
PotentRegion4MalDetect: Advanced Features from

Potential Malicious Regions for Malware Detection

Rama Krishna Koppanatia, Monika Santrab, Sateesh Kumar Peddojua

aDepartment of Computer Science and Engineering,
Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India

bDepartment of Computer Science and Engineering,
Pennsylvania State University, State College, PA 16801, USA

Abstract

Malware developers exploit the fact that most detection models focus on
the entire binary to extract the feature rather than on the regions of po-
tential maliciousness. Therefore, they reverse engineer a benign binary and
inject malicious code into it. This obfuscation technique circumvents the
malware detection models and deceives the ML classifiers due to the preva-
lence of benign features compared to malicious features. However, extract-
ing the features from the potential malicious regions enhances the accuracy
and decreases false positives. Hence, we propose a novel model named Po-
tentRegion4MalDetect that extracts features from the potential malicious
regions. PotentRegion4MalDetect determines the nodes with potential mali-
ciousness in the partially preprocessed Control Flow Graph (CFG) using the
malicious strings given by StringSifter. Then, it extracts advanced features
of the identified potential malicious regions alongside the features from the
completely preprocessed CFG. The features extracted from the completely
preprocessed CFG mitigate obfuscation techniques that attempt to disguise
malicious content, such as suspicious strings. The experiments reveal that
the PotentRegion4MalDetect requires fewer entries to save the features for all
binaries than the model focusing on the entire binary, reducing memory over-
head, faster computation, and lower storage requirements. These advanced
features give an 8.13% increase in SHapley Additive exPlanations (SHAP)
Absolute Mean and a 1.44% increase in SHAP Beeswarm value compared to
those extracted from the entire binary. The advanced features outperform
the features extracted from the entire binary by producing more than 99%
accuracy, precision, recall, AUC, F1-score, and 0.064% FPR.

ar
X

iv
:2

50
7.

06
72

3v
1

 [
cs

.C
R

]
 9

 J
ul

 2
02

5

https://arxiv.org/abs/2507.06723v1

Keywords: Advanced Static Malware Analysis, Advanced Features, Control
Flow Graph (CFG), Deep Neural Network (DNN), Machine Learning

1. Introduction

Over 5.4 billion people use the internet as of July 2024, accounting for
67.1% of the world’s population [1]. However, as internet penetration in-
creases and more users connect online, the threat landscape also expands,
inevitably raising the risk of cyberattacks. Norton estimates about 2,200
cyberattacks every day [2]. Nearly 72% of businesses experience ransomware
attacks as of 2023 [3]. AV-TEST Institute records more than 450,000 new
malware and potentially unwanted applications (PUA) every day [4]. In 2022
alone, Avast records over 998 million malware, out of which above 76% of
malware targets the Windows Operating System [5]. The potential damages
caused by unknown malware are so humongous that designing cutting-edge
malware detection and prevention methods are essential today.

Malware authors use techniques like malicious code injection, where ma-
licious code is injected inside the benign binary on the selected locations
to deceive Machine Learning (ML) models [6, 7]. Though there are many
works published to detect malware, most detection approaches extract fea-
tures from the entire binary instead of focusing on the regions where potent
maliciousness is present. As a result, extracted features are more likely to be
categorized as benign than malware since they contain more benign features
[6, 7]. Further, the approaches that focus on the entire binary to extract
features miss the context of the features, leading to less accuracy and more
False Positive Rates (FPR). For instance, the approaches that target the
entire binary to extract features like the entropy of the binary, histogram
of the binary, opcode sequence of the binary, byte sequence of the binary,
and API sequences of the binary can be bypassed by tactics such as junk
code insertion, equivalent instructions insertion, non-functional instruction
insertion, instruction reordering, and dummy API injection. The primary
problem with approaches that focus on the entire binary is not understand-
ing why a specific feature appeared at the specific position of the sequences.
In other words, they fail to understand the features’ context. Another prob-
lem is that many approaches focus on shallow features, such as file signature,
file header information, import functions, export functions, and digital cer-
tificates. Since these features are shallow, sophisticated malware.

2

Nevertheless, understanding the context of features helps to consider only
the significant ones and discard the insignificant ones for building a robust
malware detection model. Therefore, a better approach is crucial to iden-
tify the potential regions of maliciousness for extracting the robust features,
helping to avoid the insignificant features and focusing only on the signif-
icant features. This helps to enhance the model’s overall performance and
decrease the FPR. In this paper, we propose a novel approach that identifies
the regions with potential maliciousness and extracts advanced features from
the regions. To the best of our knowledge, this is the first research study to
concentrate on potential malicious regions and completely preprocessed CFG
for feature extraction.

Motivation: The distribution of the malicious code is not homogeneous
within an executable, and a few portions of the code may exhibit elevated
malicious behavior. For instance, the executable may load a legitimate DLL
and inject malicious payloads into its memory, embed malicious code in un-
used sections such as .bss, place it within code caves (unused spaces between
instructions), or conceal it between two legitimate code sections. However,
focusing on the entire executable file for extracting the features in such sce-
narios may extract more benign features than malicious features, leading
to deceive the ML models. We, therefore, focus on identifying the regions
where the potential malicious pieces of code are present and gather features
to create an automated malware analysis framework. The following research
questions (R) arise in light of the proposed malware analysis technique.

(R1): What is the finest way to represent the selected malicious control flow
information to prevent contemporary malware evasion techniques, such
as dummy code injection?

(R2): How to detect the potential malicious regions?
(R3): How to identify the allowed control flow span around a detected mali-

cious node to create an optimum malware analyzer?
(R4): How many are such malicious nodes to consider for a complete feature

set generation?
(R5): Which features to extract to boost the detection accuracy?

This paper addresses the abovementioned research questions by design-
ing and developing a malware classifier that identifies regions of potential
maliciousness within a binary and extracts features from such regions using
advanced static analysis.

3

Contributions: The major contributions of the research are as follows:

• We propose a novel PotentRegion4MalDetect model that finds the po-
tential malicious regions in a binary’s Control Flow Graph (CFG) and
completely preprocessed CFG to extract features. This novel approach
allows us to avoid insignificant features and focus only on the signifi-
cant ones, leading to higher detection accuracy and fewer False Positive
Rates (FPR). To our knowledge, no other research has focused on this
specific feature extraction method of extracting features from poten-
tially malicious regions, making our model a significant contribution to
malware analysis.

• The CFG of a binary shows all possible paths a binary can take during
execution. However, sophisticated malware hides suspicious behavior
by obfuscating control flow through tactics such as conditional jumps,
loops, and calls. Thus, we preprocess the CFG of a binary to grant
immunity from hacker-induced unwanted code without changing the
binary’s logic and flow.

• Malware developers use techniques to evade detection, such as junk
code insertion, padding, and instructions manipulation. Thus, we cap-
ture the structural information of potentially malicious regions in a
binary to counter these evasion techniques. This helps to identify be-
haviorally similar binaries, which exhibit similar patterns of potentially
malicious behavior. This way, we can detect and classify typical and
zero-day malware.

• The proposed model enhances data management by minimizing mem-
ory usage, increasing computational speed, and reducing storage re-
quirements. It achieves this by generating identical feature entries for
binaries that display similar behaviors by concentrating on regions of
potential maliciousness and completely preprocessed CFG. This model
stands apart from other models that focus on the entire binary for
feature extraction.

• There is a significant enhancement in performance metrics with ad-
vanced features extracted from potential malicious regions and prepro-
cessed CFG rather than the features extracted from the entire binary.
It further confirms the effectiveness of the proposed approach for real-
time malware classification.

4

Organization: The paper’s organization is as follows. Section 2 discusses
the related work in the malware analysis domain, Section 3 explains the
proposed architecture, and Section 4 includes the dataset used, experimental
results, and discussions. Finally, Section 5 mentions the conclusion.

2. Related Work

Researchers employ static, dynamic, and hybrid analysis to comprehend
the characteristics of a binary. Static analysis disassembles the binary with-
out execution, facilitating the extraction of binary inherent features. In con-
trast, dynamic analysis executes the binary within a controlled environment,
enabling the observation of its runtime behavior. Hybrid analysis combines
static and dynamic approaches to leverage the advantages of each method,
providing a more comprehensive understanding of the binary. Few stud-
ies like Pengbin et al. [8], Markus et al. [9], and Pascal et al. [10] use
dynamic analysis to detect malware. However, they are computationally ex-
pensive and vulnerable to adversarial attacks such as anti-VM techniques and
Dummy API injection attacks. The works proposed using hybrid analysis,
like Asma et al. [11] and Weijie et al. [12], produce high complexity, high
FPR, and inherit the limitations of dynamic analysis. Therefore, we focus on
static analysis to extract robust features in this study. Some recent studies
on static analysis are as follows:

Malware Detection Using Opcode Sequences: Seungho et al. [13] use
concolic execution to generate the largest possible opcode sequence, approx-
imating an actual execution path of malware. They encode sequences of
opcodes using opcode-level convolution encoders to train a Recurrent Neural
Network (RNN). Although they achieve an accuracy of 96.2%, their model
produces a high FPR even on a small dataset. Abbas et al. [14] propose a
malware-hunting method combining ML with static analysis. They extract
opcode sequences from executables and apply tokenization to convert them
into numeric representations. The authors utilize an embedding technique for
dimensionality reduction. Then, they feed the processed opcode sequences
into a Long Short-Term Memory (LSTM) network for classification. How-
ever, they conduct experiments on a small dataset, and their model struggles
to understand the semantics and context. Sibel et al. [15] propose a malware
detection model using the opcode sequence of a binary. The authors disas-
semble the binary to gather the opcodes to construct a directed graph with
opcodes as nodes and transition between them as edges. The edge weight

5

is assigned based on the number of times the transition takes between the
opcodes. Further, the authors pre-process the constructed directed graph by
removing the edges connecting different opcodes. Finally, the authors gen-
erate the node degree histogram for the subgraphs and pass these sequences
extracted from all the binaries to ML models for classification. Despite the
model producing 98% accuracy, it yields a high FPR. Similarly, Sudan et
al. [16] also explore static analysis and Neural Networks to design a two-
stage malware classifier. After extracting the list of opcodes from the binary
executables in the initial stage, the authors employ three different Natural
Language Processing (NLP) based techniques separately as vector encoders
upon the opcode list. In the second stage, they feed the encoded opcode
vectors to the RNN (LSTM cells) to train it as a malware classifier. Despite
achieving an accuracy of 91.91%, the model is computationally complex.

Malware Detection Using Bytes and Assembly Instructions: Sota et al.
[17] employ entropy for effective malware detection. The authors calculate
the entropy of byte segments in each binary generated using a sliding win-
dow approach. Then, the authors apply frequency distribution with interval
width ‘d’ to transform the raw entropy values into meaningful feature vectors,
capturing the level of randomness. They cluster these feature vectors into
low and high-entropy groups using the X-means algorithm and subsequently
feed into separate 1D CNN models for classification. Despite the authors
achieving an accuracy of 95.1%, they overlook the contextual information of
the binary. As a result, sophisticated malware can manipulate entropy by
introducing junk code or adding padding to reduce randomness. Deniz et al.
[18] investigate the effectiveness of malware detection using Stacked Bidirec-
tional LSTM (BiLSTM) and Generative Pre-trained Transformer 2 (GPT-2)
models. They train the models on assembly instructions extracted from PE
files’ “.text” section, employing static analysis techniques. They leverage the
power of large language models, allowing them to capture both short-term
and long-term dependencies while benefiting from static analysis techniques.
However, the authors analyze the sequence of instructions without captur-
ing the semantic context of individual instructions. This limitation makes
the approach vulnerable to evasion techniques such as instruction reordering,
and dummy instruction injection. Moreover, the pre-training of large models
required by this method is computationally expensive and time-consuming.

Yifei et al. [19] propose a model using a binary’s bytes and opcode se-
quences. The authors disassemble the binary and collect the byte and asm
files to generate the three 256×256 size matrices. They form the first matrix

6

by considering the first 64KB of bytes from a binary to form a 256×256 ma-
trix. They form the second matrix from the byte file by removing meaningless
hexadecimal bytes repeated continuously five or more times and applying the
Continues Bag of Words (CBOW) technique to form a 256× 256 matrix. Fi-
nally, considering the opcodes, they form the third matrix of size 256× 256.
The authors consider these three matrices as three channels in the RGB im-
age and pass it to the neural network model with SEResNet50, Bi-LSTM, and
Attention layers. Despite the authors achieving 98.31% accuracy in malware
classification, their model produces less accuracy in malware detection.

Malware Detection Using API Sequences: Kohei et al. [20] propose a
two-stage malware detection model that leverages API call sequences. The
authors collect API sequences from each binary and encode them as integer
vectors. In the first stage, each binary’s complete API sequence vector is
input to a BiLSTM model, which generates a detection score. If this score
exceeds a predefined malware threshold, the binary is classified as malware,
or it proceeds to check for a benign threshold. If the classification is uncer-
tain, the detection moves to the second stage. In the second stage, the API
sequence vector is split into smaller subsequences, each processed individually
by the BiLSTM model. If the BiLSTM score exceeds the threshold for each
subvector, the binary is immediately classified as malware, and the process
stops. If not, the model continues to evaluate subsequent subvectors until
a malware score is identified or all subvectors are checked without detecting
malware. Although the authors leverage the API sequences to understand
the behavior of a binary, their model is threshold-sensitive and vulnerable to
adversarial attacks such as dummy API injection attacks [21]. Hongbi et al.
[22] utilize API sequences along with other shallow features, including Ma-
jorLinkVersion, CheckSum, DllCharacteristics, and ImageBase, for malware
detection. The API sequences extracted from binaries are hashed to values
ranging from 0 to 255, resulting in 256 features. The authors subsequently
pass these features, along with other shallow features, through autoencoders
to reduce the dimensionality and enhance the detection process’s performance
and efficiency. While the authors attained an accuracy of 94.24%, their use
of hashing to map all APIs to values ranging from 0 to 255 introduces the risk
of collisions, which could result in the loss of critical information. Vidhi et al.
[23] employ API calls for malware detection. The authors extract API calls
from all binaries in the dataset and identify the unique APIs based on their
presence across the binaries. They then generate a one-hot encoded vector
for each binary to represent the presence or absence of each unique API.

7

The vectors undergo feature selection utilizing a Random Forest method for
identifying 45 essential features. The authors subsequently pass the selected
features to various ML models for classification. Despite the authors achiev-
ing an accuracy of 92.67%, their model is vulnerable to dummy API injection
attacks [21].

Key Considerations: Most of the works proposed in the literature focus
on opcode sequences, bytes, assembly instructions, and API sequences of
the entire binary. Since the malicious code is not homogenously distributed
throughout the binary, these approaches are vulnerable to evasion techniques
such as replacing instructions with equivalent instructions, altering the pro-
gram’s control flow, adding non-functional instructions, changing the order of
independent instructions, and dummy API injection attacks. On the other
hand, the dynamic and hybrid analysis models require more computation
and produce more FPR. Therefore, in the proposed model, we extract fea-
tures from the potential malicious regions and completely preprocess CFG
with context awareness of the features in malware detection. Further, the
proposed model resists all the above-listed evasion techniques and achieves
higher accuracy and lower FPR than the SOTA models due to its ability
to extract features from regions of importance. The comparison of the pro-
posed work with the SOTA static, dynamic, and hybrid malware detection
works regarding their resistance to various attacks and context-aware feature
extraction is shown in Table 1, Table 2, and Table 3, respectively.

Table 1: PotentRegion4MalDetect Vs. SOTA Static Malware Detection Models.

Approach Approach CA FPMR RJCP REI RNFI RIR RDAPII
Seungho et al. [13]
Abbas et al. [14]
Sibel et al. [15]
Sudan et al. [16]

Opcode sequence ✗ ✗ ✗ ✗ ✗ ✗ -

Sota et al. [17]
Yifei et al. [19]

Bytes ✗ ✗ ✗ ✗ ✗ ✗ -

Deniz et al. [18] Assembly instructions ✗ ✗ ✗ ✗ ✗ ✗ -
Kohei et al. [20]
Hongbi et al. [22]
Vidhi et al. [23]

API sequence ✗ ✗ - - - - ✗

PotentRegion4MalDetect

Advanced Features:
opcode sequence,
API sequences, Subgraph
Signature, Trigrams, NOP
count, and Section ratio.

✓ ✓ ✓ ✓ ✓ ✓ ✓

CA: Context-Aware, FPMR: Features from Potential Malicious Regions, RJCP: Resistance to Junk code and Padding,

REI: Resistance to Equivalent Instructions, RNFI: Resistance to Non-Functional Instructions, RIR: Resistance to

Instructions Reordering, RDAPII: Resistance to Dummy API Injection

8

Table 2: PotentRegion4MalDetect Vs. SOTA Dynamic Malware Detection Models.

Approach Feature Used CA FPMR RJCP REI RNFI RIR RDAPII
Pengbin et al. [8] API sequences ✗ ✗ ✓ ✓ ✓ ✓ ✗

Markus et al. [9]
Action, target, name, process
path, process ending, target
path, and target ending

✗ ✗ ✓ ✓ ✓ ✓ ✓

Pascal et al. [10] Features from memory dumps ✗ ✗ ✓ ✓ ✓ ✓ -

PotentRegion4MalDetect

Advanced Features:
opcode sequence,
API sequences, Subgraph
Signature, Trigrams, NOP
count, and Section ratio.

✓ ✓ ✓ ✓ ✓ ✓ ✓

CA: Context-Aware, FPMR: Features from Potential Malicious Regions, RJCP: Resistance to Junk code and Padding,

REI: Resistance to Equivalent Instructions, RNFI: Resistance to Non-Functional Instructions, RIR: Resistance to

Instructions Reordering, RDAPII: Resistance to Dummy API Injection

Table 3: PotentRegion4MalDetect Vs. SOTA Hybrid Malware Detection Models.

Approach Feature Used CA FPMR RJCP REI RNFI RIR RDAPII

Asma et al. [11] API sequences ✗ ✗ ✓ ✓ ✓ ✓ ✗

Weijie et al. [12]

PE section information, API
and DLL sequences, and
information about files,
networks, and registries

✗ ✗ ✓ ✓ ✓ ✓ ✗

PotentRegion4MalDetect

Advanced Features:
opcode sequence,
API sequences, Subgraph
Signature, Trigrams, NOP
count, and Section ratio.

✓ ✓ ✓ ✓ ✓ ✓ ✓

CA: Context-Aware, FPMR: Features from Potential Malicious Regions, RJCP: Resistance to Junk code and Padding,

REI: Resistance to Equivalent Instructions, RNFI: Resistance to Non-Functional Instructions, RIR: Resistance to

Instructions Reordering, RDAPII: Resistance to Dummy API Injection

3. Proposed PotentRegion4MalDetect Model

We propose a novel model named ‘PotentRegion4MalDetect ’ to detect
malware using advanced static analysis. This section deals with designing
and implementing the framework of the proposed PotentRegion4MalDetect
model. The framework comprises two phases: Feature Extraction and ML
classifier implementation. The feature extraction phase includes advanced
feature extraction, which uses the advanced static analysis approach to ex-
tract the features from regions of potential maliciousness and completely
preprocessed CFG. We illustrate the design of the feature extractor followed
by the complete proposed approach. The complete PotentRegion4MalDetect
framework and module decomposition are shown in Figure 1, where each
phase is represented in a different color bar at the bottom. We discuss each
phase of the proposed framework in detail in the following sub-sections.

9

Basic Features Extraction Phase

Basic and
Advanced
Features

Advanced
Features

CFG
Construction

Partially
Pre-processed

CFG

Completely
Pre-processed

CFG

AF1, AF2, and AF3

AF4, AF5, AF6, and AF7

Sub-graph
Extraction

BF1, BF2, BF3, BF4,
BF5, BF6, and BF7

Advanced Features Extraction Phase

Basic
Features

Testing Binaries

Information of
PE Header

Information of
Sections

DATASET

Detection Phase

Figure 1: Complete PotentRegion4MalDetect Framework

3.1. Feature Extraction

We explain the process of employing advanced static analysis techniques
to identify the potential malicious regions of the CFG and completely pre-
processing the CFG for advanced feature generation. To simplify things,
we refer to the shallow features extracted from the whole binary as “basic
features” and the other type as “advanced features.”

3.2. Advanced Feature Extraction

Code injection is a powerful and widely used technique in malware de-
velopment, where malware developers inject malicious code inside benign
binary. Whereas the location to inject malicious code inside benign binary
can be optimum selected or random depending on the skills of a malware de-
veloper [7]. This technique helps bypass security measures and decreases the
chances of finding malware by fooling ML classifiers [6, 7]. Malware analysts
frequently extract features from the binary as a whole rather than concen-
trating on the areas where malicious code is injected. As a result, extracted
features are more likely to be categorized as benign than malware since they
contain more benign features [6, 7].
However, the question arises of how to find the regions inside a binary with
the most potential maliciousness. We address this question with the help of
the following Subsection, which includes two steps. In the Initial step, we
construct a Control Flow Graph (CFG) from the disassembled binary and

10

pre-process the constructed CFG to prevent specific malware evasion strate-
gies. In the second step, we extract potential malicious regions in the form
of sub-graphs from the partially pre-processed CFG. The following sections
discuss the complete operation of extracting advanced features from poten-
tial malicious regions and completely pre-processed CFGs.
Remark: Most of the proposed works focus on the entire binary to extract
features to identify the category of a binary. In contrast, the proposed work
focuses on regions with the most potential maliciousness and extracts criti-
cal features. The more focused features help decrease the FPR and achieve
heightened results.

3.3. Modified Control Flow Graph (CFG)

This module takes the disassembled binary information as input. By
parsing the input information, it generates the CFG by identifying the basic
blocks. However, attackers inject dummy code to modify the CFG without
changing the code’s intended flow to evade the existing signature-based de-
tection approaches. In this scenario, using the constructed CFG alone may
not increase the detection accuracy. Hence, we pre-process the originally
constructed CFG. This involves removing any loops and merging a parent
node with its child node when the parent has only one child, and the child
has only one parent. This approach ensures that the intended flow of the
program is preserved. This is important as the generated CFG is immune
to any small changes in the CFG. Figure 2 depicts a sample of the CFG
pre-processing in action. We start by removing all the loops. Then, if any
parent node has a single child, we merge that child node with its parent since
it does not affect the logic or flow of the program. For instance, in Figure
2, node 0 merges with its child node 1, node 5 with its child 6, node 3 with
7, and node 11 with 12, as they have a single child node. This answers the
research question (R1).

3.4. Ranking Malicious Nodes in a CFG

We use an open-source framework called StringSifter [24], developed by
Mandiant, for generating the list of malicious strings with their associated
maliciousness scores. StringSifter [24] is a powerful ML tool that automati-
cally ranks malicious strings based on their relevance for malware analysis.
We use this tool on every binary to identify the top malicious strings based
on score. Using those malicious strings, we identify the potential malicious
nodes in a CFG in the subsequent steps. We deploy this method by analyzing

11

0

1

2

4

35

6 7

8

9

10

11

12

0, 1

2

4

3, 75, 6

8

9

10

11, 12

0

1

2

4

35

6 7

8

9

10

11

12

(a) (b) (c)

Basic Block

Flow Control between Blocks

Parent with single child and
child with single parent Node

Figure 2: Modified CFG: (a) Original CFG, (b) Partially Pre-processed CFG, and where
the loops are removed (c) Completely Pre-processed CFG where the nodes with the single
child are merged with its parent node of the partially pre-processed CFG. (nodes 0, 3,
5, and 11 have single nodes, as shown in the middle tree. After pre-processing the CFG,
nodes 0 and 1, nodes 5 and 6, nodes 3 and 7, and node 11 and 12 are combined as a single
node)

the fact that the nodes with malicious strings, along with their surrounding
nodes, can increase detection accuracy. This answers the research question
(R2). Some malicious strings and associated maliciousness scores are shown
in Table 4.

3.5. Sub-graph Extraction

After identifying the nodes with top-score malicious strings, we extract
subgraphs consisting of some surrounding nodes, which are at most two levels
away from the identified malicious node in the CFG, as portrayed in Figure
3. We take the number of levels surrounding the selected malicious node as
‘two’ based on our empirical evidence of increased accuracy with the taken
dataset as shown in Figure 13. We keep these parameters configurable for the

12

Table 4: Sample Strings and Their Maliciousness Scores

String Maliciousness Score

Vmx32to6.exe 9.90
CONNECT %s:%i HTTP/1.0 9.57
SOFTWARE\Microsoft\Windows\CurrentVersion\Run 9.56
StubPath 7.60

(a) (b)

0

1

2

4

3 5

6

7

9

10

11

12

13

8

4

3 5

6

7

9

10

11

12

Basic Block

Flow of Identified Basic Block
Block With Potent Maliciousness

Figure 3: Subgraph Extraction from CFG of the Binary: (a) Partially Pre-processed CFG
(b) Subgraph of the CFG (visiting the top and bottom two-level nodes of the identified
node, i.e., 7 with top malicious string score).

later tuning process. For instance, in Figure 3, we select node seven as the
potential malicious node considering the presence of the top score malicious
string in it. We extract the subgraph with top and bottom two-level nodes
surrounded by node 7 (i.e., 5, 6, 4, 3, 9, 10, 11, 12). This answers the research
question (R3).

13

3.6. Advanced Feature Extraction from Sub-graphs

This section explains the advanced features using sub-graphs in detail.
The selected features from the sub-graphs are BFS-based opcodes, API se-
quences, and signatures, as shown in Figure 4.

- Opcode Sequence Generation: Opcodes or operational codes are a ba-
sic block of computing instructions. Previous research indicates that
the sequence of opcodes is usable as an efficient predictor for malware
detection [25]. Rather than considering all opcodes from the whole bi-
nary, we focus on the sequence of opcodes from a targeted part, i.e.,
from the sub-graph of a binary. It is essential to consider the flow of op-
codes in the sub-graph as there is less probability for attacker-induced
dummy instructions to present surrounding such malicious nodes.

- API Sequence Generation: As APIs contribute actively to the malware
detection process [26, 27], we gather the imported API call sequences
to approximate the run time behavior of a binary. We traverse each
node of the extracted sub-graph in a BFS fashion and create a sequence
of APIs list as they come across in the traversed path. We use the API
sequence based on the fact that, even if the attackers insert dummy
instructions to evade opcode-based or signature-based detection, there
is a high probability that they are detected. The mapping of APIs to
the CFG nodes is explained in detail in Subsection 3.9.

- Signature Generation: We generate a signature to identify any sub-
graph with a similar structure. The signature generation of the sub-
graph is as follows. Firstly, we assign each node a unique number. We
generate the assigned number using two parameters as mentioned in
[28]. The least significant 2 bits of a number indicate the number of
children, and the remaining 6 bits represent the number of parent nodes
that node has [28]. Figure 4 shows an example of signature generation.
Following this approach, node 5 gets number 6 in Figure 4, which is
generated by representing the least significant 2 bits by its number of
children, i.e., 2, and the remaining 6 bits indicate the number of par-
ents, i.e., 1, as shown in Figure 5. We generate the signature considering
that even if a few minor parts of the CFG change, the whole signature
does not vary. The extracted signature value from each subgraph is
reshaped into a vector of size 100 to ensure consistency.

14

Basic Block

BFS Traversal
Block With Potent Maliciousness

4

5

6

7

9

10

11

12

mov

call

sub

jmp

pop

cmp

push

add

4

5

6

7

9

10

11

12

GetCurrentProcess

WriteFile

EnterCriticalSection

LoadLibraryA

TerminateProcess

VirtualFree

GetCPInfo

ExitProcess

4

5

6

7

9

10

11

12

6

6

10

10

5

10

5

9

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a) (b) (c)

Basic Block

Figure 4: Subgraph Feature Extraction: (a) Opcode Sequence in the BFS traversal order:
mov, call, sub, jmp, pop, cmp, push, add (b) API Sequence in the BFS traversal or-
der: GetCurrentProcess, WriteFile, EnterCriticalSection, LoadLibraryA, TerminatePro-
cess, VirtualFree, GetCPInfo, ExitProcess (c) Signature sequences in the BFS traversal
order: 6, 6, 10, 10, 5, 10, 5, 9

We select the top ten potential malicious sub-graphs for advanced feature
extraction. We select the number ‘ten’ based on our empirical observations,
as shown in Figure 13. We encounter four cases while trying to identify the
top ten potential malicious nodes in the CFG to create sub-graphs. In the
first case, We find ten or more malicious nodes in the partially pre-processed
CFG. However, from the discovered malicious nodes, we select ten nodes as
our framework considers the top ten potential malicious nodes. In the second
case, we find greater than zero or less than ten potential malicious nodes. In
such situations, we select the originally detected nodes for feature generation
and fill the remaining node features with default values to maintain the
standard dimension. In the third case, we find no potential malicious nodes

15

Node
Number

4 5 6 7 9 10 11 12

of Child
Nodes

2 2 2 2 1 2 1 1

of Parent
Nodes

1 1 …. 2 1 2 1 2

Combined
Label

06 06 …. …. 05 10 05 09

000001 10

Figure 5: Signature Generation Scheme

in the CFG, as it contains zero malicious strings. In that scenario, we take
only one node, i.e., either the first node in the CFG or one of the middle nodes
in the CFG. We fill the rest of the remaining nine node features with default
values. Finally, the last case considers either the CFG construction from a
binary is unsuccessful or an exception handler is triggered in the framework.
In that scenario, we fill advanced features with default values.

3.7. Advanced Features Extraction from Completely Pre-processed CFG

Obfuscation techniques, such as packing and encryption, transform the
appearance of a binary to hinder analysis and conceal malicious content, such
as suspicious strings, making detection significantly challenging. However, in
this work, apart from extracting the features from the potential malicious
regions, we also extract features from the completely pre-processed CFG.
The features extracted from the complete pre-processed CFG are as follows.

• Opcode Trigram: N-grams are a combination of adjacent words or let-
ters of length ‘N,’ where N is a positive integer. Many studies use
N-grams to identify malware, where N-grams represent the features,
such as System calls, APIs, and Opcodes. In our work, we use Term
Frequency Inverse Document Frequency (TF-IDF) for collecting the top
fifteen opcode trigrams from a binary. We use the TF-IDF technique
to weigh a trigram within the content to know the importance of that
specific opcode trigram based on counting the number of times it is

16

mentioned in the content. We select the number ‘fifteen’ by analyzing
the outcomes of the experiments, as shown in Figure 13.

• Signature of the Complete CFG: We also generate the signature for
the completely pre-processed CFG. This feature matches any binary
concerning its control flow logic similarity. We compute the signature
as defined in 3.6, reshape it into a consistent 200-dimensional vector,
and proceed with normalization.

• Number of NOP Operations: The number of NOP operations is signif-
icant for detecting the amount of dummy code within a binary. The
high NOP operation count indicates a higher probability of the binary
being malicious. We extract the NOP count from the whole binary.

• Section Ratio: The experiments show that the section ratio value for
some malware is greater than 1.5 [29]. Thus, it is a significant feature
to distinguish the malware from the benign. As shown in Equation 1,
we store the section ratio value as 1 in the feature set if any section
ratio is greater than 1.5, else zero. We select this value as 1.5 depending
on the empirical evidence of increased accuracy with the taken dataset
as shown in Figure 13.

Section Ratio =

{
1, if (∃(Section V irtual Size

Section Physical Size)) > 1.5

0, otherwise
(1)

The comprehensive list of PotentRegion4MalDetect features, along with
their corresponding dimensions and details of the basic features extracted
from the entire binary, are presented in Table 5. The Algorithm 1 illustrates
each of the steps, and the complete PotentRegion4MalDetect architecture is
shown in Figure 1.

3.8. Case Study

Consider two Spywares with MD5 hashes 420b0e81c7588b5f9c5e13983692-
abe4 and e302e9f4029045f750cb6314ffad1488 for the demonstration. The
first Spyware has 391 lines of code, and the second Spyware has 3448 lines
of code. However, the first binary has significantly fewer lines of code and
exhibits malware behavior throughout. On the other hand, the second bi-
nary has more lines of code, and there are some specific regions where
the most potential maliciousness is present. If we apply traditional meth-
ods to the second binary, there is a chance that the features will include

17

Table 5: Details of PotentRegion4MalDetect Features.

Advanced Features Dimension
Ten Subgraphs
API sequences

Potential
Malicious
Regions

100

Ten Subgraphs
Opcode sequences

100

Ten Subgraphs
Signatures

10× 100

Whole CFG
Signature Completely

Pre-processed
CFG

200

Fifteen Trigrams 20
Number of
NOPs

1

Ratio of
virtual size

1

Total 1422

even the benign features and may bypass ML models. Nevertheless, the
proposed PotentRegion4MalDetect targets the potential malicious regions
and extracts the features from those regions. The proposed model iden-
tifies CFG nodes with addresses [‘0x10004e6f ’, ‘0x10004ef8 ’, ‘0x10004f09 ’,
‘0x10004ee6 ’, ‘0x10004f31 ’, ‘0x10 004f1e’, ‘0x10004ed4 ’] as malicious nodes
covering the entire CFG of the first binary. On the other hand, it identifies
the nodes with addresses [‘0x4032e2 ’, ‘0x4033f4 ’, ‘0x4030cb’, ‘0x403272 ’,
‘0x403239 ’, ‘0x4032a7 ’, ‘0x403442 ’, ‘0x4 032b7 ’, ‘0x40342d ’, ‘0x40327e’] as
malicious nodes in the second binary targeting only the potential malicious
regions without including the unwanted features.

3.9. Map APIs to the CFG Nodes

Mapping the APIs in the binary to the nodes in the CFG is a challenging
problem, as nodes in the CFG may have many recursive function calls. So,
the available disassemblers, such as radare2 and Ghidra, do not have the
functionality to map the binary’s APIs to the CFG nodes. Therefore, we use
the mechanism presented by us in [30] to map the APIs to those in the CFG,
as it is an essential part of the proposed work.

We divide API mapping into two categories, namely (i) Direct references,
where API calls are present within the CFG node, and (ii) Indirect references,

18

where the actual API call occurs after a series of function calls initiated
from the CFG node. Identifying direct references is usually simpler than
identifying indirect ones, as they are contained within the CFG node itself.
By retrieving the address of the API, we ascertain which CFG node it belongs
to. However, identifying indirect references is challenging due to its recursive
nature. For that, we begin by executing the command “afl ∼ [3− 4]” in the
radare2 disassembled binary to identify all function calls within the binary.
Next, we use the command “axt @< function call name >” to explore the
cross-references associated with each function call. This information allows
us to create a directed graph that captures the function call names and
their respective cross-references, as depicted in Figure 6. Subsequently, we
execute the ‘iij‘ command to retrieve details about the import APIs and their

Algorithm 1: Advanced Feature Extraction (Bi)
Input: Set of Binaries (B1, B2,, Bn) to be tested
Output: All the extracted Advanced features

/* ‘n ’ malicious node extraction from CFG */

1 Apply radare2(Bi) to extract CFG in JSON format
2 Mal strings score = StringSifter(Bi)
3 Nodes = Node F inder(Mal strings score)
4 for j = 0 to len(nodes) do

/* Subgraph Extraction for each node */

5 Subgraph = Extract Subgraph(CFG,Nodej)
6 Subgraph BFS = BFS(Subgraph)
7 for k = 0 to len(Subgraph BFS) do

/* Opcode, API, and signature extraction */

8 Node Opcode Sequence.append (Opcode sequence(Subgraph BFS nodek))
9 Node API Sequence.append (API sequence(Subgraph BFS nodek))

10 Node Sign.append (Node Signature(Subgraph BFS nodek))

/* Store the extracted opcode, API, and signature of all extracted subgraphs

*/

11 Subgraph opcode sequence.append (Node Opcode Sequence)
12 Subgraph API sequence.append (Node API Sequence)
13 Subgraph Sign sequence.append (Node Sign)

/* Signature, NOP count, and ten trigrams from the pre-processed CFG */

14 CFG Approx Sign = Signature(Pre− processed CFG)
15 NOP count = NOP Count(CFG)
16 Trigram = Trigram CFG(CFG)

/* Section ratio value definer */

17 if ∃(physical section size
virtual sectio size

) > 1.5 then
18 Section Ratio = 1

19 else
20 Section Ratio = 0

19

entry()

F1

F2

F5

F8

F4

F6

F3

F7

API

F5 → F4 → F1 → entry()
F5 → F4 → F3 → F1 → entry()
F5 → F4 → F3 → entry()
F5 → F6 → F7 → F4 → F1 → entry()
F5 → F6 → F7 → F4 → F3 → F1 → entry()
F5 → F6 → F7 → F4 → F3 → entry()
F5 → F6 → F7 → F8 → F1 → entry()

All Possible Paths

D
F
S

T
R
A
V
E
R
S
A
L

Source: F5

Destination: entry()

Identified Functions: F1, F3

Map the API to the CFG
nodes that are calling F1, F3

Figure 6: Mapping of APIs to the CFG nodes.

associated Procedure Linkage Table (PLT) addresses within the binary. We
then carry out a Depth First Search (DFS) traversal on the constructed graph
to uncover all potential paths from the source to the destination. In this
scenario, the source refers to the cross-reference function address associated
with the API PLT address, and the destination is the ‘entry()‘ function. After
obtaining the paths, we extract the function addresses along each route that
are the immediate neighbors of the ‘entry()‘ function. Following compiling
the function address list, we determine the CFG nodes that invoke these
functions and map the API to the identified CFG nodes. This procedure is
repeated for all the APIs present in the binary. As shown in Figure 6, API
is the import API in the binary with F5 function as the PLT cross-reference
points. We apply DFS traversal, taking the F5 as the source and entry()
as the destination to find all the possible paths. We identify seven paths
available from F5 to the entry() function. Out of all the identified paths,
the functions F1 and F3 are the immediate function calls before the entry().
Following that, we map the API to the nodes in the CFG that are calling
F1 and F3 functions. We exercise a similar procedure to map the malicious
strings to the nodes in the CFG.

3.10. ML Classifier

Neural networks capture intricate relationships between features, solve
complex problems, and mimic human-like intelligence. They have a wide
range of applications, including image recognition, fraud detection, medi-
cal diagnosis, and sentiment classification. Therefore, we use Deep Neural

20

Network (DNN) to train and test the generated advanced features in the
proposed work. We use ‘StandardScaler ’ to normalize the features,‘Adam’
as an optimizer, and ‘binary cross entropy ’ as the loss function. We use the
DNN model with thirteen layers (DNN13), where all the hidden layers are
fully connected. We do batch normalization and node dropout before passing
them to the next layer to speed up the training time and avoid overfitting
[31], respectively. The number of output neurons in each layer of DNN13,
starting from layer-1 to layer-13, is 5608, 5096, 4584, 4072, 3560, 3048, 2536,
2024, 1012, 512, 256, 128, and 1, respectively. We utilize “Sigmoid” as the
activation function in the final layer as the chosen problem is a binary clas-
sification problem, whereas “ReLU ” in the previous levels. The complete
framework of the DNN is shown in Algorithm 2, and the descriptions of the
notations used in Algorithm 2 are mentioned in Table 6.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup and Evaluation Metrics

We perform feature extraction on a Parallels VM running Ubuntu 20.04
on a MacBook Air M1. We conduct the experiments on a supercomputer
and a Windows 11 Pro Machine. Table 7 shows the details of the setup and
tools used. We use Python for scripting and recursive disassembler tools to
extract the CFG as mentioned in Table 7. We use JSON format to store
the extracted API list and the string list of the binary. We use StringSifter
[24] for identifying the top strings with maliciousness scores. For normalizing
the string-based features, we use FeatureHasher [32]. We employ accuracy,
precision, recall, Area Under ROC Curve (AUC), F1 score, FPR, and loss as
evaluation metrics to identify the best ML model.

4.2. Dataset Used

To perform extensive analysis, we consider 9504 malware binaries [33] and
11089 benign binaries from [34] and freshly installed Windows 7 and Win-
dows 10 machines. The malware composition includes spyware, ransomware,
adware, trojans, and rogues. We verify the benign binaries with the Virus-
Total Academic API key [33]. Among the considered samples, we use 70%
samples for training and 30% samples for testing the model. The details of
the benign and malware binaries are shown in Figure 7.

21

Algorithm 2: Neural Network Training Algorithm
Data: Random Waits W, Random Biases b, Input X
Result: Trained Model

1 for each training epoch do
2 for each batch do
3 for each element in the batch do
4 for layer i from 1 to l do
5 for neuron j in layer i (j = 1 to ni) do
6 if i==1 then
7 Zi

j =
∑s

k=1 W
i
j,k.Xk + bij ;

8 aij = ReLU(Zi
j);

9 else if i==l then

10 Zi
j =

∑ni−1

k=1 W i
j,k.a

i−1
k + bij ;

11 aij = Sigmoid(Zi
j);

12 else

13 Zi
j =

∑ni−1

k=1 W i
j,k.a

i−1
k + bij ;

14 aij = ReLU(Zi
j);

15 L
loss

= − 1
nl

∑nl
j=1(yj . log(a

l
j) + (1− yj). log(1− alj));

16 for layer i from l to 1 do
17 for neuron j in layer i (j = 1 to ni) do
18 if i==l then
19 δij = (aij − yj).Sigmoid′(Zi

j);

20 else
21 if Zi

j > 0 then

22 δij = (W i+1
j,:)T .δi+1.1;

23 else
24 δij = 0;

25 △W i
j,: = δij .(a

i−1)T ;

26 Wsumi
j = Wsumi

j +△W i
j,:;

27 △bij = δij ;

28 bsumi
j = bsumi

j +△bij ;

29 for layer i from l to 1 do
30 for neuron j in layer i (j = 1 to ni) do

31 W i
j,: = W i

j,: − η.
Wsumi

j

m
;

32 bij = bij − η.
bsumi

j

m
;

33

22

Table 6: Neural Network Algorithm Notations

Notation Description Notation Description

l, m Number of layers, Batch size ni Neurons in the ith layer

Zi
j

Weighted sum for jth

neuron in ith layer
W i

j,k

Weight of edge k of
neuron j at layer i

Xk Element k of input X s Length of input X

bij
Bias of jth neuron
at layer i

aij
Activation output of
neuron j at layer i

L
loss

Binary cross-entropy loss yj Actual output of neuron j

δij
Gradient at jth neuron
in layer i

△W i
j,:

Weight update for jth

neuron at ith layer for
each element in a batch

Wsumi
j

Sum of weight updates for jth

neuron for a batch - at the beginning
of each batch, it is set to zero

△bij

Bias update for jth

neuron at ith layer
for each element in a batch

bsumi
j

Sum of bias updates for jth

neuron for a batch - at the beginning
of each batch, it is set to zero

η Learning rate

Table 7: Experimental Setup and Tool Used

Component Properties

Feature Extraction

Operating System: Ubuntu 20.04 (guest machine),
CPU details: 2vCPUs of the VM and
8 core CPU of the host machine
Memory: 2 GB RAM of the VM and
16GB RAM of the host machine

Model Evaluation

Operating System: Ubuntu 20.04 LTS
CPU details: AMD EPYC 7763, 64-core processor,
10 CPU cores, 64 cores per socket, 128 threads,
1.64 GHz base clock, 512 KB cache per core
Memory: 200 GB RAM
GPU: NVIDIA A100 80GB PCIe

Feature Importance
Calculation

Operating System: Windows 11 Pro,
CPU details: 13th Gen Intel(R) Core(TM)
i7-13700 2.10GHz.
Memory: 64 GB
GPU: NVIDIA T400 4GB

Feature Extraction Module Tools: LIEF, Radare2, r2pipe, StringSifter

Machine Learning Module
Tools: Scikit-learn, Keras, Tensorflow, Graphviz,
TensorBoard

4.3. Results and Discussion

We employ three different ways of preprocessing on the concatenated
feature sets of advanced and basic features to test the robustness and the
importance of advanced features over basic features. First, we remove all the
duplicate rows from the feature set. We name this step as Duplicate Removal.
Second, we perform correlation-based feature selection besides removing the
duplicated rows from the feature set, named this step as Correlated Features

23

21.8%
7%

16.6%
2.4% 12.2%

9.5%

30.7%
 InstallCore
 Spyware
 Zeus
 Locker
 Winwebsec
 Zbot
 Zeroaccess

(a) (b)

26.8%

11.3%

35.9%

0.5%

12.6%

12.8%

 Cnetnet
 Netexe
 Softonicnet
 Sourceforgeexe
 Win7
 Win10

Figure 7: Dataset: (a) Malware (b) Benign.

Preprocessing1 Preprocessing2 Preprocessing3

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

A
cc

ur
a

cy

 Basic
 Advanced
 Combined

Preprocessing1 Preprocessing2 Preprocessing3

0.976

0.978

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

P
re

ci
si

on

 Basic
 Advanced
 Combined

Preprocessing1 Preprocessing2 Preprocessing3
0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

R
ec

al
l

 Basic
 Advanced
 Combined

Preprocessing1 Preprocessing2 Preprocessing3

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

F
1

 S
co

re

 Basic
 Advanced
 Combined

Preprocessing1 Preprocessing2 Preprocessing3

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

A
U

C

 Basic
 Advanced
 Combined

Preprocessing1 Preprocessing2 Preprocessing3
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

F
P

R

 Basic
 Advanced
 Combined

Figure 8: Experimental Comparison between Advanced, Basic, Advanced+Basic Features
with Three Different Pre-processings.

Filtering. Finally, we remove the rows with the most frequently occurring
advanced feature entry from the feature set to mitigate bias introduced by
overrepresented patterns and to improve model generalization, called Dummy
Removal.

We compare the advanced, basic, and advanced+basic features based
on the chosen model evaluation metrics to understand the importance and
quality of the advanced feature set. To do so, we implement and evaluate
the DNN13 model on all the preprocessing steps. As shown in Figure 8,
the advanced features produce better results compared to basic features and
combined features in terms of all the evaluation metrics by producing more
than 99% accuracy, precision, recall, F1-score, AUC, and 0.064% FPR.

24

Measuring Feature Importance: SHapley Additive exPlanations (SHAP)
calculates the contribution of each feature in the overall prediction. SHAP
measures the influence of each feature on a prediction by evaluating all pos-
sible combinations of features. It assigns a value to each feature based on
how much it contributes to increasing or decreasing the predicted outcome
when it is included in the model compared to when it is not. One of the
key advantages of SHAP is that it ensures consistency and fairness in feature
attribution by reflecting the contribution of features based on the model’s
behavior. Therefore, we apply SHAP on advanced, basic, and combined fea-
tures to measure which one contributes the most. As shown in Figure 9,
Figure 10, and Figure 11, we plot Beeswarm and Absolute Mean plots for
advanced, basic, and combined features on preprocessing-1, preprocessing-2,
and preprocessing-3. The Absolute Mean plots for three preprocessing show
that advanced features contribute 5.68%, 1.15%, and 8.13% more than basic
features and 3.60%, 3.48%, and 9.88% more than combined features. The
Beeswarm plots for three preprocessing show that advanced features con-
tribute 0%, 1.47%, and 1.44% more than basic features and 0.05%, 2.51%,
and 2.42% more than combined features. Further, attesting the importance
of extracting the features from potential regions of maliciousness and com-
pletely preprocessed CFG.

Comparison of PotentRegion4MalDetect with a model that focuses on the
entire binary: We evaluate the PotentRegion4MalDetect and the model that
focuses on the entire binary by comparing the number of entries for binaries
with the same functionality and the total number of features each generates.
As shown in Figure 12, the proposed model requires lesser entries than the
model focusing on the entire binary. It emphasizes that the proposed model
creates the same entries for the binaries of the same behavior, as it focuses
on regions of potential maliciousness and completely preprocessed CFG for
feature extraction. However, the model that extracts features from the entire
binary treats binaries as different and creates separate entries despite the
binaries having the same core functionalities. Further, the proposed model
focuses on a specific number of robust features rather than more shallow
features that can be evaded by advanced malware. These two properties of
the proposed model over the models that focus on the entire binary improve
the data handling, reduce memory overhead, allow for faster computation,
and lower storage requirements. This answers the research question (R5).

Experiments with Different Hyperparameters: In this study, we conduct
four distinct experiments, each featuring different hyperparameters, includ-

25

0.3 0.2 0.1 0.0 0.1
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(a) Advanced

0.04 0.02 0.00 0.02 0.04 0.06 0.08
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(b) Basic

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(c) Combined

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Mean Absolute SHAP Value

Ad
va

nc
e

Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(d) Advanced

0.00000.00250.00500.00750.01000.01250.01500.01750.0200
Mean Absolute SHAP Value

Ba
sic

 Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(e) Basic

0.000 0.005 0.010 0.015 0.020
Mean Absolute SHAP Value

Co
m

bi
ne

d
Fe

at
ur

es

Absolute Mean Plot of SHAP Values

(f) Combined

Figure 9: Beeswarm and Absolute Mean Plots on Preprocessing-1 Features.

ing the number of in-flow levels, the number of out-flow levels, the types of
Feature Hashers (H), the number of subgraphs, the values for section ratios,
and the number of trigrams, as demonstrated in Figure 13. We keep the
feature hasher size for the trigram feature constant, as its size is relatively
small compared to other features. Among the experiments, case (2)—which
incorporated two levels of in-flow and out-flow, ten subgraphs, a section ra-
tio greater than 1.5, H with 100 features for subgraph opcode sequences, H
with 100 features for subgraph API sequences, H with 100 features for each
subgraph signature, H with 200 features for the whole CFG signature, and
H with 20 features for fifteen trigrams—demonstrated superior performance
across the evaluation metrics compared to the other cases, as indicated in
Figure 13. This answers the research question (R4).

DNN Experiments with Different Epochs and Batches: Epochs and batch
sizes are crucial hyperparameters in training DNN as they significantly im-
pact the model’s performance and generalization capabilities. The epoch
tells the number of times the model goes through the entire training dataset,

26

0.4 0.3 0.2 0.1 0.0 0.1 0.2
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(a) Advanced

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(b) Basic

0.15 0.10 0.05 0.00 0.05 0.10 0.15
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(c) Combined

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Mean Absolute SHAP Value

Ad
va

nc
e

Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(d) Advanced

0.000 0.005 0.010 0.015 0.020
Mean Absolute SHAP Value

Ba
sic

 Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(e) Basic

0.00 0.01 0.02 0.03 0.04 0.05
Mean Absolute SHAP Value

Co
m

bi
ne

d
Fe

at
ur

es

Absolute Mean Plot of SHAP Values

(f) Combined

Figure 10: Beeswarm and Absolute Mean Plots on Preprocessing-2 Features.

while the batch size tells the number of samples the model processes before
updating its weights. The optimal values of these two hyperparameters help
prevent underfitting and overfitting, ensuring the model learns effectively
while generalizing to unseen data. They also contribute to the stability of
the training process and enhance computational efficiency. Therefore, we
experiment by training the DNN13 model on all combinations of epoch and
batch size from the epoch list = [10, 12, 13, 15, 16, 18, 20, 22, 25, 30, 35] and
batch size list = [100, 125, 150, 180, 200, 220, 250, 300, 350, 400]. As shown
in Figure 14, the combination of 12 epochs and a batch size of 200 yields the
best performance across all combinations in terms of all evaluation metrics,
including accuracy, precision, recall, AUC, F1-score, FPR, and loss.

Experiments with Traditional ML Models: We conduct experiments em-
ploying traditional ML models, including Logistic Regression (LR), Deci-
sion Trees (DT), Random Forest (RF), Support Vector Classifier (SVC), K-
Nearest Neighbors (KNN), Naive Bayes (NB), and Linear Discriminant Anal-
ysis (LDA). These models are particularly effective with small datasets and

27

0.4 0.3 0.2 0.1 0.0 0.1 0.2
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(a) Advanced

0.10 0.05 0.00 0.05 0.10
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(b) Basic

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
SHAP Value

To
p

15
 Fe

at
ur

es

SHAP Summary Plot

Low

High

SH
AP

 V
al

ue

(c) Combined

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Mean Absolute SHAP Value

Ad
va

nc
e

Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(d) Advanced

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Mean Absolute SHAP Value

Ba
sic

 Fe
at

ur
es

Absolute Mean Plot of SHAP Values

(e) Basic

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Mean Absolute SHAP Value

Co
m

bi
ne

d
Fe

at
ur

es

Absolute Mean Plot of SHAP Values

(f) Combined

Figure 11: Beeswarm and Absolute Mean Plots on Preprocessing-3 Features.

offer key advantages such as providing insights into feature importance, fast
training time, low complexity, and resource efficiency. Initially, we scale the
advanced features before inputting them into these models. However, we ob-
serve that most models produce overly optimistic results across all evaluation
metrics, raising concerns about overfitting and limited generalizability. To
address this, we further evaluate the models using unscaled features. Despite
this adjustment, the DT model continues to yield implausibly perfect results
for features derived from preprocessing-2 and preprocessing-3, prompting its
exclusion from the final comparison due to lack of reliability. As shown in
Figure 15, the RF model demonstrates superior performance compared to
other traditional ML models in terms of evaluation metrics, producing over
99% accuracy, precision, recall, F1-score, AUC, and a mere 0.063% FPR.
These results exhibit negligible variation compared to the DNN13 model,
further validating the effectiveness of the advanced features across both tra-
ditional ML models and neural networks.

28

20593 20593

7323

16799

1622

2381 20593 20593

7323

16799

1422

2381

20593 20593

7328

16799

1422

2381
20593 20593

7287

16799

822

2381

Advanced Basic
0

5000

10000

15000

20000

Advanced Basic
0

500

1000

1500

2000

2500

Advanced Basic
0

5000

10000

15000

20000

 Number of Binary
 Number of Entries

Advanced Basic
0

500

1000

1500

2000

2500

Advanced Basic
0

5000

10000

15000

20000

Advanced Basic
0

500

1000

1500

2000

2500

 Number of Features

Case 1 Case 2

Case 3
Advanced Basic

0

5000

10000

15000

20000

Advanced Basic
0

500

1000

1500

2000

2500

Case 4

Figure 12: Comparison of PotentRegion4MalDetect and a model that focuses on the entire
binary based on the number of features and entries.

Accuracy
Precision

Recall
F1 Score

AUC
0.9985
0.9986
0.9987
0.9988
0.9989
0.9990
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997
0.9998
0.9999
1.0000 (1) 2L, 200H, 10S, Ra>1.5, T=10

 (2) 2L, 100H, 10S, Ra>1.5, T=15
 (3) 1L, 100H, 10S, Ra>2, T=20
 (4) 1L, 50H, 5S, Ra>2, T=20

FPR

0.0000
0.0002

0.0004
0.0006

0.0008
0.0010

0.0012
0.0014

 (4) 1L, 50H, 5S, Ra>2, T=20
 (3) 1L, 100H, 10S, Ra>2, T=20
 (2) 2L, 100H, 10S, Ra>1.5, T=15
 (1) 2L, 200H, 10S, Ra>1.5, T=10

Figure 13: Experiments with Different Hyperparameters: Level (L), Feature Hasher (H),
Subgraphs (S), Ratio (Ra), Trigrams (T), Accuracy (A), Precision (P), Recall (R), Area
Under ROC Curve (AUC).

Comparison with state-of-the-art models: We compare the PotentRe-
gion4MalDetect with state-of-the-art techniques, including all three analysis
categories: static, dynamic, and hybrid analysis. The detailed comparisons
in Table 8, Table 9, and Table 10 reveal the PotentRegion4MalDetect’s su-
periority. Although some works, such as Abbas et al. [14] and Deniz et al.

29

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

0 . 6 50 . 7 00 . 7 50 . 8 00 . 8 50 . 9 00 . 9 51 . 0 0

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

0 . 6 50 . 7 00 . 7 50 . 8 00 . 8 50 . 9 00 . 9 51 . 0 0

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

� � � �

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

01
23
45
6

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

A c c u r a c y

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

P r e c i s i o n

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

 1 0
 1 2
 1 3
 1 5
 1 6
 1 8
 2 0
 2 2
 2 5
 3 0
 3 5

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

Epoch

R e c a l l

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

F 1 S c o r e

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

A U C
2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

F P R

B a t c h S i z e

2 0 0

1 8 0

1 5 0

1 2 5
1 0 0

2 2 0
2 5 0

3 0 0

3 5 0

4 0 0

L o s s

Figure 14: Experiments with Various Epochs and Batches.

[18], claim to have reasonable accuracy, they consider a smaller dataset for
experimentation. In contrast, the PotentRegion4MalDetect, which leverages
a larger and more diverse dataset, demonstrates exceptional performance in
terms of accuracy and FPR. Notably, none of the SOTA models focus on the
features of the potential malicious regions, a key strength for the PotentRe-
gion4MalDetect.

Limitations of the Proposed Work: The ‘PotentRegion4MalDetect ’ model
demonstrates impressive results compared to models focusing on the entire
binary. However, a higher number of function calls in a binary may increase
the computational time due to the usage of the DFS to find all possible

30

LR NB SVC DT RF LDA KNN

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Accuracy
 Precision
 Recall
 F1
 AUC

NB

SVC

DT

RF

LDA

KNN

0.0 0.2 0.4 0.6 0.8 1.0
FPR

 FPR

LR NB SVC RF LDA KNN

0.0

0.2

0.4

0.6

0.8

1.0

 Accuracy
 Precision
 Recall
 F1
 AUC

LR

NB

SVC

RF

LDA

KNN

0.0 0.2 0.4 0.6 0.8 1.0
FPR

 FPR

LR NB SVC RF LDA KNN

0.0

0.2

0.4

0.6

0.8

1.0

 Accuracy
 Precision
 Recall
 F1
 AUC

LR

NB

SVC

RF

LDA

KNN

0.0 0.2 0.4 0.6 0.8 1.0
FPR

 FPR

Figure 15: Experiments with Traditional ML Models.

paths from source to destination in mapping the APIs and malicious strings
to the CFG nodes. Therefore, we limit our experimentation to binaries with
less than 300 function calls to ensure a more efficient and manageable anal-
ysis. Nevertheless, future work may explore optimization strategies such
as heuristic-based pruning and graph abstraction techniques to reduce the
computational overhead associated with exhaustive path enumeration.

5. Conclusion

Researchers focus on the entire binary for feature extraction instead of
focusing on regions where maliciousness is present. This approach has a

31

downside, i.e., attackers inject malicious code into a benign binary, making
the model extract more benign features than malware to bypass the Machine
Learning (ML) based approaches. However, we propose a novel approach
to extract features from the most potentially malicious regions in a binary
along with the features from the completely preprocessed Control Flow Graph
(CFG). To see the robustness of the extracted advanced features, we compare
these features with the features extracted from the whole binary. We observe
a significant performance improvement by including advanced features. The
advanced features produce 8.13% and 1.44% high SHapley Additive exPlana-
tions (SHAP) Absolute Mean and Beeswarm values compared to the features
extracted from the entire binary. We train and test the advanced features on
a Deep Neural Network (DNN) with thirteen layers using various combina-
tions of epochs and batch sizes. The combination of 12 epochs and a batch
size of 200 yields the best results, achieving an accuracy of 99.95%, precision
of 99.97%, recall of 99.97%, AUC of 99.97%, an F1 score of 99.98%, and
a False Positive Rate (FPR) of 0.063%. Further, we check with traditional
ML models such as LR, DT, RF, SVC, KNN, NB, and LDA and find that
RF results exhibit negligible variation compared to the DNN13 model. Fi-
nally, we compare the proposed model with state-of-the-art static, dynamic,
and hybrid models focused on the whole binary and show why focusing on
potential malicious regions is a better approach.

References

[1] Statista. Number of internet and social media users worldwide as of July
2022. https://www.statista.com/statistics/617136/digital-population-
worldwide/. [Online; accessed 2022].

Table 8: PotentRegion4MalDetect Vs. Static Models

Model Dataset Accuracy (%)FPR (%)
Sota et al. [17] 8000B and 18000M 95.1 -

Ömer et al. [35] 45,306M 97.78 2.98
Sudan et al. [36] 5000B and 5000M 91.91 -
Abbas et al. [14] 200B and 500M 98.25 -
Deniz et al. [18] 986B and 1095M 98.3 -

PotentRegion4MalDetect 11089B and 9504M 99.95 0.064
B: Benign, M: Malware

32

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/

Table 9: PotentRegion4MalDetect Vs. Dynamic Models

Model Dataset Accuracy (%)FPR (%)
Pengbin et al. [8] 1686B and 24817M 96.38 -
Markus et al. [9] 5683B and 14679M 91 13
Shiva et al. [37] 3282B and 4151M 97.97 -

PotentRegion4MalDetect 9504M and 11089B 99.95 0.064
B: Benign,M: Malware

Table 10: PotentRegion4MalDetect Vs. Hybrid Models

Model Dataset Accuracy (%) FPR (%)
Asma et al. [11] 4835B and 6877M 95 4
Weijie et al. [12] 760 B and 3490 M 97.2 -
Asma et al. [38] 2000B and 3000M 97.91 2.08

PotentRegion4MalDetect 11089B and 9504M 99.95 0.064
B: Benign, M: Malware

[2] Clare Stouffer. 115 cybersecurity statistics + trends to know
in 2023. https://us.norton.com/blog/emerging-threats/cybersecurity-
statistics. [Online; accessed 2022].

[3] Statista. Percentage of organizations victimized by ransomware attacks
worldwide from 2018 to 2022. https://www.statista.com/statistics/
204457/businesses-ransomware-attack-rate/. [Online; accessed 2022].

[4] AV-ATLAS. Malware. https://www.av-test.org/en/statistics/
malware/. [Online; accessed 2024].

[5] AV-ATLAS. Statistics. https://portal.av-atlas.org/malware/statistics.
[Online; accessed 2022].

[6] Adeilson Antonio da Silva and Mauricio Pamplona Segundo. On deceiv-
ing malware classification with section injection. Machine Learning and
Knowledge Extraction, 5(1):144–168, 2023.

[7] Javier Yuste, Eduardo G Pardo, and Juan Tapiador. Optimization of
code caves in malware binaries to evade machine learning detectors.
Computers & Security, 116:102643, 2022.

33

https://us.norton.com/blog/emerging-threats/cybersecurity-statistics
https://us.norton.com/blog/emerging-threats/cybersecurity-statistics
https://www.statista.com/statistics/204457/businesses-ransomware-attack-rate/
https://www.statista.com/statistics/204457/businesses-ransomware-attack-rate/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://portal.av-atlas.org/malware/statistics

[8] Pengbin Feng, Le Gai, Li Yang, Qin Wang, Teng Li, Ning Xi, and Jian-
feng Ma. Dawngnn: Documentation augmented windows malware de-
tection using graph neural network. Computers & Security, page 103788,
2024.

[9] Ring Markus, Schlör Daniel, Wunderlich Sarah, Landes Dieter, and
Hotho Andreas. Malware detection on windows audit logs using lstms
[j]. Computers & Security, 2021 (prepublish), 2021.

[10] Pascal Maniriho, Abdun Naser Mahmood, and Mohammad Jabed Mor-
shed Chowdhury. Memaldet: A memory analysis-based malware detec-
tion framework using deep autoencoders and stacked ensemble under
temporal evaluations. Computers & Security, 142:103864, 2024.

[11] Asma A Alhashmi, Abdulbasit A Darem, Sultan M Alanazi, Abdullah M
Alashjaee, Bader Aldughayfiq, Fuad A Ghaleb, Shouki A Ebad, and
Majed A Alanazi. Hybrid malware variant detection model with extreme
gradient boosting and artificial neural network classifiers. Computers,
Materials & Continua, 76(3), 2023.

[12] Weijie Han, Jingfeng Xue, Yong Wang, Zhenyan Liu, and Zixiao Kong.
Malinsight: A systematic profiling based malware detection framework.
Journal of Network and Computer Applications, 125:236–250, 2019.

[13] Seungho Jeon and Jongsub Moon. Malware-detection method with a
convolutional recurrent neural network using opcode sequences. Infor-
mation Sciences, 535:1–15, 2020.

[14] Abbas Yazdinejad, Hamed HaddadPajouh, Ali Dehghantanha, Reza M
Parizi, Gautam Srivastava, and Mu-Yen Chen. Cryptocurrency mal-
ware hunting: A deep recurrent neural network approach. Applied Soft
Computing, 96:106630, 2020.

[15] Sibel Gülmez and Ibrahim Sogukpinar. Graph-based malware detection
using opcode sequences. In 2021 9th International Symposium on Digital
Forensics and Security (ISDFS), pages 1–5. IEEE, 2021.

[16] Sudan Jha, Deepak Prashar, Hoang Viet Long, and David Taniar. Re-
current neural network for detecting malware. computers & security,
99:102037, 2020.

34

[17] Sota Okubo, Tomotaka Kimura, and Jun Cheng. Entropy-based mal-
ware detection using one dimensional cnn. In 2024 International Confer-
ence on Consumer Electronics-Taiwan (ICCE-Taiwan), pages 763–764.
IEEE, 2024.

[18] Denız Demırcı, Cengiz Acarturk, et al. Static malware detection using
stacked bilstm and gpt-2. IEEE Access, 10:58488–58502, 2022.

[19] Yifei Jian, Hongbo Kuang, Chenglong Ren, Zicheng Ma, and Haizhou
Wang. A novel framework for image-based malware detection with a
deep neural network. Computers & Security, 109:102400, 2021.

[20] Kohei Tsunewaki, Tomotaka Kimura, and Jun Cheng. Two-stage mal-
ware detection using calling api-based bilstm. In 2023 International
Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), pages
471–472. IEEE, 2023.

[21] Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj Singh
Gaur, and Mauro Conti. Employing program semantics for malware
detection. IEEE Transactions on Information Forensics and Security,
10(12):2591–2604, 2015.

[22] Hongbi Kim and Taejin Lee. Research on autoencdoer technology for
malware feature purification. In 2021 21st ACIS International Winter
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD-Winter), pages 236–239.
IEEE, 2021.

[23] Vidhi Garg and Rajesh Kumar Yadav. Malware detection based on api
calls frequency. In 2019 4th International Conference on Information
Systems and Computer Networks (ISCON), pages 400–404. IEEE, 2019.

[24] Mandiant. StringSifter. https://github.com/mandiant/stringsifter. [On-
line; accessed 2021].

[25] Daniel Bilar. Opcodes as predictor for malware. International journal
of electronic security and digital forensics, 1(2):156–168, 2007.

[26] Hyrum S Anderson and Phil Roth. Ember: an open dataset for
training static pe malware machine learning models. arXiv preprint
arXiv:1804.04637, 2018.

35

https://github.com/mandiant/stringsifter

[27] Ben Athiwaratkun and Jack W Stokes. Malware classification with
lstm and gru language models and a character-level cnn. In 2017
IEEE international conference on acoustics, speech and signal processing
(ICASSP), pages 2482–2486. IEEE, 2017.

[28] Moustafa Saleh, E Paul Ratazzi, and Shouhuai Xu. A control flow
graph-based signature for packer identification. In MILCOM 2017-2017
IEEE Military Communications Conference (MILCOM), pages 683–688.
IEEE, 2017.

[29] Michael Sikorski and Andrew Honig. Practical malware analysis: the
hands-on guide to dissecting malicious software. no starch press, 2012.

[30] Rama Krishna Koppanati and Sateesh K Peddoju. Msg: Missing-
sequence generator for metamorphic malware detection. Journal of In-
formation Security and Applications, 89:103962, 2025.

[31] Christian Garbin, Xingquan Zhu, and Oge Marques. Dropout vs. batch
normalization: an empirical study of their impact to deep learning. Mul-
timedia Tools and Applications, 79:12777–12815, 2020.

[32] Feature Hasher. https://scikit-learn.org/stable/modules/generated/
sklearn.feature extraction.FeatureHasher.html. [Online; accessed 2020].

[33] VirusTotal. . https://www.virustotal.com/. [Online; accessed 2021].

[34] bormaa. Benign-NET files. https://github.com/bormaa/Benign-NET.
[Online; accessed 2022].

[35] Ömer Aslan and Abdullah Asim Yilmaz. A new malware classification
framework based on deep learning algorithms. Ieee Access, 9:87936–
87951, 2021.

[36] Sudan Jha, Deepak Prashar, Hoang Viet Long, and David Taniar. Re-
current neural network for detecting malware. computers & security,
99:102037, 2020.

[37] Shiva Darshan SL and CD Jaidhar. Windows malware detector us-
ing convolutional neural network based on visualization images. IEEE
Transactions on Emerging Topics in Computing, 9(2):1057–1069, 2019.

36

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://www.virustotal.com/
https://github.com/bormaa/Benign-NET

[38] Asma A Alhashmi, Abdulbasit A Darem, Abdullah M Alashjaee, Sul-
tan M Alanazi, Tareq M Alkhaldi, Shouki A Ebad, Fuad A Ghaleb, and
Aloyoun M Almadani. Similarity-based hybrid malware detection model
using api calls. Mathematics, 11(13):2944, 2023.

37

	Introduction
	Related Work
	Proposed PotentRegion4MalDetect Model
	Feature Extraction
	Advanced Feature Extraction
	Modified Control Flow Graph (CFG)
	Ranking Malicious Nodes in a CFG
	Sub-graph Extraction
	Advanced Feature Extraction from Sub-graphs
	Advanced Features Extraction from Completely Pre-processed CFG
	Case Study
	Map APIs to the CFG Nodes
	ML Classifier

	EXPERIMENTS AND RESULTS
	Experimental Setup and Evaluation Metrics
	Dataset Used
	Results and Discussion

	Conclusion

