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Abstract

We introduce the new AXU hash function c-decBRWHash, which is parameterised by the pos-
itive integer c and is based on Bernstein-Rabin-Winograd (BRW) polynomials. Choosing c > 1
gives a hash function which can be implemented using c-way single instruction multiple data
(SIMD) instructions. We report a set of very comprehensive hand optimised assembly implemen-
tations of 4-decBRWHash using avx2 SIMD instructions available on modern Intel processors.
For comparison, we also report similar carefully optimised avx2 assembly implementations of
polyHash, an AXU hash function based on usual polynomials. Our implementations are over
prime order fields, specifically the primes 2127− 1 and 2130− 5. For the prime 2130− 5, for avx2
implementations, compared to the famous Poly1305 hash function, 4-decBRWHash is faster for
messages which are a few hundred bytes long and achieves a speed-up of about 16% for message
lengths in a few kilobytes range and improves to a speed-up of about 23% for message lengths
in a few megabytes range.

Keywords: almost XOR universal, BRW polynomials, SIMD, assembly
implementation, avx2.

1 Introduction

Authentication and authenticated encryption are two of the major functionalities of modern sym-
metric key cryptography. Almost XOR universal (AXU) hash functions play an important role in
both of these tasks. One of the most famous AXU hash functions is Poly1305 [2], and in com-
bination with XChaCha20 [4] provides one of the most used authenticated encryption algorithm.
Poly1305 is based on usual polynomials with arithmetic done modulo the prime 2130 − 5.

Present generation processors provide support for single input multiple data (SIMD) instruc-
tions. These instructions permit implementation of vectorised algorithms. In a vectorised algo-
rithm, at every step a single instruction is applied to a number of data items. Such vectorised algo-
rithms have the potential to provide significant efficiency improvements over conventional sequential
algorithms. However, to apply SIMD instructions it is required to rewrite the basic algorithm in
vectorised form. For Poly1305, SIMD implementation was earlier reported in [16].
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A class of polynomials was introduced in [3] to construct AXU hash functions, and later these
polynomials were named the BRW polynomials [23]. An important theoretical advantage of hash
functions based on BRW polynomials is that the number of field multiplications required by such
hash functions is about half the number of field multiplications required by hash functions based
on usual polynomials [3] (see [15, 5] for further complexity improvements). This feature makes
BRW polynomials an attractive option for constructing AXU hash function. An extensive study of
both BRW polynomials based hash functions (named BRWHash) and usual polynomial based hash
functions (named polyHash) for the primes 2127−1 and 2130−5 was carried out in [5] (see [19] for an
update on [5]). The implementations reported in [5, 19] were sequential, i.e. not SIMD, and for such
implementations it was observed that BRW based AXU hash functions indeed provides significant
speed improvements (though less than what is theoretically predicted) for both of the primes that
were considered. The natural question that arises is whether a similar speed improvement can be
achieved for SIMD implementation.

Efficient algorithms for computing the value of a BRW polynomial at a particular point were
reported in [15, 5]. Unfortunately, there is no good way to rewrite these algorithms in vectorised
form. There is a certain amount of parallelism present in the computation of BRW polynomials,
which has been exploited for hardware implementation [10]. This parallelism, however, does not
permit vector computation.

The main theoretical contribution of the present work is to present a new AXU hash function
based on BRW polynomials which permits an efficient vector implementation. We define the hash
function c-decBRWHash which is parameterised by the positive integer c. Suppose c = 4, which
is the case that we implement. The basic idea is to decimate the input stream into four parallel
streams of the same length and perform independent BRW polynomial computation on each of the
streams. Finally the outputs of the four streams are combined using usual polynomials. Since the
four BRW computations are independent and are on the sequences of the same length, it is possible
to apply the algorithm from [5] in a vectorised manner to perform simultaneous computations
of the four BRW polynomials. As a result, the entire algorithm becomes amenable to SIMD
implementation. The hash function c-decBRWHash is a generalisation of BRWHash in the sense
that for c = 1, c-decBRWHash becomes exactly BRWHash. While the idea behind the construction
of c-decBRWHash is simple, there is a subtlety in the choice of key used for combining the outputs of
the four streams. We prove that c-decBRWHash is indeed an AXU hash function, whose AXU bound
is almost the same as the AXU bound of BRWHash for small c. Further, the sequential execution
of c-decBRWHash is not much slower than the sequential execution of BRWHash for messages
which are longer than a few blocks. So c-decBRWHash provides a generalisation of BRWHash
which essentially retains the security and sequential efficiency of BRWHash, while providing the
opportunity for vectorised implementation.

From a practical point of view, we report implementations of 4-decBRWHash for both the primes
2127 − 1 and 2130 − 5 using the avx2 SIMD instructions available on modern Intel processors. For
completeness and for the sake of comparison, we also report new implementations of polyHash
using avx2 instructions for both 2127 − 1 and 2130 − 5. Our implementations are comprehensive
in the sense that we consider all feasible values of the various implementation parameters for both
4-decBRWHash and polyHash. The implementations that we report are in assembly language and
were meticulously hand optimised. Our hand optimised avx2 implementation in assembly language
of polyHash1305 (i.e. polyHash based on the prime 2130 − 5) is of independent interest, since if the
message length is a multiple of eight and an appropriate key clamping is used, then polyHash1305 is
exactly the well known hash function Poly1305. To the best of our knowledge, there is no previous
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hand optimised avx2 assembly language implementation of Poly1305 which systematically considers
all feasible values of the implementation parameters.

We obtained extensive timing results for all our implementations. These results show that for
avx2 implementations, the prime 2127−1 is a slower option than the prime 2130−5 for both the hash
functions 4-decBRWHash and polyHash. We provide a detailed explanation for this observation. In
view of this observation, in this work we present only the timing results for the prime 2130− 5. For
the case of polyHash1305, the timing results show that for files which are longer than a few hundred
bytes, the avx2 implementation is faster than the previously reported sequential implementation [5].
Of more interest in the present context is the comparison between the hash functions 4-decBRWHash
and polyHash. The timings results for the prime 2130 − 5 show that for avx2 implementations,
4-decBRWHash is faster than polyHash for messages which are a few hundred bytes long, and
achieves a speed-up of about 16% (for kilobyte size messages) to 23% (for megabyte size messages).
Since Poly1305 and polyHash over the prime 2130−5 have the same speed, the previous statement for
2130− 5 also applies to the speed-up of 4-decBRWHash over Poly1305. In a typical file system, text
files are usually about a few kilobytes long, while media files such as high resolution pictures, audio
and video files, are a few megabytes long (see [14]). Compared to Poly1305, the new hash function
4-decBRWHash1305 provides a faster option for authentication, or authenticated encryption of such
files.

Other previous and related works. AXU hash functions are a generalisation of the notion of
universal hash functions [8]. Research over the last few decades have resulted in a sizeable literature
on AXU hash functions. Overviews of the literature can be found in [1, 2, 3, 24, 25, 12]. We mention
only the works which are relevant to the present paper.

Polynomial hash functions were proposed independently in three papers [13, 27, 7]. The prime
2127−1 for use in polynomial hashing was first proposed in [27], and was later used in [1, 17, 5]. BRW
polynomials were proposed by Bernstein [3] based on earlier work by Rabin and Winograd [22].
Implementations of BRW polynomials in both software and hardware over binary extension fields
were reported in [10, 11, 9, 15]. For prime order fields, sequential software implementations of BRW
polynomials were reported in [5, 19].

Overview of the paper. Section 2 provides the preliminaries. The new construction of deci-
mated BRW hash function is presented in Section 3. The various aspects of implementation are
given in Sections 4 and 5. Descriptions of the implementations and the timing results are given
in Section 6. Finally Section 7 concludes the paper. For the ease of reference, in Appendix A we
provide the algorithm from [5] for computing BRW polynomials.

2 Preliminaries

The cardinality of a finite set S will be denoted as #S. Logarithms to the base two will be
denoted by lg. For a positive integer i, and 0 ≤ j < 2i, by bini(j) we will denote the i-bit binary
representation of j. For example, bin4(3) = 0011 and bin4(13) = 1101.

Let D be a non-empty set, (R,+) be a finite group and K be a finite non-empty set. Let
{Hashτ}τ∈K be a family of functions, where for each τ ∈ K, Hashτ : D → R. The sets D, K
and R are called the message, key and tag (or digest) spaces respectively. Let a, a′ ∈ D with
a ̸= a′ and b ∈ R. The differential probability corresponding to the triple (a, a′, b) is defined to
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be Prτ [Hashτ (a) − Hashτ (a
′) = b], where the probability is taken over a uniform random choice

of τ from K. If for every choice of distinct a, a′ in D and b ∈ R, the differential probability
corresponding to (a, a′, b) is at most ϵ, then we say that the family {Hashτ}τ∈K is ϵ-almost XOR
universal (ϵ-AXU).

Let F be a finite field. Given a non-zero polynomial P (x) ∈ F[x], deg(P (x)) denotes the degree
of P (x). Given l ≥ 0 elements M1, . . . ,Ml in F, we define two polynomials Poly(x;M1, . . . ,Ml) and
BRW(x;M1,M2, . . . ,Ml) in F[x] with indeterminate x and parameters M1, . . . ,Ml as follows.

Poly(x;M1, . . . ,Ml) =

{
0, if l = 0;
M1x

l−1 +M2x
l−2 + · · ·+Ml−1x+Ml, if l > 0,

(1)

and

• BRW(x; ) = 0;
• BRW(x;M1) = M1;
• BRW(x;M1,M2) = M1x+M2;
• BRW(x;M1,M2,M3) = (x+M1)(x

2 +M2) +M3;
• BRW(x;M1,M2, . . . ,Mi)

= BRW(x;M1, . . . ,M2r−1)(x
2r +M2r) + BRW(x;M2r+1, . . . ,Ml);

if 2r ∈ {4, 8, 16, 32, . . .} and 2r ≤ l < 2r+1, i.e. 2r is the largest power of 2 such that l ≥ 2r.

The BRW polynomials were introduced in [3] and named in [23]. Note that for l ≥ 3, BRW(x;M1,
M2, . . . ,Ml) is a monic polynomial.

For τ ∈ F, using Horner’s rule Poly(τ ;M1, . . . ,Ml) can be evaluated using l − 1 multiplications
and same number of additions. For the BRW polynomials the following was proved in [3].

Theorem 1. [3]

1. For every l ≥ 0, the map from Fl to F[x] given by

(M1, . . . ,Ml) 7→ BRW(x;M1, . . . ,Ml)

is injective.

2. For l ≥ 1, let d(l) denote deg(BRW(x;M1, . . . ,Ml)). For l ≥ 3, d(l) = 2⌊lg l⌋+1 − 1 and so
d(l) ≤ 2l− 1; the bound is achieved if and only if l = 2a; and d(l) = l if and only if l = 2a− 1
for some integer a ≥ 2.

3. For τ ∈ F and l ≥ 3, BRW(τ ;M1, . . . ,Ml) can be computed using ⌊l/2⌋ field multiplica-
tions (i.e. a multiplication over the field F) and ⌊lg l⌋ additional field squarings to compute

τ2, τ4, . . . , τ2
⌊lg l⌋

.

A field multiplication in F has two steps, namely a multiplication over the underlying ring
(either the ring of integers, or the ring of polynomials), followed by a reduction step. So ⌊l/2⌋
field multiplications amounts to ⌊l/2⌋ ring multiplications and ⌊l/2⌋ reductions. By an unreduced
multiplication we mean the ring multiplication with possibly a partial reduction. The following
complexity improvement in computing BRW(τ ;M1, . . . ,Ml) was proved in [5, 15].

Theorem 2. [5, 15] For τ ∈ F and l ≥ 3, computing BRW(τ ;M1, . . . ,Ml) requires ⌊l/2⌋ unreduced
multiplications, 1 + ⌊l/4⌋ reductions, and additionally requires ⌊lg l⌋ field squarings to compute

τ2, τ4, . . . , τ2
⌊lg l⌋

.
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p m n k µ

2127 − 1 127 120 126 126

2130 − 5 130 128 128 128

Table 1: The parameters m, n, k and µ for the primes 2127 − 1 and 2130 − 5.

The algorithm for evaluating BRW(τ ;M1, . . . ,Ml) given in [5] is provided in Appendix A. The
algorithm uses a parameter t which is a small integer. The values t = 2, 3, 4 and 5 were considered
in [5] and the same values of t will also be considered in the present work.

Proposition 1 (From Theorem 5.2 of [5]). Applying Algorithm 1 in Appendix A to compute
BRW(τ ;M1, . . . ,Ml) requires the stack size to be at most ⌊lg l⌋ − t+ 1.

2.1 Hash Functions polyHash and BRWHash

Let p be a prime and Fp be the finite field of order p. Our primary focus will be 2130 − 5 which is
the prime underlying the hash function Poly1305. We will also consider the prime 2127 − 1 which
has turned out to be quite important (see [5, 19]). Given the prime p, we define the integers m, n,
k and µ as shown in Table 1. Elements of Fp can be represented as m-bit strings. Since n, k and µ
are less than m, we will consider n-bit, k-bit and µ-bit strings to represent elements of Fp, where
the most significant m− n, m− k, and m− µ bits respectively are set to 0.

Formatting and padding: A binary string X of length L ≥ 0 is formatted (or partitioned) into
ℓ blocks X1, . . . , Xℓ, where the length of Xi is n for 1 ≤ i ≤ ℓ − 1, the length of Xℓ is s with
1 ≤ s ≤ n, and X = X1||X2|| · · · ||Xℓ. Note that if X is the empty string, i.e. if L = 0, then ℓ = 0.
We call each Xi to be a block. If the length of a block is n, then we call it a full block, otherwise
we call it a partial block. By format(X) we will denote the list (X1, . . . , Xℓ) obtained from X using
the above described procedure. The following two padding schemes were described in [5].

• pad1(X1, . . . , Xℓ) returns (M1, . . . ,Mℓ), where Mi = 0m−n−2||1||Xi, for i = 1, . . . , ℓ − 1, and
Mℓ = 0m−s−2||1||Xℓ.

• pad2(X1, . . . , Xℓ) returns (M1, . . . ,Mℓ, binm−1(L)), where Mi = 0m−n−1||Xi, for i = 1, . . . , ℓ−
1, and Mℓ = 0m−s−1||Xℓ.

For both the padding schemes, the length of each Mi, i = 1, . . . , ℓ, is m − 1 and we consider Mi

to be an element of Fp. For the padding scheme pad1, there is no restriction on the value of L.
On the other hand, for pad2, the value of L has to be less than 2m−1. From Table 1, the values of
m− 1 for the two primes are 127 and 130, and so the restriction on L is a non-issue in practice. In
fact, in our implementations we consider L to be less than 264, so that the binary representation
of L can be stored as a 64-bit quantity. This is sufficient for all conceivable applications.

The hash functions polyHash and BRWHash were introduced in [5]. In particular, the hash
function polyHash is based on the idea behind the design of the hash function Poly1305. The key
space and digest space for both the families polyHash and BRWHash are {0, 1}k; τ denotes the k-bit
key which is considered to be an element of Fp. The digest space is the group (Z2µ ,+), and so
the digest can be represented using a µ-bit string. The message space for polyHash is the set of all
binary strings. The message space for BRWHash is the set of all binary strings of lengths less than
2m−1; as mentioned above in our implementations we considered messages of lengths less than 264.

5



Remark 1. The descriptions of polyHash and BRWHash in [5] did not include the parameter µ.
Instead both the key and tag spaces were defined to be {0, 1}k. In this paper, we make the formal
distinction between the key and the tag spaces by introducing the additional parameter µ to denote
the size of tags. This generalises the descriptions of the polyHash and BRWHash, and we restate
the result on the AXU bounds proved in [5] in terms of µ and k.

In the descriptions of polyHash and BRWHash given below, X denotes a message which is a
binary string of length L ≥ 0.

Construction 1. Given a binary string X, let (M1, . . . ,Mℓ) be the output of pad1(format(X)).
We define

polyHashτ (X) = (P1(τ ;M1, . . . ,Mℓ) mod p) mod 2µ, (2)

where P1(x;M1, . . . ,Mℓ) is a polynomial in Fp[x] defined as follows.

P1(x;M1, . . . ,Mℓ) = x · Poly(x;M1, . . . ,Mℓ). (3)

Note that if X is the empty string, then L = ℓ = 0 and so polyHashτ (X) = 0. The family
polyHash is motivated by the design of Poly1305 [2] for the prime 2130− 5. The differences between
Poly1305 and polyHash are as follows.

1. Poly1305 considers X to be a sequence of bytes, whereas polyHash considers X to be a
sequence of bits.

2. In Poly1305, certain bits of the key τ are “clamped”, i.e. they are set to 0. In [2] the clamping
of key bits helped in efficient floating point implementation. On the other hand, however,
clamping reduces security. Since we are not interested in floating point implementation, we
do not include clamping of key bits in the specification of polyHash.

3. Poly1305 is defined only for the prime 2130 − 5, whereas polyHash can be instantiated by any
appropriate prime. In [5], instantiations of polyHash were proposed using both 2130 − 5 and
2127 − 1.

Suppose pad1(format(X)) returns (M1, . . . ,Mℓ). Computing polyHashτ (X) requires ℓ field multi-
plications. A delayed reduction strategy was proposed in [16] for computing Poly(τ ;M1, . . . ,Mℓ).
For a parameter g ≥ 1, the idea is to perform a sequence of g unreduced multiplications and
additions and then perform a single reduction. This strategy requires pre-computing the powers
τ, τ2, τ3, . . . , τ g. Using this strategy, it is possible to compute polyHash(X) using ℓ unreduced mul-
tiplications, ⌈ℓ/g⌉ reductions, and additionally g − 1 field multiplications [16, 5]. The key powers
τ, τ2, τ3, . . . , τ g are required to be pre-computed before the actual computation of polyHash. See
Table 2.

Construction 2. Given a binary string X, let the output of pad2(format(X)) be (M1, . . . ,Mℓ,
binm−1(L)). We define

BRWHashτ (X) = (P2(τ ;M1, . . . ,Mℓ, binm−1(L)) mod p) mod 2µ, (4)

where P2(x;M1, . . . ,Mℓ, binm−1(L)) is a polynomial in Fp[x] defined as follows.

P2(x;M1, . . . ,Mℓ, binm−1(L)) = x(x · BRW(x;M1, . . . ,Mℓ) + binm−1(L)). (5)

6



Note that if X is the empty string, then L = ℓ = 0 and so BRWHashτ (X) = 0. Suppose
pad2(format(X)) returns (M1, . . . ,Mℓ, binm−1(L)). Computing BRWHash(X) requires 2 + ⌊ℓ/2⌋
unreduced multiplications, 2 + ⌊ℓ/4⌋ reductions, and additionally ⌊lg ℓ⌋ field squarings [5]. The

key powers τ, τ2, τ2
2
, . . . , τ2

⌊lg ℓ⌋
are required to be pre-computed before the actual computation

of BRWHash. See Table 2.
The following two results were proved in [5] for the case k = µ. Below we state the results for

the more general case of separate k and µ. The proofs are essentially the same as the proofs of the
case k = µ given in [5].

Lemma 1 (Based on Lemma 4.1 of [5]). Let p = 2m − δ be a prime and µ be a positive integer
such that µ < m and δ < 2µ− 1. Let α ∈ Z2µ, and P (x) and P ′(x) be distinct polynomials in Fp[x]
satisfying P (0) = P ′(0) = 0. The number of distinct τ ∈ Fp such that

((P (τ) mod p) mod 2µ)− ((P ′(τ) mod p) mod 2µ) ≡ α (mod 2µ) (6)

is at most 2m−µ+1 times the degree of the polynomial P (x)− P ′(x).
Consequently, for τ chosen uniformly at random from {0, 1}k (which is considered to be a subset

of Fp), the probability that (6) holds is at most 2m−k−µ+1 · deg(P (x)− P ′(x)).

Lemma 1 reduces the problem of determining the probability that a uniform random k-bit
string τ satisfies (6) to the simpler problem of determining the degree of the non-zero polynomial
P (x)−P ′(x) ∈ Fp[x]. The values of p, m, k and µ given in Table 1 satisfy the conditions stated in
Lemma 1.

Theorem 3 (Based on Theorem 4.7 of [5]). Let p = 2m − δ be a prime and µ be a positive integer
such that µ < m and δ < 2µ − 1. Let X and X ′ be two distinct binary strings of lengths L and L′

respectively with L ≥ L′ ≥ 0, and α be an element of Z2µ. Let ℓ = ⌈L/n⌉. Suppose τ is chosen
uniformly at random from {0, 1}k. Then

Pr[polyHashτ (X)− polyHashτ (X
′) = α] ≤ ℓ · 2m−k−µ+1,

Pr[BRWHashτ (X)− BRWHashτ (X
′) = α] ≤ (1 + 2ℓ) · 2m−k−µ+1,

Apart from polyHash and BRWHash, two other hash functions, named t-BRWHash and d-2LHash,
as well as the hash function d-Hash (which is a combination of polyHash and d-2LHash) were defined
in [5]. Timing results from the sequential implementations reported in [5] indicated that among
all the hash functions, for short messages polyHash is the fastest, while d-2LHash is the fastest
for longer messages. However, fresh implementations of BRWHash (and also t-BRWHash) reported
in [19] showed that among all the hash functions considered in [5], BRWHash is the fastest among
all the four hash functions polyHash, BRWHash, t-BRWHash and d-2LHash for all message lengths
and for both the primes 2127 − 1 and 2130 − 5. In view of the fact that BRWHash is faster than
both t-BRWHash and d-2LHash, we do not consider the hash functions t-BRWHash and d-2LHash
(and also d-Hash) in this work.

3 Decimated BRW Hash

We describe the hash function family c-decBRWHash. The key space is {0, 1}k; τ denotes the k-bit
key which is considered to be an element of Fp. The digest space is the group (Z2µ ,+). The message
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space is the set of all binary strings of lengths less than 2m−1. For concreteness we refer to the
primes and the parameters m, n, k and µ given in Table 1.

Construction 3. The hash function is parameterised by a positive integer c. Given a binary string
X of length L ≥ 0, let (M1, . . . ,Mℓ, binm−1(L)) be the output of pad2(format(X)). We define

c-decBRWHashτ (X) = (Q(τ ;M1, . . . ,Mℓ, binm−1(L)) mod p) mod 2µ, (7)

where Q(x;M1, . . . ,Mℓ, binm−1(L)) is the polynomial in Fp[x] defined in the following manner.
Let n = ⌈ℓ/c⌉ and m = cn. Define Mℓ+1 = · · · = Mm = 0m−1. Let

Q1(x) = BRW(x;M1,Mc+1,M2c+1, . . . ,Mm−3),

Q2(x) = BRW(x;M2,Mc+2,M2c+2 . . . ,Mm−2),

· · ·
Qc(x) = BRW(x;Mc,M2c,M3c . . . ,Mm).

Note that each of the Qi’s is a BRW polynomial on n blocks. If L = 0, let d = 1 and if L > 0, let
d = 2⌊lg n⌋+1. Define

Qc+1(x) = Poly(xd;Q1(x), Q2(x), . . . , Qc(x))

= x(c−1)dQ1(x) + x(c−2)dQ2(x) + · · ·+ xdQc−1(x) +Qc(x). (8)

Finally,

Q(x;M1, . . . ,Mℓ, binm−1(L)) = x(x ·Qc+1(x) + binm−1(L)). (9)

When the quantities M1, . . . ,Mℓ, binm−1(L) are clear from the context, we will write Q(x)
instead of Q(x;M1, . . . ,Mℓ, binm−1(L)). Note that if X is the empty string, then L = ℓ = 0, and
c-decBRWHashτ (X) = 0.

The idea behind the construction of decBRWHash is to decimate the message blocks into c
independent streams, process each stream using BRW and then combine the outputs of the streams
using Horner with an appropriate power of the key τ . Choosing the proper power of τ for the Horner
evaluation is important to ensure security. We prove later that the choice of τd is appropriate.
Further, the key powers, τ, τ2, . . . , τd/2 are required for the BRW computations. So the key power
τd for the Horner computation is obtained from the last key power τd/2 required for the BRW
computation by one squaring.

Remark 2. Suppose c = 1. Then Q1(x) = BRW(x;M1, . . . ,Mℓ), Q2(x) = Q1(x), and Q(x) =
x(x ·Q1(x)+binm−1(L)). So with c = 1, the hash function c-decBRWHash becomes exactly the hash
function BRWHash. Consequently, c-decBRWHash is a generalisation of BRWHash. Note that for
c = 1, since Q2(x) = Q1(x), x

d is not required.

The complexity of computing c-decBRWHashτ (X) for c > 1 is stated in the following result.

Proposition 2. Let c > 1 be an integer and X be a binary string. Suppose pad2(format(X))
returns (M1, . . . ,Mℓ, binm−1(L)). Computing c-decBRWHashτ (X) requires c⌊n/2⌋ unreduced mul-
tiplications, c(1 + ⌊n/4⌋) reductions, c+ 1 field multiplications, and ⌊lg n⌋ field squarings.
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unred mult red storage pre-comp (mult)
polyHash ℓ ⌈ℓ/g⌉ g g − 1
BRWHash 2 + ⌊ℓ/2⌋ 3 + ⌊ℓ/4⌋ 1 + ⌊lg ℓ⌋ ⌊lg ℓ⌋
c-decBRWHash 1 + c(1 + ⌊⌈ℓ/c⌉/2⌋) 1 + c(2 + ⌊⌈ℓ/c⌉/4⌋) 2 + ⌊lg⌈ℓ/c⌉⌋ 1 + ⌊lg⌈ℓ/c⌉⌋

Table 2: Operation counts and storage requirement for the hash functions for ℓ message blocks.
For polyHash, the parameter g is a positive integer. For c-decBRWHash, c > 1.

Proof. From Theorem 2, computing each Qi, i = 1, . . . , c, requires ⌊n/2⌋ unreduced multiplications

and 1 + ⌊n/4⌋ reductions. The key powers τ2, τ4, . . . , τ2
⌊lg n⌋

are required in the computation of
all the Qi’s, and are computed only once using ⌊lg n⌋ field squarings. Computing Qc+1 from
Q1, . . . , Qc requires c− 1 field multiplications, and computing Q from Qc+1 requires two additional
field multiplications.

For c > 1, the key powers τ, τ2, τ4, . . . , τ2
⌊lg n⌋+1

are required to be stored. See Table 2 which
compares the operation counts and storage requirements for polyHash and c-BRWHash. Compared
to BRWHash, for a small value of c > 1, the hash function c-BRWHash requires a few extra
unreduced multiplications and reductions, and a little less storage. Computed sequentially, both
BRWHash and c-BRWHash have similar efficiencies for message which are longer than a few blocks
(for short messages BRWHash will be faster than c-BRWHash). The main advantage of c-BRWHash
is that can be implemented using SIMD operations, as we describe later.

Naming convention. We adopt the following naming convention. For all the hash functions
considered in this paper, there are two possible sets of parameters in Table 1. The choice of the
prime p determines the values of m, k, n and µ. So for each of the hash functions, by specifying
the value of p, we obtain two different instantiations. If p is chosen to be 2127− 1, we append 1271
to the name of the hash function, and if p is chosen to be 2130 − 5, we append 1305 to the name of
the hash function.

3.1 AXU bounds

The following result from [5] states the basic property of pad2.

Lemma 2 (Lemma 4.3 of [5]). Let X be a binary string of length L ≥ 0. Then the map X 7→
pad2(format(X)) is an injection.

Lemma 3. Let X be a binary string of length L ≥ 0. Let ℓ = ⌈L/n⌉. Suppose (M1, . . . ,Mℓ,
binm−1(L)) is the output of pad2(format(X)) and Q(x;M1, . . . ,Mℓ, binm−1(L)) is the polynomial
constructed from X as in (9). Then X 7→ Q(x;M1, . . . ,Mℓ, binm−1(L)) is an injection.

Proof. Let X and X ′ be two distinct binary strings of lengths L and L′ respectively. We assume

without loss of generality that L ≥ L′ ≥ 0. Let ℓ = ⌈L/n⌉, n = ⌈ℓ/c⌉, m = cn, d = 2⌊lg n⌋+1, and

ℓ′ = ⌈L′/n⌉, n′ = ⌈ℓ′/c⌉, m′ = cn′, d′ = 2⌊lg n
′⌋+1. Let (M1, . . . ,Mℓ, binm−1(L)) be the output of

pad2(format(X)), and let (M ′
1, . . . ,M

′
ℓ, binm−1(L

′)) be the output of pad2(format(X ′)).
Let Q1(x), . . . , Qc(x), Qc+1 and Q(x) be the polynomials arising from X, and Q′

1(x), . . . , Q
′
c(x),

Q′
c+1(x) and Q′(x) be the polynomials arising from X ′. By construction, the coefficient of x in

Q(x) is binm−1(L) and the coefficient of x in Q′(x) is binm−1(L
′). So if L ̸= L′, then Q(x) ̸= Q′(x).
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Now suppose that L = L′, which implies binm−1(L) = binm−1(L
′), ℓ = ℓ′, n = n′, m = m′, and

d = d′. Since there is exactly one string of length 0, L = L′ and X ̸= X ′ implies that both the
strings X and X ′ are non-empty and so ℓ = ℓ′ > 0. Since X ̸= X ′, by the injectivity of pad2 (see
Lemma 2), (M1, . . . ,Mℓ, binm−1(L)) ̸= (M ′

1, . . . ,M
′
ℓ, binm−1(L

′)). Since binm−1(L) = binm−1(L
′), it

follows that (M1, . . . ,Mℓ) ̸= (M ′
1, . . . ,M

′
ℓ). Let ı be such that Mı ̸= M ′

ı , and suppose that ı = ȷ+cj,
for some ȷ ∈ {1, . . . , c}. By construction

Qȷ(x) = BRW(x;Mȷ,Mȷ+c, . . . ,Mȷ+c(j−1),Mȷ+cj ,Mȷ+c(j+1), . . . ,Mm−c+ȷ),

Q′
ȷ(x) = BRW(x;M ′

ȷ,M
′
ȷ+c, . . . ,M

′
ȷ+c(j−1),M

′
ȷ+cj ,M

′
ȷ+c(j+1), . . . ,M

′
m−c+ȷ).

Since Mȷ+cj = Mı ̸= M ′
ı = M ′

ȷ+cj , by the injectivity of BRW polynomials (first point of Theorem 1),
Qȷ(x) ̸= Q′

ȷ(x).
For each i = 1, . . . , c, both Qi(x) and Q′

i(x) are BRW polynomials built from n blocks (where
n > 0 since ℓ > 0) and hence from the second point of Theorem 1, the degree of both Qi(x) and

Q′
i(x) is 2

⌊lg n⌋+1− 1 = d− 1. From the definition of Qc+1(x) in (8), the coefficients of Qc+1(x) are
exactly the coefficients of Qi(x), i = 1, . . . , c, and similarly the coefficients of Q′

c+1(x) are exactly
the coefficients of Q′

i(x), i = 1, . . . , c. Since Qȷ(x) ̸= Q′
ȷ(x), it follows that Qc+1(x) ̸= Q′

c+1(x) and
hence Q(x) ̸= Q′(x).

Lemma 4. Let X be a binary string of length L ≥ 1 and n be a positive integer. Let ℓ = ⌈L/n⌉.
Let (M1, . . . ,Mℓ, binm−1(L)) be the output of pad2(format(X)). Then the following holds.

1. If c | ℓ, then ℓ+ 1 < deg(Q(x;M1, . . . ,Mℓ, binm−1(L))) ≤ 2ℓ+ 1.
2. If c ∤ ℓ, then ℓ+ 1 < deg(Q(x;M1, . . . ,Mℓ, binm−1(L))) < 2ℓ+ 2c+ 1.

Proof. As argued in the proof of Lemma 3 the degree of Qi(x) is d−1 for i = 1, . . . , c. So from (8),

the degree of Qc+1(x) is cd − 1 and hence the degree of Q(x) is cd + 1, where d = 2⌊lg n⌋+1, and
n = ⌈ℓ/c⌉. Suppose ⌊lg n⌋ = ρ, i.e. 2ρ ≤ n = ⌈ℓ/c⌉ < 2ρ+1. So the degree of Q(x) is c2ρ+1 + 1.

If c | ℓ, then c2ρ ≤ ℓ < c2ρ+1 from which we obtain the first point. If c ∤ ℓ, then write ℓ/c = a+f ,
where a is an integer and 0 < f < 1. So ⌈ℓ/c⌉ = a+ 1 and 2ρ ≤ a+ 1 < 2ρ+1. Using a = ℓ/c− f ,
we obtain c2ρ ≤ ℓ+ c(1− f) < c2ρ+1. This yields ℓ+1+ c(1− f) < c2ρ+1 +1 ≤ 2ℓ+2c(1− f) + 1.
Since 0 < f < 1, we obtain the second point.

Theorem 4. Let p = 2m−δ be a prime and µ be a positive integer such that µ < m and δ < 2µ−1.
Let X and X ′ be two distinct binary strings of lengths L and L′ respectively with L ≥ L′ ≥ 0, and
α be an element of Z2µ. Let ℓ = ⌈L/n⌉. Suppose τ is chosen uniformly at random from {0, 1}k.
Then the following holds.

1. If c = 1, then Pr[c-decBRWHashτ (X)− c-decBRWHashτ (X
′) = α] ≤ (2ℓ+ 1) · 2m−k−µ+1.

2. If c > 1, then Pr[c-decBRWHashτ (X)− c-decBRWHashτ (X
′) = α] < (2ℓ+2c+1) · 2m−k−µ+1.

Proof. Since X and X ′ are distinct, by Lemma 3, the corresponding polynomials Q(x) and Q′(x)
are also distinct. Further, by construction the constant terms of both Q(x) and Q′(x) are zero.
Using Lemma 1, the required probability is at most 2m−k−µ+1 times the degree of Q(x). From
Lemma 4, the degree of Q(x) is at most 2ℓ+ 1 if c = 1, and is less than 2ℓ+ 2c+ 1 if c > 1.

Note that for c = 1, the AXU bound of c-decBRWHash is the same as that of BRWHash. This
is a consequence of the fact that c-decBRWHash is a generalisation of BRWHash.
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4 Field Arithmetic

The focus of our implementation is SIMD operations. In particular, we focus on the avx2 instruc-
tions of Intel processors. The presently available avx2 instructions determine how the elements of
the field Fp are represented and the field arithmetic is performed. First we describe the representa-
tion of individual field elements and arithmetic for a pair of field elements. Later we describe how
the representation of a single field element can be lifted to a vector of 4 field elements, and how
simultaneous arithmetic is performed on 4 pairs of field elements.

The avx2 instructions allow applying the same operation simultaneously on four different pairs
of operands. The basic data type is a 256-bit quantity which is considered to be 4 64-bit words.
Given two such 256-bit quantities, it is possible to simultaneously add or multiply the four pairs
of 64-bit operands that arise from the same 64-bit positions of the two 256-bit quantities. In
particular, the instruction vpmuludq performs 4 simultaneous multiplications and vpaddq performs
4 simultaneous additions; two other relevant instructions are vpand (which performs 4 simultaneous
bitwise AND operations), vpsllq (which performs 4 simultaneous left shifts), and vpsrlq (which
performs 4 simultaneous right shifts).

There is, however, no scope for handling overflow (i.e. the result of an arithmetic instruction is
greater than or equal to 264) with avx2 instructions. So to ensure correctness of the computation,
the result of the addition and multiplication instructions must also fit within a 64-bit word. In
particular, the add-with-carry operation is not available with avx2 instructions. Since there is no
scope for handling overflow, to ensure the correctness of the results of addition and multiplication,
the whole 64 bits of the operands cannot be information bits. For addition, at most the 63 least
significant bits of the operands can contain information, so that the result of the addition is at
most a 64-bit quantity. For multiplication, at most the 32 least significant bits of the operands
can contain information, so that the result of the multiplication is at most a 64-bit quantity. So in
effect the avx2 instructions support 32-bit multiplication.

Remark 3. Intel processors also provide support for 64-bit integer multiplication. In particular,
from the Haswell processor onwards three instructions, namely mulx, adcx, and adox, are provided
which allow a double carry chain multiplication and squaring to be performed [21, 20, 18]. Imple-
mentations which utilise these instructions have been called maax implementations [18]. For both
polyHash and BRWHash, maax implementations were reported in [5, 19] for both the primes 2130−5
and 2127 − 1. Later we compare the speeds of these maax implementations with the speeds of the
new avx2 implementations that are reported in this paper.

Below we describe the representation and field arithmetic separately for the primes 2130−5 and
2127 − 1.

4.1 Case of p = 2130 − 5

Elements in Fp are represented using 130-bit quantities. An element f of the field Fp is represented
as a 5-limb quantity, where each limb is a 26-bit quantity, i.e.

f = f0 + f12
26 + f22

26·2 + f32
26·3 + f42

26·4,

where each fi is a 26-bit quantity. We call the coefficients of the powers of 226 to be the limbs of f .
Sometimes we write f as (f0, f1, f2, f3, f4). The reason for choosing base 226 representation is that
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avx2 supports only 32-bit multiplications, so that multiplication of two 26-bit operands results in
a 52-bit operand which fits within a 64-bit word.

Suppose e is another field element whose limbs are e0, e1, e2, e3, e4. The product ef mod p can
be written as a 5-limb quantity h = h0 + h12

26 + h22
26·2 + h32

26·3 + h42
26·4 as follows.

h0 = e0f0 + 5(e1f4 + e2f3 + e3g2 + e4g1)
h1 = e0f1 + e1f0 + 5(e2f4 + e3f3 + e4f2)
h2 = e0f2 + e1f1 + e2f0 + 5(e3f4 + e4f3)
h3 = e0f3 + e1f2 + e2f1 + e3f0 + 5e4f4
h4 = e0f4 + e1ff + e2f2 + e3f1 + e4f0.

(10)

In the above we have used 2130 ≡ 5 mod p. Consider h0 = e0f0+5(e1f4+e2f3+e3f2+e4f1) = (e0f0+
e1f4+e2f3+e3f2+e4f1)+4(e1f4+e2f3+e3f2+e4f1) = u+v, where u = e0f0+e1f4+e2f3+e3f2+e4f1
and v = 4(e1f4 + e2f3 + e3f2 + e4f1). Each of the cross product terms eifj is 52-bit long; the sum
of four such quantities is at most 54-bit long; the multiplication by 4 increases the length by 2 bits,
so v is at most 56-bit long; by a similar reasoning u is at most 55-bit long; so the sum h0 = u+ v
is at most 57-bit long. By a similar argument, the lengths of the other hj ’s are also at most 57
bits. So the limbs of h are (at most) 57-bit quantities. By an unreduced multiplication we mean
obtaining (h0, . . . , h4) from (e0, . . . , e4) and (f0, . . . , f4) as given in (10).

Further reduction of the limbs of h to 26-bit quantities are not immediately done. Recall that
both grouped Horner and BRW evaluation support lazy reduction. The limbs of h are stored as
64-bit quantities. If we perform limb-wise addition of at most 64 5-limb quantities all of whose
limbs are 57 bits long, then the limbs of the final sum are at most 63 bits long, and so there is no
overflow. So delayed reduction strategy can be applied up to the sum of 64 quantities. Note that
instead of being 26-bit quantities, if at most one of the ei’s and at most one of the fj ’s were 27-bit
quantities, then the limb sizes would be 58 bits (instead of 57 bits), and there would be no overflow
when delayed reduction is employed up to the addition of 32 quantities. We take advantage of this
observation during the reduction step, where we allow one limb to be a 27-bit quantity. We found
that for grouped Horner implementing delayed reduction beyond group size 4 did not lead to speed
improvement. For BRW evaluation on n = ⌈ℓ/4⌉ vector blocks, the maximum number of additions
required by Algorithm 1 in Appendix A due to delayed reduction is the size of the stack which by
Proposition 1 is at most ⌊lg n⌋ − t + 1. So if the number of block ℓ is at most about 231+t, then
there is no problem with delayed reduction.

Remark 4. In computing h using (10), suppose e is a fixed quantity, while f varies. In such a
situation, given e = (e0, e1, . . . , e4) it is advantageous to pre-compute ẽ = (5 · e1, 5 · e2, 5 · e3, 5 · e4),
as then h0 can be computed as h0 = e0f0+(5 · e1)f4+(5 · e2)f3+(5 · e3)f2+(5 · e4)f1, and similarly
for h1, h2 and h3. This saves the four multiplications by 5.

Next we consider the reduction. Suppose h = h0 + h12
26 + h22

26·2 + h32
26·3 + h42

26·4, where
we assume (due to possible delayed reduction) that each hi is a 63-bit quantity. The goal of the
reduction is to reduce (modulo p) so that each limb is a 26-bit quantity. This is a complete reduction
and is done once at the end of the computation. For intermediate reductions, we reduce all limbs
other than h1 to 26-bit quantitites and reduce h1 to a 27-bit quantity. Such a partial reduction
is faster than a complete reduction. As mentioned above, this does not cause an overflow when
implementing delayed reduction.

The basic idea of the reduction for a limb is to retain the 26 least significant bits in the limb
and add the other bits (which we call the carry out) to the next limb. In other words, for any
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U4

U3

U2

U1

U0

a3,4 a2,4 a1,4 a0,4

a3,3 a2,3 a1,3 a0,3

a3,2 a2,2 a1,2 a0,2

a3,1 a2,1 a1,1 a0,1

a3,0 a2,0 a1,0 a0,0

Figure 1: Packing of four field elements a0, . . . , a3 into 5 256-bit words U0, . . . , U4.

i ∈ {0, . . . , 3}, write hi = hi,0 + hi,12
26 with hi,0 = hi mod 226, update hi to hi,0 and add hi,1 to

hi+1; write h4 = h4,0 + h4,12
26 with h4,0 = h4 mod 226, update h4 to h4,0 and add 5h4,1 (using once

again 2130 ≡ 5 mod p) to h0. Since hi+1, i = 0, . . . , 3 is a 63-bit quantity, adding hi,1 to hi+1 does
not cause an overflow. It is important to note that the reduction procedure can start from any
i ∈ {0, . . . , 3}, and in particular the procedure does not have to start from h0. For the reduction,
we use the reduction chain h0�h1�h2�h3�h4�h0�h1, which is a chain having 6 steps. The first five
steps reduce h0, . . . , h4 to 26-bit quantities, and the carry out of h4 is at most a 37-bit quantity.
Multiplying this carry out by 5 creates at most a 40-bit quantity, and adding it to the 26-bit h0
makes h0 at most a 41-bit quantity. The last step h0�h1 reduces h0 to 26 bits and adds the at
most 15-bit carry out to the 26-bit h1 to make the new h1 a 27-bit quantity.

SIMD implementation. Suppose a0, a1, a2 and a3 are four field elements, and for i = 0, . . . , 3,
suppose the limbs of ai are ai,0, ai,1, . . . , ai,4, where each ai,j is a 26-bit (or 27-bit) quantity. The
total of 20 limbs of a0, a1, a2 and a3 are packed into 5 256-bit words U0, . . . , U4 in the following
manner. Consider Uj to be Uj,0||Uj,1||Uj,2||Uj,3, where each Uj,i is a 64-bit word. For i = 0, . . . , 3,
ai,j is stored in the 26 least significant bits of Uj,i. See Figure 1 for an illustration. Similarly,
suppose b0, b1, b2 and b3 are four field elements which are packed into 5 256-bits words V0, . . . , V4.
Let ci = aibi mod p, i = 0, . . . , 3, where the 5-limb representation of ci is obtained from the 5-
limb representations of ai and bi in a manner similar to (10). Then the 5-limb representations of
c0, c1, c2, c3 are obtained in 5 256-bit words W0,W1, . . . ,W4. Using the avx2 instructions vpmuludq
and vpaddq, it is possible to obtain W0,W1, . . . ,W4 from U0, U1, . . . , U4 and V0, V1, . . . , V4. In
particular, we note that 25 vpmuludq instructions are required to obtain all the cross product
terms and additionally 4 vpmuludq instructions are required to perform the multiplications by 5.
The multiplications by 5 are not required if one of the operands in each of the four multiplications
is fixed (see Remark 4).

The computation of grouped Horner and BRW proceeds using the delayed reduction strategy.
So the limbs of the Wj ’s grow to at most 63-bit quantities. Then the reduction strategy described
above is applied using SIMD instructions to the 5 words W0,W1, . . . ,W4.

A different SIMD representation. A different method of packing four field elements into 256-
bit words was used in [16]. Each of the four field elements is represented using 5 26-bit quantities
and hence can fit in 5 32-bit words. So the four field elements together require 20 32-bit words to
be stored. Three 256-words provide a total of 24 32-bit words. So the 20 32-bit words representing
the four field elements can be stored in three 256-bit words. This is the representation of 4 field
elements that was used in [16]. Stored in this manner, it is not possible to directly perform the
4-way SIMD multiplication, and requires more instructions for unpacking and repacking. The
rationale for adopting such a strategy is that using 3 instead of 5 256-bit words to store operands
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frees up some of the 256-bit registers for performing the actual arithmetic, and this compensates
for the penalty incurred due to packing and unpacking. In our implementations, on the other hand,
we have used 5 256-words to represent the operands so that the multiplication operations can be
directly applied. By carefully managing register allocation, we did not encounter the problem of
unavailable registers. This was possible since we implemented directly in assembly, whereas the
implementation in [16] is in Intel intrinsics which is at a higher level. Since in our approach the
problem of unavailable registers does not arise, using the packed representation of field elements
used in [16] would incur an unnecessary penalty. So we chose not to use that strategy.

4.2 Case of p = 2127 − 1

Elements in Fp are represented using 128-bit quantities. Keeping in mind the fact that SIMD
supports 32-bit multiplication, there are two possible representations of elements of Fp, namely a
4-limb, or a 5-limb representation.

5-limb representation. The 5-limb representation is almost the same as that of the 5-limb
representation for 2130− 5 described in Section 4.1, i.e. a base 226 representation can be used. The
only difference in the multiplication procedure shown in (10) is that the constant 5 is replaced by
8, since 2130 ≡ 8 mod (2127− 1). For the reduction algorithm, we use the chain h3�h4�h0�h1�h2�
h3�h4, i.e. we start the chain at h3 instead of starting at h0. The chain consists of 6 steps as in
the case for 2130− 5. For the step h4�h0, we reduce h4 to 23 bits (note that 4× 26+23 = 127) and
produce a carry out of at most 40 bits which is then added to h0 (since 2127 ≡ 1 mod (2127 − 1),
there is no need to multiply the carry out by any constant). The chain finally stops at h4 which
results in h4 being at most a 24-bit quantity. The number of operations required for multiplication
and reduction using the 5-limb representation of 2127 − 1 is almost the same as the number of
operations required for multiplication and reduction using the 5-limb representation of 2130 − 5.

The SIMD implementation of the 5-limb representation for 2127 − 1 is also very similar to the
SIMD implementation of the 5-limb representation for 2130 − 5. Four field elements are stored
in 5 256-bit words as shown in Figure 1 and multiplication is done using avx2 instructions. In
particular, with the 5-limb representation, multiplication requires requires 25 vpmuludq instructions
to compute the cross product terms, plus 4 vpsllq instructions for the multiplications by 8.

4-limb representation. For the 4-limb representation, an element f of the field Fp is represented
as a 4-limb quantity, where each limb is a 32-bit quantity, i.e.

f = f0 + f12
32 + f22

32·2 + f32
32·3,

where each fi is a 32-bit quantity. Suppose e is another field element whose limbs are e0, e1, e2, e3.
The product ef mod p can be written as a 4-limb quantity h = h0 + h12

32 + h22
32·2 + h32

32·3 as
follows.

h0 = e0f0 + 2(e1f3 + e2f2 + e3f1)
h1 = e0f1 + e1f0 + 2(e2f3 + e3f2)
h2 = e0f2 + e1f1 + e2f0 + 2e3f3
h3 = e0f3 + e1f2 + e2f1 + e3f0.

(11)

In the above, we have used 2128 ≡ 2 mod p. Each of the cross product terms eifj is 64-bit long.
Adding together such terms increases the size of the sum beyond 64 bits. Since avx2 instructions
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do not provide any mechanism to handle the carry arising out of additions, one cannot directly add
the cross product terms. An alternative procedure needs to be used. Consider h0. Write eifj as
u+ v232, where both u and v are 32-bit quantities. The u’s arising from the terms e1f3, e2f2 and
e3f1 are added, the sum multiplied by 2, and the result added to the u arising from the the term
e0f0. This results in h0 being a 36-bit quantity. Similarly the v’s arising from the terms e1f3, e2f2
and e3f1 are added, the sum multiplied by 2, and the result added to the v arising from the term
e0f0, giving a value v′. The computation of h1 starts with the initial value v′, and is updated by
adding the u’s arising from the cross product terms in the expression for h1, while the v’s arising
from the cross product terms in the expression for h1 contribute to the value of h2.

For the reduction algorithm, the chain is h0�h1�h2�h3�h0�h1�h2�h3 which consists of 7 steps
(which is one step more than the chain for the 5-limb representation). Note that the chain makes
two full iterations over the limbs and reduces all the limbs to 32-bit quantities. This is required,
since if any limb is greater than 32 bits, then subsequent multiplication with such limbs will cause
an overflow.

SIMD implementation packs four field elements with 32-bit limbs into 4 256-bit words in much
the same as the packing of four field elements with 26-bit limbs into 5 256-bit words. Using this
packed representation, multiplication of four pairs of field elements is done using avx2 instructions
following the description given earlier. An advantage of using the 4-limb representation is that the
number of vpmuludq instructions required to compute the multiplication comes down to 16 from
25. However, there is a significant increase in the number additions and shifts. Multiplication using
the 4-limb representation requires 16 vpmuludq, 40 vpaddq, 16 vmovdqa, 16 vpand and 16 vpsrlq

operations (plus 3 vpsllq instructions for the multiplications by 2). In contrast, multiplication
using the 5-limb representation requires 25 vpmuludq and 20 vpaddq instructions (plus 4 vpsrlq

instructions for the multiplications by 8). The latencies of the various instructions on the Skylake
processor are as follows: vpmuludq - 5, vpaddq -1, vpand - 1, vpsrlq - 1, vmovdqa - 7 for load and
5 for store. This shows that the penalty due to the additional instructions required for the 4-limb
representation more than cancels the benefit of requiring a less number of vpmuludq instructions.

Non-availability of carry handling instructions. A major reason that 4-limb representation
turns out to be slower is that SIMD instructions do not provide any mechanism to handle the
carry out of an addition operation. Since the cross product terms in (11) are all 64-bit quantities,
without the availability of an efficient carry handling mechanism, many more operations are required
to prevent an overflow condition. If in the future SIMD instructions provide some mechanism for
obtaining the carry out of an addition, and/or the add-with-carry operation, then it is likely that
the 4-limb representation will provide a significantly faster multiplication algorithm than the 5-limb
representation. We note that for the maax implementation using 64-bit arithmetic there is excellent
support for carry operations (see Remark 3).

Non-availability of 64-bit multiplications. SIMD operations presently do not support 64-bit
multiplication. If in the future, 64-bit SIMD multiplication is supported (with 2 such simultaneous
multiplications using 256-bit words, or 4 such simultaneous multiplications using 512-bit words),
then for the prime 2130 − 5, a 3-limb representation can be used, while for 2127 − 1, either a 2-
limb, or a 3-limb representation can be used. The speed of multiplication using such a 2-limb
representation for 2127− 1 has the potential to significantly outperform the speed of multiplication
of a 3-limb representation of 2130 − 5, especially if along with 64-bit multiplication, carry handling
SIMD operations are used. This observation arises from the comparative speed performances
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of multiplication algorithms for 2127 − 1 and 2130 − 5 for non-SIMD implementation using maax

instructions (see [5, 19]).

4.3 Other Primes

We considered the possibility of using other pseudo-Mersenne primes. For the primes 2137 − 13,
2140 − 27, and 2141 − 9 the elements of the corresponding fields can be represented using 5 limbs.
However, with these three primes there will not be sufficiently many free bits left after multiplication
to support delayed reduction. So the overall hash computation will be slower than that for 2130−5.
One may use an even greater prime such as 2150 − 3; the problem in this case is that a 5-limb
representation will cause overflow during the multiplication procedure, while a 6-limb representation
will be slower than 2130−5 (though it will support delayed reduction). If we consider primes smaller
than 2127 − 1, then 2116 − 3 is a possibility. With 2116 − 3, a 4-limb representation can support
multiplication without complicated overflow management; the problem, however, is that delayed
reduction will not be possible, block size will reduce to 14 bytes, and security will drop by 13 bits.
Without delayed reduction and with the smaller block size, the speed of the hash function will not
be a significant improvement over the speed of the hash function for 2130− 5 to compensate for the
loss of security by 13 bits.

5 Vectorised Algorithms

We describe algorithms for vectorised computation of polyHash and decBRWHash.

5.1 Vectorised Computation of polyHash

One way to exploit parallelism in the computation of polyHash is to divide the sequence of blocks
(M1, . . . ,Mℓ) into c ≥ 2 subsequences and apply Horner’s rule to each of the subsequence. For
c = 4, such a strategy was used in [16] for vectorised implementation of Poly1305. In [9], this
strategy was called c-decimated Horner evaluation.

From (2) and (3), the computation of polyHashτ (X) requires the computation of τ ·Poly(τ ;M1,
. . . ,Mℓ), where (M1, . . . ,Mℓ) is the output of pad1(format(X)). Let ρ = ℓ mod c and ℓ′ = (ℓ−ρ)/c =
⌊ℓ/c⌋. The computation of τ · Poly(τ ;M1, . . . ,Mℓ) can be done in the following manner. First
compute

P =


τ c · Poly(τ c;M1,Mc+1,M2c+1, . . . ,Mcℓ′−c+1)

+ τ c−1 · Poly(τ c;M2,Mc+2,M2c+2, . . . ,Mcℓ′−c+2)
+ · · ·
+ τ · Poly(τ c;Mc,M2c,M3c, . . . ,Mcℓ′).

(12)

Then

τ · Poly(τ ;M1, . . . ,Mℓ) = P if ρ = 0,
τ · Poly(τ ;M1, . . . ,Mℓ) = τ · Poly(τ ;P +Mℓ−ρ+1,Mℓ−ρ+2, . . . ,Mℓ) if ρ > 0.

We focus on the computation of P . For i = 1, . . . , c, let

Ci = τ c+1−i · Poly(τ c;Mi,Mc+i, . . . ,Mcℓ′−c+i).
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Then P = C1 +C2 + · · ·+Cc. So the computation of P consists of computing C1, . . . , Cc and then
adding these together. The computation of the vector

C = (C1, . . . , Cc) (13)

can be done using an SIMD strategy. The computation of P from C, and the subsequent compu-
tation of τ · Poly(τ ;M1, . . . ,Mℓ) from P (in the case ρ > 0) is done using a small number of maax
operations.

For a non-negative integer j, let τ j = (τ j , . . . , τ j) be a vector of length c. Further, let τθ =
(τ c, τ c−1, . . . , τ) also be a vector of length c. For i = 1, . . . , ℓ′, let Mi = (Mci−c+1, . . . ,Mci). Then

C = τθ ◦ (τ c ◦ (· · · (τ c ◦ (τ c ◦M1 +M2) +M3) + · · ·+Mℓ′−1) +Mℓ′), (14)

where ◦ and + denote SIMD (i.e. component wise) field multiplication and field addition of two
c-dimensional vectors respectively.

The computation in (14) requires a total of ℓ′ SIMD field multiplications and ℓ′ − 1 SIMD
additions. Of the ℓ′ SIMD field multiplications, ℓ′− 1 SIMD field multiplications have τ c as one of
the operands, while one SIMD field multiplication has τθ as one of the operands.

As mentioned in Section 2, a delayed (or lazy) reduction strategy was used in [16] to decrease
the number of reductions. Let g ≥ 1 be a parameter, and ℓ′′ and r be integers such that (ℓ′−g−1) =
g(ℓ′′ − 1) + r, with ℓ′′ ≥ 1 and 1 ≤ r ≤ g. So ℓ′ − 1 = gℓ′′ + r, and since 1 ≤ r ≤ g, we have
ℓ′′ = ⌈(ℓ′ − 1)/g⌉ − 1. Let γ = τ c.

A1 =

{
M1 ◦ γℓ′−1 +M2 ◦ γℓ′−2 + · · ·+Mℓ′−1 ◦ γ +Mℓ′ if ℓ′ ≤ g + 1,
M1 ◦ γg +M2 ◦ γg−1 + · · ·+Mg ◦ γ +Mg+1 if ℓ′ > g + 1.

For i = 1 . . . , ℓ′′ − 1, let

Ai+1 = Ai ◦ γg +Mig+2 ◦ γg−1 + · · ·+M(i+1)g ◦ γ +M(i+1)g+1,

and

Aℓ′′+1 = Aℓ′′ ◦ γr +Mℓ′′g+2 ◦ γr−1 +Mℓ′′g+3 ◦ γr−2 + · · ·+Mℓ′′g+r ◦ γ +Mℓ′′g+r+1.

Then it is not difficult to verify that

C =

{
τθ ◦A1 if ℓ′ ≤ g + 1,
τθ ◦Aℓ′′+1 if ℓ′ > g + 1.

(15)

Suppose that the key powers γ,γ2,γ3, . . . ,γg are pre-computed. If ℓ′ = 1, then A1 = M1 and
no SIMD multiplication or SIMD reduction are required to compute A1. If 1 < ℓ′ ≤ g + 1,
then computing A1 requires ℓ′ − 1 unreduced SIMD multiplications and one SIMD reduction.
If ℓ′ > g + 1, then computing A1 requires g unreduced SIMD multiplications and one SIMD
reduction; for 1 ≤ i ≤ ℓ′′− 1, computing Ai+1 from Ai, 1 ≤ i ≤ ℓ′′− 1, requires g unreduced SIMD
multiplications and one SIMD reduction; and computing Aℓ′′+1 from Aℓ′′ requires r unreduced
SIMD multiplications and one reduction. So if ℓ′ > g+1, then to compute Aℓ′′+1 the total number
of unreduced SIMD multiplications required is equal to ℓ′′g + r = ℓ′ − 1, and the total number of
SIMD reductions is equal to ℓ′′ +1 = ⌈(ℓ′− 1)/g⌉. In fact, for all values of ℓ′ ≥ 1, the total number
of unreduced SIMD multiplications required is ℓ′ − 1, and the total number of SIMD reductions is
⌈(ℓ′ − 1)/g⌉.
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unred mult
(SIMD)

red
(SIMD)

polyHash ⌊ℓ/4⌋ ⌈(⌊ℓ/4⌋ − 1)/g⌉
4-decBRWHash ⌊⌈ℓ/4⌉/2⌋ 1 + ⌊⌈ℓ/4⌉/4⌋

Table 3: Counts of 4-way SIMD operations required for computing P (as part of the computation of
polyHash) and decBRWHash for ℓ message blocks. Full computations of polyHash and decBRWHash
require additionally a small number of maax operations which are not shown in the table. For
polyHash, the parameter g is a positive integer.

The computation of C in (15) from A1 or Aℓ′′+1 requires one unreduced SIMD multiplication
and one SIMD reduction. However, the SIMD reduction can be avoided. The unreduced SIMD
multiplication by τθ results in unreduced(C). The four components unreduced(Ci), i = 1, . . . , 4, of
unreduced(C) are added together and a single reduction applied to the sum using maax operations.
So for the computation of P , the total number of unreduced SIMD multiplications is equal to ℓ′,
and the total number of SIMD reductions is equal to ⌈(ℓ′ − 1)/g⌉.

In our implementations, we have taken c = 4, i.e. we have made 4-way SIMD implementa-
tion using avx2 instructions. Given the delayed reduction parameter g, the key power vectors
τ 4, τ 8, . . . , τ 4g are required. Additionally, the vector τθ is required. To compute τθ and the key
power vectors τ 4i, i = 1, . . . , g, the key powers τ, τ2, τ3, τ4, τ8, τ12, . . . , τ4g are first computed using
maax instructions and then appropriately organised into the required key power vectors. The actual
SIMD computation of C starts after the required key power vectors have been computed. The num-
ber of unreduced SIMD multiplications and the number of SIMD reductions for the computation of
C are shown in Table 3. Additionally, there are a small number of non-SIMD operations required
at the end to compute P and to compute τ · Poly(τ ;M1, . . . ,Mℓ) from P . These operations are
implemented using maax instructions and their counts are not shown in Table 3.

As explained after (12) if the number of blocks is not a multiple of 4, then the last few blocks
(between 1 and 3) need to be tackled sequentially. As a result, the entire computation cannot
proceed uniformly as a 4-way SIMD computation. It is possible to pre-pend a number of zero
blocks, so that the total number of blocks becomes a multiple of 4, and the 4-way SIMD can be
employed for the entire message. Such pre-pending does not alter the hash function and is only an
implementation issue. This technique was used in [6]. There is, however, an efficiency issue which
does not combine well with the technique of pre-pending zero blocks. If the message is stored as
32-byte aligned data, then the instruction vmovdqa (i.e. aligned move) can be used to read the data.
Such aligned read is faster than the unaligned read vmovdqu. If the zero pre-pending technique
is not used, then with successive aligned moves successive 32 bytes of data can be read. On the
other hand, if zero-prepending is used, then this is no longer possible. As a result, the reading of
the data becomes slower. We have implemented both the technique of zero pre-pending without
support of aligned moves, and not using zero pre-pending which supports aligned moves. We find
no significant difference in the timings.

5.2 Vectorised Computation of c-decBRWHash

The computation of c-decBRWHashτ (X) requires the evaluation of Q1(τ), Q2(τ), . . . , Qc(τ). Eval-
uations of the Qi(τ)’s require evaluations of c BRW polynomials, where the inputs to the BRW
polynomials are disjoint and the number of message blocks provided as input is the same for all
the BRW polynomials. Consequently, the c BRW polynomials can be simultaneously evaluated at
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τ using an SIMD strategy.
For i = 1, . . . , n = ⌈ℓ/c⌉, let Mi = (M(i−1)c+1,M(i−1)c+2, . . . ,Mic), where the message blocks

M1,M2, . . . are as defined in the description of c-decBRWHash. Algorithm 1 in Appendix A can be
used to compute c simultaneous BRW polynomials, i.e. Algorithm 1 can be used in a c-way SIMD
manner, where the input consists of the sequence of c-way vectors M1,M2, . . . ,Mn. The key vector
is the vector τ = (τ, . . . , τ) of length c. The key power vectors required are τ 2j , for j = 0, . . . , ⌊lg n⌋.
The key power τ2

j
are computed from which the key power vector τ 2j is computed. The algorithm

uses keyPow, stack and tmp as internal arrays and variables. The SIMD version of the algorithm
uses vector versions of these arrays and variables. In particular, keyPow[j] stores the vector τ 2j ,
stack[j] stores a vector of length c, and tmp is a vector of length c, where the i-th components
of stack[j] and tmp correspond to the computation of the i-th BRW polynomial. All unreduced
multiplications, reductions and unreduced additions are done component wise on the vectors. With
this strategy Algorithm 1 becomes an SIMD algorithm for the simultaneous computation of the c
BRW polynomials.

We have implemented the SIMD version of Algorithm 1 for c = 4. Table 3 provides the
number of 4-way SIMD operations required for computing 4-decBRWHash using the SIMD version
of Algorithm 1. In addition to these SIMD operations, there are a small number of other operations
which are required to compute Q5 from Q1, Q2, Q3, Q4 and to compute Q from Q5 (see Section 3).
These are implemented using maax operations, and the count of these operations are not shown in
Table 3.

5.3 Comparison between polyHash and 4-decBRWHash

We make a comparison between the 4-way SIMD computation of polyHash and 4-decBRWHash.
There are two aspects to the comparison, the efficiency and the storage requirement.

Efficiency. The SIMD operation counts for polyHash and 4-decBRWHash are shown in Table 3.
The number of unreduced SIMD multiplications required for 4-decBRWHash is about half of what is
required for polyHash. The number of SIMD reductions required by 4-decBRWHash is at most that
required by polyHash for g ≤ 4, while for g > 4, polyHash requires less number of SIMD reductions.
In our implementations, we found that taking g > 4 does not provide speed improvement. The
halving of the number of unreduced SIMD multiplications indicates that 4-decBRWHash should be
substantially faster than polyHash for all values of g. Experimental results for the primes 2130 − 5
and 2127 − 1, however, show that for avx2 implementations while there is a noticeable speed-up
of 4-decBRWHash over polyHash, the actual speed-up obtained is less than what is theoretically
predicted by operation counts. We explain the reasons for such an observation.

Consider the prime 2130 − 5. (A similar reasoning applies for the 5-limb representation based
on the prime 2127 − 1.) For the 4-way SIMD computation of polyHash1305, the vectors of key
powers τ 4, τ 8, . . . , τ 4g are fixed. All the 4-way multiplications involved in the 4-way computation
of polyHash1305 have some key power vector τ 4i as one of the arguments. This has two effects.

First, as noted in Remark 4 when the operand e to the multiplication is fixed, it is possible
to pre-compute ẽ so that the 4 multiplications by 5 are not required. Extending this to SIMD

operations, for each key power τ 4i, we compute the corresponding τ̃ 4i, and can avoid the SIMD
multiplications by 5. Also, for the vector τθ we compute τ̃θ, so that the SIMD multiplications by 5
can be avoided while multiplying by τθ. As a result the number of vpmuludq instructions required
for an unreduced multiplication is 25 in the case of SIMD computation of polyHash. In contrast,
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g = 1 g = 2 g = 3 g = 4
# bytes 448 736 1024 1312

(a) For various values of g, the number of bytes of key material required to be stored for computing either
polyHash1305 or polyHash1271 using 4-way SIMD.

# of blocks ℓ
1-4 5-12 13-28 29-60 61-124 125-252 253-508

# bytes 0 160 320 480 640 800 960

(b) The number of bytes of key material required to be stored for computing either decBRWHash1305 or
decBRWHash1271.

Table 4: Key storage requirements.

in the computation of 4-decBRWHash, none of the multiplications are by a fixed element. So the
number of vpmuludq instructions required for an unreduced multiplication is 29 in the case of SIMD
computation of 4-decBRWHash.

The second effect of multiplying with a fixed element is more generic. When a fixed element is
used for repeated multiplication, during actual execution this element is kept either on chip or in
the cache memory. This significantly reduces the time for reading the element from the memory
and leads to a significant increase in speed which is not explained by simply counting the number
of arithmetic operations. For the maax implementation also, a similar speed-up was observed and
explained in details in [5].

As a combined result of the above two effects, the speed improvement of SIMD computation
of 4-decBRWHash over SIMD computation of polyHash is less than what is theoretically predicted,
though a significant improvement in the speed is observed for messages which are a few kilo bytes
or longer. We provide detailed timing results in Section 6.

Storage. Consider the prime 2130− 5 where elements are represented using 5 limbs. The storage
requirement based on using the 5-limb representation of the prime 2127 − 1 is the same as the
storage requirement for the prime 2130 − 5.

The 4-way SIMD computation of polyHash requires the pre-computation and storage of the key
power vectors τ 4, τ 8, . . . , τ 4g as well as the vector τθ. Additionally, to avoid the multiplications

by 5, it is also required to store the associated vectors τ̃ 4, τ̃ 8, . . . , τ̃ 4g. The associated vector τ̃θ is
also required, but it is required only at the end, and so is not pre-computed and carried forward.
Each τ 4i and also τθ requires 5 256-bit words to be stored, i.e. a total of 160 bytes. The associated

vector τ̃ 4i requires 4 256-bit words to be stored, i.e. a total of 128 bytes. So the total number of
bytes required for storing all the key power vectors is g · (160 + 128) + 160 = 160+ 288g. Concrete
values of the storage requirement for various values of g are shown in Table 4a.

For computing 4-decBRWHash, the key power vectors τ 2j , j = 0, . . . , ⌊lg n⌋ = ⌊lg⌈ℓ/4⌉⌋ are
required. Each of these key power vector requires 5 · 32 = 160 bytes to be stored, so for an ℓ-block
message, the total number of bytes required to store all the key power vectors is 160 ·⌊lg⌈ℓ/4⌉⌋. The
key power vector τ d is required at the end to combine the four independent BRW computations.
Since this vector is required only at the end, it is not pre-computed. Concrete values of the storage
requirement for various values of ℓ are shown in Table 4b.
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5.4 Efficiency Trade-Off Between 2130 − 5 and 2127 − 1

There is a generic disadvantage of 2127−1 in comparison to 2130−5. From Table 1, the block size n
is 120 for 2127− 1 and 128 for 2130− 5. So for any given message, the number of blocks for 2127− 1
will be about 16/15 times the number of blocks for 2130−5. Being required to process more blocks,
suggests that hash functions based on 2127−1 will be slower than the corresponding hash functions
based on 2130 − 5. The other aspect to consider is the speed of an individual multiplication. If
the individual multiplication for 2127 − 1 is faster than the individual multiplication for 2130 − 5,
then this may compensate the requirement of processing more blocks. For maax implementations,
it is indeed the case that the individual multiplication for 2127 − 1 is substantially faster than the
individual multiplication for 2130− 5, resulting in the hash functions based on 2127− 1 being faster
than the hash functions based on 2130−5. See [5, 19] for the timing results of maax implementation
which supports this statement. However, for avx2 implementation, an individual multiplication for
2127−1 has efficiency similar to an individual multiplication for 2130−5 (see Section 4). As a result,
due to the requirement of processing more blocks, for avx2 implementations, the hash functions
based on 2127 − 1 are slower than the corresponding hash functions based on 2130 − 5.

In the context of avx2 implementation, there is another disadvantage for 2127−1. For vectorised
processing, it is advantageous to use 16-byte block sizes (or block sizes which are multiples of 16
bytes). With a 16-byte block size, it is possible to use two vmovdqa(u) instructions to read 512 bits
of the input into two ymm registers. The first vmovdqa(u) instruction reads 32 bytes which brings
two input blocks into an ymm register, and so does the second. If the block size is not 16 bytes, then
such a smooth read operation will not be possible. Reading the input and allocating it to two ymm

registers will be more complicated and hence will require more operations. Since the block size for
2127 − 1 is 15 bytes, while the block size for 2130 − 5 is 16 bytes, reading the message bytes and
allocating to ymm registers require more operations for 2127 − 1 than for 2130 − 5.

6 Implementation and Timing Results

We have made avx2 implementations of polyHash and 4-decBRWHash for both the primes 2130 − 5
and 2127−1 in hand optimised assembly language. For the polyHash implementations we considered
the delayed reduction parameter g to take the values 1, 2, 3 and 4. Using higher values of g leads
to a loss in speed. For the 4-decBRWHash implementations we considered the parameter t in
Algorithm 1 to take the values t = 2, 3, 4 and 5. Higher values of t would lead to a very large code
size (since 2t − 1 fragments of straight line code are required to implement Step 19, as r can take
2t − 1 values).

Recall that if the key clamping mandated by Poly1305 is implemented, then polyHash1305 is the
same as Poly1305 for messages whose lengths are multiples of 8. Since Poly1305 is an extensively
used hash function, new implementations of it are of practical importance. To the best of our
knowledge, our implementations of polyHash1305 provide the first hand optimised avx2 assembly
language implementations of Poly1305 using with different values of the parameter g determining
the extent of delayed reduction. The codes for our implementations are available from the following
links.

https://github.com/kn-cs/dec-BRWHash

https://github.com/kn-cs/vec-polyHash

We recorded an extensive set of timings for all the hash functions. The timing measurements were
taken on a single core of 11th Gen Intel Core i7-1185G7 @ 3.00GHz × 4 Tiger Lake processor using
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31.1 GiB memory. During the experiments, turbo boost and hyperthreading options were turned
off. The OS was Ubuntu 20.04.3 LTS and the code was compiled using gcc version 9.4.0. The
following flags were used during compilation.

-march=native -mtune=native -m64 -O3 -funroll-loops -fomit-frame-pointer

We counted CPU cycles using the microlibrary “libcpucycles” (see https://cpucycles.cr.yp.

to/) through the amd64-pmc counter (see https://cpucycles.cr.yp.to/counters.html) which
requires a 64-bit Intel/AMD platform and Linux perf event interface. The amd64-pmc counter
accesses a cycle counter through RDPMC and requires /proc/sys/kernel/perf_event_paranoid
to be at most 2 for user-level RDPMC access. This counter runs at clock frequency of the CPU
core.

The timing results show that the avx2 implementation of polyHash1271 is slower than the avx2
implementation of polyHash1305, and the avx2 implementation of 4-decBRWHash1271 is slower
than the avx2 implementation of 4-decBRWHash1305. This confirms the theoretically predicted
slowdown discussed in Section 5.4. In view of this slowdown, we do not present the timing results
for 2127 − 1.

The timing results for the avx2 implementation of polyHash1305 and 4-decBRWHash1305 are
shown in Tables 5 to 8 for messages having 1 to 32 blocks, and in Table 9 for messages having
50 to 500 blocks. For comparison, in these tables we also present timing results from [19] for the
maax implementation of polyHash1305 and BRWHash1305 obtained on the above platform. In Ta-
ble 10, we present the timing results for the avx2 implementation of polyHash1305 with g = 4 and
4-decBRWHash1305 with t = 5 for messages having 1000 to 5000 blocks. The figures in the cells of
the tables denote the number of cycles per byte required to compute the digest by the correspond-
ing hash function with the stated value of the parameter. Each cell has two figures, the figure on
the top denotes the number of cycles per byte when the required key powers are pre-computed and
stored (i.e. the time for generating the key powers are not included in the time for hashing), while
the number on the bottom denotes the number of cycles per byte when the required key powers
are computed on the fly (i.e. the time for generating the key powers are included in the time for
hashing). Recall from Table 1 that the block size n is 128 bits for the prime 2130 − 5, and so the
number of blocks mentioned in the tables can be converted to number of bytes by multiplying with
16. Based on the timings results in Table 5 to 9, we have the following general observations.

1. For polyHash1305, the avx2 implementation is faster than the maax implementation for mes-
sages with 16 or more blocks (equivalently 256 or more bytes).

2. For 4-decBRWHash1305, the avx2 implementation is faster than the maax implementation for
messages with about 100 or more blocks (equivalently about 1600 or more bytes).

3. For the avx2 implementation of polyHash1305, in general g = 4 is a faster option than
1 ≤ g < 4. For avx2 implementation of 4-decBRWHash1305, in general t = 5 is a faster
option than 2 ≤ t < 5.

4. When the number of blocks is about 500 or more, there is not much difference in the speeds
of computations between when the key powers are pre-computed, and when the key powers
are computed on-the-fly.

It is difficult to make detailed timing measurements for long messages. Nevertheless, we made
measurements for messages having 215 = 32768 blocks (equivalently 219 bytes); the avx2 imple-
mentation of polyHash1305 with g = 4 takes 0.425 cycles per byte and 0.426 cycles per byte
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according as whether the key powers are pre-computed or not; while the avx2 implementation of
4-decBRWHash1305 with t = 5 takes 0.332 cycles per byte and 0.333 cyles per byte according as
whether the key powers are pre-computed or not.

We summarise the comparison between the avx2 implementations of polyHash1305 with g = 4
and 4-decBRWHash1305 with t = 5.
Key powers computed on-the-fly (bottom numbers in the cells).

1. 4-decBRWHash1305 is faster than polyHash1305 for messages having 16 or more blocks
(equivalently, 256 or more bytes).

2. For messages having 50 to 500 blocks (equivalently, 800 to 8000 bytes), the speed-up of
4-decBRWHash1305 over polyHash1305 is in the range of about 10% to 17%.

3. For messages having 1000 to 5000 blocks (equivalently, 16 KB to 80 KB), the speed-up
of 4-decBRWHash1305 over polyHash1305 is in the range of about 18% to 20%.

4. For messages having 32768 blocks (equivalently, 219 bytes), the speed-up of 4-decBRWHash1305
over polyHash1305 is about 23%.

Pre-computed key powers (top numbers in the cells).
1. 4-decBRWHash1305 is faster than polyHash1305 for messages with about 150 or more

blocks (equivalently about 2400 or more bytes).
2. For messages having 200 to 500 blocks (equivalently, 3200 to 8000 bytes), the speed-up

of 4-decBRWHash1305 over polyHash1305 is in the range of about 4% to 16%.
3. For messages having 1000 to 5000 blocks (equivalently, 16 KB to 80 KB), the speed-up

of 4-decBRWHash1305 over polyHash1305 is in the range of about 18% to 21%.
4. For messages having 32768 blocks (equivalently, 219 bytes), the speed-up of 4-decBRWHash1305

over polyHash1305 is about 23%.
To summarise, for avx2 implementations with key powers computed on-the-fly, 4-decBRWHash1305

is faster than polyHash1305 for messages of lengths 256 bytes or more, achieves a speed-up of about
16% for messages which are a few kilobytes long, and the speed-up improves to about 23% for
messages which are a few megabytes long. In typical file systems [14], text files are usually a few
kilobytes long while media files such as pictures, audio and video files, are about a few megabytes
long. For such files, i.e. both text files and media files, hashing using 4-decBRWHash1305 will be
substantially faster than hashing using polyHash1305.

7 Conclusion

We proposed a new AXU hash function based on BRW polynomials. The hash function is a
generalisation of the hash function based on BRW polynomials, with the generalisation permitting
efficient SIMD implementations. For the prime 2130 − 5, SIMD implementations of the new hash
function using avx2 instructions on modern Intel processors show that the new hash function is
faster than the well known Poly1305 hash function for messages longer than a few hundred bytes
achieving a speed-up of about 16% for message lengths in kilobyte range to 23% for message lengths
in the megabyte range. This makes the new hash function an attractive alternative to Poly1305
for use in authentication and authenticated encryption systems for general files found in typical file
systems.
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# msg blks
1 2 3 4 5 6 7 8

polyHash1305
(maax)

g = 1 2.31 1.69 1.56 1.52 1.49 1.47 1.46 1.45
g = 4 2.38 1.84 1.48 1.38 1.40 1.23 1.16 1.15

2.38 1.84 1.88 2.05 2.14 1.86 1.71 1.63
g = 8 2.38 1.84 1.48 1.28 1.15 1.06 1.01 1.03

2.38 1.84 1.88 1.94 1.94 1.95 1.98 2.09
g = 16 2.25 1.84 1.48 1.28 1.15 1.06 1.01 0.97

2.25 1.84 1.88 1.94 1.94 1.95 1.98 2.03
g = 32 2.31 1.84 1.48 1.28 1.15 1.06 1.01 0.97

2.31 1.84 1.88 1.92 1.94 1.98 1.99 2.02

polyHash1305
(avx2)

g = 1 2.38 1.50 1.23 1.55 1.56 1.41 1.30 1.04
2.75 2.12 2.33 3.27 2.94 2.55 2.29 1.99

g = 2 2.38 1.50 1.23 1.55 1.56 1.42 1.30 1.05
2.81 2.12 2.31 3.28 2.95 2.55 2.29 2.02

g = 3 2.44 1.50 1.23 1.55 1.52 1.41 1.30 1.06
2.75 2.12 2.31 3.25 2.92 2.53 2.27 2.03

g = 4 2.38 1.50 1.25 1.52 1.49 1.39 1.28 1.07
2.75 2.12 2.31 3.25 2.90 2.52 2.26 2.03

BRWHash1305
(maax)

t = 2 2.06 1.22 0.96 1.16 0.93 0.81 0.81 0.91
2.06 1.22 1.38 1.73 1.40 1.21 1.14 1.40

t = 3 2.12 1.19 0.98 1.09 0.90 0.80 0.80 0.89
2.12 1.19 1.35 1.62 1.35 1.17 1.11 1.38

t = 4 2.19 1.22 0.98 1.08 0.90 0.81 0.80 0.89
2.19 1.22 1.35 1.62 1.34 1.18 1.11 1.38

t = 5 2.12 1.22 1.02 1.08 0.91 0.80 0.80 0.88
2.12 1.22 1.38 1.62 1.34 1.18 1.12 1.38

4-decBRWHash1305
(avx2)

t = 2 11.19 5.62 3.73 2.80 3.17 2.65 2.27 1.98
13.31 6.66 4.44 3.33 4.08 3.40 2.91 2.55

t = 3 11.25 5.62 3.73 2.81 3.16 2.64 2.26 1.98
13.31 6.66 4.44 3.33 4.06 3.39 2.90 2.55

t = 4 11.25 5.62 3.75 2.80 3.16 2.64 2.26 1.98
13.31 6.66 4.44 3.33 4.08 3.40 2.91 2.55

t = 5 11.25 5.62 3.73 2.81 3.16 2.64 2.26 1.98
13.31 6.66 4.44 3.33 4.08 3.40 2.91 2.55

Table 5: Cycles/byte measurements for 1 to 8 blocks for the different hash functions based on the
prime 2130 − 5.
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# msg blks
9 10 11 12 13 14 15 16

polyHash1305
(maax)

g = 1 1.47 1.43 1.45 1.47 1.48 1.47 1.47 1.46
g = 4 1.19 1.12 1.07 1.07 1.11 1.06 1.03 1.03

1.60 1.49 1.42 1.40 1.39 1.33 1.28 1.27
g = 8 1.09 1.02 0.98 0.96 0.94 0.91 0.90 0.92

2.11 1.94 1.83 1.73 1.65 1.57 1.51 1.50
g = 16 0.94 0.91 0.88 0.87 0.85 0.84 0.82 0.85

2.00 1.98 2.01 2.04 2.06 2.08 2.10 2.15
g = 32 0.94 0.91 0.88 0.86 0.85 0.84 0.82 0.82

2.01 1.99 2.01 2.03 2.06 2.08 2.10 2.12

polyHash1305
(avx2)

g = 1 1.12 1.06 1.03 0.88 0.95 0.92 0.91 0.80
1.94 1.82 1.71 1.52 1.52 1.46 1.41 1.28

g = 2 1.12 1.07 1.03 0.81 0.89 0.87 0.86 0.76
1.96 1.84 1.72 1.69 1.68 1.61 1.54 1.41

g = 3 1.13 1.08 1.04 0.93 0.99 0.96 0.94 0.79
1.97 1.84 1.73 1.78 1.77 1.69 1.62 1.62

g = 4 1.15 1.08 1.05 0.94 1.00 0.96 0.94 0.80
1.98 1.85 1.74 1.81 1.79 1.71 1.64 1.62

BRWHash1305
(maax)

t = 2 0.81 0.78 0.76 0.83 0.77 0.74 0.74 0.79
1.25 1.16 1.12 1.16 1.08 1.03 1.01 1.15

t = 3 0.81 0.74 0.74 0.80 0.76 0.72 0.71 0.77
1.23 1.14 1.10 1.13 1.05 1.00 0.97 1.12

t = 4 0.81 0.76 0.76 0.80 0.76 0.72 0.72 0.76
1.24 1.14 1.10 1.12 1.05 0.99 0.97 1.11

t = 5 0.81 0.76 0.76 0.80 0.75 0.72 0.73 0.78
1.24 1.14 1.10 1.12 1.05 0.99 0.97 1.12

4-decBRWHash1305
(avx2)

t = 2 1.83 1.64 1.49 1.37 1.62 1.50 1.40 1.31
2.32 2.09 1.90 1.74 1.96 1.82 1.70 1.59

t = 3 1.83 1.64 1.49 1.37 1.61 1.49 1.39 1.30
2.33 2.09 1.90 1.74 1.95 1.81 1.69 1.59

t = 4 1.82 1.64 1.49 1.36 1.61 1.49 1.39 1.30
2.33 2.09 1.90 1.74 1.95 1.81 1.69 1.58

t = 5 1.82 1.64 1.49 1.37 1.60 1.48 1.38 1.30
2.32 2.09 1.90 1.74 1.95 1.81 1.69 1.58

Table 6: Cycles/byte measurements for 9 to 16 blocks for the various hash functions based on the
prime 2130 − 5.
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# msg blks
17 18 19 20 21 22 23 24

polyHash1305
(maax)

g = 1 1.40 1.40 1.41 1.41 1.41 1.41 1.41 1.40
g = 4 1.06 1.03 1.00 1.01 1.03 1.05 0.99 0.99

1.28 1.24 1.21 1.20 1.21 1.18 1.15 1.15
g = 8 0.95 0.92 0.90 0.90 0.93 0.87 0.86 0.88

1.49 1.43 1.39 1.36 1.32 1.29 1.26 1.26
g = 16 0.89 0.86 0.85 0.84 0.85 0.83 0.88 0.87

2.16 2.06 1.99 1.92 1.88 1.84 1.76 1.71
g = 32 0.81 0.80 0.79 0.79 0.79 0.79 0.78 0.88

2.08 2.10 2.11 2.12 2.12 2.15 2.17 2.19

polyHash1305
(avx2)

g = 1 0.86 0.84 0.84 0.75 0.80 0.79 0.79 0.72
1.30 1.26 1.23 1.14 1.15 1.14 1.11 1.04

g = 2 0.81 0.81 0.79 0.68 0.74 0.73 0.73 0.67
1.41 1.38 1.33 1.19 1.21 1.19 1.16 1.09

g = 3 0.79 0.77 0.77 0.69 0.74 0.74 0.73 0.69
1.53 1.48 1.44 1.34 1.35 1.32 1.29 1.23

g = 4 0.85 0.83 0.82 0.70 0.72 0.71 0.71 0.64
1.62 1.57 1.51 1.49 1.45 1.41 1.38 1.29

BRWHash1305
(maax)

t = 2 0.75 0.72 0.74 0.78 0.74 0.72 0.73 0.76
1.08 1.05 1.03 1.06 1.01 0.98 0.97 0.99

t = 3 0.73 0.70 0.70 0.74 0.71 0.70 0.70 0.73
1.06 1.02 1.00 1.02 0.98 0.95 0.94 0.97

t = 4 0.72 0.70 0.69 0.73 0.70 0.68 0.68 0.71
1.04 1.00 0.99 1.01 0.96 0.94 0.93 0.95

t = 5 0.74 0.72 0.71 0.75 0.72 0.70 0.70 0.73
1.06 1.01 1.00 1.02 0.98 0.95 0.93 0.96

4-decBRWHash1305
(avx2)

t = 2 1.26 1.19 1.12 1.07 1.09 1.04 1.00 0.96
1.53 1.44 1.37 1.30 1.31 1.25 1.19 1.14

t = 3 1.26 1.19 1.12 1.07 1.10 1.05 1.00 0.96
1.52 1.44 1.36 1.29 1.31 1.25 1.20 1.15

t = 4 1.25 1.18 1.12 1.06 1.10 1.05 1.00 0.96
1.52 1.43 1.36 1.29 1.31 1.25 1.20 1.15

t = 5 1.25 1.18 1.12 1.06 1.10 1.05 1.00 0.96
1.51 1.43 1.36 1.29 1.31 1.25 1.20 1.15

Table 7: Cycles/byte measurements for 17 to 24 blocks for the various hash functions based on the
prime 2130 − 5.
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# msg blks
25 26 27 28 29 30 31 32

polyHash1305
(maax)

g = 1 1.40 1.40 1.41 1.40 1.40 1.40 1.40 1.40
g = 4 1.01 0.99 0.98 0.98 1.00 0.98 0.97 0.97

1.16 1.14 1.12 1.12 1.13 1.11 1.09 1.09
g = 8 0.90 0.88 0.87 0.87 0.86 0.85 0.85 0.86

1.27 1.24 1.22 1.20 1.18 1.16 1.14 1.14
g = 16 0.89 0.88 0.85 0.80 0.79 0.78 0.85 0.82

1.68 1.63 1.60 1.57 1.54 1.52 1.51 1.47
g = 32 0.78 0.79 0.76 0.88 0.81 0.79 0.80 0.92

2.17 2.20 2.19 2.23 2.24 2.24 2.25 2.31

polyHash1305
(avx2)

g = 1 0.76 0.75 0.75 0.70 0.73 0.73 0.73 0.68
1.06 1.05 1.03 0.97 0.99 0.98 0.97 0.92

g = 2 0.70 0.71 0.70 0.62 0.66 0.66 0.66 0.62
1.10 1.09 1.07 0.99 1.01 1.00 0.98 0.94

g = 3 0.73 0.72 0.72 0.65 0.64 0.64 0.64 0.60
1.25 1.22 1.20 1.11 1.09 1.07 1.06 1.01

g = 4 0.69 0.69 0.68 0.65 0.69 0.69 0.69 0.62
1.30 1.28 1.25 1.21 1.22 1.20 1.18 1.11

BRWHash1305
(maax)

t = 2 0.73 0.72 0.72 0.75 0.72 0.72 0.72 0.75
0.96 0.94 0.93 0.96 0.92 0.91 0.90 0.97

t = 3 0.71 0.69 0.69 0.73 0.69 0.69 0.68 0.71
0.93 0.91 0.90 0.92 0.89 0.87 0.87 0.95

t = 4 0.69 0.68 0.68 0.71 0.68 0.67 0.67 0.70
0.92 0.89 0.88 0.90 0.87 0.85 0.85 0.93

t = 5 0.70 0.69 0.69 0.72 0.70 0.69 0.69 0.69
0.93 0.90 0.90 0.92 0.89 0.87 0.87 0.92

4-decBRWHash1305
(avx2)

t = 2 0.94 0.91 0.88 0.84 0.97 0.94 0.91 0.88
1.12 1.08 1.04 1.00 1.20 1.16 1.12 1.09

t = 3 0.95 0.91 0.88 0.85 0.98 0.95 0.92 0.89
1.13 1.09 1.05 1.01 1.20 1.16 1.12 1.09

t = 4 0.95 0.91 0.88 0.85 0.97 0.94 0.91 0.88
1.13 1.09 1.05 1.01 1.20 1.16 1.12 1.09

t = 5 0.95 0.91 0.88 0.85 0.97 0.94 0.91 0.88
1.13 1.08 1.04 1.01 1.20 1.16 1.12 1.09

Table 8: Cycles/byte measurements for 25 to 32 blocks for the various hash functions based on the
prime 2130 − 5.
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# msg blks
50 100 150 200 250 300 350 400 450 500

polyHash1305
(maax)

g = 1 1.38 1.37 1.37 1.36 1.36 1.36 1.36 1.36 1.36 1.36
g = 4 0.95 0.94 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92

1.03 0.97 0.95 0.94 0.94 0.94 0.93 0.93 0.93 0.93
g = 8 0.84 0.83 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80

1.02 0.91 0.87 0.85 0.85 0.84 0.83 0.83 0.82 0.82
g = 16 0.79 0.77 0.76 0.75 0.76 0.76 0.75 0.74 0.75 0.74

1.22 0.97 0.89 0.85 0.84 0.82 0.81 0.80 0.79 0.78
g = 32 0.86 0.84 0.84 0.81 0.81 0.81 0.81 0.79 0.79 0.79

1.79 1.29 1.14 1.03 0.98 0.95 0.94 0.91 0.89 0.88

polyHash1305
(avx2)

g = 1 0.66 0.60 0.59 0.58 0.59 0.58 0.58 0.57 0.58 0.57
0.81 0.68 0.65 0.62 0.61 0.60 0.60 0.59 0.59 0.58

g = 2 0.59 0.51 0.51 0.49 0.49 0.48 0.49 0.48 0.49 0.48
0.79 0.61 0.57 0.54 0.53 0.52 0.51 0.51 0.51 0.50

g = 3 0.59 0.50 0.48 0.47 0.47 0.46 0.47 0.46 0.46 0.45
0.85 0.63 0.57 0.53 0.52 0.51 0.50 0.49 0.49 0.48

g = 4 0.58 0.48 0.47 0.45 0.45 0.45 0.45 0.44 0.44 0.44
0.89 0.64 0.57 0.53 0.51 0.50 0.49 0.48 0.47 0.47

BRWHash1305
(maax)

t = 2 0.70 0.71 0.71 0.71 0.70 0.71 0.70 0.70 0.70 0.70
0.85 0.80 0.77 0.76 0.75 0.75 0.74 0.73 0.73 0.73

t = 3 0.68 0.67 0.66 0.67 0.67 0.67 0.66 0.67 0.66 0.66
0.82 0.77 0.74 0.72 0.71 0.71 0.70 0.70 0.69 0.69

t = 4 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
0.81 0.75 0.72 0.71 0.69 0.69 0.68 0.68 0.68 0.68

t = 5 0.65 0.66 0.65 0.65 0.65 0.65 0.64 0.65 0.64 0.65
0.80 0.75 0.72 0.71 0.69 0.69 0.68 0.68 0.67 0.67

4-decBRWHash1305
(avx2)

t = 2 0.67 0.51 0.47 0.43 0.42 0.41 0.41 0.39 0.39 0.38
0.80 0.60 0.55 0.49 0.46 0.45 0.44 0.42 0.41 0.40

t = 3 0.67 0.51 0.47 0.43 0.41 0.40 0.40 0.39 0.38 0.38
0.80 0.60 0.54 0.49 0.46 0.45 0.43 0.42 0.41 0.40

t = 4 0.67 0.51 0.47 0.43 0.41 0.40 0.39 0.38 0.37 0.37
0.81 0.59 0.54 0.48 0.45 0.44 0.43 0.41 0.40 0.39

t = 5 0.67 0.51 0.47 0.43 0.41 0.40 0.39 0.38 0.37 0.37
0.80 0.60 0.54 0.48 0.45 0.44 0.43 0.41 0.40 0.39

Table 9: Cycles/byte measurements for 50 to 500 blocks for the various hash functions based on
the prime 2130 − 5.

# msg blks
1000 1500 2000 2500 3000 3500 4000 4500 5000

polyHash1305
(avx2)

g = 4 0.430 0.429 0.430 0.431 0.428 0.428 0.427 0.427 0.427
0.445 0.439 0.438 0.437 0.433 0.432 0.431 0.431 0.430

4-decBRWHash1305
(avx2)

t = 5 0.350 0.341 0.340 0.338 0.340 0.341 0.339 0.338 0.337
0.364 0.353 0.349 0.345 0.345 0.346 0.343 0.343 0.342

Table 10: Cycles/byte measurements for 1000 to 5000 blocks for avx2 implementation of
polyHash1305 with g = 4 and 4-decBRWHash1305 with t = 5.
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A Algorithm for Computing BRW Polynomials

Algorithm 1 describes the algorithm given in [5] to compute BRW(τ ;M1, . . . ,Ml), where l is a non-
negative integer. The call unreducedBRW in the algorithm performs the following computation.
There are two calls to unreducedBRW in Algorithm 1, in Steps 10 and 19. The call in Step 10 is on
exactly 2t − 1 blocks, while the call in Step 19 is on at most 2t − 1 blocks. Since t is a fixed value,
both of these calls to unreducedBRW are implemented using straight line codes.

• unreducedBRW(τ ; ) = 0;
• unreducedBRW(τ ;M1) = M1;
• unreducedBRW(τ ;M1,M2) = unreducedMult(M1, τ) +M2;
• unreducedBRW(τ ;M1,M2,M3) = unreducedMult((τ +M1), (τ

2 +M2)) +M3;
• unreducedBRW(τ ;M1,M2, . . . ,Mk)

= unreducedMult(reduce(unreducedBRW(τ ;M1, . . . ,Mk−1)), (τ
k +Mk)),

if k ∈ {4, 8, 16, 32, . . .};
• unreducedBRW(τ ;M1,M2, . . . ,Ml)

= unreducedBRW(τ ;M1, . . . ,Mk) + unreducedBRW(τ ;Mk+1, . . . ,Ml),
if k ∈ {4, 8, 16, 32, . . .} and k < l < 2k.

Algorithm 1 Evaluation of BRW(τ ;M1, . . . ,Ml), l ≥ 0. In the algorithm t ≥ 2 is a parameter.

1: function ComputeBRW(τ,M1, . . . ,Ml)
2: keyPow[0]← τ
3: if l > 2 then
4: for j ← 1 to ⌊lg l⌋ do
5: keyPow[j]← keyPow[j − 1]2

6: end for
7: end if
8: top← −1
9: for i← 1 to ⌊l/2t⌋ do

10: tmp← unreducedBRW(τ ;M2t(i−1)+1, . . . ,M2t·i−1);
11: k ← ntz(i)
12: for j ← 0 to k − 1 do
13: tmp← tmp+ stack[top]; top← top− 1
14: end for
15: tmp← unreducedMult(reduce(tmp),M2t·i + keyPow[t+ k])
16: top← top+ 1; stack[top]← tmp
17: end for;
18: r ← l mod 2t;
19: tmp← unreducedBRW(τ ;Ml−r+1, . . . ,Ml);
20: i← wt(⌊l/2t⌋)
21: for j ← 0 to i− 1 do
22: tmp← tmp+ stack[top]; top← top− 1
23: end for
24: return reduce(tmp);
25: end function.
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