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Abstract. Ethical hacking today relies on highly skilled practitioners
executing complex sequences of commands, which is inherently time-
consuming, difficult to scale, and prone to human error. To help mit-
igate these limitations, we previously introduced PenTest++, an AI-
augmented system combining automation with generative AI supporting
ethical hacking workflows. However, a key limitation of PenTest++ was
its lack of support for privilege escalation, a crucial element of
ethical hacking. In this paper we present PenTest2.0, a substantial evo-
lution of PenTest++ supporting automated privilege escalation driven
entirely by Large Language Model reasoning. It also incorporates several
significant enhancements: Retrieval-Augmented Generation, in-
cluding both one-line and offline modes; Chain-of-Thought prompting
for intermediate reasoning; persistent PenTest Task Trees to track
goal progression across turns; and the optional integration of human-
authored hints. We describe how it operates, present a proof-of-concept
prototype, and discuss its benefits and limitations. We also describe ap-
plication of the system to a controlled Linux target, showing it can carry
out multi-turn, adaptive privilege escalation. We explain the rationale
behind its core design choices, and provide comprehensive testing results
and cost analysis. Our findings indicate that PenTest2.0 represents
a meaningful step toward practical, scalable, AI-automated penetration
testing, whilst highlighting the shortcomings of generative AI systems,
particularly their sensitivity to prompt structure, execution context, and
semantic drift — reinforcing the need for further research and refinement
in this emerging space.

Keywords: AI · Ethical Hacking · Privilege Escalation · GenAI · Chat-
GPT · LLM (Large Language Model) · HITL (Human-in-the-Loop).

1 Introduction

Penetration testing [16] (PenTesting) is a cornerstone of modern cybersecurity
practice, enabling organisations to identify and remediate vulnerabilities before
they are exploited by malicious actors. Yet, despite its critical importance, the
process of ethical hacking remains heavily reliant on individual expertise. Pro-
fessionals must craft and execute complex chains of commands, interpret system
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feedback, and iteratively adapt their tactics — all under time constraints and
with potential for error. These challenges make PenTesting inherently labour-
intensive, costly, and difficult to scale.

To address some of these limitations, we previously introduced PenTest++ [3],
an AI-augmented tool that leverages GenAI to assist in automating core Pen-
Testing activities such as reconnaissance, scanning, enumeration, exploitation,
and documentation, while preserving user control and adaptability. By embed-
ding generative AI (GenAI) into the ethical hacking workflow, PenTest++ suc-
cessfully reduced cognitive load and enabled context-aware suggestions. How-
ever, it lacked support for one of the most technically demanding and critical
phases in the PenTesting lifecycle: privilege escalation PrivEsc. This
phase involves exploiting misconfigurations or software vulnerabilities to elevate
a compromised user account’s privileges — typically from a low-privileged user
to administrative or root-level access. PrivEsc is essential for expanding access,
simulating realistic attack scenarios, and achieving full control over the target
system. Without it, the scope and effectiveness of any automated PenTesting
system remain inherently constrained.

Furthermore, PenTest++ did not incorporate reasoning and tracking ca-
pabilities such as Retrieval-Augmented Generation (RAG), Chain-of-Thought
(CoT) prompting, PenTest Task Trees (PTTs), or user-injected hints. To ad-
dress these limitations, and in addition to enabling automated PrivEsc, we
present PenTest2.0 — a significantly enhanced version of our earlier sys-
tem. PenTest2.0 introduces several architectural and functional improvements
aimed at deepening reasoning, improving traceability, and increasing autonomy.
These include support for RAG in both online and offline modes; CoT prompting
to facilitate intermediate reasoning steps; PTTs as a persistent task structure
for managing goals and subtasks across reasoning turns3; and the integration
of optional human-authored hints to guide the Large Language Model (LLM)
behaviour where necessary. The system also logs executed commands, token us-
age, cost estimates, reasoning outputs, and failure diagnostics to enable detailed
post-run analysis and system introspection.

We evaluated PenTest2.0 on a controlled Linux testbed using an assumed-
breach scenario, a common and well-established setup in PenTesting research [10].
Our results show that PenTest2.0 marks a meaningful advancement toward
scalable, realistic, and agentic AI-driven PenTesting. At the same time, the eval-
uation also surfaces key limitations — such as sensitivity to prompt formulation
and command execution fragility — which highlight the need for continued re-
search and refinement in this emerging domain.

The remainder of this paper is structured as follows. Section 2 defines the
research questions and outlines the key contributions of this work. Section 3
reviews recent advances, including CoT, RAG, and PTT, which inform our ap-
proach. Section 4 describes how PenTest2.0 operates, while Section 5 explains
the rationale behind the core system design choices. Section 6 provides details

3 For the purposes of this paper a ‘turn’ is one automatically-executed
prompt–response exchange between PenTest2.0 and the LLM.
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of the prototype implementation. Sections 7 and 8 report the testing results and
cost analysis, respectively. Section 9 discusses the broader implications, potential
risks, and limitations of the study. Section 10 surveys related literature. Finally,
Section 11 concludes the paper and outlines directions for future research.

2 Research Questions and Contributions

In this work, we build upon our previously proposed system, PenTest++, by
addressing one of its most critical limitations: the lack of support for automated
PrivEsc. In extending the system to handle this key PenTesting phase, several
new technical and conceptual challenges arise — particularly around multi-turn
LLM reasoning, execution reliability, and system autonomy. Accordingly, our
research is guided by the following central questions:

– RQ1: To what extent can GenAI systems autonomously perform PrivEsc in
a post-exploitation scenario under human supervision?

– RQ2: How can the integration of techniques such as RAG, CoT prompting,
PTTs, and optional human hints improve the effectiveness, reasoning depth,
and traceability of GenAI-driven PenTesting?

– RQ3:What practical limitations arise when applying LLMs to live, command-
executing PrivEsc tasks in real-world-like environments, and how do these
limitations manifest during execution?

To explore these questions, we present the design, implementation, and eval-
uation of PenTest2.0, a significantly enhanced improvement to our earlier
system. The key contributions of this paper are as follows.

– C1: We demonstrate the feasibility of automating the PrivEsc phase of
the ethical hacking process through an AI-augmented tool, while putting
the user in control for safety and ethical reasons.

– C2: We introduce a GenAI-powered, automated proof-of-concept proto-
type for PrivEsc, enabling the system to iteratively reason, generate, exe-
cute, and adapt commands in a live post-exploitation setting — with the
full intention of making it open source on GitHub.

– C3: We integrate a suite of optional, advanced features — including RAG,
CoT, PTTs, and a lightweight hint mechanism — to support deeper rea-
soning, traceable execution, and adaptive task management across multiple
LLM turns.

– C4: We conduct a comprehensive experimental evaluation on a realistic
Linux target machine, demonstrating the tool’s ability to autonomously per-
form PrivEsc with minimal human oversight, while systematically capturing
failure modes and runtime behaviour.

– C5: We offer a balanced and critical analysis of PenTest2.0’s capa-
bilities and limitations, identifying open challenges and proposing concrete
avenues for future research aimed at advancing agentic, ethical, and depend-
able GenAI-assisted PenTesting.
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3 Background

This section outlines the core prompting strategies and optional enhancements
underpinning PenTest2.0, divided into five components: the base prompt, CoT
reasoning, Human Hint injection, RAG, and PTT-based task tracking.

3.1 Base Prompt: Setting the Rules of Engagement

The base prompt defines the operating context, rules of engagement, and in-
put/output structure for the LLM. It establishes the simulated environment as
a real-time penetration test and enforces strict behavioural boundaries — e.g.,
non-interactive commands only, respect for output structure, JSON compliance,
and clarity of reasoning.

An excerpt from our base prompt includes:

Excerpt from Our Base Prompt

You are assisting with Linux Privilege Escalation. You
have a low-level privileged account (USERNAME), and your
ultimate goal is to elevate your privilege access to
root level. We will interact with you turn by turn: at
each step, you’ll receive a summary of the target system
context and you must suggest the next best command. If
root is not yet achieved, we will send you the execution
output. Your goal is to gain root access within a maximum
of MAX TURNS turns.
...
Rules You MUST Follow:
1. NEVER repeat a command that already succeeded

*within the current run*. You MAY suggest it again in
future sessions if the target system appears similar or
identical.
2. You MUST retry a corrected version of a previous
command that failed due to syntax errors or
misconfiguration. Do not suggest the exact same faulty
command again.
3. NEVER suggest dangerous or destructive commands,
including:
- rm -rf *, rm -rf /, dd if=/dev/zero
- zip -r backup.zip /, zip -r backup.zip /etc
- Any command involving heavy backups or full system
traversal
4. NEVER break the JSON structure, even if unsure.

...

The base prompt also specifies a mandatory output format, requiring the
LLM to return a single valid and compact JSON object only, as follows.
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{
"command_non_interactive": "string, safe for automated execution (no $, #, ‘)",
"command_interactive": "string, interactive version if applicable, else empty",
"system_summary": "string, max 10 very short bullet points",
"command_history": "string (max 15 lines, summarised cleanly)",
"rationale": "string, 1-2 sentences, explaining why this command was chosen"
{% if rag_enabled %}
,
"rag_search_query": "string (max 15 words)"
{% endif %}
{% if ptt_enabled %}
,
...
{% endif %}
}

This carefully crafted instruction ensures LLM outputs are both syntactically
valid and semantically appropriate for execution, supporting reproducibility and
safety.

3.2 Chain-of-Thought Reasoning (CoT)

Chain-of-Thought (CoT) prompting is a widely studied technique for enhancing
the reasoning capabilities of large language models (LLMs) by encouraging them
to reason about their logic before suggesting a command [18]. Rather than gen-
erating a final answer immediately, CoT decomposes the task into intermediate
steps, fostering more deliberate and explainable behaviour. This is especially
valuable in complex penetration testing scenarios where outputs must be inter-
preted in context, and reasoning must evolve across turns.

In PenTest2.0, enabling CoT appends the following directive to the LLM
prompt:

‘Think step by step. First, assess the system summary
for PrivEsc paths. Then, evaluate the last command and
output. Finally, decide on the most logical next command.’

This explicit instruction serves two critical purposes: (1) it prompts the model
to reflect on prior outputs and command history before issuing the next com-
mand, and (2) it encourages more transparent decision-making, which can help
detect semantic drift or command repetition during multi-turn reasoning.

Variants of CoT Prompting. In PenTest2.0, we adopt the following CoT modes:

– Zero-shot CoT: This is the default implementation, where only a CoT
instruction is added, without examples. The LLM is simply told to ‘think
step by step’ with guidance contextualised to PrivEsc. This leverages
the LLM’s pretraining to simulate multi-step reasoning.

– Few-shot CoT (via training-style exemplars):Although not fine-tuned,
our prompt templates include handcrafted examples that mirror realistic
CoT patterns. These training-style examples (stored in the ‘cot.txt‘ file)
demonstrate how the LLM should reason, respond in JSON, and annotate
rationales. They are injected only in CoT-enhanced modes and serve to re-
inforce structured reasoning without overloading the prompt.
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– Fine-tuned CoT: Not used in PenTest2.0, but worth noting, fine-tuned
CoT models are explicitly trained on datasets annotated with intermediate
reasoning [17]. Our work instead elicits similar behaviour by relying on well-
engineered prompt scaffolding and examples.

Use of Training Examples. As stated above, PenTest2.0 optionally embeds care-
fully constructed training examples into the prompt when CoT is enabled. These
examples are curated from prior successful root escalation attempts and high-
light how to reason about sudo rights, system misconfigurations, and failed com-
mands. The intention is to ground the LLM’s reasoning in realistic scenarios
without hardcoding command strategies.

By incorporating both zero-shot and few-shot CoT logic into the prompt
structure, PenTest2.0 encourages adaptive, explainable reasoning — a critical
asset in achieving root access safely and efficiently under multi-turn, HITL-
guided PrivEsc loops.

3.3 Human Hint Injection

In many PenTesting scenarios, the operator possesses domain expertise or prior
system knowledge. The Human Hint enhancement allows structured injection of
such hints into the prompt, guiding the LLM’s decision-making process. Inspired
by best practices in HITL design [8,14], this strategy combines automation with
expertise.

For instance, the prompt modification may include:

“Human Hint: Use the ‘id’ command instead of the ‘/bin/sh’ for root
automated verification.”

This balances autonomy with control, helping develop effective exploits.

3.4 Retrieval-Augmented Generation (RAG)

RAG enhances the reasoning capabilities of LLMs by grounding their responses
in external knowledge sources. Rather than relying solely on internalised pre-
training, RAG enables the LLM to reason in context using retrieved facts or
examples relevant to the task at hand [13]. This approach helps reduce hal-
lucinations, align model outputs with real-world constraints, and improve the
quality of generated commands in complex tasks such as PrivEsc.

In PenTest2.0, RAG is implemented via a hybrid retrieval mechanism that
supports both offline and online modes:

– Offline Mode:During setup, the system programmatically downloads struc-
tured markdown content from trusted sources — including GTFOBins4 —
and stores them in a local knowledge base. This corpus is indexed using a
FAISS5 vector store and queried in real time during execution. Offline RAG

4 https://gtfobins.github.io/
5 FAISS (Facebook AI Similarity Search) is an open-source library for efficient simi-
larity search and clustering of dense vectors, widely used to enable fast retrieval of
semantically relevant content in AI systems and RAG setups.

https://gtfobins.github.io/
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ensures rapid access, avoids latency, and operates independently of Inter-
net availability. This is particularly useful in constrained or high-security
environments.

– Online Mode: As an alternative or fallback, the system can perform live
retrieval from online sources at runtime. For example, when enabled, it may
query the GTFOBins website or other exploitation databases based on a
search query generated by the LLM. The retrieved snippet is then parsed
and injected into the next prompt, allowing the LLM to reason with up-to-
date external guidance.

In both modes, retrieved content is inserted directly into the prompt in a
structured format when the system explicitly requests external help. For exam-
ple:

“Retrieved Insight: GTFOBins suggests sudo tar can spawn a shell
using --checkpoint-action=exec=....”

This mechanism strengthens the LLM’s situational awareness and provides
technical grounding for suggested PrivEsc commands — especially when system
conditions trigger ambiguous or unexpected reasoning paths. When used effec-
tively, RAG can bridge the gap between static prompt engineering and dynamic,
context-aware AI decision-making within the PenTesting process.

3.5 PenTest Task Tree (PTT) Tracking

Originally adopted in PenTestGPT [9], the PTT serves as a lightweight memory
structure to preserve task structure across turns. It addresses context loss, avoids
redundant suggestions, and supports tracking progress and skipped commands.

PenTest2.0 extends this model by allowing dynamic updates of updated-
statuses, new subtasks, and commands to avoid. A sample prompt ex-
cerpt includes:

“Current PTT Summary: Subtask 1: Examine sudo privileges. Status:
pending. Subtask 2: Identify potential misconfigurations in awk.”

This enables more structured exploration and improves reasoning coherence
across multi-turn sessions.

4 PenTest2.0 Operation

4.1 PenTest++ Operation

Since PenTest2.0 is a major extension of our previously proposed system
PenTest++ [3], designed specifically to support GenAI-powered PrivEsc, we
first summarise the key phases of PenTest++. This highlights where PenTest2.0
integrates into the broader ethical hacking workflow.
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1. Reconnaissance: PenTest++ automates network discovery by executing
commands to identify live systems within the target environment. Users
select the desired target for subsequent phases.

2. Scanning & Enumeration: PenTest++ executes vulnerability scanning,
employing tools such as nmap and gobuster to identify critical open ports,
services, and misconfigurations. GenAI interprets scan outputs, correlates
findings with known vulnerabilities, and provides recommendations for tar-
geted enumeration.

3. Exploitation: PenTest++ facilitates exploitation by generating tailored
payloads to exploit identified vulnerabilities, such as misconfigured services
or insecure functionalities. GenAI offers strategic guidance to craft precise
attack sequences, while users dynamically adjust tactics in response to real-
time inputs and recommendations provided by the system.

4. Post-exploitation: This is where PenTest2.0 is activated to take over
the critical task of PrivEsc. Unlike PenTest++, which did not support
this phase, PenTest2.0 introduces autonomous, GenAI-guided PrivEsc
through an iterative command execution and feedback loop. The full op-
eration of PenTest2.0 is described in the following subsection.

5. Documentation: PenTest++ automates report generation, by leverag-
ing GenAI to produce a comprehensive, PenTesting report, including logs,
methodologies, key findings, and actionable recommendations. GenAI re-
fines the structure and clarity of the documentation, ensuring it provides
actionable insights for enhancing the security posture of the tested systems.

4.2 PenTest2.0 Operation

The operation of PenTest2.0 follows a systematic methodology designed to
automate PrivEsc while maintaining user control, transparency, and safety. The
core loop is driven by GenAI reasoning and refined through dynamic prompt
engineering, enabling multi-turn PrivEsc in realistic post-exploitation scenarios.
The operation of PenTest2.0 involves the following key sub-phases (see Fig. 1).

1. Post-Exploitation Assumption: PenTest2.0 assumes that the attacker
has already obtained an initial foothold on the target machine — typically in
the form of a low-privileged shell — via a preceding exploitation phase. This
reflects a realistic post-exploitation scenario commonly studied in PenTesting
and narrows the system’s focus to the PrivEsc phase.

2. Context Gathering via System Probing: Before invoking the LLM,
PenTest2.0 executes a predefined set of reconnaissance commands on the
target to capture the system’s environment, state, and context. Common
commands include id, whoami, hostname, uname -a, sudo -l, env,
and ls -la /tmp. The outputs are aggregated, summarised, and used
to construct the initial GenAI prompt — ensuring that the LLM begins
reasoning with an accurate, cost-efficient snapshot of the target.

3. Initial Prompt Construction:Using the captured target state, our system
dynamically constructs the first prompt by injecting relevant information
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into a predefined template. This prompt is then submitted to the LLM to
initiate the first reasoning turn, providing the necessary context for it to
suggest a suitable PrivEsc strategy.

4. Execution and Feedback Loop: Upon receiving the LLM’s suggested
command, PenTest2.0 executes it on the target machine via SSH and
captures the resulting output. If the command successfully yields root priv-
ileges, the process terminates. Otherwise, PenTest2.0 constructs a new
prompt, incorporating a summarised version of the previous prompt and the
latest output, and sends it to the LLM for the next reasoning turn. This
iterative loop continues until either root access is achieved or the maximum
turn limit is reached.

5. User in Control: Although the system is designed to enable automa-
tion, PenTest2.0 enforces user oversight at critical checkpoints. Before each
prompt is sent to the LLM, the user should review the full prompt, token size,
and estimated API cost. Similarly, each LLM-suggested command must be
explicitly approved by the user before execution on the target system. This
dual-approval model ensures ethical, safe operation and prevents unintended
system damage or cost leakage — placing the user in control.

6. Optional Enhancements: As described in Sections 3.2 to 3.5, PenTest2.0
supports several advanced features to enhance reasoning depth and expedite
root access:
– RAG — in both offline and online modes — to inject relevant knowledge

into LLM prompts;
– CoT Prompting to enable intermediate reasoning steps;
– PTTs to persistently track subtasks, commands, and observations across

turns; and
– Hint Injection to guide the LLM away from ineffective patterns or

toward promising strategies.
These optional enhancements are designed to help the system reach root
faster and can be toggled on or off as needed. When enabled, they are dy-
namically injected at runtime.

7. Logging, Termination, and Post-Run Reporting: Throughout execu-
tion, PenTest2.0 logs every prompt, command, output, token use, and root
status check. Upon completion — whether due to success or max-turn ex-
haustion — the system generates structured reports detailing all decisions,
costs, and outcomes. These logs support reproducibility, auditability, and
further research.

5 Design Choices: Discussion and Rationale

5.1 Modular Code Architecture

PenTest2.0 is designed with a modular, component-based architecture that
facilitates extensibility, debugging, and customisation. Core modules such as
command executor.py, llm connector.py, shell root detection.py,
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and ptt manager.py encapsulate distinct responsibilities — ranging from com-
mand execution over SSH to prompt construction and root shell detection. This
separation of concerns ensures that the system can be maintained, ex-
tended, or debugged without introducing regressions elsewhere. It also aligns
with secure coding best practices by isolating sensitive operations into well-
defined components.

5.2 Dynamic Prompt Construction with Runtime Flexibility

Unlike traditional one-shot prompting approaches, PenTest2.0 adopts a dy-
namic and adaptive prompt construction strategy. Rather than relying on a
monolithic prompt, the system assembles the LLM input in real time at each
turn — composing it from modular building blocks that include system facts,
prior outputs, task history, and optional enhancements. This composability en-
ables more precise and cost-efficient prompt tailoring depending on the user’s
goals and available resources.

To support runtime adaptability, users can toggle optional reasoning compo-
nents such as CoT, RAG, PTT, or human-injected hints, e.g. using command-
line flags. When these features are disabled, PenTest2.0 generates a minimal
prompt that contains only the essential target system context, resulting in sig-
nificantly lower token usage and API cost. Conversely, when deeper reasoning
is required, PenTest2.0 supports richer prompts that embed auxiliary reason-
ing chains, retrieved knowledge, and strategic guidance — without needing to
reconfigure or restart the system.

This runtime modularity ensures that PenTest2.0 can operate in both
budget-sensitive minimal modes and intelligence-heavy enhanced modes, offering
flexibility and scalability for diverse PenTesting scenarios.

5.3 Iterative Prompt Engineering with Turn-Level Context
Injection

The system employs a dynamic prompt engineering strategy that incorporates
both the current system state and summarised outputs from prior turns. This en-
ables the LLM to reason incrementally, preserving context across turns without
exceeding token limits. Unlike static, single-shot prompts, this iterative injection
approach supports continuous refinement of strategy and improved decision-
making based on feedback from the target machine.

5.4 Enforced Rationale Generation to Improve LLM Reasoning

To enhance the quality and reliability of each LLM-recommended command,
PenTest2.0 explicitly instructs the LLM to include a short rationale as part
of its structured response at every turn.

By requiring the LLM to explain why a command was selected based on
the system context and command history, we encourage the LLM to engage in
reflective reasoning rather than shallow pattern matching. For instance, in
Turn 7 of a representative test run, the LLM explained:
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"rationale": "The previous command failed due to a syntax error
with unmatched quotes. This corrected version uses proper escaping
for the inner quotes, allowing us to execute ‘id’ non-interactively,
while the interactive version spawns a shell for further exploration."

This rationale indicates that the LLM is actively evaluating available binaries,
considering historical command outcomes, and adjusting its tactics accordingly.

In practice, we found that enforcing rationale generation leads to:

– Better decision-making: The LLM is less likely to repeat failing com-
mands blindly.

– Improved transparency: Human users gain insight into the LLM’s logic
and can catch semantic drift or hallucinations early.

– Easier debugging and auditing: Rationales provide a lightweight narra-
tive of the LLM’s evolving strategy.

Thus, rationale generation is an essential mechanism in PenTest2.0 to
guide, audit, and ultimately improve automated PrivEsc attempts through ex-
plainable AI.

5.5 Root Shell Detection

PenTest2.0 does not rely on the assumption that a successful PrivEsc attempt
will result in an explicit root label in the shell prompt. Instead, it applies mul-
tiple heuristics and regex-based pattern matching techniques to infer root access
— by inspecting outputs of commands such as id, whoami, and shell prompt
characteristics. This approach ensures that even in minimal or obfuscated shell
environments, the system can accurately determine if root has been achieved.

5.6 Non-Interactive Command Enforcement for Safe Automation

During early development, a major challenge emerged: the LLM occasionally
suggested interactive commands (e.g., sudo passwd or sudo su) that led
to shell hangs or indefinite blocking due to the absence of user input. These
situations prevented prompt completion, delayed root detection, and undermined
system reliability.

To address this, PenTest2.0 introduced explicit prompt instructions di-
recting the LLM to return two variants of each suggested PrivEsc command:

– Non-Interactive Command: A command designed for safe, automated
execution via SSH. It is syntactically valid, shell-safe, and crafted to perform
PrivEsc based on the current system context, without requiring user input.

– Interactive Variant: This is a manually executable alternative to the non-
interactive command. This version is typically identical, but may differ in sce-
narios where interactive input, terminal feedback, or user supervision is de-
sirable. It offers flexibility for manual verification, fallback testing, or deeper
analysis.
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This dual-output strategy significantly enhanced both system robustness and
root detection accuracy. By aligning LLM behaviour with automation constraints
— while still allowing for HITL validation when needed, PenTest2.0 ensures
safe, efficient, and controllable PrivEsc across multi-turn reasoning loops.

5.7 Human-AI Collaboration

While the system is designed to operate autonomously, PenTest2.0, as previ-
ously stated, includes a mechanism for manual hint injection. This allows human
users to steer the LLM by appending natural language suggestions (e.g., “try
sudo misconfigurations” or “avoid using the ‘find’ command again”). This collab-
orative mechanism is particularly helpful in research, debugging, or adversarial
benchmarking settings.

In practice, we found that human-injected hints significantly improved the
accuracy and efficiency of the system’s responses. They often led to faster root
acquisition, reduced repetition of ineffective commands, and steered the LLM
away from invalid or resource-intensive suggestions. These results reinforce the
value of human-AI collaboration in real-world offensive security applications.

5.8 Prompt Size and Cost Estimation with User Approval

In LLMs, the cost of each interaction is directly proportional to the number of
tokens in the prompt and response. Tokens are sub-word units used by the model
to process input; thus, longer prompts — especially those containing multi-turn
reasoning context or injected enhancements — incur higher computational cost.
This can quickly translate into significant API charges, particularly in automated
systems that loop through multiple reasoning turns.

To mitigate this, PenTest2.0 calculates the token count at every turn —
immediately before a prompt is submitted to the LLM — and estimates the as-
sociated cost based on the selected model’s pricing. This information is displayed
to the user in a clear, tabulated format (see, e.g., Fig. 23). The system proceeds
with submission only if the user explicitly approves the prompt. This safeguard
prevents oversized or bloated prompts that could otherwise result in excessive
API charges or premature depletion of available credits.

Indeed, this concern is not merely theoretical. During early internal testing,
the absence of this checkpoint led to unintended prompt inflation, rapidly con-
suming API credits and halting further experimentation. As such, this manual
approval mechanism was introduced as a hard-earned lesson. It now serves to
enforce cost control, enhance transparency, and ensure that user oversight is
preserved throughout — especially important in budget-sensitive or resource-
constrained environments.

This approval loop is repeated at every turn, reinforcing HITL governance
before each LLM interaction.
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5.9 Command Execution with User Approval

We observed that the behaviour and suggestions of the LLM cannot be fully
trusted and may, at times, be unsafe, misleading, or operationally hazardous.
For example, the LLM might inadvertently suggest destructive commands such
as rm -rfv * (which could wipe out the entire filesystem) or resource-intensive
operations like zip -rv zipped.zip / (which attempts to recursively com-
press the entire system).

To mitigate these risks, PenTest2.0 maintains a local blacklist of dan-
gerous and unsafe commands. If a suggested command matches an entry in this
list — either exactly or via pattern matching — it is automatically voided and
never executed. Instead, the system flags the command as invalid and proceeds
to the next reasoning turn, optionally logging the incident for future review. This
safeguard ensures that even if the LLM’s reasoning fails or drifts semantically,
system integrity is preserved.

Beyond automated filtering, PenTest2.0, as previously stated, requires user
approval for each LLM-generated command, shown with its rationale. Approved
commands are executed via SSH, and outputs are logged for subsequent reason-
ing.

6 Prototype Implementation

6.1 Development Language

We developed PenTest2.0 in Python 3 for its versatility, rich libraries, AI
integration, and adaptability, though alternatives like Bash or Go could also
have been used.

6.2 Physical Host and Virtual Environment Configuration

The experimental setup was conducted on two physical host machines. Initial
experiments were performed on a MacBook Pro equipped with a 2.8 GHz Quad-
Core Intel Core i7 processor, 16 GB of RAM, and 1 TB of storage, running
VirtualBox 7 for virtualisation. More recent experiments used a Lenovo laptop
running Windows 11, powered by an Intel Core Ultra 7 processor, 32 GB of
RAM, and 1 TB of storage, also employing VirtualBox 7 to host the virtual
environment.

In both cases, the virtual environment comprised the following machines:

1. Kali Linux VM: The primary attack platform hosting PenTest2.0 for
PenTesting.

2. Linux VM: A 64-bit Debian system with 512 MB RAM, serving as the
main target.

We use a NAT configuration to enable seamless communication between the
VMs, effectively simulating a realistic and controlled network environment.
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6.3 GenAI Tool

PenTest++ employs OpenAI’s ChatGPT for its advanced capabilities and per-
formance, opting for an online LLM over a local one to leverage automatic up-
dates and the latest features. Other GenAI tools, e.g. Gemini6 and DeepSeek7,
are potential alternatives.

To integrate ChatGPT programmatically with PenTest2.0, we used Ope-
nAI’s gpt-4o-mini API, which operates on a subscription-based model8. This
model was selected for its favourable balance between affordability and reasoning
performance — offering competitive capabilities as one of the latest LLMs. The
current pricing is $0.15 per million input tokens and $0.60 per million output to-
kens9. While our system supports more advanced models, such as o3, gpt-4.1
and gpt-4.5, these were not used due to higher associated costs.

6.4 Proof-of-Concept implementation

PenTest2.0 operates as a modular, multi-turn, AI-driven PrivEsc agent. We next
present a prototype, proof-of-concept implementation.

1. Initial Setup: PenTest2.0 assumes the attacker already has a low-privileged
foothold on the target system from a prior exploit. The prototype is executed
from a Kali Linux VM, which serves as the attacker’s platform. The user
launches the system from the command line by running a Python script, op-
tionally passing flags to enable specific reasoning features (CoT, RAG, PTT,
or hint). All runtime parameters are provided in a fully customisable config-
uration file that includes the target machine’s IP address, SSH username and
password, the LLM model to be used (e.g., gpt-4o-mini), and the maxi-
mum number of reasoning turns (e.g., 10). Upon startup, the system reads
and parses these variables, verifies SSH connectivity to the target using the
provided credentials, and prepares the execution environment. This setup
process includes creating timestamped logging directories, resetting token
counters, and loading core modules for command execution, root detection,
prompt generation, and other optional enhancements.

2. System Bootstrapping and Reconnaissance: After the Python script is
launched, PenTest2.0 initialises internal modules based on the runtime con-
figuration, enabling optional reasoning features such as RAG, CoT, PTT,
and human-authored hint injection if specified. The system then performs
remote reconnaissance by executing a predefined set of system probing com-
mands on the target machine via SSH. These include:
– whoami — displays the current logged-in username;
– id — shows the user ID, group ID, and associated group memberships;
– hostname — reveals the system’s network hostname;

6 https://gemini.google.com/
7 https://chat.deepseek.com/
8 https://platform.openai.com/
9 https://platform.openai.com/docs/pricing

https://gemini.google.com/
https://chat.deepseek.com/
https://platform.openai.com/
https://platform.openai.com/docs/pricing
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– uname -a — prints detailed kernel and system architecture informa-
tion;

– cat /etc/os-release — provides the OS distribution and version;

– uptime — reports how long the system has been running along with
current load averages;

– df -h— shows available and used disk space across mounted filesystems
in a human-readable format;

– free -m — displays memory usage statistics in megabytes;

– ps aux --sort=-%mem | head -n 10— lists the top 10 processes
consuming the most memory;

– ss -tulnp — lists all open TCP/UDP ports along with the associated
processes;

– ls -la /home — shows detailed contents and permissions of user
home directories;

– sudo -l — lists the commands the current user can execute with sudo
privileges;

– cat /etc/passwd— enumerates system users and their default shells;

– cat /etc/group — displays defined system groups and their mem-
bers;

– env — prints all current environment variables;

– ls -la /tmp and ls -la /var/tmp — list files in temporary direc-
tories often used in PrivEsc; and

– find / -perm -4000 -type f 2>/dev/null — searches the en-
tire filesystem for SUID binaries that may be exploitable.

The outputs of these commands are parsed, summarised, and used to con-
struct the initial prompt for the LLM, ensuring it begins reasoning with an
accurate and context-aware snapshot of the target environment.

3. Prompt Construction and First Turn: The system constructs a struc-
tured LLM prompt using a predefined multi-part template, embedding the
gathered reconnaissance data. The prompt is dynamically assembled using
Python logic, where optional components are injected only if explicitly en-
abled by the user at runtime via command-line flags.

The full prompt consists of the following components:

– (i) System Summary: A concise overview of the target’s OS, user
identity, privileges, and environment variables, derived from commands
like id, uname -a, sudo -l, and env, as detailed above.

– (ii) Command History: This is a list that tracks attempted commands
and their corresponding outputs. While the list may grow during execu-
tion, it is capped by a fixed threshold to prevent excessive prompt length.
Once this threshold is reached, the oldest entries are discarded to make
room for newer ones, ensuring the prompt remains concise and focused
on recent context. This design choice guards against prompt bloat and
ensures consistent performance. Moreover, PenTest2.0 enforces a maxi-
mum number of reasoning turns — defined in the configuration file —
which bounds the total number of interactions within each session.
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– (iii) Reasoning Instructions: The LLM is instructed to think step-by-
step and suggest the next best escalation command. If enabled, Chain-
of-Thought (CoT) logic is added to explicitly guide the model through
multi-stage reasoning.

– (iv) Task-Oriented Goals: The LLM is instructed to return a com-
pact, syntactically valid JSON object that includes:
• a non-interactive command (safe for automated execution) —
this ensures the command can be executed directly via SSH without
requiring additional input, enabling hands-free operation and seam-
less loop integration.

• an optional interactive version (for human verification if
needed) — provides a variant suitable for manual execution in scenar-
ios where the user prefers to test the PrivEsc command interactively,
offering a fallback mechanism and aiding future debugging.

• a summarised system overview — captures essential system
facts (e.g., user ID, OS, kernel version) to ground the LLM’s reason-
ing in the current context and guide informed decision-making.

• a short command history— maintains a traceable record of re-
cently attempted commands and their results, helping the LLM avoid
repetition and enabling coherent evolution across multiple turns.

• a concise rationale (max two sentences) — justifies the pro-
posed command based on observed system context, offering trans-
parency into the LLM’s reasoning and aiding user understanding.

– (v) Optional Enhancements (Dynamically Controlled): These
components are added to the prompt template only if explicitly requested
by the user via command-line arguments. Their inclusion is conditionally
controlled by Python template logic:
• CoT: Adds multi-step guidance for decomposing the reasoning pro-
cess.

• RAG: Adds context from an external knowledge base (e.g., GT-
FOBins) using precise search queries generated by the model.

• PTT: Enables task tree tracking with hierarchical IDs, updated sta-
tuses, and subtask generation.

• Human Hint: If a human-supplied suggestion is given, it is injected
and flagged as a high-priority hint.

A critical instruction embedded in the prompt is that the modelmust respond
with a single, valid JSON object only. This constraint ensures consistency,
safe parsing, and reliable execution within the loop.

4. Prompt Size and Cost Estimation with User Approval: Before the
prompt is submitted to the LLM, PenTest2.0 calculates its token count and
provides a cost estimate based on the selected model’s pricing. This informa-
tion is presented to the user in a clear, tabulated format (see Fig. 23). The
system will only proceed with LLM submission if the user explicitly grants
approval. This safeguard ensures that the prompt is neither bloated nor un-
intentionally oversized — conditions that could otherwise lead to excessive
API charges or premature budget depletion. Note that this approval process
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is repeated at every turn, immediately before each prompt is submitted to
the LLM.

5. Command Suggestion and Justification: Upon receiving the prompt,
the LLM processes the embedded requirements — such as system summary,
reasoning goals, and output constraints — and then returns a structured
JSON response containing the following key fields:

– Non-Interactive Command: A command designed for safe, auto-
mated execution via SSH. It is syntactically valid, shell-safe, and crafted
to perform PrivEsc based on the current system context.

– Interactive Variant: A manually executable alternative to the non-
interactive command. This version is typically identical to the non-
interactive command but may differ in scenarios where interactive input,
terminal feedback, or user supervision is desirable. It offers flexibility for
manual verification or fallback testing.

– System Summary: A concise, LLM-generated overview of key system
attributes, including the current user, UID, hostname, operating system,
kernel version, sudo privileges, and the number of SUID binaries found.
This contextual snapshot grounds the model’s reasoning and justifies its
command choice.

– Command History: A summarised list of previously executed com-
mands and their outputs. This helps the model avoid repeating ineffec-
tive actions and ensures that each new command is informed by prior
context. To prevent prompt inflation, the history is capped to a fixed
number of recent entries.

– Rationale: A brief, context-aware justification — typically one or two
sentences — explaining why the proposed command is suitable. For in-
stance, the LLM might highlight that the command leverages an allowed
NOPASSWD binary to spawn a root shell via a known shell escape mech-
anism, making it safe for automated escalation.

– PTT Update (Optional): If the PenTest Task Tree (PTT) feature is
enabled, the response includes a ptt update field that provides struc-
tured task-tracking metadata. This consists of:

• initial tree: A hierarchical list of top-level PrivEsc strategies
(e.g., Sudo exploitation, SUID binaries) and their subtasks (e.g.,
P1.3: Exploit sudo-based escalation). Each task is as-
signed a unique ID and marked as pending. This block appears
only during Turn 1.

• current task id: The ID of the subtask currently being pursued
(e.g., P1.3).

• new subtasks: Any additional subtasks proposed in the current
turn (optional).

• updated statuses: Status updates for existing tasks (e.g., done,
in progress, or skipped).

• commands: A log of executed commands, tagged with task IDs and
their outputs.
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This ptt update structure is designed to enable the LLM to persist
and reason over evolving goals across multiple turns. To minimise API
costs, the entire block is only included when the PTT feature is explicitly
enabled using the --ptt flag at runtime.

The LLM response — fully validated as a compact JSON object — provides
the foundation for the next step, where the user reviews and optionally
approves the proposed command for live execution.

6. User Approval and Live Execution: PenTest2.0 displays the LLM-
generated command and its rationale to the user for manual approval. This
dual-approval mechanism ensures safety and ethical oversight. Once ap-
proved, the command is executed on the target via SSH, and the output
is logged.

7. Turn-Based Feedback Loop: If root access is not achieved (e.g., the out-
put does not contain a uid=0(root) match), the system summarises the
command output and proceeds to construct the next prompt. This new
prompt incorporates the updated system context, command history, and any
relevant task tree adjustments. The process then repeats for a preconfigured
number of turns or until PrivEsc is successful.
Both the request and response prompts exchanged with the LLM in sub-
sequent turns follow the same format as used in steps 3 and 5, ensuring
consistency and traceability throughout operation.

8. Optional Enhancements: The system supports the following runtime-
configurable enhancements:
– Local RAG: Injects relevant knowledge from a local FAISS vector10

store populated with markdown content (e.g., GTFOBins).
– Online GTFOBins: Pulls real-time online suggestions from the GT-

FOBins database11.
– CoT: Enables intermediate reasoning through few-shot examples (see

Section 3.2).
– Human Hints: Allows user-supplied advice to steer LLM behaviour

mid-run.
– PTT Tracking: The system maintains and updates the PTT with each

turn. Each command is tagged with a task id, and tasks transition
through statuses: pending, in progress, done, or skipped. Sub-
tasks may be added dynamically based on the LLM’s evolving plan.

9. Root Detection and Termination: After each command execution, the
system invokes a shell-root detection routine based on regular expression
matching against command output. If root access is confirmed, the loop
terminates early; otherwise, it proceeds to the next reasoning turn.

10 In this context, a vector refers to a high-dimensional numerical representation of text
— produced by embedding models such as text-embedding-3-small (https:
//platform.openai.com/docs/guides/embeddings). Each input sentence is
mapped to a dense vector (e.g., of length 1536), where semantic similarity between
texts corresponds to geometric closeness in vector space. FAISS enables fast similar-
ity search over such vectors, typically using cosine similarity as the metric.

11 https://gtfobins.github.io/

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://gtfobins.github.io/
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10. Logging and Reporting: Throughout the session, PenTest2.0 logs all
prompts, commands, outputs, reasoning steps, token usage, and task tree
updates. Upon session completion, it generates structured logs, a session
summary, and optional visualisations for audit and research purposes.

7 Testing Results

To assess the robustness and automation capabilities of PenTest2.0, we car-
ried out comprehensive testing across seven distinct full-system configurations.
Each setup combined or excluded strategic features such as Chain-of-Thought
reasoning (--cot), human-injected hints (--hint), Retrieval-Augmented Gen-
eration (--rag), and the PenTest Task Tree module (--ptt). All experiments
were conducted against a deliberately vulnerable Linux VM pre-configured with
PrivEsc vectors.

7.1 Evaluation Criteria

We assessed each configuration along the following six dimensions:

1. Root Achieved: Did the command ultimately spawn a root shell, regardless
of automation?

2. Auto Root Detected: Did the system autonomously confirm root access
via parsed output and terminate accordingly?

3. Turn of Success: How early in the loop did the system both achieve and
recognise root access?

4. Execution Reliability: Did the LLM adhere to the required structured
JSON schema, returning well-formed fields e.g. command non interactive?

5. Resilience: Did the system handle malformed inputs, noisy outputs, or
interactive shells without crashing or stalling?

6. Self-Healing Capability: If the LLM initially suggested a syntactically
invalid or ineffective command, was it able to adapt in subsequent turns by
analysing previous output (e.g., error messages) and generating a corrected,
functional alternative?

7.2 Key Insights

Table 1 presents a summary of results across all seven tested configurations. All
seven configurations successfully achieved root access, confirmed either automat-
ically or manually, validating the reliability of PenTest2.0’s command suggestion
logic — even under zero-shot, minimal-guidance settings.

However, only four out of seven configurations achieved fully automated root
detection, which is critical to PenTest2.0’s design goals. As explained in more
detail below, the discrepancy arises primarily due to execution context and shell
behaviour.
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# Config Root Auto-Root Turns Notes

1 –cot ✓ ✓ 2 Auto-root detected; terminated early

2 –hint ✓ ✓ 2

3 –cot –hint ✓ ✓ 1

4 –cot –hint –rag –ptt ✓ ✓ 2

5 –rag ✓ ✗ 10 Manual check confirmed root

6 –ptt ✓ ✗ 10

7 No flags ✓ ✗ 10

Table 1: Results of PenTest2.0 across seven configurations (MaxTurn = 10)

– In Configurations 1 to 4 in Table 1, the LLM consistently returned a syn-
tactically correct command non interactive, e.g.:

sudo awk ‘BEGIN {system("id")}’

The ShellDetector wrapper then correctly parsed the output (e.g., uid=0(root))
and triggered an early halt, confirming successful escalation.

– In contrast, Configurations 5 to 7, although issuing correct commands like:

sudo awk ‘BEGIN {system("/bin/sh")}’

failed to detect root automatically. This is because such commands spawn
interactive root shells, which the system cannot monitor directly through
non-interactive SSH wrappers.

Below is an example of an LLM response from a successful system run,
demonstrating, in this particular case, strict adherence to the expected format
and effective output parsing under optimal conditions.

{
"command_non_interactive": "sudo awk ‘BEGIN {system(\"id\")}’",
"command_interactive": "sudo awk ‘BEGIN {system(\"/bin/sh\")}’",
"system_summary": "- User: naif\n- Sudo: awk\n- Hostname: metasploitable\n...",
"command_history": "None yet",
"rationale": "The target has sudo access to awk, which can spawn a root shell.",
"rag_search_query": "sudo awk PrivEsc GTFOBins",
"ptt_update": {
...
"updated_statuses": [
{ "task_id": "root_access", "status": "done" }
],
"commands": [
{
"task_id": "root_access",
"command": "sudo awk ‘BEGIN {system(\"id\")}’",
"result": "uid=0(root) gid=0(root) groups=0(root)"
}
]
}
}
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7.3 Configuration Analysis

We now present a focused, case-by-case analysis of each system configuration
and its performance.

Configuration 1: --cot This configuration evaluated PenTest2.0 with only
CoT reasoning enabled. The system successfully achieved, and auto-confirmed
root access by Turn 2; the LLM returned a syntactically valid command: sudo
awk ‘BEGIN {system("id")}’, which triggered a root shell (see Fig. 2).
PenTest2.0’s shell detector correctly parsed the uid=0(root) output and ter-
minated execution early.

Notably, in other system runs, this same CoT-only configuration achieved
root as early as Turn 1. These results underscore a key property of LLM-powered
automation: while success is attainable, output may vary across runs, often re-
quiring more than one interaction to converge on the correct result, just as is
commonly experienced when manually querying LLMs.

Configuration 2: --hint Using only human-injected hints (without CoT,
RAG, or PTT), this configuration also achieved root consistently by Turn 2.
Automatic root detection worked reliably (see Figs. 3 to 6). The hints helped
steer the LLM without increasing prompt size significantly. Notably, the user
was not permitted to inject a hint in Turn 1; this initial turn was reserved to
observe whether the LLM could propose a correct command unaided. The hint
mechanism was only activated from Turn 2 onwards, allowing the system to
prioritise autonomous reasoning before external guidance.

Configuration 3: --cot --hint This configuration combined CoT reason-
ing with human-injected hints (see Fig. 7). The system was executed once and
successfully achieved root access in the very first turn. This configuration thus
produced the fastest overall result, achieving root in Turn 1, with minimal over-
head, no hallucinated commands, and exceptionally low cost. As designed, the
hint mechanism was activated only from Turn 2 onward, allowing the system to
first attempt reasoning independently, using CoT, before introducing external
guidance.

We believe that this might be the most powerful, yet cost-effective combina-
tion for achieving accurate results. It leverages the strengths of LLM reasoning,
machine training, and human expertise, thereby advocating for a HITL model.

Configuration 4: --cot --hint --rag --ptt This configuration enabled
all major modules — CoT reasoning, human-injected hints, RAG, and the PTT.
Despite the added complexity, the system achieved and detected root access by
Turn 2 (see Figs 8 and 9). The PTT was correctly updated with task statuses
and command mappings, and RAG content was successfully injected. However,
in this scenario, the added value of RAG and PTT was limited, as the task could
be completed with less contextual enrichment.
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It goes without saying that this was the most expensive configuration among
the seven tested, primarily due to the significant increase in token usage from
combining verbose reasoning, injected hints, RAG content, and PTT tracking.

Configuration 5: --rag When using RAG alone — without CoT, Hint, or
PTT — the system produced valid commands and successfully achieved root
manually as early as Turn 1. However, automatic root detection failed in all 10
runs. This was primarily due to the LLM repeatedly suggesting either interac-
tive root shell–spawning commands or incorrect syntax. Since interactive shells
prevent the SSH wrapper from capturing and parsing output, PenTest2.0 could
not confirm root autonomously (see Figs. 10 to 14).

These results underscore a critical limitation: despite recent advances, LLMs
remain prone to imprecision and cannot yet be fully trusted in high-stakes au-
tonomous security tasks. This reinforces the importance of adopting a HITL
model that combines LLM reasoning with expert oversight.

While the LLM was instructed to suggest a RAG search query, the resulting
queries — although relevant — were often too generic to produce impactful
retrievals (see Fig. 13). During testing, we found that using the LLM-generated
PrivEsc command itself as the RAG query yielded significantly more relevant and
targeted content. However, it’s important to note that the RAG corpus lacked
knowledge on how to verify root status programmatically. As a result, RAG
offered valuable support in discovering exploitation techniques but provided little
help in auto-confirming root access, which had to be manually verified.

Configuration 6: --ptt Using only the PTT, the system exhibited good struc-
ture and memory of past commands, but it failed to detect root automatically
due to the LLM generating interactive shell commands and repeating ineffective
strategies (see Figs. 15 to 17). Root was achieved and manually confirmed in
Turn 1.

Configuration 7: No Flags With no flags enabled, PenTest2.0 operated in its
minimal baseline mode, resulting in the lowest overall token cost (see Fig. 23).
Although root access was successfully achieved in all ten runs, the system con-
sistently failed to detect root automatically. This was primarily due to the LLM
repeatedly suggesting an interactive shell command, despite being explicitly in-
structed to provide two variants per escalation attempt: a non-interactive version
suitable for automation and root detection, and an interactive version for manual
testing or debugging.

Furthermore, the prompt clearly instructed the LLM not to repeat previously
attempted commands — many of which were already visible in the command
history. Nevertheless, the LLM disregarded these constraints and repeatedly pro-
posed the same ineffective strategy across multiple turns (see Figs. 19 and 20).

This behaviour exposes a fundamental limitation: LLMs may occasionally
ignore prompt-level instructions, resulting in non-adaptive and repetitive out-
put. While such lapses are not universal — the LLM does follow instructions
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correctly in many runs — they reveal a degree of unpredictability that makes
full automation unreliable. This reinforces the need for a HITL architecture in
security-critical systems.

7.4 Comparative Summary

Table 2 presents a consolidated overview of the configuration performance across
key dimensions, highlighting trade-offs in speed, cost, accuracy, and feature rich-
ness.

Category Configuration Remarks

Fastest Path to Auto-Root Detection --cot --hint Root achieved quickly with minimal overhead.

Most Cost-Effective Auto-Root --cot Shortest prompts, lowest tokens, fast root success.

Best Overall Balance (Speed, Accuracy, Cost) --cot --hint Robust reasoning and human hints; early root.

Most Feature-Rich and Knowledge-Intensive --cot --hint --rag --ptt All modules enabled: CoT, RAG, hints, PTT.

Most Expensive Configuration --cot --hint --rag --ptt Verbose reasoning and PTT caused high cost.

Least Expensive Baseline no flags Minimalist setup; lowest cost, no enhancements.

Table 2: Summary of configuration performance across speed, cost, and feature
dimensions

7.5 Performance Against Evaluation Criteria

To conclude this section, we revisit the six evaluation criteria outlined earlier
and summarise how PenTest2.0 performed across each dimension:

1. Root Achieved: All seven configurations ultimately succeeded in obtain-
ing root privileges. This demonstrates the LLM’s capacity to reason through
PrivEsc even under minimal guidance. However, success in some cases (e.g.,
RAG-only, PTT-only, or no-flags configurations) required manual verifica-
tion due to shell type limitations.

2. Auto Root Detected: Only four configurations — those with --cot,
--hint, --cot --hint, and --cot --hint --rag --ptt—achieved
automated root detection. The remaining configurations issued interactive
shell commands that bypassed the SSH wrapper’s detection mechanisms.
This highlights the need for command predictability and structured output
when designing autonomous agents.

3. Turn of Success: The fastest configuration was --cot --hint, which
achieved and detected root in Turn 1. Other successful configurations reached
root in Turn 2. By contrast, configurations lacking CoT or hinting generally
required subsequent turns, with some repetitions and command stagnation
along the way.
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4. Execution Reliability: Most configurations exhibited high adherence to
the structured response format. Failures primarily occurred when the LLM
hallucinated commands or ignored prompt instructions, potentially under
prompt stress or when operating with insufficient contextual guidance. Con-
figurations featuring CoT reasoning and/or hinting achieved the highest com-
pliance rates.

5. Resilience: PenTest2.0 remained stable across all tests. It did not crash
or stall in response to malformed commands, empty outputs, or shell type
mismatches. However, interactive shell responses still represent a parsing
blind spot, indicating room for enhancement in system robustness.

6. Self-Healing Capability: Configurations with CoT and/or hinting exhib-
ited clear self-correction behaviour, often revising earlier failed strategies
by analysing error messages or prompt history. By contrast, the no-flags
and RAG-only configurations struggled with command repetition and non-
adaptive output, underscoring the limitations of unguided LLM use in secu-
rity tasks.

Taken together, these findings reinforce the central insight of this paper:
while LLMs demonstrate impressive potential in automating complex PenTesting
tasks, they require careful prompt design, reasoning scaffolds, and — in some
cases — human oversight to ensure reliability, safety, and cost-effectiveness.

8 Cost Analysis

8.1 Methodology

To evaluate the economic viability of each configuration in the PenTest2.0 frame-
work, we implemented a token-accurate cost tracking mechanism based on Ope-
nAI’s pricing model as of July 2025. Each LLM interaction is broken down into
prompt (input) tokens and completion (output) tokens. The number of tokens
is recorded per turn, and a per-token rate is applied depending on the selected
model (e.g., gpt-4o-mini, priced at $0.15 per 1M prompt tokens and $0.60
per 1M completion tokens12 — see Fig. 21).

For each session:

– Input cost = Prompt tokens × prompt rate
– Output cost = Completion tokens × completion rate
– Total cost = Input cost + Output cost (summed across all turns)

Since OpenAI pricing is token-based, PenTest2.0 estimates the number of
tokens using a standard approximation: 1 word ≈ 1.33 tokens. Accordingly, to
compute the number of tokens, PenTest2.0 multiplies the total word count by
1.33. When a prediction is required prior to execution, it also estimates the
completion size as 40% of the prompt size13 14.

12 https://platform.openai.com/docs/pricing
13 https://platform.openai.com/tokenizer
14 https://github.com/openai/openai-cookbook/blob/main/examples/

How_to_count_tokens_with_tiktoken.ipynb

https://platform.openai.com/docs/pricing
https://platform.openai.com/tokenizer
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
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Practical Example. Suppose the LLM prompt contains 5,000 tokens (≈ 3760
words) and the expected completion is 2,000 tokens (i.e., 40% of the prompt).
Using the gpt-4o-mini model:

– Prompt cost = 5,000 tokens × $0.00000015 = $0.00075
– Completion cost = 2,000 tokens × $0.00000060 = $0.00120
– Total turn cost = $0.00075 + $0.00120 = $0.00195

Over 3 turns with similar token usage, the cumulative cost would be $0.00585.
This level of detail enables PenTest2.0 to estimate, compare, and visualise session
costs across configurations with fine-grained accuracy.

8.2 Configuration-Level Comparison

Seven configurations were tested under similar conditions. These included simple
prompting methods (e.g., CoT+Hint) and complex strategies combining mul-
tiple reasoning components (e.g., ALL, RAG, PTT). Each setup was allowed a
maximum of 10 turns per session. Fig. 22 and Table 3 summarise the cost and
turn count distribution.

# Configuration Turns Total Cost (USD)

1 CoT + HumanHint 1 0.000533

2 HumanHint 2 0.000662

3 CoT 2 0.000918

4 ALL 2 0.002074

5 No Flags 10 0.003109

6 RAG 10 0.003942

7 PTT 10 0.006237

Table 3: Tabular summary of cost and turn count per configuration

– CoT+Hint had the lowest total cost ($0.000533) and completed in a single
turn.

– HumanHint and CoT-only achieved success in two turns, costing $0.000662
and $0.000918, respectively.

– ALL incurred moderate cost ($0.002074) over two turns due to the inclusion
of all reasoning layers.

– No-Flags, RAG, and PTT reached the 10-turn limit without auto-root de-
tection, costing $0.003109, $0.003942, and $0.006237, respectively.
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8.3 Cost-to-Turn Ratio

As depicted in Fig. 22, configurations that succeeded early demonstrated sig-
nificantly better cost efficiency. The CoT+Hint configuration serves as a strong
baseline, achieving success at minimal cost and minimal interaction. Conversely,
configurations such as PTT, though theoretically richer in reasoning capability,
often generated verbose or repetitive commands, leading to high cumulative cost
without better performance.

8.4 Recommendation and Deployment Guidance

The evaluation suggests that more expensive configurations do not necessarily
yield better results. In fact, verbosity and complexity can lead to degraded effi-
ciency, particularly when interactive shell commands cause failure in automated
root detection logic.

We thus advocate a hybrid approach for real-world use:

– Use lightweight, low-cost prompt strategies (CoT+Hint, HumanHint) as the
default.

– Employ more advanced reasoning (e.g., PTT, RAG) only when failures persist
or during high-complexity scenarios.

– Introduce a HITL mechanism to intervene when repeated suggestions or
ambiguous responses are detected.

This pragmatic strategy offers optimal resource usage and ensures a stable
cost profile across a range of pentesting scenarios.

9 General Discussion

9.1 Answers to the Research Questions

We now address the three research questions (RQs) posed in Section 2 by inte-
grating findings from our experimental runs and observations of PenTest2.0’s
behaviour.

1. To what extent can GenAI systems autonomously perform PrivEsc
in a post-exploitation scenario under human supervision? Our re-
sults demonstrate that GenAI systems— specifically LLMs like gpt-4o-mini
— can autonomously identify and execute PrivEsc vectors on realistic Linux
targets. In several configurations (e.g., --cot, --cot --hint), the system
successfully achieved root access with minimal human input, often within
just 1–2 turns. Nevertheless, the requirement for structured prompts and
non-interactive shell execution underscores the importance of human su-
pervision in validating command safety and execution context. Thus, while
high levels of autonomy are achievable, human oversight remains essential
for safety and success verification.
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2. How can the integration of techniques such as RAG, CoT prompt-
ing, PTTs, and optional human hints improve the effectiveness,
reasoning depth, and traceability of GenAI-driven PenTesting?
Our experiments show that these techniques can enhance LLM performance
in meaningful ways. CoT prompting consistently led to faster root discov-
ery and fewer repeated mistakes. Human hinting improved alignment with
valid PrivEsc paths, particularly when LLM reasoning stalled or diverged.
RAG introduced external contextual knowledge, and PTTs enabled struc-
tured tracking of attempted strategies across turns. However, our findings
also show that more complex configurations — such as --ptt, --rag,
and --all — do not always result in faster auto-root detection. In fact,
these setups generally incurred higher token usage and cost due to increased
prompt complexity, without guaranteeing proportional improvements in per-
formance. These inefficiencies may stem from several factors, including prompt
stress, LLM hallucinations, or architectural limitations — each of which mer-
its deeper investigation in future work. Overall, the --cot --hint configu-
ration offered the most effective balance between efficiency, cost, and success
— highlighting the value of guided reasoning and lightweight human-machine
collaboration without introducing excessive complexity.

3. What are the practical limitations of using LLMs for live, command-
executing PrivEsc tasks in realistic environments, and how do
these limitations typically manifest during execution? Several limita-
tions were observed: LLMs occasionally hallucinated unsafe or syntactically
incorrect commands, ignored JSON schema formatting, or repeated ineffec-
tive strategies despite prior failures. Moreover, interactive shell commands
(e.g., spawning /bin/sh) impeded the system’s ability to auto-detect suc-
cess due to output parsing constraints. Resource-intensive suggestions (e.g.,
full system compression) also risked destabilising target machines. These
behaviours reinforce the necessity of safe prompt design, non-interactive
command enforcement, and HITL validation for real-world deployments. A
deeper analysis of these LLM shortcomings is provided in Section 9.4.

9.2 Benefits and Features

PenTest2.0 extends the capabilities of its predecessor by introducing au-
tonomous privilege escalation, multi-turn reasoning, and support for advanced
LLM-enhanced techniques. The system balances automation, safety, and flexi-
bility — pushing the boundary of what GenAI can achieve in post-exploitation
scenarios. Key benefits include the following.

– Autonomous PrivEsc with Oversight: PenTest2.0 automates the
PrivEsc phase of ethical hacking, enabling GenAI to reason, generate, and
execute escalation commands iteratively. Importantly, it preserves user over-
sight through controlled, non-interactive execution and optional hint injec-
tion.
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– Multi-Turn GenAI Reasoning Loop: The system adopts a loop-based
architecture that allows the LLM to process feedback, revise its hypotheses,
and try new commands over multiple turns — emulating the trial-and-error
nature of real-world PrivEsc.

– Support for Advanced Prompting Techniques: PenTest2.0 option-
ally integrates Chain-of-Thought (CoT) prompting, Retrieval-Augmented
Generation (RAG), and PenTest Task Trees (PTTs), allowing for deeper
reasoning, traceability, and context retention across execution turns.

– Lightweight Human Collaboration: A streamlined hint mechanism al-
lows human experts to steer the LLM gently when needed — minimising
intervention while improving success rates in difficult scenarios.

– Structured Execution and Robust Logging: The system enforces struc-
tured prompts and parses outputs in a format-friendly manner, enabling root
detection and task tracking. Full command histories and LLM turn responses
are logged for auditability and reproducibility.

– Modular, Extensible, and Open-Source Ready: Built in Python with
modular components for logging, command execution, LLM communication,
and prompt management, the system is cross-platform and designed for fu-
ture extension. An open-source release is planned to facilitate community
engagement and experimentation.

– Built-in Safety and Cost Controls: Before each prompt is submitted to
the LLM, the system automatically estimates and displays the token usage
and associated API cost, helping users avoid excessive charges or premature
credit exhaustion. Additionally, all LLM-generated commands are screened
against a blacklist of dangerous instructions and require explicit user ap-
proval before execution — enforcing a strict HITL policy to mitigate the
risk of accidental harm to target systems.

– User in Control: Throughout its operation, PenTest2.0 prioritises ethi-
cal alignment by placing the user firmly in control. All command executions
are transparent, with the user empowered to monitor outputs, insert correc-
tions, or halt execution when necessary — ensuring safe, responsible use of
GenAI in offensive security contexts.

9.3 Limitations and Risks

While PenTest2.0 represents a substantial advancement over its predecessor,
it also introduces new limitations and risks that merit careful consideration.
First, although the system supports automated PrivEsc, it does not guarantee
success in all scenarios — particularly in the presence of highly customised or
hardened environments. The LLM may generate syntactically valid but opera-
tionally ineffective or unsafe commands, especially when faced with unfamiliar
or ambiguous system states.

Second, the automation of live command execution, even with safeguards
such as user approval and command filtering, carries inherent risks. Malicious or
erroneous LLM suggestions could result in service disruption, resource exhaus-
tion, or data integrity issues if executed without scrutiny. This risk is heightened
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in cases where root detection fails, leading to unnecessary or repeated command
execution. However, the built-in safety mechanisms and human oversight fea-
tures detailed earlier — including command blacklisting, cost estimation, and
explicit user approvals — serve to significantly mitigate these risks in practice.

Third, the system’s reliance on cloud-hosted LLM introduces privacy and
data protection concerns. Although prompts are constructed to minimise sen-
sitive content, any external API interaction must comply with applicable data
governance policies and ethical guidelines — particularly when operating on
production or real-world systems.

Fourth, the system’s performance was evaluated under controlled, assumed-
breach scenarios on known Linux environments with intentionally exploitable
vectors. This limits generalisability to more diverse infrastructures, such as Win-
dows hosts, air-gapped systems, or targets with strict intrusion detection systems
(IDS) in place.

Finally, despite using prompt engineering techniques such as rationale en-
forcement and structured outputs, PenTest2.0 remains susceptible to LLM lim-
itations including hallucinations, semantic drift, and prompt sensitivity. These
factors underscore the continued necessity of HITL oversight to ensure correct-
ness, safety, and ethical adherence during PenTesting workflows.

9.4 Observed LLM Shortcomings

Through extensive experimentation with PenTest2.0, we observed several re-
curring shortcomings in the behaviour of the underlying LLM — in our case,
gpt-4o-mini. While the model demonstrates strong reasoning capabilities in
many instances, its limitations pose practical and operational concerns in an
automated PenTesting setting.

First, the LLM can generate erroneous or ineffective commands that fail to
escalate privileges, even when the target clearly supports a viable exploit path.
In some runs, the model repeatedly suggested syntactically valid commands that
produced no meaningful outcome — wasting precious reasoning turns and failing
to adapt. This inability to self-correct undermines the system’s autonomy and
necessitates human intervention.

Second, we observed that the LLM occasionally suggests dangerously resource-
intensive commands, such as recursively compressing the entire filesystem (e.g.,
zip -rv zipped.zip /). On limited-resource VMs, such commands can de-
grade performance or crash the system entirely — an unacceptable outcome in
real-world testing environments.

Third, the LLM sometimes ignores strict prompt instructions or system
guidelines, proposing commands that violate execution constraints or contra-
dict previously observed feedback. This includes bypassing non-interactivity re-
quirements or hallucinating sudo permissions that do not exist. Such deviations
underscore the need for robust filtering and manual approval checkpoints.

Fourth, a persistent issue involves the LLM redundantly suggesting the same
ineffective command across multiple turns, even after it has already failed (see
Figs 12 and 17). This behaviour leads not only to wasted reasoning opportunities
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but also to the unnecessary consumption of API tokens — driving up operational
costs without progress toward root access.

Collectively, these issues highlight a fundamental limitation of relying solely
on LLMs for critical security tasks. They reinforce the importance of a HITL
model, where human expertise governs execution and validates AI-generated
outputs. While our observations are based on gpt-4o-mini, more advanced
models — such as GPT-4o or GPT-4.5 — may offer improved reasoning, adapt-
ability, and adherence to guidelines. However, these benefits would come at the
cost of significantly higher API usage (see Fig. 21 ), which may not be feasible
in all deployment contexts. Future work should explore this trade-off and assess
whether newer models can deliver sufficiently improved reliability to justify the
additional expense.

10 Related Work

The integration of AI in cybersecurity is an active research area, covering intru-
sion detection and offensive security, including ethical hacking. Despite signif-
icant advances [1, 9–12, 15, 19], a fully autonomous, comprehensive PenTesting
system remains elusive.

PentestGPT [9] has been proposed as an LLM-powered PenTesting assistant
that leverages Reasoning, Generation, and Parsing Modules for a
segmented problem-solving strategy. It follows a HITL approach, requiring users
to manually enter the target IP, execute suggested commands, and iteratively
provide feedback for further guidance. Notably, PentestGPT heavily utilises
the concept of PTT, a lightweight memory structure designed to preserve task
context, track progress, and reduce reasoning drift across LLM turns. While
PentestGPT aims to address context loss, recent content bias, and hallucina-
tions, its reliance on manual execution greatly limits automation. In contrast,
PenTest++ [3] automates predefined PenTesting commands, requiring only
user selection and approval. Building on this, PenTest2.0 extends automa-
tion into the post-exploitation phase, enabling iterative PrivEsc through LLM-
guided reasoning, autonomous command execution over SSH, and structured
multi-turn feedback loops. While both PentestGPT and PenTest2.0 lever-
age task-tracking mechanisms such as PTTs, the latter augments them with
automatic cost estimation, command validation, and built-in safety checks —
all under explicit user supervision to enforce a robust HITL model. Ultimately,
PentestGPT operates as a capable guided assistant, whereas PenTest++ and
PenTest2.0 pursue deeper autonomy through real-world command execution,
proactive risk mitigation, and tighter integration between LLM reasoning and
live system interaction.

Our own earlier research explored GenAI’s role in ethical hacking across var-
ious phases. In [6], we proposed a conceptual framework for integrating GenAI
into PenTesting workflows. Subsequent studies evaluated ChatGPT’s effective-
ness in controlled Windows [2] and Linux [7] environments. More recently, we
examined its application in manual exploitation and PrivEsc [4]. These stud-
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ies demonstrated GenAI’s potential to enhance efficiency, decision-making, and
workflow automation from reconnaissance to reporting.

Building on this foundation, PenTest++ [3] [5] introduces a user-centric, AI-
powered automation system to streamline PenTesting while maintaining human
oversight. Extending this line of work, the present study introduces PenTest2.0,
which advances into the post-exploitation phase by supporting autonomous
PrivEsc. It incorporates iterative LLM reasoning, real-time command execution
via SSH, automatic output parsing, root detection, and token cost management
— all within a HITL framework. This marks a shift from guided task assistance
to controlled yet autonomous decision-making and execution within live environ-
ments, bridging the gap between LLM-driven reasoning and real-world system
interaction.

11 Conclusions and Further Research

In this paper, we presented PenTest2.0, a significant advancement over our
earlier PenTest++ system, with a specific focus on automating the PrivEsc
phase of ethical hacking. We designed and implemented a GenAI-powered pro-
totype capable of reasoning over multiple turns, generating and executing com-
mands in real time, and autonomously adapting its strategy based on system
feedback. Through rigorous experimental evaluation across diverse configura-
tions — including CoT, RAG, PTT, and human hinting — we demonstrated
the feasibility of safe, controlled AI-driven PrivEsc in post-exploitation scenar-
ios.

The system leverages structured task tracking, token-aware prompt genera-
tion, built-in safety filters, and a human-in-the-loop model to mitigate risks as-
sociated with hallucinated or unsafe commands. Our results showed that guided
reasoning and hinting (e.g., --cot --hint) yielded the best balance of speed,
reliability, and cost. However, our findings also highlighted limitations in LLM
behaviour — such as hallucinations, prompt fatigue, and repeated failures —
which reinforce the need for user oversight and adaptive error handling.

PenTest2.0 marks an important step toward more autonomous and de-
pendable GenAI-assisted PenTesting, particularly in high-stakes, real-world-like
environments. By automating PrivEsc while keeping the user in control, it bridges
the gap between intelligent assistance and operational autonomy.

Future work will focus on broader evaluation and system expansion. While
the current study explores a wide range of configuration options, it is limited
to a single target OS environment, which may constrain the generalisability of
findings. Testing across diverse systems and vulnerability types will help vali-
date the robustness and adaptability of PenTest2.0 in real-world scenarios. We
also plan to extend PenTest2.0 to support additional post-exploitation tasks,
including credential dumping, lateral movement, and persistence. Broader envi-
ronment support (e.g., Active Directory, IoT, macOS, and cloud-native systems)
is also a key goal.
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Quantitative studies, e.g. measuring time saved, user trust, and resource ef-
ficiency, will complement our current findings. Additionally, comparative bench-
marking with tools like PentestGPT will help establish standardised evaluation
baselines. Finally, ongoing work will explore offline LLM deployment, prompt-
hardening strategies, and formal risk mitigation frameworks to ensure safe and
ethical use of GenAI in penetration testing.
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Fig. 1: PenTest2.0 architecture with iterative loop
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Fig. 2: Raw LLM response

Fig. 3: Human hinting feature enabled
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Fig. 4: Example of a human-injected hint embedded in the LLM prompt

Fig. 5: ‘Root’ achieved with the HumanHint feature enabled

Fig. 6: The LLM interprets and responds appropriately to a human-injected hint
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Fig. 7: CoT + HumanHint features enabled

Fig. 8: ‘Root’ achieved and auto-detected in Turn 2 using full configuration; cost
and outcome tables summarised
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Fig. 9: LLM response in Turn 2 showing correct reasoning, format compliance,
and command suggestion under the full configuration

Fig. 10: Token cost distribution across failed RAG-enabled runs

Fig. 11: RAG-enabled Configuration
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Fig. 12: Comparison of repeating vs non-repeating commands during RAG runs

Fig. 13: The LLM is instructed to return a RAG search query



Introducing PenTest2.0 41

Fig. 14: Turn 1 summary showing system context, command history, and sug-
gested command

Fig. 15: LLM response with structured output in PTT-mode

Fig. 16: Token cost summary in PTT mode runs
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Fig. 17: Command repetition vs variation in PTT; high repetition observed

Fig. 18: Prompt cost preview shown to user for approval before LLM submission
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Fig. 19: Success vs failure of executed commands

Fig. 20: LLM repeating commands despite clear instructions
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Fig. 21: OpenAI pricing for GPT models as of July 2025
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Fig. 22: Total cost vs number of turns per configuration

Fig. 23: Prompt cost preview with no optional flags enabled
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