
Subgraph Counting under Edge Local Differential Privacy Based on Noisy
Adjacency Matrix

Jintao Guo ∗ Ying Zhou † Chao Li ‡ Guixun Luo §

Abstract
When analyzing connection patterns within graphs, subgraph
counting serves as an effective and fundamental approach.
Edge-local differential privacy(edge-LDP) and shuffle model
have been employed to achieve subgraph counting under a
privacy-preserving situation. Existing algorithms are plagued
by high time complexity, excessive download costs, low accu-
racy, or dependence on trusted third parties.

To address the aforementioned challenges, we propose the
Noisy Adjacency Matrix(NAM), which combines differen-
tial privacy with the adjacency matrix of the graph. NAM
offers strong versatility and scalability, making it applicable
to a wider range of DP variants, DP mechanisms, and graph
types. Based on NAM, we designed 5 algorithms (TriOR,
TriTR, TriMTR, QuaTR, and 2STAR) to count 3 types of sub-
graphs: triangles, quadrangles, and 2-stars. Theoretical and
experimental results demonstrate that in triangle counting,
TriOR maximizes accuracy with reduced time complexity
among one-round algorithms, TriTR achieves optimal accu-
racy, TriMTR achieves the highest accuracy under low down-
load costs, and QuaTR stands as the first quadrangle counting
algorithm under pure edge-LDP. We implement edge-LDP for
noisy data via a confidence interval-inspired method, provid-
ing DP guarantees on randomized data. Our 2STAR algorithm
achieves the highest accuracy in 2-star counting and can be
derived as a byproduct of two-round triangle or quadrangle
counting algorithms, enabling efficient joint estimation of tri-
angle, quadrangle, and 2-star counts within two query rounds.

1 Introduction

Background. Subgraph counting is a fundamental task to an-
alyze connection patterns in graph data obtained from social
networks, communication networks, or transaction networks.

∗Beijing Jiaotong University
†Beijing Jiaotong University
‡Beijing Jiaotong University
§Beijing Jiaotong University

Figure 1: Algorithm Application Processes. The black arrows
represent the actual execution workflow. (1) For the one-round
algorithm TriOR, the process starts directly from the Graph
Data. (2) All other algorithms are two-round algorithms, they
need to apply Graph Projection on Graph Data before sub-
sequent procedures.

Subgraphs such as triangle, quadrangle, and 2-star counting
are three of the most basic tasks. The difficulty of triangle
and quadrangle counting arises from the limited scope of
users(nodes), as it typically assumes that users only know
the relationship(edge) with their friends(neighboring nodes).
However, the process of analyzing and generating statistical
results can lead to the disclosure of sensitive data, with edge
privacy being the most representative case [22]. This is be-
cause edges have strong real-world implications, representing
relationships such as friendships, transactions, and communi-
cations. Therefore, a lot of research has been conducted on
how to count the number of subgraphs while preserving user’s
edge privacy [35, 42].

Considering the security risks associated with central

1

ar
X

iv
:2

50
7.

06
50

8v
1

 [
cs

.C
R

]
 9

 J
ul

 2
02

5

https://arxiv.org/abs/2507.06508v1

servers [39], Local Differential Privacy (LDP) [1,26,35,40,54]
is commonly employed to protect the privacy of edges in a
graph, specifically known as edge-LDP [43, 46].
Existing Solutions and Their Limitations. Since subgraph
statistics typically focus only on the binary existence of edges
between two nodes, current algorithms [18,22–24] universally
employ Randomized Response(RR) [57] to perturb graph data
to achieve edge-LDP and then employ empirical estimation
methods to obtain an estimator for the number of subgraphs.

This leads to some limitations with existing algorithms.
For example, existing one-round algorithms [18, 22] all use
the enumeration of triplets of nodes to perform estimation,
making their O(n3) time complexity difficult to handle large-
scale networks; two-round algorithms [22,23] face significant
transmission cost, and to address this issue, they employ edge
sampling, thereby sacrificing a large amount of useful data,
which results in suboptimal algorithm accuracy; currently
there is no pure edge-LDP algorithm to estimate the number of
quadrangles [24]. The challenges of current algorithms arise
from a lack of deep understanding of the intrinsic properties
of graphs and the absence of an effective framework that
integrates differential privacy mechanisms with the graph’s
adjacency matrix.
Our Intuition. In the context of privacy-preserving subgraph
counting, any perturbation strategy can be viewed as adding
noise to the original graph data, and subsequent downstream
tasks are performed on the noisy data. In the context of
edge-LDP, the core mechanism involves perturbing the adja-
cency lists of nodes in the graph, which essentially equates
to perturbing the entire adjacency matrix representation of
the graph. Therefore, our intuition is to directly establish a
relationship between differential privacy mechanisms and the
adjacency matrix, which we define as the Noisy Adjacency
Matrix(NAM). Based on this, we designed 4 algorithms to
achieve subgraph counting.

Figure 1 illustrates the main structure of this paper and the
algorithm application processes. In Section 4, we define the
NAM, analyze its properties, and give the algorithm GNAM
to generate it. In Section 5, leveraging the properties of NAM,
we designed four algorithms, Triangle’s One-Round Algo-
rithm (TriOR), Triangle’s Two-Round Algorithm (TriTR),
Triangle’s Modified Two-Round Algorithm (TriMTR), Quad-
rangle’s Two-Round Algorithm (QuaTR), to address the tri-
angle and quadrangle counting problems. In Section 6, to
address the need to provide edge-LDP for data with added ran-
domness in the first round during the second round, we adopt a
method analogous to confidence intervals to ensure edge-LDP
for perturbed data. In Section 7, we further conducted theoret-
ical analyzes on the convergence of relative error for selected
algorithms, proposed 2STAR—a 2-star counting algorithm
based on Graph Projection’s outputs, and theoretically com-
pared all our algorithms with existing methods. In Section 8,
we experimentally validate the theoretical performance of our
algorithms and evaluate their practical utility.

Our Contribution. Our contributions are as follows:

• Designing more effective algorithms. In the field of pri-
vate subgraph counting under edge-LDP, the algorithms
proposed in this paper achieve the following milestones:
TriOR stands out as the most accurate and fastest among
one-round algorithms. TriTR surpasses all existing algo-
rithms in terms of accuracy. TriMTR achieves the highest
accuracy while maintaining acceptable communication
costs. QuaTR represents the first algorithm designed
for quadrangle counting under pure edge-LDP. 2STAR
algorithm achieves highest accuracy in 2-star counting

• Achieving DP on randomized data. In the two-round
algorithm, ensuring differential privacy protection on the
randomized data is a challenge. To address this, we pro-
pose the second round’s randomizer algorithm, which
is inspired by confidence intervals, designed to achieve
differential privacy protection with minimal loss in ac-
curacy.

• Adopting to more variants of DP. The generation of
the noisy adjacency matrix does not specify a particular
DP mechanism. It can utilize RR, Laplace mechanism,
Gaussian mechanism, or any other DP mechanism ca-
pable of producing unbiased estimates. Therefore, both
traditional (ε,δ)-DP [16] and f -DP [12] can be used
within this framework.

• Applying to more types of graphs. Existing subgraph
counting under edge LDP is set in the context of undi-
rected graphs, while all of our theorem guarantees can
be transferred to directed graphs and weighted graphs
with only minor modifications.

2 Related Work

Non-private Subgraph Counting. In a non-private setting
[47], the methods for subgraph counting have been extensively
studied. The subgraphs primarily include triangles [3, 5, 17,
30, 44, 48, 49, 52, 53], quadrangles (4-cycle) [5, 27, 36, 37],
k-stars [2, 21], and k-hop paths [8, 28].

The primary issue in this field is how to efficiently compute
the number of subgraphs. For example, in the domain of tri-
angle counting, the exact number of triangles can be obtained
by calculating the trace of the cubed adjacency matrix [3, 48]
or by enumeration [10, 53]. Nevertheless, these two methods
face the problem of high time complexity when dealing with
large-scale networks. To reduce the time complexity, there
are generally two approaches: one is to accelerate the com-
putation through algorithm design, such as developing more
efficient matrix multiplication algorithms to reduce the time
complexity [11,13,31,50,51,58]. The other is to speed up the
subgraph counting by sacrificing some accuracy, for example,

2

by efficiently estimating the trace of the matrix [3], or by sam-
pling vertices or edges to count a portion of the subgraphs,
and then estimating the number of subgraphs in the entire
network [17, 30, 52].
Private Subgraph Counting. Differential privacy has been
widely applied in graph statistics. Categorized by the type of
protected information, it can be divided into edge differential
privacy (edge DP) [45,55] and node differential privacy (node
DP) [25, 29]. Based on the noise addition step, it can be
classified into local differential privacy (LDP) [7, 41, 59] and
central differential privacy (CDP) [6,41]. Generally speaking,
node DP provides stronger privacy protection than edge DP,
and LDP offers more robust privacy safeguards than CDP.
However, these stronger privacy protections come at the cost
of increased estimation errors [14, 25, 29, 45, 55].

As a result, edge LDP has garnered more attention in recent
years, and a series of papers have emerged that employ edge
LDP to address the problem of subgraph counting: RR△ [18,
22], 2R△ [22], ARR△ [23], 2R-Small△ [23], 2R-Large△ [23],
Wshuffle△ [24], and the Wshuffle□ [24]. These algorithms
are designed under the assumption that nodes have no prior
knowledge of their neighbors’ adjacency lists, a condition that
closely mirrors real-world situations.

However, each of the existing algorithms faces distinct
challenges. For example, the RR△ algorithm exhibits a time
complexity of O(n3), rendering it impractical for large-scale
networks [18, 22, 23]. The 2R-Large△ algorithm, an im-
proved version of 2R△ through double-clipping [23], still
faces substantial download cost overhead during the second
round [23]. ARR△ and 2R-Small△ mitigate time complexity
and download cost via edge− sampling [23], but they suffer
from reduced accuracy [23, 24]. Furthermore, Wshuffle△ and
Wshuffle□, which leverage the shuffle model [4, 9, 19, 20], a
framework between CDP and LDP that employs a third-party
shuffler to enhance privacy protection from εLarge-LDP to
(εSmall ,δ)-DP by shuffling. If an adversary successfully com-
promises the shuffler, Wshuffle△ and Wshuffle□ can only pro-
vide εLarge-LDP, where εLarge is typically significantly larger
than εSmall , making this level of privacy protection unaccept-
able.

3 Preliminaries

3.1 Notations
Let R, R⩾0, N, and Z⩾0 denote the sets of real numbers, and
non-negative real numbers, natural numbers, non-negative
integers. Let [n] = {1,2, ...,n},n ∈ N.

Let G denote the set of all undirected graphs without self-
loops. For a graph G ∈ G , let G = (V,E), where V = (vi)
denotes the set of nodes, E ⊆V ×V denotes the set of edges.
Let n denote the number of nodes in G, and |E| denote the
number of undirected edges. If the nodes of G are labeled
with indices, let di denote the degree of node vi, and define

dmax = max(d1,d2, . . . ,dn), davg = mean(d1,d2, . . . ,dn).
Let A = (ai j) ∈ 0,1n×n denote the adjacency matrix corre-

sponding to graph G. If (vi,v j) ∈ E, then ai j = 1, otherwise
ai j = 0.

Let the i-th row of matrix A, denoted as ai ∈ {0,1}n, rep-
resent the adjacency list of node vi. Let B = (bi j) = A2 and
C = (ci j) = A3, which are referred to as the two-step and
three-step matrices of graph G, respectively.

Let f△ : G → Z⩾0, f□ : G → Z⩾0 and f 2-star : G → Z⩾0
be triangle, quadrangle and 2-star counting functions, respec-
tively. They take graph G ∈ G as input and output the corre-
sponding subgraph numbers f△(G), f□(G) and f 2-star(G).

3.2 Differential Privacy
Definition of Differential Privacy. Differential privacy (DP)
was first proposed by Dwork et al., who defined (ε,δ)-DP to
measure privacy loss:

Definition 1 ((ε,δ)-DP [16]). Let M : X n→ Y be a random-
ized mechanism, where X n is the space of datasets containing
n data points, and Y is the output space. For any two neigh-
boring datasets D and D′ (i.e., D and D′ differ in only one
record), and for any subset of outputs S⊆Y , if the mechanism
M satisfies:

Pr[M (D) ∈ S]≤ eε ·Pr[M (D′) ∈ S]+δ (1)

then the mechanism M is said to satisfy (ε,δ)-differential
privacy.

If δ = 0, it is commonly abbreviated as ε-DP. ε is typically
referred to as the privacy budget, A smaller ε indicates a
stronger privacy protection.

In recent years, Dong et al. proposed a novel concept of
DP from the perspective of hypothesis testing, termed f -
Differential Privacy (f -DP) [12]. Gaussian Differential Pri-
vacy (GDP) emerges as the focal privacy definition within
the f -DP framework, effectively characterizing the limiting
behavior of privacy mechanisms under composition theorem.

Implementing Differential Privacy. There are numerous
approaches to achieving DP [15, 16, 38, 56], in this paper, we
employ the most commonly used mechanisms, RR and the
Laplace mechanism, to implement DP.

Laplace Mechanism [14]. Let f : X n→ Rk be a function
that maps a dataset D ∈ X n to a vector of real numbers. The
global sensitivity of f , denoted by ∆ f , is defined as:

∆ f = max
D,D′
∥ f (D)− f (D′)∥1 (2)

where the maximum is taken over all pairs of neighboring
datasets D and D′ that differ in at most one entry. For a given
privacy parameter ε > 0, the Laplace Mechanism releases:

ML(D, f ,ε) = f (D)+(Y1,Y2, . . . ,Yk) (3)

3

where Y1,Y2, . . . ,Yk are independent and identically dis-
tributed (i.i.d.) random variables drawn from the Laplace
distribution Lap

(
∆ f
ε

)
.

Warner’s RR [57]. Given ε ∈ R≥0, R W
ε : {0,1}→ {0,1}

maps x ∈ {0,1} to y ∈ {0,1} with the probablity:

Pr
[
R W

ε (x) = y
]
=

{
eε

eε+1 (if x = y)
1

eε+1 (otherwise)
(4)

3.3 Local Differential Privacy on Graphs
We adopt the definition of ε-edge LDP as our privacy metric:

Definition 2 (ε-edge LDP [45].). Let ε ∈ R≥0. A local ran-
domizer R with domain {0,1}n provides ε-edge LDP if for
any two neighbor lists ai,a′i ∈ {0,1}n that differ in one bit
and any S⊆ Range(R),

Pr[R (ai) ∈ S]≤ eε Pr[R (a′i) ∈ S]. (5)

Interaction among Users and Multiple Rounds. It is
common to provide users with auxiliary information through
multiple rounds of queries to generate more accurate estima-
tion. Therefore, we leverage the sequential composition of
edge LDP to ensure privacy guarantees:

Proposition 1 (Sequential Composition of Edge LDP [23]).
For i ∈ [n], let R 1

i be a local randomizer of user vi that takes
ai as input. Let λi be a post-processing algorithm on R 1

i (ai),
and Mi = λi(R 1

i (ai)) be its output. Let R 2
i (Mi) be a local

randomizer of vi that depends on Mi. If R 1
i provides ε1-edge

LDP and for any Mi ∈ Range(λi), R 2
i (Mi) provides ε2-edge

LDP, then the sequential composition (R 1
i (ai),R 2

i (Mi)(ai))
provides (ε1 + ε2)-edge LDP.

3.4 Utility Metrics
We evaluate the utility of the algorithm from two perspectives:
accuracy and data transmission cost.

Accuracy. We introduce two metrics: Mean Squared Er-
ror (MSE) and Relative Error (RE). The MSE is defined as
MSE = E

[
(θ̂−θ)2

]
, where θ̂ represents the estimated value

and θ denotes the true value. The RE is defined as RE = |θ̂−θ|
θ

.
While MSE is convenient for theoretical analysis, RE is often
of greater practical interest in real-world applications.

Data transmission cost. Since the node transmission cost
of existing subgraph counting algorithms under edge LDP is
generally bounded by O(n), this does not typically impose
significant constraints on the practical application of such
algorithms. The primary limitation arises from the substantial
download cost(denoted as CostDL) incurred by nodes during
multiple rounds of the algorithm.

Assuming there are n users and a total of r rounds of
queries, let M j

i denote the download volume of user i in the
j-th round. We define the download cost as:

CostDL =
n

max
i=1

r

∑
j=1

E[|M j
i |] (bits). (6)

4 Noisy Adjacency Matrix

This section introduces the Noisy Adjacency Matrix (NAM),
which serves as the foundation for our algorithms. Section 4.1
defines NAM and analyzes its mathematical properties under
power operations. Section 4.2 explains how to obtain NAM in
real-world applications. Section 4.3 compares how different
DP mechanisms affect NAM. Section 4.4 presents efficient
computation methods for NAM.

4.1 Definition and Properties
We define the noisy adjacency matrix:

Definition 3 (Noisy adjacency matrix). Â is the noisy adja-
cency matrix of undirected graph G ∈ G , if Â satisfies:

E
[
Â
]
= A; Â = ÂT ; âii = 0, for any i ∈ [n];

âi j⊥âkl , for any i < j, k < l, (i, j) ̸= (k, l).

where A is the adjacency matrix of graph G, n is the num-
ber of nodes, ⊥ denotes the independence between random
variables.

For a graph G ∈ G , the k-th power of its adjacency matrix
A has the following property:

Proposition 2. The value of the element in the i -th row and j
-th column of the k -th power of adjacency matrix A equals the
number of solutions for node i to reach node j exactly after k
steps.

Proposition 2 establishes the relationship between paths of
varying lengths in a graph and its adjacency matrix. Through
our research, we have discovered that the noisy adjacency
matrix exhibits similar properties.

Theorem 1. A and Â be the adjacency matrix and the noisy
adjacency matrix of graph G, respectively. Then:

1. Let B̂ = Â2, B = A2. E
[
b̂i j
]
= bi j, for any i ̸= j.

2. Let Ĉ = Â3, C = A3. E [ĉii] = cii, for any i ∈ [n].

Next, we will demonstrate how to integrate the noisy adja-
cency matrix with edge LDP, which will serve as the founda-
tion for all subsequent algorithm designs.

4.2 Generating Noisy Adjacency Matrix
We designed the Generate Noisy Adjacency Matrix (GNAM)
outlined in Algorithm 1. Initially, each user employs a local
randomizer to apply LDP to their adjacency list. Subsequently,

4

the noisy adjacency relationships of nodes with a higher index
are set to 0, and the final output ãu is sent to the data collector.
The data collector then aggregates the ãu, and completes the
upper half of the matrix Ã depending on the symmetry of the
undirected graph. Finally, generating unbiased estimates for
each element of the matrix Ã, resulting in the noisy adjacency
matrix Â.

Algorithm 1 GNAM

Input: ε ∈ R≥0, graph G’s adjacency list a1,a2,...,an ∈
{0,1}n .
Output: Noisy adjacency matrix of graph G.

1: for each user u = 1 to n do:
2: ãu← local randomizer(au,ε)
3: ãui← 0, for any i ⩾ u.
4: send ãu to data collector

Data collector do:
5: L← (ã1, ..., ãn)
6: Ã← L+LT

7: Â← estimate algorithm
(
Ã
)

8: return Â

Because each user only uploads the perturbed data of the
adjacency relationships with nodes that have a smaller index
than their own, with the rest set to 0, the relationship between
any two nodes in the graph is uploaded only once after being
noise-added. So GNAM has the safe-guarantee promise:

Theorem 2. GNAM satisfies ε-edge LDP.

Any DP mechanism capable of producing unbiased esti-
mates can be employed as the local randomizer. If one opts to
adopt the f -DP framework, mechanisms such as adding Gaus-
sian noise could be considered. However, since this paper
utilizes the ε-edge LDP, we will focus on the most commonly
used mechanisms, RR and Laplace mechanism, as examples.

Proposition 3. Let X be the output of Warner’s RR, i.e.
X=R W

ε (a), where a ∈ {0,1}, then Y = X ·(eε+1)−1
eε−1 satisfies

E [Y] = a.

If choosing RR to provide DP, what we do in line 7 of
Algorithm 1 is: if ãi j = 1, then set âi j← eε

eε−1 ; if ãi j = 0, then
set âi j← −1

eε−1 .
If the Laplace mechanism is chosen to provide edge-LDP,

Ã can be directly used as Â, since Ã satisfies all the conditions
required for a noisy adjacency matrix.

Although numerous DP mechanisms are available for se-
lection, different choices can introduce subtle variations that
may impact the performance of subsequent algorithms. In
the following discussion, we will continue to use the RR and
Laplace mechanism as examples to illustrate the effects of
choosing different DP mechanisms.

4.3 Different Noise Analysis

Accuracy. Given ε and the chosen DP mechanism, the vari-
ance of each off-diagonal element in the noisy adjacency
matrix is fixed and the same for all off-diagonal elements. Let
σ2 denote the variance of every single element in the noisy
adjacency matrix. Under a fixed ε, the choice of DP mech-
anism affects the magnitude of σ2, which will influence the
accuracy of subsequent algorithms.

If employing RR, σ2 = eε

(eε−1)2 . If employing the Laplace

mechanism, σ2 = 2
ε2 . Figure 2 illustrates the comparative

variance between the two mechanisms. The results demon-
strate that RR achieves significantly lower σ2 values than the
Laplace Mechanism. RR’s variance approximates half that
of the Laplace Mechanism (as evidenced by the near-overlap
between the blue dot-dash line and the red line), yielding
σ2 = O(1

ε2) for RR. These findings indicate that given the
same privacy budgets, RR provides superior estimation accu-
racy compared to the Laplace Mechanism.

Security. Although both provide ε-edge LDP, their actual
protection effectiveness differs when analyzed from an at-
tacker’s perspective. We analyze the security comparison in
two ways: hypothesis testing and confusion matrices.

To facilitate the discussion, we note the attack function: Let
x ∈ {0,1} denote the true value of the data, R : {0,1} → X
denote the local randomizer in GNAM, x̃ = R (x) and fattack :
Range(R)→{0,1} be the attack function that takes the per-
turbed data x̃ as input and outputs a judgment y ∈ {0,1}.

Hypothesis testing. We set up the null hypothesis as
H0 : x = 1 and the alternative hypothesis as H1 : x = 0. The
probability of a Type I error is given by Pr(fattack(R (1)) =
0), and the probability of a Type II error is given by
Pr(fattack(R (0)) = 1).

In attacks against the Laplace mechanism, given a threshold
κ ∈ R, if x̃ > κ, then fattack(x̃) = 1; otherwise, fattack(x̃) = 0.
For each distinct value of κ, the probabilities of Type I and
Type II errors of the Laplace mechanism will vary; then we
can plot the trade-off curve. The closer the curve is to both
axes, the better the performance of the inference attack.

In attacks against the RR, fattack(x̃) = 1 if x̃ = 1, and 0
otherwise. We can draw the inflection point of RR’s trade-
off curve in Figure 3(a). To plot a whole trade-off curve for
RR, we can make an adjustment by introducing a probability
parameter p0 ∈ [0,1]. For the lower portion of the curve, we
randomly flip a p0 proportion of the attack decisions from
fattack(x̃) = 1 to fattack(x̃) = 0 while varying p0 from 0 to 1;
conversely, the upper portion is generated by flipping a p0
proportion of decisions from fattack(x̃) = 0 to fattack(x̃) = 1
in the same manner, thereby completing the entire trade-off
curve.

Figure 3 (a) provides the trade-off curve of RR and Laplace
Mechanism when ε = 1. It can be observed that the red curve
lies below the entire blue curve. This occurs because, for any
given privacy budget ε, RR yields equal Type I and Type II

5

Table 1: Confusion Matrices for Different Attack Strategies and their Corresponding Precision and Recall.

Attack Strategy for RR 1’st Attack Strategy for Laplace 2’ed Attack Strategy for Laplace

fattack(x̃) = 1 fattack(x̃) = 0 fattack(x̃) = 1 fattack(x̃) = 0 fattack(x̃) = 1 fattack(x̃) = 0

x = 1 p eε

eε+1 p 1
eε+1

1
2 p 1

2 p p 2e0.5ε−1
2e0.5ε

p 1
2e0.5ε

x = 0 (1− p) 1
eε+1 (1− p) eε

eε+1 (1− p) 1
2eε (1− p) 2eε−1

2eε (1− p) 1
2e0.5ε

(1− p) 2e0.5ε−1
2e0.5ε

Precision P1 =
peε

1−p+peε P2 =
peε

1−p+peε P3 =
2pe0.5ε−p

1−2p+2pe0.5ε

Recall R1 =
eε

eε+1 R2 =
1
2 R3 =

2e0.5ε−1
2e0.5ε

Figure 2: Comparing Variance between RR and Laplace
Mechanism. The red line represents the variance of unit posi-
tion elements in NAM when using the Laplace mechanism,
while the solid and dashed blue lines correspond to the vari-
ance obtained with the Laplace mechanism and the curve
obtained by doubling the variance, respectively.

error probabilities of 1/(1+ eε). In contrast, for the Laplace
mechanism, when the total error probability is minimized
(achieved at κ = 0.5, corresponding to the red line in Figure
3(b)), both error probabilities become 1/(2e0.5ε) - a value
strictly greater than 1/(1+eε). Therefore, it can be concluded
that compared to the Laplace mechanism, RR demonstrates
superior attack effectiveness when subjected to adversarial
attempts, consequently offering weaker privacy protection.

Confusion matrix. We employ two attack strategies for
the Laplace mechanism. The first strategy uses κ1 = 1 as the
threshold (corresponding to the green line in Figure 3(b)),
while the second strategy uses κ2 = 0.5 (corresponding to
the red line in Figure 3(b)). The first strategy achieves the
minimum recall while maintaining the maximum precision.
The second strategy, mentioned in hypothesis testing, identi-
fies the threshold that minimizes the sum of Type I and Type
II errors. For RR, we employ the most basic attack strategy,
which does not involve any post-decision flipping operations.

Given the same privacy budget ε and the density of edges
in the graph p = 2|E|

n∗(n−1) , the confusion matrix and their cor-
responding precision and recall for the three attack strategies
are shown in Table 1. For clearer comparison of Precision

Figure 3: (a) Trade-off Curves of the Laplace Mechanism and
RR (ε = 1). (b) The First and Second Attack Strategies on the
Laplace Mechanism (ε = 1). In (b), κ1 and κ2 represent the
thresholds selected for the two Attack Strategies, respectively.

versus Recall, we visualize the Table 1 results in Figure 4.

Figure 4: Comparing Precision and Recall. P1−P3 and R1−
R3 in the figures are from Table 1.

Combining Table 1 and Figure 4: comparing RR and the
first attack of Laplace mechanism, RR has a higher recall
while maintaining the same precision. Comparing RR and
the second attack of Laplace mechanism, RR has both higher
precision and recall. Therefore, the attack effect for RR is
stronger compared to the Laplace mechanism, indicating that
the Laplace mechanism provides better protection than RR.

6

4.4 Acceleration of Noisy Adjacency Matrix
The primary drawback of all existing one-round algorithms
is that the time complexity during computation is O(n3)
[18, 22, 23], which makes it challenging to handle counting
problems in large-scale graph scenarios. We can significantly
reduce the high time complexity by leveraging faster matrix
multiplication in our algorithms.

According to research on matrix multiplication [11, 13,
31, 50, 51, 58], the complexity has been reduced from O(n3)
to O(n2.371866) [13]. Although this may seem like a small
difference, it becomes particularly significant as n increases.
For example, when n is 105, their running times will differ by a
factor of 105×(3−2.371866)) = 103.14067, which is approximately
1000 times. We will also verify this in our experiment section.

5 Subgraph Counting

In this section, we will design four algorithms based on the
properties of the noisy adjacency matrix. Among these, the
latter three algorithms achieve more accurate estimations
through multiple rounds of queries. However, in second round
they face the challenge of providing DP for the data perturbed
by GNAM. To address this, we employ a unified idea and
method in the next section. Therefore, we use the second ran-
domizer serves as a placeholder, the specific implementations
for second randomizer are detailed in the next section. And
we only provide accuracy guarantees without the bias caused
by the second randomizer in this section.

5.1 Triangle’s One-Round Algorithm
According to Proposition 1, it can be deduced that the ele-
ments on the diagonal of the cube of the adjacency matrix A
represent the number of ways a node can return to itself in
exactly three steps. Since we assume there are no self-loops
in the graph, any path that returns to the starting node in three
steps must form a triangle. For each triangle, each node tra-
verses the triangle in two directions, hence the total number
of triangles f△ (G) = tr

(
A3
)
/(2 ·3).

Algorithm 2 TriOR

Input: ε ∈ R≥0, graph G .
Output: Estimate f̂△ (G) of f△ (G).

1: Â← GNAM(G,ε)
2: return tr

(
Â3
)
/6

By the second property of Theorem 1, we can conclude that
E
[
tr
(
Â3
)]

= tr
(
A3
)
. Consequently, by directly computing

f̂△ (G) = tr
(
Â3
)
/6, we can obtain an unbiased estimate of

the number of triangles in the graph. We denote this algorithm
as Triangle’s One-Round Algorithm (TriOR), because there
is only one interaction between users and data collector in

GNAM. Algorithm 2 presents the detailed implementation of
TriOR. Then we show its security guarantees and accuracy
bounds:

Theorem 3. TriOR provides ε-edge LDP.

Theorem 4. TriOR provides an unbiased estimate of f△ (G),
and its MSE is:

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j +σ

4(n−2)|E|+1
6

σ
6n(n−1)(n−2) (7)

And it satisfies: MSE ⩽ O
(
nd3

max +n3
)
.

5.2 Triangle’s Two-Round Algorithm
If a user vu knows the existence of edges between their neigh-
bors, they can count the number of triangles formed by them-
selves and their neighbors (denoted as f△u). However, the
presence or absence of edges among neighbors is private in-
formation, which is not accessible to the user. However, users
can estimate edge connections between neighbors based on
the noisy adjacency matrix, thus inferring the missing third
edge in triangles and subsequently estimating f△u .

Algorithm 3 shows the Triangle’s Two-Round Algorithm
(TriTR). In the first round, the data collector obtains a noisy
adjacency matrix through GNAM. Subsequently, in the sec-
ond round, each user downloads the whole noisy adjacency
matrix Â. Each user obtains sumu by summing the values
between their neighbors in Â. sumu satisfies E[sumu] = 2 f△u ,
so E[1

6 ∑
n
i=u sumu] = f△ (G). To guarantee ε2-edge LDP in

the second round, each user process their sumu to derive T̂u
which is then transmitted to the data collector. The collector
subsequently sums all T̂u and divides the total by six to ob-
tain the final triangle count estimate f̂△ (G). If the second
randomizer in line 6 provides ε2-edge LDP, we have:

Algorithm 3 TriTR

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂△ (G) of f△ (G).
#First round:

1: Â← GNAM(G,ε1)
#Second round:

2: for each user u = 1 to n do:
3: download Â
4: sumu← ∑(i, j):aui=au j=1 âi j

5: T̂u← second randomizer(sumu,ε2)
6: upload T̂u to data collector

data collector do:
7: f̂△ (G)← 1

6 ∑
n
i=u T̂u

8: return f̂△ (G)

Theorem 5. TriTR provides (ε1 + ε2)-edge LDP.

7

Theorem 6. 1
6 ∑

n
i=u sumu provides an unbiased estimate of

f△ (G), and its MSE is:

1
9

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j. (8)

And it satisfies: MSE ⩽ O
(
nd3

max
)
.

5.3 Triangle’s Modified Two-Round Algorithm
TriTR has achieved a significant improvement in accuracy
compared to TriOR. However, it faces the challenge of sub-
stantial download costs in the second round, where each user
is required to download the entire Â. To address this issue, we
adopt a trade-off approach by increasing the number of noisy
edges in each triangle from one to two. This strategy sacrifices
a little on accuracy (as shown in Section 7, they achieve simi-
lar relative error performance), while significantly reducing
the download cost (from the entire matrix to just one column).

Algorithm 4 TriMTR

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂△ (G) of f△ (G).
#First round:

1: Â← GNAM(G,ε1)
2: Data collector calculate: B̂← Â2

#Second round:
3: for each node u = 1 to n do:
4: download the u-th column of B̂
5: sumu← ∑i:aui=1 b̂iu

6: T̂u← second randomizer(sumu,ε2)
7: upload T̂u to data collector

Data collector do:
8: f̂△ (G)← 1

6 ∑
n
u=1 Tu

9: return f̂△ (G)

Algorithm 4 shows the Triangle’s Modified Two-Round Al-
gorithm (TriMTR). The data collector computes the squared
matrix B̂ = Â2 in the first round. In the second round, each
user vu downloads the u-th column of B̂, sums the neighbor-
associated entries in sumu, applies privacy protection to gen-
erate T̂u, and uploads it to the data collector. According to the
first property of Theorem 1, E[b̂iu] = biu. Therefore, if aui = 1,
then E[auib̂iu] = auibiu, which represents the number of trian-
gles formed by the edge (vu,vi). And thus E[sumu] = 2 f△u .
Consequently, E

[1
6 ∑

n
u=1 sumu

]
= f△(G). TriTR holds the

following guarantees:

Theorem 7. TriMTR provides (ε1 + ε2)-edge LDP.

Theorem 8. 1
6 ∑

n
u=1 sumu provides an unbiased estimate of

f△ (G), and its MSE is:

4
9

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j +

1
9

σ
4(n−2)|E|. (9)

And it satisfies: MSE ⩽ O
(
nd3

max +n2dmax
)
.

5.4 Quadrangle’s Two-Round Algorithm
User vu provides the two edges connecting themselves and
their neighbors, and then utilizes B̂ = Â2 to derive the noisy
two-step relationships among their neighbors. This enables
the estimation of the number of quadrangles they are part of
(denoted as f□u). Following this rationale, we designed Quad-
rangle’s Two-Round Algorithm (QuaTR) shown in Algorithm
5.

Algorithm 5 QuaTR

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂□ (G) of f□ (G).
#First round:

1: Â← GNAM(G,ε1)
2: Data collector calculate: B̂← Â2

#Second round:
3: for each node u = 1 to n do:
4: download B̂
5: sumu← ∑(i, j):aui=au j=1

(
b̂i j−1

)
6: Q̂u← second randomizer(sumu,ε2)
7: upload Q̂u to data collector

Data collector do:
8: f̂□ (G)← 1

8 ∑
n
u=1 Q̂u

9: return f̂□ (G)

The implementation of QuaTR is similar to that of TriTR,
with modifications only in lines 4,5 and 8. The change in line
5 is necessary because user vu provides two edges vu → vi
and v j→ vu, while the remaining paths of the form vi→ vk→
v j are provided by b̂i j. Since E[b̂i j] = bi j includes the path
vi→ vu→ v j, which cannot form a quadrangle with vu→ vi
and v j→ vu, it is necessary to minus 1 to exclude this invalid
path. Since each of the four vertices of a quadrangle will
traverse the quadrangle from two distinct directions, we need
to change line 8 by dividing by 8. Similarly, we have the
following guarantees:

Theorem 9. QuaTR provides (ε1 + ε2)-edge LDP.

Theorem 10. 1
8 ∑

n
u=1 sumu provides an unbiased estimate of

f□ (G), and its MSE is:

1
4

n

∑
i=1

n

∑
j=i+1

c2
i jσ

2 +
1

16
(n−2)

n

∑
i=1

n

∑
j=i+1

b2
i jσ

4. (10)

And it satisfies: MSE ⩽ O
(
nd5

max +n2d3
max
)
.

5.5 Subgraph Algorithms and Matrix Powers
The intuitive ideas behind the design of these algorithms are
illustrated in Figure 5. The black edges represent edges within

8

the real graph, while the red edges denote noisy edges in Â.
The powers of the noisy adjacency matrix correspond to the
number of noisy edges within paths of a given length.

Moreover, the variance of each algorithm can be expressed
in terms of the powers of the adjacency matrix, which further
reveals a profound connection between the design of the al-
gorithm and the matrix. The Frobenius Norm of a matrix A
is:

∥A∥F=

(
m

∑
i=1

n

∑
j=1
|ai j|2

)1/2

(11)

In this analysis, we focus solely on the variance terms pre-
sented in Section 5. By defining the 0-th power of any matrix
M ∈ Rn×n as the identity matrix In and ignoring coefficients,
we observe the following patterns:

V(TriTR) = O(σ2∥A2∥2
F) (12)

V(TriMTR) = O(σ2∥A2∥2
F+nσ

4∥A1∥2
F) (13)

V(TriOR) = O(σ2∥A2∥2
F+nσ

4∥A1∥2
F+n2

σ
6∥A0∥2

F) (14)

V(QuaTR) = O(σ2∥A3∥2
F+nσ

4∥A2∥2
F) (15)

6 Second Round’s Randomizer

The two-round algorithms need to provide edge LDP for
the data randomized in the first round, which makes it chal-
lenging to determine ∆ f and thus prevents directly using the
Laplace mechanism to achieve ε2-edge LDP. In this section,
we present our solution to this problem, including the key
ideas and implementation details.

6.1 Differential Privacy on Randomized Data

Key idea. Due to the randomness of ∆ f , we can utilize the
distribution of ∆ f to determine its β quantile. This approach
allows us to constrain ∆ f within a smaller range, thereby
providing ε2-edge LDP.

We employ the clamp function to bound ∆ f . Let κ denote
the bound set for ∆ f . We set κ equal to the larger absolute
value between the upper and lower β quantiles of ∆ f . Then, us-
ing clamp function: clamp(∆ f ,κ) = max(min(∆ f ,+κ),−κ)
to restrict the change. After clamping, the ∆ f = κ, then we
can provide ε2-edge LDP by Laplace mechanism.

If β is too small, it can reduce the error introduced by
clamping but may result in a larger ∆ f = κ, thereby introduc-
ing excessive noise in the second round. Conversely, if β is
too large, the error caused by clamp operation will increase.
Therefore, it is crucial to select an appropriate β. Then the
key challenge is to determine the appropriate ∆ f based on β.

Figure 5: Over Review of Triangle and Quadrangle Algo-
rithms. The intuitive form of Algorithms and the correspond-
ing powers of noisy adjacency matrix.

6.2 Implementation
The majority of real networks holds dmax≫ davg, if all nodes
employ the same ∆ f , this would result in excessive noise be-
ing added to the majority of nodes. To address this issue, for
each node vu, we utilize its noisy degree value d̃u to provide
a more tailored and tighter bound ∆ fu. We denote the privacy
budget allocated for obtaining d̃u as ε0. According to Proposi-
tion 1, this "customized" assignment of ∆ fu to each user still
ensures that the overall system provides (ε0 + ε1 + ε2) edge
LDP.

We use GraphProjection (showed in Algorithm 6) to obtain
noisy degrees d̃u. To prevent an excessive number of edges
from being removed in the graph, we introduce a parameter
α to d̃i. This ensures that edges of nodes with di ≤ α remain
intact, while nodes with di ≥ α have a probability of 1

2 e−
α
ε0

for edge removal.

Algorithm 6 GraphProjection

Input: Adjacency list ai, degree di, ε0, α.
Output: processed adjacency list a′i, noisy degree d̃i.

1: d̃i = ⌊α+max
{

di +Lap
(

1
ε0

)
,0
}
⌋

2: Remove di− d̃i neighbors randomly if d̃i < di to get a′i.
3: return a′i, d̃i

Let Neiu be the index set of the user vu’s neighbor. Φ−1 :
[0,1]→ R is the inverse distribution function of the standard
normal distribution. Then using Algorithm 7 replaces lines 4-
5 in TriTR, Algorithm 8 replaces lines 5-6 in TriMTR, and Al-
gorithm 9 replaces lines 5-6 in QuaTR. Each user vu, bounds
the change contributed by any one of vu’s neighbors to sumu
within (−∆ f ,+∆ f). The sumu’s difference between neigh-
bor lists au and a′u is kept below ∆ f . Consequently, adding
Lap(∆ f/ε2) noise achieves ε2-edge LDP. Let λu denote the
first input of each clamp function. Algorithms 7-9 possess the
following probabilistic guarantee to constrain the impact of
the clamp function on the final accuracy.

Theorem 11. It can be approximated that:

Pr [λu > ∆ fu]< β (16)

Pr [λu <−∆ fu]< β (17)

9

Algorithm 7 TriTR’s Second Randomizer

Input: Noisy adjacency matrix Â; user u’s noisy degree
d̃u, and it’s neighbor set Neiu; ε2.
Output: T̂u.

1: ∆ fu←Φ−1(1−β) ·
√

d̃uσ2 + d̃u
2: sumu← ∑i∈Neiu clamp(∑ j∈Neiu, j<i âi j,∆ fu)

3: T̂u← 2(sumu +Lap(∆ fu/ε2))
4: return T̂u

Algorithm 8 TriMTR’s Second Randomizer

Input: Noisy two-step matrix B̂’s u-th column b̂u; user
u’s noisy degree d̃u, and it’s neighbor set Nu; ε2.
Output: T̂u.

1: ∆ fu←Φ−1(1−β) ·
√
(n−2)σ4 +

(
d̃u + d̃max

)
σ2 + d̃u

2: sumu← ∑i∈N clamp(b̂iu,∆ fu)
3: T̂u← sumu +Lap(∆ fu/ε2)
4: return T̂u

Algorithm 9 QuaTR’s Second Randomizer

Input: Noisy two-step matrix B̂; user u’s noisy degree
d̃u, and it’s neighbor set Nu; ε2.
Output: Q̂u.

1: ∆ fu ← Φ−1(1 − β) ·
√

d̃u(2dmaxσ2 +(n−2)σ4) +

d̃u(dmax−1)
2: sumu← ∑i∈Neiu clamp(∑ j∈Neiu, j<i

(
b̂i j−1

)
,∆ fu)

3: Q̂u← 2(sumu +Lap(∆ fu/ε2))
4: return Q̂u

Because we use the Central Limit Theorem in the proof of
Theorem 11, the term "approximate" appears in the theorem.
Next, we present the safety and accuracy guarantees for each
two-round algorithm.

Theorem 12. TriTR provides (ε0 + ε1 + ε2)-edge LDP, and if
we use RR or Laplace mechanism in GNAM, the total MSE
satisfies:

MSE ⩽ O
(

nd3
max

ε2
1

+
|E|
ε2

1ε2
2
+n

d2
max

ε2
2

)
(18)

Theorem 13. TriMTR provides (ε0 + ε1 + ε2)-edge LDP, and
if we use RR or Laplace mechanism in GNAM, the total MSE
satisfies:

MSE ⩽ O
(

nd3
max

ε2
1

+
n2dmax

ε4
1

+
n2

ε4
1ε2

2
+n

d2
max

ε2
2

)
(19)

Theorem 14. QuaTR provides (ε0 + ε1 + ε2)-edge LDP, and
if we use RR or Laplace mechanism in GNAM, the total MSE

satisfies:

MSE ⩽ O
(

nd5
max

ε2
1

+
n2d3

max

ε4
1

+
n2dmax

ε4
1ε2

2
+n

d4
max

ε2
2

)
(20)

7 Theoretical Analysis

In this section, we theoretically analyze the proposed al-
gorithms to guide the experimental evaluation. Section 7.1
shows the convergence properties on relative error for both
two-round triangle counting algorithms. Section 7.2 develops
and analyzes a noisy degree-based estimation algorithm for
2-stars, complete with theoretical performance guarantees.
Section 7.3 presents a theoretical comparison between our
proposed algorithms and existing algorithms in the literature.

7.1 Convergence on Relative Err
The specific expression of MSE has already been provided in
the previous sections, so we now focus on RE.

To analyze the Relative Error, we will employ the Jensen’s
Inequality: E [|X−E [X] |] ⩽

√
V(X). In this way, we can

bounded the Absolute Error (ABE). Next, dividing ABE by
f△(G), we can bound RE.

Because the graph may not have any triangles, such as
in a bipartite graph, which would make RE meaningless.
Therefore, we need to make some constraints on the graph
structure. Assuming that the clustering coefficient (equals to
3×#triangles

#2-stars) exists, the relative error of TriTR and TriMTR
satisfies:

Theorem 15. If the clustering coefficient of the graph exists,
the RE of TriTR satisfies:

RE ⩽ O

 1
ε1davg

+
1

ε1ε2
√

nd
3
2
avg

+
1

ε2
√

ndavg

 ; (21)

The RE of TriMTR satisfies:

RE⩽O

 1
ε1davg

+
1

ε2
1d

3
2
avg

+
1

ε2
1ε2d2

avg
+

1
ε2
√

ndavg

 . (22)

According to Theorem 15, we can conclude that the denser
the network (larger davg), the smaller the relative error. This
also draws our attention to the fact that, given an overall
privacy budget ε = ε0+ε1+ε2, appropriately allocating more
to ε1 can reduce the overall error. Additionally, the accuracy
of TriTR and TriMTR slightly improves as the graph size
increases.

Since if all the privacy budget is considered as a constant,
both TriTR and TriMTR satisfy RE≤ O

(
1

davg

)
, we can con-

clude that the performance of these two algorithms in relative
err is not significantly different. Therefore, it can be seen that

10

Table 2: Theoretical Comparison of Private Subgraph Counting Algorithms.

Subgraph Algorithm Model Variance Timeuser Timedata collector CostDL

Triangle TriOR one-round O(nd3
max +n3) O(n) O(n2.371866) 0

Triangle RR△ [22] one-round O(n4) O(n) O(n3) 0
Triangle ARR△ [23] one-round O(n6) O(n) O(n2) 0
Triangle TriTR two-rounds O(nd3

max) O(n+d2
max) O(n2) O(n2)

Triangle 2R-Large△ [23] two-rounds O(nd3
max) O(n+d2

max) O(n2) O(n2)

Triangle TriMTR two-rounds O(nd3
max +n2dmax) O(n) O(n2.371866) O(n)

Triangle 2R-Small△ [23] two-rounds O(n2d3
max) O(n) O(n2) O(n)

Triangle Wshuffle△ [24] shuffle O(n3d2
max) O(n) O(n2) 0

Quadrangle QuaTR two-rounds O(nd5
max +n2d3

max) O(n+d2
max) O(n2.371866) O(n2)

Quadrangle Wshuffle□ [24] shuffle O(n3d2
max +n2d6

max) O(n) O(n2) 0
2-star 2STAR one-round O(∑n

i=1 d2
i) O(1) O(n) 0

2-star LocalLap2⋆ [22] one-round O(nd2
max) O(1) O(n) 0

TriMTR achieves a reduction in download cost by a factor
of 1

n at the cost of only a slight decrease in accuracy, which
should be considered a good trade-off in real-world applica-
tions.

7.2 Two-Star Counting
Through GraphProjection, we obtained d̃i, which not only
serves to mitigate the errors introduced in the second round
but also provides the count of 2-stars within the graph. This
can be specifically achieved by implementing Algorithm 10.

Algorithm 10 2STAR

Input: Adjacency list au, degree du, ε0, α.
Output: estimation of 2-stars in graph G.

1: for each node u = 1 to n do:
2: d̃u = GraphProjection(au,du,ε0,α)
3: upload d̂u to data collector

data collector do:
4: f̂ 2-star (G)← ∑

n
u=1
[
(d̃u−α)(d̃u−α−1)−2/ε2

0
]

5: return f̂ 2-star (G)

We cannot provide its exact theoretical MSE, but we can
explain the inspiration behind this algorithm and offer an
approximate theoretical guarantee:

Theorem 16. Let d̂u = du+Lap(1/ε0), f 2-star (G) denote the
true number of 2-star in graph G, then the estimator:

f̂ 2-star (G)←
n

∑
u=1

[
d̂u(d̂u−1)−2/ε

2
0
]

(23)

has the following properties:

E[f̂ 2-star (G)] = f 2-star (G) (24)

MSE(f̂ 2-star (G)) =
8
ε2

0

n

∑
u=1

d2
u −

16
ε2

0
|E|+ 2

ε2
0

n+
20
ε4

0
n (25)

RE ⩽ O(
1√

#2-star
) (26)

Algorithm 10 does not align fully with the above theorem
because the GraphProjection step requires ensuring d̃u ≥ α.
However, the discrepancy should be minimal. This is because
the majority of 2-stars in the graph are contributed by nodes
with higher degrees, and for these nodes, d̃u−α approximately
equals d̂u.

This implies that in practical implementations, the two-
round algorithm operates as follows: In the first round, each
user applies GraphProjection to obtain d̃u then applies GNAM
to generate ãu, both d̃u and ãu are uploaded to the data col-
lector. This allows the collector to simultaneously derive the
2-star count estimate before proceeding with the second round
for triangle or quadrangle estimation. If downloading the
entire matrix is acceptable in the second round, users can
download B̂ and upload T̂u and Q̂u concurrently, allowing
simultaneous estimation of triangle, quadrangle, and 2-star
counts.

7.3 Theoretical Comparison

Table 2 presents the state-of-the-art subgraph counting al-
gorithms under edge-LDP: RR△ [22], 2R-Large△ [23],
ARR△ [23], 2R-Small△ [23], Wshuffle△ [24], Wshuffle□
[24], LocalLap2⋆ [22] and our algorithms: TriOR, TriTR,
TriMTR, QuaTR, 2STAR.

ARR△ with a sampling probability p0 = O(n−
1
3) in edge-

sampling, the time complexity can be reduced to O(n2).
2R-Small△ (which is ARROneNS△ in [23]) with a sam-
pling probability p0 = eε+1

eε
√

n , the CostDL can be reduced to
O(n logn) [24]. It should be noted that the term log(n) in
CostDL arises from representing the node indices in binary
form, since the n nodes require log(n) bits. The transmission
of our algorithms uses floating-point numbers. If we treat the
number of bits required for floating-point numbers and for

11

representing n nodes as constants, then the CostDL for both
2R-Small△ and TriMTR is O(n).

Among one-round algorithms, TriOR has achieved an en-
hancement in accuracy while reducing the time complex-
ity. Although the theoretical analysis of TriTR does not in-
dicate improvement in precision, experiments in next sec-
tion demonstrate that TriTR has attained the highest accu-
racy among all algorithms. This discrepancy occurs because
TriTR introduces less cumulative noise in the second round
compared to 2R-Large△. When the CostDL is O(n), TriMTR
exhibits superior precision compared to 2R-Small△. QuaTR
surpasses Wshuffle□ in terms of accuracy. The 2STAR pro-
vides higher accuracy than LocalLap2⋆ since LocalLap2⋆ re-
quires first knowing or estimating dmax, after which each user
computes their local 2-star count, adds Lap(dmax/ε) noise,
and uploads the result. This noise addition leads to larger
MSE than 2STAR.

8 Experimental Evaluation

In this section, we will conduct experimental tests on all the
algorithms proposed in this paper. The experiments are de-
signed to address the following questions:

RQ1. Does the selection of different DP mechanisms in
GNAM affect the accuracy of the algorithm? If so, is the
impact significant?

RQ2. For the two-round algorithms in this paper, which
parts have a significant impact on the precision of the algo-
rithms? Is it due to the algorithm framework, the GraphPro-
jection, or the noise addition in the second round?

RQ3. How does the comparison of the algorithms provided
in this paper with existing algorithms in practical applica-
tions? Does it align with the theoretical analysis?

8.1 Experimental Set-up
Datasets. We used the following two real graph datasets, they
can be downloaded at [33] :

Facebook [34]. The first dataset is Facebook, which con-
tains 4039 users and 88234 edges. Facebook data was col-
lected from survey participants using the Facebook app. If
users i and j are in a friendship relationship, an undirected
edge will be connected between them.

CA-AstroPH [32]. The second dataset is Astro Physics col-
laboration network, which contains 18,772 users and 198,110
edges. CA-AstroPH is from the arXiv e-print and covers sci-
entific collaborations between authors papers submitted to
the Astro Physics category. If an author i co-authored a paper
with the author j, the graph contains an undirected edge from
i to j.

Experimental set up. We performed the experiments on
a system equipped with an 11th Gen Intel(R) Core(TM) i7-
11700K CPU @ 3.60 GHz, 3600 MHz, 8 cores, and 16 logical
processors. We took 12 data points for total privacy budget ε

Figure 6: The Relative Error Comparison between RR and
Laplace Mechanism. The solid lines all use RR, while the
dashed lines use the Laplace mechanism.

ranging from 0.1 to 2, ran the algorithm 20 times for each data
point, and then averaged the experimental results to calculate
the MSE and RE. For the two round algorithms in this paper,
we uniformly set α = 20, β = 0.01, ε0 = 0.1ε, ε1 = 0.8ε, and
ε2 = 0.1ε.

To RQ1, each algorithm in this paper is experimentally
evaluated respectively under the RR and Laplace mechanisms.

To RQ2, we conduct experiments on each two-round algo-
rithm across four stages: Stage 1, the total privacy budget ε is
entirely allocated to ε1 in GNAM, without applying Graph-
Projection or second-round noise addition. Stage 2, based on
the previous stage, we reduce the privacy budget of GNAM,
setting ε1 = 0.8ε. Stage 3, GraphProjection is added before
GNAM. Stage 4, in the last stage, added second-round noise
to complete the entire algorithm.

To RQ3, we replicate a subset of the algorithms from Table
2: RR△, 2R-Large△, and Wshuffle△. These three are com-
pared with our TriOR, TriTR, and TriMTR, respectively. The
use of Wshuffle△ instead of 2R-Small△ is based on the find-
ings in [24], which demonstrate that Wshuffle△ consistently
outperforms 2R-Small△ in practical performance.

8.2 Experimental Results
Figures 6 provides answers to RQ1. A comparison between
the RR and Laplace mechanisms shows that, under the same
privacy budget, RR consistently achieves higher accuracy than
the Laplace mechanism. This is consistent with the theory
presented in the paper, as the variance σ2 of RR is approxi-
mately half that of the Laplace mechanism under the same
privacy budget. Additionally, it is noticeable that the curves
for RR and Laplace corresponding to TriOR, TriMTR, and
TriTR diverge more as the privacy budget decreases. This is
because their variances are inversely proportional to σ−2, σ−4,
and σ−6, respectively. Furthermore, the accuracy of TriOR,
TriMTR, and TriTR decreases as ε decreases, which is also
due to the same reason. Since RR achieves higher accuracy
and existing algorithms also use RR, all following data will
use RR in GNAM.

12

Figure 7: The Relative Error of Two-Round Algorithms at
Different Stages. The three figures respectively show the per-
formance of TriTR, TriMTR, and QuaTR.

Figures 7 provides answers to RQ2. A comparison be-
tween the red and green lines reveals minimal divergence,
indicating that a slight reduction in ε1 has negligible impact
on overall accuracy. Comparative analysis reveals a larger
divergence in TriTR between the blue and green trajecto-
ries, whereas TriMTR and QuaTR exhibit marginal variations.
This shows that GraphProjection is not the primary determi-
nant of accuracy degradation. The most noticeable change
occurs after the addition of second-round noise, where the
relative error of the three two-round algorithms shows a more
significant increase.

Figures 8 provides answers to RQ3. As demonstrated, all
solid lines remain consistently below their dashed counter-
parts (except TriOR and RR△), which is perfectly consistent
with the theoretical analysis presented in Section 7. The ob-
served anomalies in TriOR and RR△ arise from the scaling op-
eration applied to RR△ during the theoretical MSE derivation
process. The triplet enumeration based RR△ required 63,033
s for 240 estimations on Facebook dataset (vs. TriOR’s 780
s). In CA-AstroPH, TriOR required 17, 955 s, while RR△’s

Figure 8: Comparison of Relative Errors among Existing Pri-
vate Triangle Counting Algorithms. Comparative curves em-
ploy same coloration, where solid lines represent our proposed
algorithm, and dashed lines denote the existing algorithms.

Figure 9: The Relative Error Comparison between 2-Star
Counting Algorithms

prohibitive computational cost prevented its evaluation.
Figure 9 compares the 2-star counting algorithms. It

can be observed that 2STAR achieves higher accuracy than
LocalLap2⋆. On CA-AstroPH, 2STAR exhibits a faster de-
creasing rate, which is due to its lower davg. This causes the
20
ε4 n term in its MSE to play a more significant role, resulting
in a higher rate of change with respect to ε.

Tables 3 provides the accuracy, computation time and
CostDL of our algorithms. The data is stored in float64 for-
mat. From the perspective of relative error, the four algorithms
achieve high accuracy (RE < 0.4). It can also be observed
that the algorithm achieves higher accuracy on Facebook com-
pared to CA-AstroPH. For TriOR, this is due to the increase in
n, as the actual number of triangles struggles to keep up with
the growth of the term O(n3) in MSE. As for the two-round
algorithms, this is primarily because Facebook has larger davg.

9 Conclusion

This paper proposes TriOR, TriTR, TriMTR, and QuaTR al-
gorithms based on the properties of noisy adjacency matrices.
We implement edge LDP guarantees for the second round
of two-round algorithms using a confidence interval-inspired

13

Table 3: Performance of the Proposed Algorithms.

(a) Facebook

Algorithm RE (ε = 1.0) RE (ε = 2.0) Time CostDL

TriOR 3.49×10−2 5.07×10−3 3.25 s 0
TriTR 1.85×10−2 7.82×10−3 5.58 s 124.97 MB
TriMTR 3.01×10−2 7.45×10−3 2.20 s 31.58 KB
QuaTR 1.11×10−1 5.03×10−2 3.53 s 124.97 MB
2STAR 5.41×10−4 2.81×10−4 0.01 s 0

(b) CA-AstroPH

Algorithm RE (ε = 1.0) RE (ε = 2.0) Time CostDL

TriOR 3.96×10−1 4.65×10−2 74.8 s 0
TriTR 3.03×10−2 1.44×10−2 22.6 s 2.66 GB
TriMTR 9.26×10−2 1.70×10−2 65.8 s 147.46 KB
QuaTR 3.53×10−1 1.24×10−1 67.1 s 2.66 GB
2STAR 4.42×10−4 1.78×10−4 0.04 s 0

mechanism, while designing the 2STAR algorithm for 2-star
counting. Theoretical upper bounds on MSE are established
for every algorithm. The experimental evaluation demon-
strates that TriOR achieves an accuracy comparable to the
existing one-round algorithm while reducing the time com-
plexity to O(n2.371866). Other proposed algorithms exhibit
precision improvements over existing algorithms. All Algo-
rithms maintain relative errors below 0.4 with reasonable
privacy budgets ε = 1.

In future work, we will integrate the noisy adjacency matrix
with the graph convolutional neural network to enable model
training while preserving users’ edge privacy.

References

[1] ACHARYA, J., SUN, Z., AND ZHANG, H. Hadamard
response: Estimating distributions privately, efficiently,
and with little communication. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statis-
tics (2019), PMLR, pp. 1120–1129.

[2] ALIAKBARPOUR, M., BISWAS, A. S., GOULEAKIS, T.,
PEEBLES, J., RUBINFELD, R., AND YODPINYANEE, A.
Sublinear-time algorithms for counting star subgraphs
via edge sampling. Algorithmica 80 (2018), 668–697.

[3] AVRON, H. Counting triangles in large graphs using ran-
domized matrix trace estimation. In Workshop on Large-
scale Data Mining: Theory and Applications (2010),
vol. 10, p. 9.

[4] BALLE, B., BELL, J., GASCÓN, A., AND NISSIM, K.
The privacy blanket of the shuffle model. In Advances
in Cryptology–CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA,

August 18–22, 2019, Proceedings, Part II 39 (2019),
Springer, pp. 638–667.

[5] BERA, S. K., AND SESHADHRI, C. How the degen-
eracy helps for triangle counting in graph streams. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (2020),
pp. 457–467.

[6] BERNAU, D., ROBL, J., GRASSAL, P. W., SCHNEIDER,
S., AND KERSCHBAUM, F. Comparing local and central
differential privacy using membership inference attacks.
In IFIP Annual Conference on Data and Applications
Security and Privacy (2021), Springer, pp. 22–42.

[7] BI, M., WANG, Y., CAI, Z., AND TONG, X. A privacy-
preserving mechanism based on local differential pri-
vacy in edge computing. China Communications 17, 9
(2020), 50–65.

[8] BJÖRKLUND, A., LOKSHTANOV, D., SAURABH, S.,
AND ZEHAVI, M. Approximate counting of k-paths:
Deterministic and in polynomial space. In 46th In-
ternational Colloquium on Automata, Languages, and
Programming (ICALP 2019) (2019), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[9] CHEU, A., SMITH, A., ULLMAN, J., ZEBER, D., AND
ZHILYAEV, M. Distributed differential privacy via shuf-
fling. In Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darm-
stadt, Germany, May 19–23, 2019, Proceedings, Part I
38 (2019), Springer, pp. 375–403.

[10] CHIBA, N., AND NISHIZEKI, T. Arboricity and sub-
graph listing algorithms. SIAM Journal on computing
14, 1 (1985), 210–223.

[11] COPPERSMITH, D., AND WINOGRAD, S. Matrix mul-
tiplication via arithmetic progressions. In Proceedings
of the nineteenth annual ACM symposium on Theory of
computing (1987), pp. 1–6.

[12] DONG, J., ROTH, A., AND SU, W. J. Gaussian differ-
ential privacy. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 84, 1 (2022), 3–37.

[13] DUAN, R., WU, H., AND ZHOU, R. Faster matrix mul-
tiplication via asymmetric hashing. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science
(FOCS) (2023), IEEE, pp. 2129–2138.

[14] DWORK, C. Differential privacy. In International
colloquium on automata, languages, and programming
(2006), Springer, pp. 1–12.

14

[15] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH,
A. Calibrating noise to sensitivity in private data anal-
ysis. In Theory of Cryptography: Third Theory of
Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006. Proceedings 3 (2006), Springer,
pp. 265–284.

[16] DWORK, C., ROTH, A., ET AL. The algorithmic founda-
tions of differential privacy. Foundations and Trends®
in Theoretical Computer Science 9, 3–4 (2014), 211–
407.

[17] EDEN, T., LEVI, A., RON, D., AND SESHADHRI, C.
Approximately counting triangles in sublinear time.
SIAM Journal on Computing 46, 5 (2017), 1603–1646.

[18] EDEN, T., LIU, Q. C., RASKHODNIKOVA, S., AND
SMITH, A. Triangle counting with local edge differen-
tial privacy. arXiv preprint arXiv:2305.02263 (2023).

[19] ERLINGSSON, Ú., FELDMAN, V., MIRONOV, I.,
RAGHUNATHAN, A., TALWAR, K., AND THAKURTA,
A. Amplification by shuffling: From local to central
differential privacy via anonymity. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (2019), SIAM, pp. 2468–2479.

[20] FELDMAN, V., MCMILLAN, A., AND TALWAR, K.
Hiding among the clones: A simple and nearly opti-
mal analysis of privacy amplification by shuffling. In
2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS) (2022), IEEE, pp. 954–964.

[21] GONEN, M., RON, D., AND SHAVITT, Y. Counting
stars and other small subgraphs in sublinear-time. SIAM
Journal on Discrete Mathematics 25, 3 (2011), 1365–
1411.

[22] IMOLA, J., MURAKAMI, T., AND CHAUDHURI, K. Lo-
cally differentially private analysis of graph statistics.
In 30th USENIX security symposium (USENIX Security
21) (2021), pp. 983–1000.

[23] IMOLA, J., MURAKAMI, T., AND CHAUDHURI, K.
{Communication-Efficient} triangle counting under lo-
cal differential privacy. In 31st USENIX security sympo-
sium (USENIX Security 22) (2022), pp. 537–554.

[24] IMOLA, J., MURAKAMI, T., AND CHAUDHURI, K. Dif-
ferentially private triangle and 4-cycle counting in the
shuffle model. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security
(2022), pp. 1505–1519.

[25] JIAN, X., WANG, Y., AND CHEN, L. Publishing graphs
under node differential privacy. IEEE Transactions on
Knowledge and Data Engineering 35, 4 (2021), 4164–
4177.

[26] KAIROUZ, P., BONAWITZ, K., AND RAMAGE, D. Dis-
crete distribution estimation under local privacy. In
International Conference on Machine Learning (2016),
PMLR, pp. 2436–2444.

[27] KALLAUGHER, J., MCGREGOR, A., PRICE, E., AND
VOROTNIKOVA, S. The complexity of counting cycles
in the adjacency list streaming model. In Proceedings of
the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (2019), pp. 119–133.

[28] KARTUN-GILES, A. P., AND KIM, S. Counting k-hop
paths in the random connection model. IEEE Transac-
tions on Wireless Communications 17, 5 (2018), 3201–
3210.

[29] KASIVISWANATHAN, S. P., NISSIM, K., RASKHOD-
NIKOVA, S., AND SMITH, A. Analyzing graphs with
node differential privacy. In Theory of Cryptography:
10th Theory of Cryptography Conference, TCC 2013,
Tokyo, Japan, March 3-6, 2013. Proceedings (2013),
Springer, pp. 457–476.

[30] KOLOUNTZAKIS, M. N., MILLER, G. L., PENG, R.,
AND TSOURAKAKIS, C. E. Efficient triangle count-
ing in large graphs via degree-based vertex partitioning.
Internet Mathematics 8, 1-2 (2012), 161–185.

[31] LE GALL, F. Powers of tensors and fast matrix multi-
plication. In Proceedings of the 39th international sym-
posium on symbolic and algebraic computation (2014),
pp. 296–303.

[32] LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C.
Graph evolution: Densification and shrinking diameters.
ACM transactions on Knowledge Discovery from Data
(TKDD) 1, 1 (2007), 2–es.

[33] LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[34] LESKOVEC, J., AND MCAULEY, J. Learning to dis-
cover social circles in ego networks. Advances in neural
information processing systems 25 (2012).

[35] LIU, Y., ZHAO, S., LIU, Y., ZHAO, D., CHEN, H., AND
LI, C. Collecting triangle counts with edge relationship
local differential privacy. In 2022 IEEE 38th Interna-
tional Conference on Data Engineering (ICDE) (2022),
IEEE, pp. 2008–2020.

[36] MANJUNATH, M., MEHLHORN, K., PANAGIOTOU, K.,
AND SUN, H. Approximate counting of cycles in
streams. In Algorithms–ESA 2011: 19th Annual Eu-
ropean Symposium, Saarbrücken, Germany, September
5-9, 2011. Proceedings 19 (2011), Springer, pp. 677–
688.

15

http://snap.stanford.edu/data
http://snap.stanford.edu/data

[37] MCGREGOR, A., AND VOROTNIKOVA, S. Triangle
and four cycle counting in the data stream model. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (2020),
pp. 445–456.

[38] MCSHERRY, F. D. Privacy integrated queries: an exten-
sible platform for privacy-preserving data analysis. In
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data (2009), pp. 19–30.

[39] MORRIS, C. The number of data breaches in 2021 has
already surpassed last year’s total, 2021.

[40] MURAKAMI, T., AND KAWAMOTO, Y. {Utility-
optimized} local differential privacy mechanisms for
distribution estimation. In 28th USENIX Security Sym-
posium (USENIX Security 19) (2019), pp. 1877–1894.

[41] NASERI, M., HAYES, J., AND DE CRISTOFARO, E.
Local and central differential privacy for robustness
and privacy in federated learning. arXiv preprint
arXiv:2009.03561 (2020).

[42] NGUYEN, D., HALAPPANAVAR, M., SRINIVASAN, V.,
AND VULLIKANTI, A. Faster approximate subgraph
counts with privacy. Advances in Neural Information
Processing Systems 36 (2024).

[43] NISSIM, K., RASKHODNIKOVA, S., AND SMITH, A.
Smooth sensitivity and sampling in private data anal-
ysis. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing (2007), pp. 75–84.

[44] ORTMANN, M., AND BRANDES, U. Triangle listing al-
gorithms: Back from the diversion. In 2014 Proceedings
of the Sixteenth Workshop on Algorithm Engineering
and Experiments (ALENEX) (2014), SIAM, pp. 1–8.

[45] QIN, Z., YU, T., YANG, Y., KHALIL, I., XIAO, X.,
AND REN, K. Generating synthetic decentralized social
graphs with local differential privacy. In Proceedings
of the 2017 ACM SIGSAC conference on computer and
communications security (2017), pp. 425–438.

[46] RASKHODNIKOVA, S., AND SMITH, A. Differentially
private analysis of graphs. Encyclopedia of Algorithms
(2016).

[47] RIBEIRO, P., PAREDES, P., SILVA, M. E., APARICIO,
D., AND SILVA, F. A survey on subgraph counting:
concepts, algorithms, and applications to network motifs
and graphlets. ACM Computing Surveys (CSUR) 54, 2
(2021), 1–36.

[48] SATISH, N., SUNDARAM, N., PATWARY, M. M. A.,
SEO, J., PARK, J., HASSAAN, M. A., SENGUPTA, S.,
YIN, Z., AND DUBEY, P. Navigating the maze of graph

analytics frameworks using massive graph datasets. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data (2014), pp. 979–990.

[49] SESHADHRI, C., PINAR, A., AND KOLDA, T. G. Tri-
adic measures on graphs: The power of wedge sampling.
In Proceedings of the 2013 SIAM international confer-
ence on data mining (2013), SIAM, pp. 10–18.

[50] STOTHERS, A. J. On the complexity of matrix multipli-
cation.

[51] STRASSEN, V. Gaussian elimination is not optimal.
Numerische mathematik 13, 4 (1969), 354–356.

[52] TSOURAKAKIS, C. E., KANG, U., MILLER, G. L.,
AND FALOUTSOS, C. Doulion: counting triangles in
massive graphs with a coin. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining (2009), pp. 837–846.

[53] WANG, N., ZHANG, J., TAN, K.-L., AND TUNG, A. K.
On triangulation-based dense neighborhood graph dis-
covery. Proceedings of the VLDB Endowment 4, 2
(2010), 58–68.

[54] WANG, T., BLOCKI, J., LI, N., AND JHA, S. Locally
differentially private protocols for frequency estimation.
In 26th USENIX Security Symposium (USENIX Security
17) (2017), pp. 729–745.

[55] WANG, T., MEI, Y., JIA, W., ZHENG, X., WANG, G.,
AND XIE, M. Edge-based differential privacy comput-
ing for sensor–cloud systems. Journal of Parallel and
Distributed computing 136 (2020), 75–85.

[56] WANG, Y., WU, X., AND HU, D. Using randomized
response for differential privacy preserving data col-
lection. In EDBT/ICDT Workshops (2016), vol. 1558,
pp. 0090–6778.

[57] WARNER, S. L. Randomized response: A survey tech-
nique for eliminating evasive answer bias. Journal of the
American Statistical Association 60, 309 (1965), 63–69.

[58] WILLIAMS, V. V. Multiplying matrices faster than
coppersmith-winograd. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing
(2012), pp. 887–898.

[59] YANG, M., GUO, T., ZHU, T., TJUAWINATA, I., ZHAO,
J., AND LAM, K.-Y. Local differential privacy and
its applications: A comprehensive survey. Computer
Standards & Interfaces 89 (2024), 103827.

16

A Directed Graph Application

In the main text, we mentioned that our algorithm can be
easily adapted to directed graphs. This is because, by sim-
ply removing the symmetry condition in the definition of
the Noisy Adjacency Matrix, it can be seamlessly applied to
directed graphs while still preserving all its properties.

Here, we provide the definition of the noisy adjacency
matrix for directed graphs:

Definition 4 (Noisy adjacency matrix). Â is the noisy adja-
cency matrix of directed graph G ∈ G , if Â satisfies:

E
[
Â
]
= A; âii = 0, for any i ∈ [n];

âi j⊥âkl , for any i < j, k < l, (i, j) ̸= (k, l).

where A is the adjacency matrix of graph G, n is the number
of nodes.

It still retains the properties stated in Theorem 1. Moreover,
the subsequent algorithm design is largely similar to that for
undirected graphs, with the only necessary adjustment being
the consideration of directionality. Here, if we define triangles
and quadrangles in directed graphs as 3/4-step loops without
traversing the same edge more than once, the corresponding
algorithms are as follows:

Algorithm 11 GNAM’

Input: ε ∈ R≥0, graph G’s adjacency list a1,a2,...,an ∈
{0,1}n .
Output: Noisy adjacency matrix of graph G.

1: for each user u = 1 to n do:
2: ãu← local randomizer(au,ε)
3: send ãu to data collector

Data collector do:
4: Â← estimate algorithm

(
Ã
)

5: return Â

Algorithm 12 TriOR’

Input: ε ∈ R≥0, graph G .
Output: Estimate f̂△ (G) of f△ (G).

1: Â← GNAM(G,ε)
2: return tr

(
Â3
)
/3

Algorithm 13 TriTR’

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂△ (G) of f△ (G).
#First round:

1: Â← GNAM(G,ε1)
#Second round:

2: for each user u = 1 to n do:
3: download Â
4: sumu← ∑(i, j):aui=a ju=1 âi j

5: T̂u← second randomizer(sumu,ε2)
6: upload T̂u to data collector

data collector do:
7: f̂△ (G)← 1

3 ∑
n
i=u T̂u

8: return f̂△ (G)

Algorithm 14 TriMTR’

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂△ (G) of f△ (G).
#First round:

1: Â← GNAM(G,ε1)
2: Data collector calculate: B̂← Â2

#Second round:
3: for each node u = 1 to n do:
4: download the u-th column of B̂
5: sumu← ∑i:aui=1 b̂iu

6: T̂u← second randomizer(sumu,ε2)
7: upload T̂u to data collector

Data collector do:
8: f̂△ (G)← 1

3 ∑
n
u=1 Tu

9: return f̂△ (G)

Algorithm 15 QuaTR’

Input: Graph G, ε1,ε2 ∈ R≥0.
Output: Estimate f̂□ (G) of f□ (G).
#First round:

1: Â← GNAM(G,ε1)
2: Data collector calculate: B̂← Â2

#Second round:
3: for each node u = 1 to n do:
4: download B̂
5: sumu← ∑(i, j):aui=a ju=1 b̂i j

6: Q̂u← second randomizer(sumu,ε2)
7: upload Q̂u to data collector

Data collector do:
8: f̂□ (G)← 1

4 ∑
n
u=1 Q̂u

9: return f̂□ (G)

Among these changes, there are only three modifications:
(1) the coefficient by which each algorithm divides at the end

17

Table 4: Relative Err of Estimations for Triangle, Quadrangle
and 2-Star (ε = 1.1).

Dataset TriMTR QuaTR 2STAR
Facebook 0.0301 0.1108 0.0052

CA-AstroPH 0.0926 0.3531 0.0322

is adjusted to account for the single directionality of edges
in directed graphs, as opposed to the bidirectional nature in
undirected graphs; (2) in the quadrangle algorithm, there is
no need to subtract 1 in line 5, as the directed nature of the
edges prevents traversal back along the original path; and
(3) in TriTR and QuaTR, when calculating sumu, the noise
relationship added changes from aui = au j = 1 to aui = a ju =
1.

Furthermore, although their variances do not match the
specific expressions in undirected graphs, they still satisfy
the Variance in Matrix Form when coefficients are ignored.
The proofs for directed graphs are not elaborated in detail
here, as the proof methodology closely resembles that used
for undirected graphs.

B Weighted Graph Application

If the original adjacency matrix A ∈ Rn×n, it still retains the
properties stated in Theorem 1, as the proof of Theorem 1
does not require A to belong to {0,1}n×n. When dealing with
weighted graphs, GNAM can utilize the Laplace mechanism
for edge-LDP.

C Estimate Three Subgraphs in Two Rounds

Table 4 shows the estimation performance for three sub-
graphs obtained by two-round query. We allocated ε0 = 0.1
to GraphProjection, ε1 = 0.8 to GNAM, ε2 = 0.1 to the sec-
ond round of TriMTR, and ε3 = 0.1 to the second round of
QuaTR. Thus, a total privacy budget of ε = 1.1 suffices to es-
timate all three subgraph counts while achieving the accuracy
shown in the table.

D Second Round Risk without Randomizer

At the beginning of Chapter 6, we mentioned the necessity
of addressing the issue of adding noise in the second round,
as directly uploading sumu is not feasible. Uploading sumu
directly would not only fail to provide ε2-edge LDP in the
second round but also expose to the following attack risks:

If the DP mechanism employed in GNAM is a continu-
ous noise mechanism, such as the Laplace Mechanism or
Gaussian Mechanism. Because the probability of the contin-
uous random variable taking any specific value is zero, this
characteristic enables the following potential attack strategy:

Assume adversary can obtain the noisy adjacency matrix
Â. The adversary can enumerate node vu’s possible neighbor
list: Nei′u. Denote the true neighbor list of user vu as Neiu. If
a certain Nei′u satisfies: For TriTR, ∑i, j∈Nei′u âi j = sumu; For
TriMTR, ∑i∈Nei′u b̂iu = sumu; For QuaTR, ∑i, j∈Nei′u b̂i j = sumu.
Then the adversary can determine that this N(u)′ is the correct
neighbor list (Neiu) of vu.

E Proof of Statements

E.1 Proof of Theorem 1
Given that the noisy adjacency matrix Â satisfies all the con-
ditions of Definition 7, we can view Â from an alternative
perspective: Â = A+X , where A is the adjacency matrix of
the original graph, and X is a noise matrix that satisfies the
following properties:

E[X] = 0;
XT = X ;

xii = 0, for any i ∈ [n];
xi j ⊥ xkl , for any i < j,k < l,(i, j) ̸= (k, l)

First properity. B̂ = (A+X)2 = A2 +AX +XA+X2.
For each i, j, i ̸= j:

b̃i j = bi j +
n

∑
k=1

aikxk j +
n

∑
k=1

xikak j +
n

∑
k=1

xikxk j.

Focusing on the second item:

E[
n

∑
k=1

aikxk j] =
n

∑
k=1

E[aikxk j] =
n

∑
k=1

0 = 0.

The third item is similar to the second item. Then the forth
item, since i ̸= j, xik and xk j are independent. Therefore, we
have:

E[
n

∑
k=1

xikxk j] =
n

∑
k=1

E[xikxk j] =
n

∑
k=1

E[xik]E[xk j] = 0

Therefore, For each i, j, i ̸= j, E[b̂i j] = bi j.

Second peoperity. C̃ = (A + X)3 = A3 + AAX + AXA +
XAA+AXX +XAX +XXA+X3.

For each i:

c̃ii =cii +
n

∑
j=1

n

∑
k=1

ai ja jkxki +
n

∑
j=1

n

∑
k=1

ai jx jkaki +
n

∑
j=1

n

∑
k=1

xi ja jkaki

+
n

∑
j=1

n

∑
k=1

ai jx jkxki +
n

∑
j=1

n

∑
k=1

xi ja jkxki +
n

∑
j=1

n

∑
k=1

xi jx jkaki

+
n

∑
j=1

n

∑
k=1

xi jx jkxki

18

The expected value of each subsequent term is zero except
for the first term, .

For the second, third, and fourth terms, each summation
contains only a single x. Since E[x] = 0, the expectation of
these terms is also zero.

For the fifth, sixth, and seventh terms, each summation con-
tains two terms xi j and x jk. Given E[xi j] = 0 and E[x jk] = 0,
if these terms are independent, their product has an expec-
tation of zero. If they are not independent, (i, j) = (j,k) or
(i, j) = (k, j), there exist i = k or j = k, because aii = 0 for
any i ∈ [n], we have E[akixi jx jk] = 0.

Therefore, the expectation of the fifth, sixth, and seventh
terms is zero.

For the eighth term, each summation includes xi jx jkxki. If
these three terms are independent, the expectation of their
product is the product of their expectations, which equals zero.
If at least two among xi j, x jk, and xki are not independent, then
at least one pair among i, j, and k must be equal. Then for
any i, xii = 0, which consequently ensures that the product of
them is zero. Therefore, in all cases, the expectation of the
eighth term is zero. Then for each i, E[ĉii] = cii.

E.2 Proof of Theorem 2

In the adjacency list ai of node vi, ai j = 1 indicates that node
vi can reach node v j in one step, while 0 indicates that it
cannot. Thus, for any two adjacent adjacency lists ai and
a′i, they differ by at most one bit, ∆ f = 1. According to the
Laplace mechanism theorem as guaranteed by [15], we have:

The local randomizer R satisfies: for any two neighbor-
ing lists ai,a′i ∈ {0,1}n that differ by one bit and any S ⊆
Range(R),

Pr[R (ai) ∈ S]≤ eε Pr[R (a′i) ∈ S].

Thus, uploading ãi can provide ε-edge LDP.
Each node only uploads the connection information with

nodes that have a smaller index. This approach is taken to
avoid the scenario where the information of the same edge is
uploaded by both of its endpoints. According to the composi-
tion theorem [15], if an adversary gains access to information
uploaded by both of them, it would only guarantee 2ε-edge
differential privacy [43].

E.3 Proof of Proposition 3

If X = 1, then Y = eε

eε−1 . If X = 0, then Y takes Y = − 1
eε−1 .

Given the original true value is 1, we have the expected value
E[Y] = eε

eε+1 ·
eε

eε−1 −
1

eε+1 ·
1

eε−1 = 1. Given the original true
value is 0, we have the expected value E[Y] = eε

eε+1 ·
−1

eε−1 +
1

eε+1 ·
eε

eε−1 = 0.

E.4 Proof of Theorem 3
Given that GNAM provides ε1-edge LDP, and based on the
immunity to post-processing [14], it follows that TriTR also
provides ε1-edge LDP.

E.5 Lemma 1
To facilitate subsequent proofs, let us get Lemma 1.

Lemma 1. Let Z1,Z2, . . . be a sequence of mutually inde-
pendent random variables, and for each i, E [Zi] = 0. Then,
for two finite integer sequences α = (α1,α2, . . . ,αn1) and
β = (β1,β2, . . . ,βn2), and their corresponding exponent se-
quences k = (k1, ...,kn1) ∈ {1,2}

n1 , l = (l1, ..., ln2) ∈ {1,2}
n2

satisfies:

E

(
n1

∏
i=1

Zki
αi

)
= 0,E

(
n2

∏
i=1

Zli
βi

)
= 0

And there exists a number m ∈ α∪ β, m /∈ α∩ β, and the
corresponding exponent q for that number m is 1, it holds
that:

V

(
n1

∏
i=1

Zki
αi +

n2

∏
i=1

Zli
βi

)
= V

(
n1

∏
i=1

Zki
αi

)
+V

(
n2

∏
i=1

Zli
βi

)

Proof.

V

(
n1

∏
i=1

Zki
αi +

n2

∏
i=1

Zli
βi

)

= E

(
n1

∏
i=1

Zki
αi +

n2

∏
i=1

Zli
βi

)2

= E

[
n1

∏
i=1

Zki
αi

]2

+E

[
n2

∏
i=1

Zli
βi

]2

+2E

[
n1

∏
i=1

Zki
αi ·

n2

∏
i=1

Zli
βi

]

= V

(
n1

∏
i=1

Zki
αi

)
+V

(
n2

∏
i=1

Zli
βi

)

The expectation E
[
∏

n1
i=1 Zki

αi ·∏
n2
i=1 Zk′i

βi

]
= 0 holds because

there exists an m ∈ α∪β, m /∈ α∩β and the exponent of Zm
is 1. Because the independence among Zi, Zm can be factored
out. Let Q denote the remaining product. Then we have:

E

[
n1

∏
i=1

Zki
αi ·

n2

∏
i=1

Zli
βi

]
= E [Zm] ·E [Q] = 0

E.6 Proof of Theorem 4
In the proof that follows, we continue to use the notation in
Theorem 1, denoting Â = A+X .

19

The proof of unbiasedness follows easily from the second
clause of Theorem 3:

E

[
tr
(
Â3
)

6

]
=

tr
(
A3
)

6
= f△ (G)

Then the MSE:

MSE(f̂△(G)) = E
[

f̂△(G)−E
[

f̂△(G)
]]2

= E
[

f̂△(G)− f△(G)
]2

= V(f̂△(G)).

On the diagnal:

ĉii =cii +
n

∑
j=1

n

∑
k=1

ai ja jkxki +
n

∑
j=1

n

∑
k=1

ai jx jkaki +
n

∑
j=1

n

∑
k=1

xi ja jkaki

+
n

∑
j=1

n

∑
k=1

ai jx jkxki +
n

∑
j=1

n

∑
k=1

xi ja jkxki +
n

∑
j=1

n

∑
k=1

xi jx jkaki

+
n

∑
j=1

n

∑
k=1

xi jx jkxki

Therefore:

V
(
tr
(
Â3))= V

(
n

∑
i=1

ĉii

)

= V
(n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkaki +3
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

+3
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki +
n

∑
i=1

n

∑
j=1

n

∑
k=1

xi jx jkxki

)
According to Lemma 1, the variance of the aforementioned

expression is equal to the sum of the variances of its individual
components:

V
(
tr
(
Â3))=

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkaki

)
+9V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

)

+9V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

)
+V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

xi jx jkxki

)

Next, the overall variance can be calculated by determining
the variance of these four components. The first:

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkaki

This is a constant, equal to tr(A3), and its variance is 0.
The second item:

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

From the perspective of the graph, ai ja jk means that there
exist a path starting from vi and passing through v j to vk in
the actual graph. If this path exists, then xki will be added to
this term. So xi j will be added bi j times. Since this is in an
undirected graph, x ji will also be added bi j times, and xi j = x ji,
therefore:

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki = 2
n

∑
i=1

n

∑
j=i+1

bi jxi j

Given that V(xi j) = V(ai j) = σ2, we have:

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

)
= 4σ

2
n

∑
i=1

n

∑
j=i+1

b2
i j

Next, we analyze the third term:
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki =
n

∑
i=1

n

∑
j=1

ai j

n

∑
k=1

x jkxki

If there exists an undirected edge (vi,v j) in the graph, then
∑

n
k=1 x jkxki will be added into the third term. Let Iproposition = 1

if the proposition holds true, and Iproposition = 0 otherwise. In
addition, beacuse xii = 0, therefore:

n

∑
i=1

n

∑
j=1

ai j

n

∑
k=1

x jkxki = 2
n

∑
i=1

n

∑
j=i+1

(
I(vi,v j)∈E ·

n

∑
k=1,k ̸=i, j

xikxk j

)
According to Lemma 1, and V(xikxk j) = V(xik) ·V(xk j) =

σ4. Therefore:

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

)
= 4σ

4(n−2)|E|

The fourth term:
n

∑
i=1

n

∑
j=1

n

∑
k=1

xi jx jkxki

Since in an undirected graph, xi j = x ji, xii = 0, thus:

n

∑
i=1

n

∑
j=1

n

∑
k=1

xi jx jkxki = 6
n

∑
i=1

n

∑
j=i+1

n

∑
k= j+1

xi jx jkxki

Based on Lemma 1, and V(xi jx jkxki) = V(xi j) · V(x jk) ·
V(xki) = σ6, we get:

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

xi jx jkxki

)
= 6σ

6n(n−1)(n−2)

According to all the above equations, we get:

MSE(f̂△ (G))

= V(f̂△1 (G)) = V
(
tr
(
Â3)/6

)
= σ

2
n

∑
i=1

n

∑
j=i+1

b2
i j +σ

4(n−2)|E|+1
6

σ
6n(n−1)(n−2)

20

Even if each node has dmax edges, there can be at most
n · d2

max paths of the form vi → v j → vk in the graph. Each
bi j ⩽ dmax. Given a fixed number of paths like vi → v j →
vk, concentrating all the paths on ndmax bi j, each bi j = dmax,
can maximize ∑

n
i=1 ∑

n
j=i+1 b2

i j to nd3
max. In undirected graph,

|E|= 1
2 ndavg ⩽ 1

2 ndmax, and n(n−1)(n−2)⩽ n3. Therefore:

MSE
(

f̂△ (G)
)
⩽ σ

2nd3
max +

1
2

σ
4n2dmax +

1
6

σ
6n3

Therefore,

MSE
(

f̂△ (G)
)
⩽ O(nd3

max +n3).

E.7 Proof of Theorem 5
According to Theorem 3, GNAM provides ε1-edge LDP, and
since the second randomizer provides ε2-edge LDP, by the
composition theorem, the entire TriTR provides (ε1 + ε2)-
edge LDP.

E.8 Proof of Theorem 6
Let us denote Â = A+X , where X follows the same property
as in Theorem 1. For each u:

sumu = ∑
(i, j):aui=au j=1

âi j =
n

∑
i=1

n

∑
j=1

auiau jâi j

=
n

∑
i=1

n

∑
j=1

auiau j (ai j + xi j) = 2 fu
△+

n

∑
i=1

n

∑
j=1

auiau jxi j.

where fu
△ is the number of triangles in which user u is

involved. Therefore:

n

∑
u=1

sumu = 2
n

∑
u=1

fu
△+

n

∑
u=1

n

∑
i=1

n

∑
j=1

auiau jxi j

The first item ∑
n
u=1 fu

△ = 3 f△ (G). For the second item,
because A = AT , X = XX , we get:

n

∑
u=1

n

∑
i=1

n

∑
j=1

auiau jxi j =
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

In the proof of Theorem 4, we get:

E

[
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

]
= 0

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

)
= 4σ

2
n

∑
i=1

n

∑
j=i+1

b2
i j

Therefore:

E

[
1
6

n

∑
i=1

sumu

]
= f△ (G)

V

[
1
6

n

∑
i=1

sumu

]
=

1
9

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j

Finally we get:

MSE

(
1
6

n

∑
i=1

sumu

)
=

1
9

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j

In the proof of Theorem 6, we have ∑
n
i=1 ∑

n
j=i+1 b2

i j ⩽

nd3
max, therefore:

MSE

[
1
6

n

∑
i=1

sumu

]
⩽ O(nd3

max)

E.9 Proof of Theorem 7
Since GNAM provides an ε1-edge LDP and the second
round’s second randomizer provides ε2-edge LDP, therefore,
according to the composition theorem, TriMTR provides
(ε1 + ε2)-edge LDP.

E.10 Proof of Theorem 8
Align with Theorem 1, Â = A+X . For each u:

sumu = ∑i:aui=1 b̂iu = ∑
n
i=1 auib̂iu

b̂iu = ∑
n
j=1 âi jâ ju = ∑

n
j=1 (ai j + xi j)(a ju + x ju)

Therefore:

n

∑
u=1

sumu

=
n

∑
u=1

n

∑
i=1

aui

n

∑
j=1

(ai j + xi j)(a ju + x ju)

=
n

∑
u=1

n

∑
i=1

n

∑
j=1

aui(ai j + xi j)(a ju + x ju)

=
n

∑
u=1

n

∑
i=1

n

∑
j=1

auiai ja ju +auixi ja ju +auiai jx ju +auixi jx ju

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkaki +2
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

=6 f△ (G)+2
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki +
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

In the proof of Theorem 4, we get:

21

E

[
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

]
= 0

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai ja jkxki

)
= 4σ

2
n

∑
i=1

n

∑
j=i+1

b2
i j

E

[
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

]
= 0

V

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jx jkxki

)
= 4σ

4(n−2)|E|

Therefore:

E

[
1
6

n

∑
i=1

sumu

]
= f△ (G)

V

[
1
6

n

∑
i=1

sumu

]
=

4
9

σ
2

n

∑
i=1

n

∑
j=i+1

b2
i j +

1
9

σ
4(n−2)|E|

In the proof of Theorem 6, we have ∑
n
i=1 ∑

n
j=i+1 b2

i j ⩽

nd3
max, |E|⩽ ndmax, therefore:

MSE

[
1
6

n

∑
i=1

sumu

]
⩽ O(nd3

max +n2dmax).

E.11 Proof of Theorem 9

Since GNAM provides an ε1-edge LDP and the second ran-
domizer provides ε2-edge LDP, therefore, according to the
composition theorem, QuaMTR provides (ε1 +ε2)-edge LDP.

E.12 Proof of Theorem 10
Align with Theorem 1, Â = A+X . For each u:

sumu

= ∑
(i, j)∈W

(
b̂i j−1

)
=

n

∑
i=1

n

∑
j=1

auiau j
(
b̂i j−1

)
=

n

∑
i=1

n

∑
j=1

auiau j

(
n

∑
k=1

âikâk j−1

)

=
n

∑
i=1

n

∑
j=1

auiau j

(
n

∑
k=1

(aik + xik)
(
ak j + xk j

)
−1

)

=
n

∑
i=1

n

∑
j=1

auiau j(
n

∑
k=1

aikak j +
n

∑
k=1

aikxk j +
n

∑
k=1

xikak j)

+
n

∑
i=1

n

∑
j=1

auiau j(
n

∑
k=1

xikxk j−1)

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkaku−
n

∑
i=1

n

∑
j=1

auiau j

+2
n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku +
n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

It should be noted that the physical meaning of
∑

n
i=1 ∑

n
j=1 ∑

n
k=1 auiau jaikak j is the number of ways node u

can return to itself after 4 steps. From the perspective of
taking four steps, ∑

n
i=1 ∑

n
j=1 auiau j encompasses two scenar-

ios: one is u→ i→ u→ i→ u, which corresponds to the
case where the same edge is traversed four times, specifically
when i = j; the other scenario is u→ i→ u→ j→ u, which
involves traversing one edge twice and then another edge
twice, specifically when i ̸= j. Therefore,

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiau jaikak j−
n

∑
i=1

n

∑
j=1

auiau j = 2 f□u .

Here, f□u represents the number of quadrangles that node u
is part of. This is because subtracting the two scenarios where
the path does not involve four distinct nodes from all possible
four-step paths leaves us with paths that traverse a quadrangle.
Since each quadrangle is traversed in both directions, the
count is twice that of f□u . Therefore:

E

[
1
8

n

∑
i=1

sumu

]
= f□ (G)

Then focus on the MSE (equals to Variance) part:

V

[
n

∑
i=1

sumu

]

=V

[
2

n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku +
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]

22

According to Lemma 1, we get:

V

[
n

∑
i=1

sumu

]

=4V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku

]
+V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]
The first item:

V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku

]
Let ci j represent the number of ways to reach node j from

node i in exactly three steps, i.e. ci j = ∑
n
k=1 ∑

n
l=1 aikaklal j.

Similarly to Theorem 6, based on Lemma 1 and the sym-
metry of A and Â, we have the following:

V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku

]

=V

[
n

∑
i=1

n

∑
j=i+1

2ci jxi j

]

=4
n

∑
i=1

n

∑
j=i+1

c2
i jσ

2

The second item:

V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]
Let’s make some changes to the above expression.

V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]

=V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

auiai j

n

∑
k=1

x jkxku

]

=V

[
n

∑
i=1

n

∑
j=i+1

2bi j

n

∑
k=1

xikxk j

]
From a graph perspective, ∑

n
k=1 x jkxki represents the sum

of the product of the adjacency relationships’ noise between
node i and node j with the remaining n−2 nodes. Therefore,
for different pairs of nodes (i, j) and (l,m), ∑

n
k=1 xikxk j and

∑
n
k=1 xlkxkm satisfy the conditions of Lemma 1. Hence, we

have:

V

[
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]

=4(n−2)
n

∑
i=1

n

∑
j=i+1

b2
i jσ

4

Then based on Lemma 1, we get:

V

[
n

∑
i=1

sumu

]

=V

[
2

n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai ja jkxku +
n

∑
u=1

n

∑
i=1

n

∑
j=1

n

∑
k=1

auiai jx jkxku

]

=16
n

∑
i=1

n

∑
j=i+1

c2
i jσ

2 +4(n−2)
n

∑
i=1

n

∑
j=i+1

b2
i jσ

4

Therefore:

MSE = V

[
1
8

n

∑
i=1

sumu

]

=
1
4

n

∑
i=1

n

∑
j=i+1

c2
i jσ

2 +
1

16
(n−2)

n

∑
i=1

n

∑
j=i+1

b2
i jσ

4.

In the given graph, each edge (denoted as (i, j)) represents
the product of the degrees of its two vertices, which physically
signifies the number of ci j that have this edge as the middle
edge. Taking all the edges in the graph, we can obtain the
total number of such ci j as follows:

n

∑
i=1

n

∑
j=i+1

ci j =
n

∑
i=1

n

∑
j=i+1

ai j ·di ·d j ≤ nd3
max

The equation holds as an equality if and only if every node
in the graph has dmax edges.

Due to the maximum value of each ci j being only di ·d j, this
situation occurs when every neighbor of node i is connected
to every neighbor of node j. Therefore, we have ci j ≤ d2

max.
To maximize ∑

n
i=1 ∑

n
j=i+1 c2

i j, we can set each ci j = d2
max.

As mentioned above, ∑
n
i=1 ∑

n
j=i+1 ci j ≤ nd3

max, and therefore
there can be at most ndmax instances of ci j = d2

max. At this
point, ∑

n
i=1 ∑

n
j=i+1 c2

i j reaches its maximum value of nd5
max.

Therefore, MSE ⩽ O(nd5
max +n2d3

max).

E.13 Proof of Theorem 11
Let us first address Algorithm 7.

Denote neighbor adjacency list a′u of au, which is derived by
either adding or removing a single neighbor from the original
list of vu, let k denote the index of the newly added neighbor.
The resulting change in sumu can be expressed as ∑ j∈Neiu âk j.
Assuming that the newly added neighbor is connected by
edges to all existing neighbors of user vu, the resulting in-
crement in sumu attains its maximum value. By the Central
Limit Theorem:

∑
j∈Neiu

âk j
approx
∼ N(di,diσ

2)

23

The upper and lower β quantiles are given by:

Φ
−1(1−β) ·

√
diσ2 +di

−Φ
−1(1−β) ·

√
diσ2 +di

After Graph Projection on graph G, for any vertex u ∈ [n],
we have d̃u ≥ du. Therefore, the absolute values of the upper
and lower β quantiles are less than:

Φ
−1(1−β) ·

√
d̃uσ2 + d̃u.

Therefore:

Pr
[
∑ j∈Neiu, j<i âi j > ∆ fu

]
< β

Pr
[
∑ j∈Neiu, j<i âi j <−∆ fu

]
< β

The change in sumu resulting from removing a neighbor
from the original neighbor list of vu is less significant than the
maximum change induced by adding a neighbor. Therefore,
we focus solely on analyzing the impact of adding a neighbor
on sumu. By the same reasoning, the subsequent proofs will
also restrict their discussion to the scenario of adding an edge
to the adjacency list, as the case for removing an edge follows
a similar logic.

Then deal with the Algorithm 8.

b̂i j =
n

∑
k=1

âikâk j =
n

∑
k=1

aikak j +aikxk j + xikak j + xikxk j

According to Lemma 1, we get:

V
[
b̂i j
]
= V

[
n

∑
j=k

aikxk j

]
+V

[
n

∑
j=1

xikak j

]
+V

[
n

∑
j=1

xikxk j

]
= (di +d j)σ

2 +(n−2)σ4

Since for different k, the terms âikâk j are mutually inde-
pendent, and their variances differ by at most 2σ2, it follows
from the Central Limit Theorem for independent but non-
identically distributed random variables that:

b̂i j
approx
∼ N(bi j,(di +d j)σ

2 +(n−2)σ4)

Its upper and lower β quantiles are given by:

Φ
−1(1−β) ·

√
(di +d j)σ2 +(n−2)σ4 +bi j

−Φ
−1(1−β) ·

√
(di +d j)σ2 +(n−2)σ4 +bi j

Similarly, their absolute values are both less than:

Φ
−1(1−β) ·

√
(n−2)σ4 +

(
d̃i + d̃ j

)
σ2 + d̃u

Set ∆ fu = Φ−1(1−β) ·
√
(n−2)σ4 +

(
d̃i + d̃max

)
σ2 + d̃u

for user vu, we have:

Pr
[
b̂ui > ∆ fu

]
< β

Pr
[
b̂ui <−∆ fu

]
< β

Then deal with the Algorithm 9. Readers may have no-
ticed that calculating ∆ fu does not require determining its
exact distribution. Instead, one can use looser bounds on the
expectation and variance of the distribution, which ensures
that the determined ∆ fu satisfies the two probability inequali-
ties.

Any element in B̂ satisfies:

E
[
b̂i j
]
= bi j ⩽ dmax

V
[
b̂i j
]
⩽ 2dmaxσ

2 +(n−2)σ4

If a neighbor vk is added, the change in sumu can be ex-
pressed as:∑ j∈Neiu(b̂k j−1). Assuming that each bk j is equal
to dmax, and the variance of each bk j is 2dmaxσ2 +(n−2)σ4,
the approximate distribution of b̂k j can be described as fol-
lows:

N
(
dmax, 2dmaxσ

2 +(n−2)σ4) ,
According to Lemma 1 and the properties of the sum of

multivariate normal distributions, even though the b̂i j are not
independent, we still obtain: the approximate distribution of
∑ j∈Neiu(b̂k j−1) is:

N(d̃u(dmax−1), d̃u(2dmaxσ
2 +(n−2)σ4))

Therefore, set ∆ fu as:

Φ
−1(1−β) ·

√
d̃u(2dmaxσ2 +(n−2)σ4)+ d̃u(dmax−1)

satisfies:

Pr
[
∑ j∈Neiu, j<i b̂i j > ∆ fu

]
< β

Pr
[
∑ j∈Neiu, j<i b̂i j <−∆ fu

]
< β

E.14 Proof of Theorem 12
We proof the privacy guarantee firstly. If a user vu adds a
neighbor vk, in line 2 of Algorithm 7, the maximum increase
to sumu would be ∑ j∈Neiu âk j. In line 2, the impact on sumu
is constrained to the range [−∆ f ,∆ f] by the clamp func-
tion. Consequently, the maximum change to sumu caused
by adding a node is also ≤ ∆ fu. Therefore, according to the
Laplace mechanism, adding noise Lap(∆ f/ε2) ensures ε2-
edge LDP.

The multiplication by 2 at the end serves to ensure that
the expected value of the final sumu remains 2 f̂ ∆

u , thereby
allowing it to be seamlessly integrated into Algorithm 3.

The composition theorem to be applied here is Proposi-
tion 1, where ∆ fu is derived from the output (tildedu) of
the GraphProjection function. In GraphProjection, ε0-edge
LDP is provided, in GNAM, ε1-edge LDP is provided, and

24

in Algorithm 7, ε2-edge LDP is provided. Thus, according to
Proposition 1, the overall system provides (ε0+ε1+ε2)-edge
LDP.

The total MSE can be divided into four parts. The first part
is the error introduced by GraphProjection; the second part is
that in the second round, Less than β proportion of the data
is clamped. The parameters affecting these two parts include
α, β, and ε0. Setting α and ε0 to a larger value can reduce the
number of edges removed. By setting β to a smaller value,
the amount of data that is clamped can be minimized. These
two parts have a relatively small impact on the final MSE.

The main part of the MSE comes from the third and fourth
parts. The third part is the error inside the ∑

n
u=1 sumu, and

the fourth part is the error introduced by the newly added
Lap(∆ fu/ε2) in the second round. In Theorem 8, we have
already obtained the MSE of the third part. Therefore, we
focus on the fourth part.

Because the Laplace noise added in the second round for
each node is not only independent of the sumu part but also
independent among the Laplace noises themselves, the vari-
ance of this part can be calculated as the sum of the variances
of each individual Laplace noise.

Let the Laplace noise added in the second round by node
i be denoted as Yi. For the sake of simplicity in the formula,
let’s denote Φ−1(1− β) as γ. Once β is determined, γ is a
constant and will not be too large. For example, when β is
taken as 1/1000, γ≈ 3.09.

V [Yi] =
2
ε2

2

(
γ

2d̃iσ
2 +2γd̃i

√
d̃iσ2 + d̃2

i

)
In the previous analysis, if using RR or Laplace mechanism,

we have σ2 = O
(

1
ε2

1

)
, and we have d̃i = O(di), therefore:

V [Yi] = O
(

di

ε2
1ε2

2
+

d2
i

ε2
2

)
Therefore:

V

[
n

∑
i=1

Yi

]
= O

(
|E|
ε2

1ε2
2
+

n

∑
i=1

d2
i

ε2
2

)
⩽ O

(
|E|
ε2

1ε2
2
+n

d2
max

ε2
2

)

Combining this with Theorem 8, and σ2 = O(1/ε2
1), we

get:

MSE ⩽ O
(

nd3
max

ε2
1

+
|E|
ε2

1ε2
2
+n

d2
max

ε2
2

)

E.15 Proof of Theorem 13
We proof the privacy guarantee firstly. In essence, during
the second round, user vu is presented with a sequence of
data (b̂1u, b̂2u, ..., b̂nu), from which vu selects du numbers to
sum and upload. The privacy to be protected here lies in the
specific choice of numbers selected by vu. After applying

the clamp function, the range of these numbers is effectively
constrained to [−∆ f ,∆ f]. If user vu gains or loses a neighbor,
it essentially means adding or removing one number from
this sequence. Since the impact of such a change on sumu is
bounded by ∆ f , the mechanism ensures ε2-edge LDP.

Following a reasoning similar to the proof of Theorem 12,
and by applying Proposition 1, the overall system provides
(ε0 + ε1 + ε2)-edge LDP.

Then the total MSE.
Because the value of b̂ui after clamping will not exceed ∆ fu,

the second round will provide ε2-edge LDP. By combining
this with the composition theorem, TriMTR will provide a
total of (ε0 + ε1 + ε2)-edge LDP.

Using the same notation as in Theorem 14, let Yi be the
Laplace noise added to node i in the second round, and γ =
Φ−1(1−β). We have:

V [Yi] =
2
ε2

2
γ

2 ((n−1))σ
4 +
(
d̃u + d̃max

)
σ

2)

+
4
ε2

2
γd̃i

√
(n−1)σ4 +

(
d̃u + d̃max

)
σ2 +

2
ε2

2
d̃2

i

In the previous analysis, if using RR or Laplace mechanism,
we have σ2 = O

(
1
ε2

1

)
, and we have d̃i = O(di), therefore:

V [Yi] = O
(

n
ε4

1ε2
2
+

d2
i

ε2
2

)
Therefore:

V

[
n

∑
i=1

Yi

]
= O

(
n2

ε4
1ε2

2
+

n

∑
i=1

d2
i

ε2
2

)
⩽ O

(
n2

ε4
1ε2

2
+n

d2
max

ε2
2

)
Combining this with Theorem 8, and σ2 = O(1/ε2

1), we
get:

MSE ⩽ O
(

nd3
max

ε2
1

+
n2dmax

ε4
1

+
n2

ε4
1ε2

2
+n

d2
max

ε2
2

)

E.16 Proof of Theorem 14
The method to prove the provision of (ε0+ε1+ε2)-edge LDP
is similar to the methods used in Theorem 2, so we will not
elaborate further here. Next, we will bound its MSE.

Using the same notation as in Theorem 14, let Yi be the
Laplace noise added to node i in the second round, and γ =
Φ−1(1−β). We have:

V [Yi] =
2
ε2

2
γ

2d̃i
(
(n−1)σ4 +2d̃maxσ

2)
+

4
ε2

2
γ(d̃max−1)d̃

3
2
i

√(
(n−1)σ4 +2d̃maxσ2

)
+

2
ε2

2
(d̃max−1)2d̃2

i

25

In the previous analysis, if using RR or Laplace mechanism,
we have σ2 = O

(
1
ε2

1

)
, and we have d̃i = O(di), therefore:

V [Yi] = O
(

ndi

ε4
1ε2

2
+

d2
i d2

max

ε2
2

)
Therefore:

V

[
n

∑
i=1

Yi

]
=O

(
n

∑
i=1

ndi

ε4
1ε2

2
+

n

∑
i=1

d2
i d2

max

ε2
2

)
⩽O

(
n2dmax

ε4
1ε2

2
+n

d4
max

ε2
2

)
Combining this with Theorem 8, and σ2 = O(1/ε2

1), we
get:

MSE ⩽ O
(

nd5
max

ε2
1

+
n2d3

max

ε4
1

+
n2dmax

ε4
1ε2

2
+n

d4
max

ε2
2

)

E.17 Proof of Theorem 15
Given the assumption that the clustering coefficient of a graph
remains constant, the number of triangles in the graph is pro-
portional to the number of 2-stars in the graph. This relation-
ship can be denoted as f△(G) = k#2-star.

Considering a 2-star to be composed of a central node and
its two incident edges, the total number of 2-stars in the graph
can be calculated by the following formula:

#2-star =
n

∑
i=1

di · (di−1) =
n

∑
i=1

d2
i −2|E|≈

n

∑
i=1

d2
i

Therefore, f△(G)≈ k ∑
n
i=1 d2

i .
Here, we focus specifically on the impact of the privacy

budget and the structure of the graph (number of nodes n
and the degree values di) on convergence. We primarily con-
sider the order of magnitude and treat other terms as constant
coefficients. Therefore, we get f△(G) = O(∑n

i=1 d2
i).

First, we address TriTR, whose more precise expression
for MSE is:

MSE ⩽ O

(
∑

n
i=1 ∑

n
j=i+1 b2

i j

ε2
1

+
|E|
ε2

1ε2
2
+

∑
n
i=1 d2

i

ε2
2

)

Because bi j = ∑
n
k=1 aikak j ⩽ ∑

n
k=1 aik = di, Therefore:

n

∑
i=1

n

∑
j=i+1

b2
i j ⩽

n

∑
i=1

n

∑
j=i+1

d2
i ⩽ n

n

∑
i=1

d2
i

Therefore:

MSE ⩽ O
(

n∑
n
i=1 d2

i

ε2
1

+
∑

n
i=1 di

ε2
1ε2

2
+

∑
n
i=1 d2

i

ε2
2

)
According to Jensen’s inequality, we have:

ABE ⩽ O

(√
n∑

n
i=1 d2

i

ε2
1

+
∑

n
i=1 di

ε2
1ε2

2
+

∑
n
i=1 d2

i

ε2
2

)

Then the RE:

RE ⩽ O


√

n∑
n
i=1 d2

i
ε2

1
+

∑
n
i=1 di

ε2
1ε2

2
+

∑
n
i=1 d2

i
ε2

2

∑
n
i=1 d2

i



= O


√√√√√ n∑

n
i=1 d2

i
ε2

1
+

∑
n
i=1 di

ε2
1ε2

2
+

∑
n
i=1 d2

i
ε2

2(
∑

n
i=1 d2

i
)2


⩽ O

(√
n

ε2
1 ∑

n
i=1 d2

i
+

√
∑

n
i=1 di

ε2
1ε2

2

(
∑

n
i=1 d2

i
)2 +

√
1

ε2
2 ∑

n
i=1 d2

i

)

Because nd2
avg = ∑

n
i=1 d2

avg ⩽ ∑
n
i=1 d2

i , with equality if and
only if di = davg for any i ∈ [n]. Therefore:

RE ⩽ O

√ n
ε2

1nd2
avg

+

√
ndavg

ε2
1ε2

2n2d4
avg

+

√
1

ε2
2nd2

avg


⩽ O

(√
1

ε2
1d2

avg
+

√
1

ε2
1ε2

2nd3
avg

+

√
1

ε2
2nd2

avg

)

= O

 1
ε1davg

+
1

ε1ε2
√

nd
3
2
avg

+
1

ε2
√

ndavg


Next, we address TriMTR. Because ndavg = 2|E|, the more

precise expression for the MSE of TriTR is:

MSE ⩽ O

(
∑

n
i=1 ∑

n
j=i+1 b2

i j

ε2
1

+
n2davg

ε4
1

+
n2

ε4
1ε2

2
+

∑
n
i=1 d2

i

ε2
2

)

Using a similar scaling method as TriTR, we obtain:

MSE ⩽ O
(

n∑
n
i=1 d2

i

ε2
1

+
n2davg

ε4
1

+
n2

ε4
1ε2

2
+

∑
n
i=1 d2

i

ε2
2

)

Therefore, the Relative Err:

26

RE ⩽ O


√√√√√ n∑

n
i=1 d2

i
ε2

1
+

n2davg
ε4

1
+ n2

ε4
1ε2

2
+

∑
n
i=1 d2

i
ε2

2(
∑

n
i=1 d2

i
)2


⩽ O

(
1
ε1

√ n
nd2

avg
+

1
ε2

1

√
n2davg

n2d4
avg

+
1

ε2
1ε2

√
n2

n2d4
avg

+
1
ε2

√
1

nd2
avg

)

= O

(
1
ε1

√
1

d2
avg

+
1
ε2

1

√
1

d3
avg

+
1

ε2
1ε2

√
1

d4
avg

+
1
ε2

√
1

nd2
avg

)

= O

 1
ε1davg

+
1

ε2
1d

3
2
avg

+
1

ε2
1ε2d2

avg
+

1
ε2
√

ndavg



E.18 Proof of Theorem 16

Proof. Given the true number:

f 2-star (G) =
n

∑
u=1

du(du−1)

Let Yu ∼ Lap(1/ε0), then E[Yu] = 0, E[Y 2
u] = V[Yu] =

2
ε2

0
,

E[Y 3
u] = 0, E[Y 4

u] =
24
ε4

0
, the first property:

E[f̂ 2-star (G)]

=E[
n

∑
u=1

[
(du +Yu)(du−1+Yu)−

2
ε2

0

]
]

=
n

∑
u=1

[
E [(du +Yu)(du−1+Yu)]−

2
ε2

0

]
=

n

∑
u=1

[
du(du−1)+(2du−1)E[Yu]+E[Y 2

u]−
2
ε2

0

]
=

n

∑
u=1

du(du−1)

= f 2-star (G)

Second property:

V(f̂ 2-star (G))

=V(
n

∑
u=1

[
(du +Yu)(du−1+Yu)−

2
ε2

0

]
)

=
n

∑
u=1

[
V((du +Yu)(du−1+Yu))−

2
ε2

0

]
=

n

∑
u=1

[
V((2du−1)Yu +Y 2

u)
]

=
n

∑
u=1

[
E[(2du−1)Yu +Y 2

u)
2]− 4

ε4
0

]
=

n

∑
u=1

[
E[(2du−1)2Y 2

u +2(2du−1)Y 3
u +Y 4

u]−
4
ε4

0

]
=

n

∑
u=1

[
E[(2du−1)2Y 2

u]+E[Y 4
u]−

4
ε4

0

]
=

n

∑
u=1

[
2(2du−1)2 1

ε2
0
+

20
ε4

0

]
=

8
ε2

0

n

∑
u=1

d2
u −

16
ε2

0
|E|+ 2

ε2
0

n+
20
ε4

0
n

Treating ε0 as a constant, we obtain:

MSE = O(
n

∑
u=1

d2
u) = O(#2-star)

Thus:

RE = O(

√
#2-star

#2-star
) = O(

1√
#2-star

)

27

	Introduction
	Related Work
	Preliminaries
	Notations
	Differential Privacy
	Local Differential Privacy on Graphs
	Utility Metrics

	Noisy Adjacency Matrix
	Definition and Properties
	Generating Noisy Adjacency Matrix
	Different Noise Analysis
	Acceleration of Noisy Adjacency Matrix

	Subgraph Counting
	Triangle's One-Round Algorithm
	Triangle's Two-Round Algorithm
	Triangle's Modified Two-Round Algorithm
	Quadrangle's Two-Round Algorithm
	Subgraph Algorithms and Matrix Powers

	Second Round's Randomizer
	Differential Privacy on Randomized Data
	Implementation

	Theoretical Analysis
	Convergence on Relative Err
	Two-Star Counting
	Theoretical Comparison

	Experimental Evaluation
	Experimental Set-up
	Experimental Results

	Conclusion
	Directed Graph Application
	Weighted Graph Application
	Estimate Three Subgraphs in Two Rounds
	Second Round Risk without Randomizer
	Proof of Statements
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Theorem 3
	Lemma 1
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16

