testflow
refers to a testflow generated by an automated solution that
is valid yet not part of the testflows originally created by
practitioners. These testflows are cross-validated by practi-
tioners to confirm their validity and ensure they represent
new, previously uncovered tests that were not addressed in
the practitioners’ original test set.

Quality Testflow: A quality testflow refers to a testflow that is
highly specific to the APT41 as described in the report. Among
the testflow generated by the automated solution, some may
be generic (applicable to various scenarios), while others are
directly linked to the APT41 TTPs. The focus is on capturing
the unique behaviors of the threat actor to ensure the testflow
relevance.
B. Performance of FLOWGUARDIAN vs Off-the-Shelf Models
Fig. 6 shows the comparison results of the testflows
generated by FLOWGUARDIAN and  Off-the-Shelf
models across the five APT41 reports. We can see that
FLOWGUARDIAN generates more than twice the number of
valid testflows compared to ChatGPT-off-the-shelf
and Llama-off-the-shelf across all reports.

This demonstrates FLOWGUARDIAN’s superior ability
to produce wvalid testflows and underscores the
significance of fine-tuning FLOWGUARDIAN with a

customized NER model. In contrast, general-purpose

LLMs, such as ChatGPT-off-the-shelf and
Llama-off-the-shelf, lack accuracy in this
specialized context. More specifically, FLOWGUARDIAN

consistently achieves higher coverage rates compared to
off-the-shelf models. For example, in Mandiant #1 and
Mandiant #2, FLOWGUARDIAN achieves nearly three
times the coverage of ChatGPT-off-the-shelf and
Llama-off-the-shelf. However, in Mandiant #3,
Mandiant #4, and TrendMicro #5, the coverage rates are
almost identical across all models. These results highlight that
FLOWGUARDIAN not only generates the highest number of
testflows but also aligns closely with the practices of manual
practitioners. While FLOWGUARDIAN covers the majority of
testflows, it also demonstrates the ability to discover new valid
testflows. FLOWGUARDIAN identifies new testflows nearly
twice as often as the off-the-shelf models for most reports,
except for Mandiant #2, where Llama-off-the-shelf
discovers more new testflows than both FLOWGUARDIAN and
ChatGPT-off-the-shelf. This exception is justified
by the fact that, for this particular report, FLOWGUARDIAN
generated a higher number of covered tests, resulting in fewer
opportunities for discovering new tests.

Although FLOWGUARDIAN excels in generating valid, cov-
ered, and newly discovered testflows, its primary strength
lies in producing high-quality testflows. FLOWGUARDIAN
consistently generates almost twice as many high-quality
testflows, except the TrendMicro #5 report. Additionally,
we observed that ChatGPT-off —-the-shelf tends to
generate testflows for which it has high confidence. Upon
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Figure 7: Comparison of testflows generated by Off-the-Shelf models and FLOWGUARDIAN’s across five APT41 reports.

manually reviewing its output, many of the testflows were
found to be nearly identical to the original text from the
reports. While this approach ensures accuracy for individual
testflows, it results in the omission of numerous testflows
typically expected from an APT report. Consequently, the
model produces very few testflows, rendering it less com-
prehensive for sophisticated attacks such as APT41°. On the
other hand, L1ama-off-the-shelf generates more test-
flows compared to ChatGPT-off-the-shelf. However,
as shown in Figs. 6(a) and 6(e), there are instances where
Llama-off-the-shelf fails to produce any results. This
limitation arises from the model’s inability to effectively
process certain reports, particularly those with extensive size
or complexity. Even after splitting the input data into smaller
sections, the model struggled to generate testflows for these
challenging reports.
C. FLOWGUARDIAN's Pipeline with Off-the-Shelf Models
This experiment demonstrates the added value of integrating
our FLOWGUARDIAN pipeline into off-the-shelf models. As
shown in Fig. 7, the integration of our pipeline signifi-
cantly enhances the capability of these models to generate
a greater number of valid testflows. Specifically, the number
of valid testflows produced by ChatGPT-off-the-shelf
and Llama-off-the-shelf increased by at least fourfold
in Mandiant #1, #2, and #4. Moreover, even in Mandi-
ant #3 and TrendMicro #5, where the off-the-shelf models
struggled, the integration of FLOWGUARDIAN still led to
a significant improvement. This highlights the critical role
of FLOWGUARDIAN in resolving logical inconsistencies and
enriching the context with domain-specific entities.
In report Mandiant #1, the number of covered testflows

S APT41: https://attack.mitre.org/groups/G0096/

generated by ChatGPT-off-the-shelf increases from
5 to 17, and in report Mandiant #2, from 6 to 27 -
more than quadrupling the original numbers. Similarly, for
Llama-off-the-shelf, coverage rises from 6 to 9.
Reports Mandiant #3, Mandiant #4, and TrendMicro #5 show
moderate but consistent improvements, further demonstrating
the significant impact of FLOWGUARDIAN on these models.
Similarly, the number of newly discovered testflows increased
significantly, particularly for ChatGPT-off-the-shelf,
which saw a large rise, and for Llama-off-the-shelf,
which experienced a moderate increase. We also
observed that the total number of high-quality testflows
tripled for both ChatGPT-off-the-shelf and
Llama-off-the-shelf in report Mandiant #1,
indicating improvement in the quality of testflows when
FLOWGUARDIAN was integrated.

D. Similarity Analysis between Generated Testflows

Fig. 8 shows the semantic similarity scores between the
testflows generated by FLOWGUARDIAN and the ground truth
testflows across five reports. FLOWGUARDIAN demonstrates
consistent semantic similarity across all reports, ranging from
0.82 to 0.87. This consistency highlights FLOWGUARDIAN’S
effectiveness in generating testflows that are semantically
aligned with the ground truth, regardless of the report.
ChatGPT-with-PFG also shows consistent performance,
with minor variations across the reports. However, in Mandiant
#2, a slight drop in the similarity score is observed. This
decline may be attributed to the report’s characteristics, such
as ambiguity, less structure, or reliance on images. Conversely,
the same figure shows that LLaMA-with-PFG exhibits con-
sistent performance across the reports, albeit with slightly
higher variability compared to ChatGPT-with-PFG. Sim-
ilar to ChatGPT-with-PFG, LLaMA-with-PFG appears
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to perform better with textual and structured reports.
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Figure 8: Semantic similarity of testflows generated by FLOW-
GUARDIAN and Off-the-Shelf models vs ground truth across five
APT reports.

E. Execution Time

Manually extracting testflows involves thoroughly reading
and analyzing the entire report, a process that typically takes
several hours. For example, longer reports like Mandiant #1
and TrendMicro #5 are executed at 493.13 sec and 306.27
sec, respectively. In comparison to security practitioners,
who take several hours/days, FLOWGUARDIAN’s ability to
handle such reports in under 10 minutes is a remarkable
improvement. Shorter reports like Mandiant #2 and Mandiant
#4 are executed at 35.9 sec and 82.29 sec, respectively.
FLOWGUARDIAN processes them in less than two minutes,
showing that FLOWGUARDIAN scales well across different
report sizes and lengths. Medium reports that are neither
too long nor too short show even good execution times.
For example, in report Mandiant #3, FLOWGUARDIAN can
process the report in just 70.87 sec, which is far quicker than
manual practitioners. Overall, FLOWGUARDIAN demonstrates
exceptional efficiency by reducing the analysis time from
several hours to just minutes (average times 197.692 sec),
depending on report size. By drastically reducing processing
time, FLOWGUARDIAN enables security teams to focus on
higher-value analytical tasks rather than spending time on the
labor-intensive creation of testflows, significantly enhancing
operational efficiency.

VII. CONCLUSION & FUTURE WORK

This paper introduced FLOWGUARDIAN, an automated so-
Iution for attack testflows extraction from unstructured cyber
threat reports. FLOWGUARDIAN employs a multi-component
architecture that includes contextual analysis, sequence analy-
sis, and testflow generation modules. The contextual analysis
module leverages language models to understand the seman-
tics and context of the extracted information, ensuring that
relevant details are accurately captured. The sequence analysis
component organizes these details into coherent sequences that
reflect the logical flow of cyber attacks. Finally, the testflow
generation module translates these sequences into actionable
testflows that can be directly used by SOCs for threat hunting
and incident response. Our evaluations indicate that FLOW-

GUARDIAN not only accelerates the extraction process but
also enhances the quality of the resulting testflows. This ad-
vancement enables the SOC team to improve its threat hunting
and incident response capabilities by providing structured,
actionable intelligence. For future work, we intend to integrate
FLOWGUARDIAN with existing SOC tools and workflows to
provide dynamic testflows at run-time, facilitating seamless
adoption by practitioners and enhancing operational efficiency.
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