
Never Trust the Manufacturer, Never Trust the Client: A Novel
Method for Streaming STL Files for Secure Additive

Manufacturing
Seyed Ali Ghazi Asgar
Department of Electrical and

Computer Engineering, Texas A&M
University

College Station, TX, USA
alighazi@tamu.edu

Narasimha Reddy
Department of Electrical and

Computer Engineering, Texas A&M
University

College Station, TX, USA
reddy@tamu.edu

Satish T.S. Bukkapatnam
Department of Industrial and Systems
Engineering, Texas A&M University

College Station, TX, USA
satish@tamu.edu

Abstract
While additive manufacturing has opened interesting avenues to
reimagine manufacturing as a service (MaaS) platform, transmis-
sion of design files from client to manufacturer over networks
opens up many cybersecurity challenges. Securing client’s intel-
lectual property (IP) especially from cyber-attacks emerges as a
major challenge. Earlier works introduced streaming, instead of
sharing process plan (G-code) files, as a possible solution. However,
executing client’s G-codes on manufacturer’s machines exposes
them to potential malicious G-codes. This paper proposes a viable
approach when the client and manufacturer do not trust each other
and both the client and manufacturer want to preserve their IP
of designs and manufacturing process respectively. The proposed
approach is based on segmenting and streaming design (STL) files
and employing a novel machine-specific STL to G-code translator
at the manufacturer’s site in real-time for printing. This approach
secures design and manufacturing process IPs as demonstrated in
a real-world implementation.

CCS Concepts
• Security and privacy → Privacy protections; Security in
hardware; • Computer systems organization → Embedded
and cyber-physical systems.

Keywords
Cyber Physical Systems (CPS) Security, Manufacturing network,
Additive Manufacturing (AM) Security, Intellectual property (IP)
theft

1 Introduction
Additive manufacturing(AM) or so-called 3D printing is a method
to make physical objects by stacking materials layer by layer using a
3DComputer-AidedDesign (CAD)model. Initially, AMwas used for
rapid prototyping; however, nowadays it is used for finished product
manufacturing as well. AM also eliminates extensive processes
required by traditional machining methods [5]. This layer-by-layer
approach makes it possible for engineers to design and manufacture
complex structures with reasonable geometric quality and precision
[4, 16].

Recent advances in cyber-physical systems, computer networks,
and smart manufacturing technologies are driving the emergence
of manufacturing as a service (MaaS) platforms [17]. To clarify
this new topic we will provide a simple example. Assume that

there is a car manufacturing company called GoodCarMakers and
its manufacturing facility is located in Europe. There is also a car
owner in North America who has been using the same car for
the last 20 years manufactured by the GoodCarMakers. Now, a
gear in the car window lifter is broken and the car owner asks the
GoodCarMakers’s customer service to repair the car.GoodCarMakers
could have kept this gear in the inventory for the last 20 years.
However, this solution costs money, space, labor, and international
transportation. The other option is that since the car company
has the digital design file of the gear, they can use 3D printers
to manufacture the gear whenever it is necessary at the point of
need[6, 8]. The company can use their own fabrication facility
in Europe to make the part and transport it to North America or
they just can share the file with their customer service at North
America to eliminate transportation costs. It is also possible for the
GoodCarMakers to send their file to another third-party company
in North America which is an expert in additive manufacturing and
ask them to produce the gear for them.

The concomitant growth of additive manufacturing (AM) into an
estimated $2 trillion market by 2030 [12] further helps manufactur-
ers to produce on-demand items in distributed sites with shortened
supply chains [19]. Although these emerging MaaS platforms can
reduce costs and time, they are increasingly vulnerable to security
risks[1].

As the digital version of the product is shared across the supply
chain, attackers may steal the computer-aided design (CAD) files,
disregarding copyright, and intellectual property (IP) rights. Once
compromised, an attacker could sabotage the digital thread by alter-
ing the properties of the part in the CAD file, or editing the process
plan (G-Code) files. For instance, a Trojan attack on 3D printers[11]
can compromise the quality of a 3D printed component, reducing
its tensile strength by 50%. The strength of a 3D printed component
can be compromised extensively by changing the orientation of
printing leading to failure of the test component [20]. Additionally,
an attacker can convert stolen CAD files into Standard Triangle
Language (STL) files and produce counterfeit items without the
need for reverse engineering. While these counterfeit items may
appear identical to the original components, they often lack the
material integrity and durability of the genuine products. If these
counterfeit parts enter the supply chain, they could cause serious
harm, leading to equipment damage and personal injuries [9] . At-
tackers could also sell digital files to other countries or industrial

ar
X

iv
:2

50
7.

06
42

1v
2

 [
cs

.C
R

]
 1

1
Ju

l 2
02

5

https://arxiv.org/abs/2507.06421v2

Conference’17, July 2017, Washington, DC, USA AAAA et al.

competitors. Reports also suggest that 60% of these attackers are
former employees [18].

IP thefts cost companiesmore than $200 billion each year [18][10].
Therefore, it is necessary to consider a secure method for manag-
ing the digital files in the manufacturing supply chain. A growing
solution to protect and authenticate design files from sabotage,
counterfeiting and espionage is to embed codes within the design
files [3, 10, 15]. Once the component is manufactured, these con-
cealed embedded codes can be extracted to validate the integrity
and quality of the manufacturing process and product. However,
any authentication method is reactive, as it does not mitigate the
risk of IP theft during the transmission of the design and process
plan files across the digital thread in a platform. A major IP risk
is noted to arise when a client shares the entire design (“STL”)
file with a manufacturer (see Figure 1(a)), potentially exposing it
to theft or unauthorized replication [10][13]. Another method to
protect design files from malicious modifications is by taking ad-
vantage of the blockchain technology. Researchers in [7] proposed
a dedicated framework between design and 3D printing companies
for the management of the design files against IP thefts.

To address this challenge, one method for transferring digital
files from client to the manufacturer is handled through streaming.
Previous works[2, 14] suggested streaming the G-code file to AM
machine to limit the manufacturer’s access to the original design
file (Figure 1(b)). In this way, every single line of a G-code file is
streamed separately, similar to video streaming services. Although
this method enhances IP protection, it also introduces the risk of
malicious clients sending compromised G-code files, which could
lead to significant financial losses, safety hazards, and physical dam-
age on the manufacturer side as G-code commands directly control
the AM machine. As a result, clients seek a way to stream their files
without disclosing the entire object design, while manufacturers
prefer not to allow external G-code execution on their machines
to mitigate the risks associated with untrusted G-code. In addition,
the streamed G-code may be incompatible with the AM machine
in terms of meeting the motion trajectory and machine limitations,
or worse, create anomalous settings or trajectories that damage the
machine. In this work we propose an approach to address security
concerns across a MaaS platform, including of the client (designer)
and the manufacturer. The contributions of this effort are as follows:

• Propose an approach for protecting design IP of a client and
the process IP of a manufacturer at the same time (when
client and manufacturer may not trust each other)

• A novel approach for segmenting a design file into STL file
segments for streaming and converting streamed STL data
into the manufacturer’s machine specific G-codes.

• Evaluating the proposed method with parts that are printed
with a specific angle and orientation.

• Developing techniques to segment STL file into horizontal
pieces and generate custom support for the part.

• A real-world implementation of the proposed method on
a fused filament fabrication 3D printer to demonstrate the
method.

The rest of the paper is organized as follows. In Section 2 we will
provide the general terms used in additive manufacturing area. We
will talk about our threat model in section 3. Section 4 highlights the

Figure 1: (a) The shares the whole file with the manufacturer.
(b) streaming the G-code file line by line. (c) streaming the
STL file layer.

research approach, Section 5 presents the implementation details
and the results, and Section 6 contains the conclusions.

2 Overview of Technical Terms in Additive
Manufacturing

In this section, we will go over each step in the workflow of AM
chain (shown in Figure 2) and explain their purpose.

2.1 Computer-Aided Design(CAD) Applications
In the initial stage, designers typically use 3D CAD software to
transform their ideas and requirements into a 3D model. Each CAD
software saves these designs in a unique file format. In this work
we used SOLIDWORKS® for designing different parts, and saving
them into STL format.

2.2 Standard Triangle Language(STL) File
The STL file format is one of the most commonly used formats in
additive manufacturing. As implied by its name (Standard Triangle
Language), it converts the original 3D design into a network of tiny
triangular meshes, each with defined geometries and coordinates.
These triangles, as illustrated in Figure 2, fit together to approximate
the shape of the original design.

2.3 Slicer Applications and G-Code Format
STL files cannot be fed directly to an AM machine. Therefore, an
intermediate application, called a slicer, receives the STL file as input
and converts it to the G-code format based on several configurations.
As shown in Table 1, G-code commands control various parameters

Never Trust the Manufacturer, Never Trust the Client Conference’17, July 2017, Washington, DC, USA

Figure 2: The workflow of an additive manufacturing chain. In the first step, the file is designed in a CAD application. Then, it
is converted into an STL file, and this STL file is fed into a slicer application where it is converted into G-code format. Finally,
the G-code file is sent to the machine for manufacturing the part.

of an AMmachine, frommoving the nozzle, setting the temperature
of the hot end and restarting the machine to selecting files on the
SD card, updating the firmware, etc. Essentially, every interaction
is managed through G-codes. A G-code file is an aggregation of
different G-code commands that when combined together will print
the desired file for a user.

Slicer applications are responsible for converting an STL file into
G-code. In the slicer, the user can also specify the desired configu-
rations. Some of these configurations (see Table 2) are related to
the manufacturing machine, and some of them are related to the
designer’s choice. For instance, a designer does not need to know
fan speed or bed temperature. On the other hand, designer should
specify the amount of infill as it is directly related to the strength
of the final product. In addition, layer height, which specifies the
resolution of the printed part, is also another designer’s choice for
manufacturing finer components.

In current practice, an STL file is transferred to a manufacturer
who then uses a slicer to convert that into machine-specific G-code
for printing a part. This leads to potential IP theft, counterfeiting
and other issues.

3 Threat Model
As noted, protecting IP from malicious attackers who might steal
or alter design and process plan files across the digital thread is a
major security threat [2, 14] . An earlier work introduced streaming
the G-code files directly to the AM machine from the client, similar
to how video streaming software revolutionized the entertainment
industry (see Figure 1 (b)). The primary concern with this method is
that the manufacturer has to trust client-generated G-codes. Second,
the client may not know all the manufacturing secrets of produc-
ing parts on a given machine and the manufacturer would like to
retain this know-how without disclosing it to the client to generate
appropriate G-codes.

If the client is allowed to stream the G-code directly to the ma-
chine, a G-code file infected with malware, or a malicious client

Table 1: Example of G-Code that are widely used in Marline
firmware for 3D-printers

Command Example Description

G0 G1 X10.2 Move to the location 10.2mm
on X axis without extrusion

G1 G1 X10.2 Y14.3
Move to the location 10.2mm
on X axis and 14.3mm on the Y

axis with extrusion on
G12 G12 Clean the nozzle
G28 G28 X Y Home X and Y axis

G92 G28 X0 Y0 Specify the current nozzle x
and y location to 0 and 0

M23 M23 gear.gcode Select the file on sd card to
print

M106 M106 S100 Set the fan speed to 100

M104 M104 S250 Set the the hotend temperature
to 250 degree

M997 M997 Update the firmware from SD
card

M999 M999 Restart the machine

could intentionally alter the G-code to attack the AM machine and
cause interruptions. For example, the nozzle temperature can be
increased beyond safe operating environment. Therefore, the main
objective of this work is not only to protect the clients from IP theft,
but also to protect the manufacturer’s machines from executing
untrusted G-codes. Effectively, the threat model considered in this
paper is as follows: a client/designer would like to protect IP from a
potential IP theft while a manufacturer would like to protect their
AM machines from malicious/untrusted G-code and protect the IP
of the manufacturing process.

To address this issue, we propose a new STL generation and
streaming method instead of G-code streaming. To do so, we first

Conference’17, July 2017, Washington, DC, USA AAAA et al.

convert a CAD file into a single STL file and then we split the STL
file into multiple STL sections, corresponding to different layers,
and each such segmented STL file is sequentially streamed to the
manufacturer. Once received on the manufacturer side, the man-
ufacturer is responsible for converting this STL file to the G-code
file, which eliminates the danger of direct execution of untrusted
G-code commands.

4 Research Approach
An STL file is not organized in a bottom-to-top layering pattern as
in a G-code file. This results in a lack of dependency recognition
between different sections within an STL file. Consequently, the
main challenge is to find an appropriate solution for streaming
the STL file. To solve this issue, we conceived a novel method to
split a single STL file into horizontally sliced STL parts and then
stream the segmented STL files (see Algorithm 1) at the client’s
end and to convert the streamed STL files in real-time to machine
specific G-codes (Algorithm 2). Algorithm 1 involves first orienting
the file and then dividing the original STL file into horizontally
stacked sections and then exporting each section as an individual
STL part. In the initial step, horizontal planes are established along
the surface that will adhere to the printer’s bed. These planes are
then duplicated at specific intervals. For example, if a layer height
h = 0.3 mm is chosen for 3D printing, the spacing between planes
should also be set to be approximately 0.3 mm.

Layer height is determined by design needs and manufacturing
machine capabilities, and hence this is determined as part of the
config file in the initial handshake between the client and the man-
ufacturer. The layer height is important for both the manufacturer
and client. The client needs to set up the layer height based on the
resolution needed; however, the client must be aware of the AM
machine’s limitations. Therefore, before sectioning a STL file, the
designer and manufacturer agree on a valid range of this variable.

We developed a custom STL slicer that gets an STL file and layer
height as input and then creates k STL files with equal height as
the output. For instance, if the model’s height is 3 mm and we aim
for a 0.3 mm layer height resolution, this process will yield ten
separate parts. Specific printing configurations such as layer height,

Table 2: Some of the configurations that are used in slicer
applications [13]

Configuration Name Machine choice Design choice

Bed temperature ✓ ✗

Bridge fan speed ✓ ✗

Disable fan ✓ ✗

Filament diameter ✓ ✗

Temperature ✓ ✗

Nozzle diameter ✓ ✗

Fill angle ✗ ✓
Fill gaps ✗ ✓

Fill density ✗ ✓
Fill pattern ✗ ✓
Layer height ✓ ✓

Infill every layers ✗ ✓

infill percentage, and other relevant settings must be defined by
the designer. These parameters are saved in a configuration file,
which is then sent to the manufacturer to be used during the slicing
process during manufacturing.

Once the STL file is received from the client, the manufacturer
executes Algorithm 2 which first requires deleting any previously
stored G-code and STL files. Keeping multiple files could enable
the manufacturer to combine them and cause IP theft. This require-
ment applies to all streaming applications; if the receiver stores
all incoming data, the security of the streaming process is funda-
mentally undermined. At the manufacturing site a custom slier is
used to convert the STL file into a G-code file (e.g., ’body1.stl’ to
’body1.gcode’). During this process, the appropriate configurations
are provided to the slicer tool that satisfies both the designer’s and
the manufacturer’s criteria. After generating the G-code file, addi-
tional commands at the beginning and end of the file are removed
to optimize the printing sequence. Typically, G-code files from stan-
dard converters contain initial commands for setting the printer
temperature and calibrating the home position at the start of the
file. However, these commands are only necessary for the initial
file and thus are omitted in subsequent files. Similarly, redundant
commands at the end of the G-code file, such as those for turning
off the nozzle and bed and moving the actuator to the (0,0) loca-
tion, are only required for the last file when the printing process is
completed. Hence, these commands are removed from intermediate
files to prevent unnecessary actions. We developed custom scripts
to remove these redundant commands from the beginning and end
of the intermediate files to automate the process.

It is worth noting that each manufacturing machine has its own
specifications; therefore, appropriate configurations must be used
for a specific machine. Hence, options such as nozzle temperature,
filament diameter, and printing speed must be set properly in the
application on the manufacturer’s side. A manufacturer can change
the settings based on the machine’s conditions for the first time
and keep it unchanged for the rest of the manufacturing requests.

In this work, themanufacturingmachine is connected to the com-
puter via serial communication. Serial communication is commonly
used in 3D printing to interface with printers and transmit G-code
commands. We utilized the PySerial library to establish communi-
cation with the printer’s serial port and send G-code commands to
the AM machine. Once the printing of the first layer is complete,
the manufacturer requests the next STL file. The key difference for
the new iteration is that during the slicing process, the Z-offset
value, i.e., the height at which printing begins, must be properly
adjusted. Since the previous STL file has already been printed, the
new file should not start at Z=0 mm but rather at Z=h (the layer
height with a suitable allowance for shrinkage and material over-
flow), positioned above the previous layer. Consequently, for each
subsequent STL file, the Z-offset is incremented by +h, ensuring
that each new layer is printed on top of the previous layers.

4.1 Security Advantages of the Proposed
Approach

One benefit of the proposed approach is that the streaming process
can be done through multiple distributed servers to the manufac-
turing side [14]. This reduces the risk of communications-related

Never Trust the Manufacturer, Never Trust the Client Conference’17, July 2017, Washington, DC, USA

Figure 3: First, client asks the manufacturer for the machine specifications. Then, (a) the client designs the file and converts its
desgin to a STL file. Then, (b) the client slices the design file using our custom Python scripts. After that, (c) the client creates
the configuration. Finally, (d) the first section of STL file is sent to the manufacturer through a secure channel. (e) Once the STL
file is received , the manufacturer uses the slicer application along with the configuration files to produce the G-code file (f).
The G-code file is further processed , and the data is sent to the printer via serial communication (m). Once the first layer is
printed, the manufacturer requests the next layer’s STL file, and the cycle repeats.

interruptions compared to when the client’s sole server is attacked.
In addition, since the client is forbidden from directly executing
G-code commands on the manufacturer’s machine, the MaaS plat-
form is protected against cyber-attacks such as command injection
and Man in The Middle (MITM), which could directly affect the AM
machine. On the other hand, in previous work [14], if an attacker
could intercept the connection between the client and manufacturer
and change the normal G-code commands to malicious commands,
it could damage the AM machine as the G-code was streamed di-
rectly. Furthermore, since we are minimizing human intervention
during printing and limit manufacturer’s access to the design file,
we enhance the security of the design files against IP theft and
counterfeit production. In this work, we assume that the connec-
tion between the manufacturer’s computer and AM is secure, i.e.,
the machine operator would not place a sniffing device between
AM machine and streaming computer. In addition, we expect that
malicious workers do not have access to the manufacturer’s com-
puter memory. Otherwise, it is possible to save all the streamed files
together and reconstruct the original file. This assumption amounts

Algorithm 1 Client’s logic
1: 𝑆𝑝𝑒𝑐𝑠 = GetMachineSpecifications(𝑀𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑒𝑟)
2: 𝐶𝑜𝑛𝑓 𝑖𝑔 = GenerateConfigFile(𝑆𝑝𝑒𝑐𝑠)
3: 𝑆𝑇𝐿 = OrientTheSTLPart(𝑆𝑇𝐿)
4: 𝑆𝑇𝐿 = GenerateSupportScript(𝑆𝑇𝐿)
5: 𝑆𝑇𝐿𝐴𝑟𝑟𝑎𝑦 = ConvertSTLtoSections(𝑆𝑇𝐿)
6: SendConfigFile(𝐶𝑜𝑛𝑓 𝑖𝑔,𝑀𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑒𝑟)
7: for 𝑛 = 1, 2, . . . do
8: Stream(STLArray[𝑛],𝑀𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑒𝑟)
9: Wait() //until manufacturer requests the next file
10: end for

Algorithm 2 Manufacturer’s logic
1: SendMachineSpecifications(𝐶𝑙𝑖𝑒𝑛𝑡)
2: 𝑐𝑜𝑛𝑓 𝑖𝑔=GetConfigFile(𝐶𝑙𝑖𝑒𝑛𝑡)
3: 𝑆𝑇𝐿𝐴𝑟𝑟𝑎𝑦 [0]=GetSTLFile(𝐶𝑙𝑖𝑒𝑛𝑡 ,0)
4: Z_offset = 0
5: for 𝑛 = 0, 1, 2, 3, . . . do
6: 𝑆𝑇𝐿𝐴𝑟𝑟𝑎𝑦 [𝑛 + 1]=Thread(GetSTLFile(𝐶𝑙𝑖𝑒𝑛𝑡 ,n+1))
7: RemovePrintedfiles()
8: 𝐺𝑐𝑜𝑑𝑒 = SliceSTLfileToGCODE(𝑆𝑇𝐿𝐴𝑟𝑟𝑎𝑦 [𝑛], 𝑐𝑜𝑛𝑓 𝑖𝑔)
9: Z_offset += config.layer_height
10: config.Z_offset = Z_offset
11: 𝐺𝑐𝑜𝑑𝑒 = RemoveRedundantCommands(𝐺𝑐𝑜𝑑𝑒)
12: for 𝑘 = 1, 2, . . . do
13: SendCommandOverSerial(𝐺𝑐𝑜𝑑𝑒 , 𝑙𝑖𝑛𝑒 = 𝑘)
14: end for
15: end for

to having the controller of the AM machine with streaming capa-
bilities, i.e., a single device controls the printing trajectory as well
as data streaming.

5 Implementation
For a basic archetype, we examined the streaming of a simple gear
to the manufacturer for 3D printing. We used an Elegoo Neptune
3 printer with Poly-lactic Acid (PLA) filament. We set the layer
height as 0.3 mm with 100% infill density and the printing tempera-
ture was set to 250°C. The manufactured gear in both the normal
scenario (printing with the whole G-code file) and streaming case
are shown in Figure 4. As shown in the figure, there is a marginal
difference in the streamed part compared to the normal part (±0.3
mm), demonstrating the effectiveness of the proposed method.

Conference’17, July 2017, Washington, DC, USA AAAA et al.

Figure 4: (a) Streaming method and (b) normal print. (c) The
effect of latency in streaming files. When the nozzle stops
and waits for the next chunk of data, extra filament flows
from the nozzle at the stopping point.

5.1 Streaming Complex Parts with Supports and
Special Orientation

Although the simple gear case was successfully manufactured, we
should also consider more complex cases that involve special ori-
entations or require external support. Typically, slicer applications
automatically generate support for the necessary areas. However,
in our case, support cannot be generated during the slicing process
because this step is handled by the manufacturer. The manufacturer
only has access to a single layer of the file at a time, not the com-
plete file. As a result, the manufacturer has no prior information
about which surfaces are printed on top of which previous layers or
whether supports are needed for a specific location. To address this
problem, we wrote a script to generate supports for a STL file (see
Figure 5(a)). With this method, each STL file includes the support
components, eliminating the need for the slicer application to gen-
erate or have any knowledge about the supports. In our approach,
the needed supports are generated at the client as part of the STL
file. Another issue that we noticed with the slicer application on
the manufacturer’s side is that different layers could be imported
at varying locations on the XY plane. For example, the first layer
might be printed at the location (0,0) based on its center of surface,
while the second layer could shift to a different position, such as
(0.1, 0.2), due to the differences in its surface or borders. To address
this, we introduce the idea of a guideline border which is basically a
fixed rectangle around the printed object (See Figure 5(b)). This en-
sures that each layer has a consistent outer boundary which, based
on our experiments, keeps the imported file aligned in the same
position for every layer. Additionally, we added a small rectangular
dot for debugging purposes. This dot helps confirm that the file
is not rotated and that the rectangle is printed consistently at the
same location for each layer. The result of printing this complex
design is shown in Figure 6. Here, the final part is manufactured
with special orientation and support without any issues.

Figure 5: (a) Sample component with special orientation and
support. (b) Special guideline dot and guideline border for
solving the dislocation problem. This figure is also an exam-
ple of a single STL file.

5.2 Streaming Related Latency
Latency issues are always present in streaming applications. Since
we are sending the commands in real time, if printing is finished
before the next layer is ready, the printer’s nozzle stops at the last
point. This stoppage may cause extra leftover filament from the
nozzle’s end to flow unnecessarily on top of the previous layers. This
problem creates extra bumps in the printed file and might deform
the object (see Figure 4(c)). We noticed that during the printing
phase, as the printer waits for the next command to arrive, extra
filament melts at this location, causing this unwanted issue. To solve
this problem, we used the buffering technique. In the beginning, we
request the first two layers at the same time and wait until we fully
receive both of them and both are converted into G-code. Then,
while the second layer is being printed, we request the next layer
by calling a separate thread for the third layer. Hence, while the nth
layer is being printed, we are receiving and converting the (n+1)th
STL file to G-code.

5.3 Results
We did a tensile test to further prove that our method is mechani-
cally as identical as the normal 3D printing. To do that, we printed
two samples; The first samples are printed with 100% infill with
both normal and streaming method, and the second samples are

Figure 6: Manufactured object from (a) streamed data with
special guideline dot and guideline border for solving the
dislocation problem. (b) normal method for manufacturing
the part (support is generated using our python script).

Never Trust the Manufacturer, Never Trust the Client Conference’17, July 2017, Washington, DC, USA

Figure 7: (a) Dimension of the specimen (D638 V) and printed parts with 100% and 70% infill in normal and streaming methods.
(b) Tensile test performed on the specimen.

printed with 700% infill. Our specimen is the standard D638 V (
shown in Figure 7). In the tensile test, a pulling force is applied to
the specimen and load vs crosshead displacement of the object is
identified. This curve for the first trial is shown in Figure 8. Based
on our experiment, the 100%infill specimen could stand a higher
amount of force before the breakage point, which was 404.05 ±
11.59(N) for the normal method and 396.27(N) for the streaming
method, which shows a small amount of difference (1.9%) from the
average of normal trials (see Table 3). The 70% infill specimen in
the normal method broke at 393.98 ± 19.12(N) while in the stream-
ing case the maximum load before failure was 367.35(N) (6.5%
difference from the average in the normal case).

6 Conclusions and Future Work
In this work, we introduced an STL streaming framework the aims
to protect IP and enhance security in a MaaS platform based on 3D
printing. By streaming STL files layer by layer to the manufacturer,
the risk of IP theft is significantly reduced. Our framework uses
the custom python scripts to segment the original STL file and

Table 3: Tensile test results

Infill 100% Normal Infill 70% Normal

Trial 1 387.96 409.29
Trial 2 419.16 364.45
Trial 3 399.52 389.78
Trial 4 409.56 412.41

Mean ± STD 404.05 ± 11.59 393.98± 19.12

convert it into STL sections. The proposed method demonstrated
the effectiveness in printing both simple designs as well as those
requiring special orientations or additional support. Compared
to previous works that stream G-code files that can be infected
and thereby damage the manufacturing process and machine, our
method is robust to these attack scenarios and manufacturers can
safely generate G-code files on their side. A limitation that can be
addressed as a future effort is that there is no guarantee that the
manufacturer would delete the previous slices and not save all of
them together. In that case, after the completion of a streaming
process, a malicious manufacturer can put all these slices together
and reconstruct the design file. To solve this issue, it is necessary for
the manufacturing machines to have a streaming-like application
that prohibits workers from accessing the local memory.

Figure 8: Force/displacement curves for tensile experiment.

Conference’17, July 2017, Washington, DC, USA AAAA et al.

Acknowledgments
This work was supported by the NSF Grant CCRI 2234972. Any
opinions, findings, conclusions, or recommendations expressed in
this material do not necessarily reflect the views of the funding
organizations.

References
[1] Dennis Bauer, Daniel Stock, and Thomas Bauernhansl. 2017. Movement towards

service-orientation and app-orientation in manufacturing IT. Procedia CIRP 62
(2017), 199–204.

[2] FWBaumann, T Ludwig, NDarwin Abele, S Hoffmann, and D Roller. 2017. Model-
Data Streaming for Additive Manufacturing Securing Intellectual Property. Smart
and Sustainable Manufacturing Systems 1, 1 (2017), 142–152.

[3] Fei Chen, DINESH PINISETTY, and Nikhil Gupta. 2021. Embedded Obfuscated
Barcodes for Identification of Genuine Additive Manufactured Parts. (2021).

[4] Tarasankar DebRoy, Huiliang L Wei, James S Zuback, Tuhin Mukherjee, John W
Elmer, John O Milewski, Allison Michelle Beese, A de Wilson-Heid, Amitava De,
and Wei Zhang. 2018. Additive manufacturing of metallic components–process,
structure and properties. Progress in materials science 92 (2018), 112–224.

[5] Ian Gibson, David W Rosen, Brent Stucker, Mahyar Khorasani, David Rosen,
Brent Stucker, and Mahyar Khorasani. 2021. Additive manufacturing technologies.
Vol. 17. Springer.

[6] Nikhil Gupta, Akash Tiwari, Satish T S Bukkapatnam, and Ramesh Karri. 2020.
Additive Manufacturing Cyber-Physical System: Supply Chain Cybersecurity
and Risks. IEEE Access 8 (2020), 47322–47333. doi:10.1109/ACCESS.2020.2978815

[7] Abhiram Haridas, Adil Abdul Samad, Vysakh D, Deepak Lawrence K, and Vinod
Pathari. 2022. A blockchain-based platform for smart contracts and intellectual
property protection for the additive manufacturing industry. In 2022 IEEE Inter-
national Conference on Signal Processing, Informatics, Communication and Energy
Systems (SPICES), Vol. 1. 223–230. doi:10.1109/SPICES52834.2022.9774219

[8] Ashif Sikandar Iquebal, Zimo Wang, Woo-Hyun Ko, Zhujiang Wang, P R Kumar,
Arun Srinivasa, and Satish T S Bukkapatnam. 2018. Towards realizing cyber-
manufacturing kiosks: Quality assurance challenges and opportunities. Procedia
Manufacturing 26 (2018), 1296–1306.

[9] Thomas Kurfess and William J Cass. 2014. Rethinking additive manufacturing
and intellectual property protection. Research-Technology Management 57, 5

(2014), 35–42.
[10] Priyanka Mahesh, Akash Tiwari, Chenglu Jin, Panganamala R Kumar,

A L Narasimha Reddy, Satish T S Bukkapatanam, Nikhil Gupta, and Ramesh
Karri. 2020. A survey of cybersecurity of digital manufacturing. Proc. IEEE 109, 4
(2020), 495–516.

[11] Hammond Pearce, Kaushik Yanamandra, Nikhil Gupta, and Ramesh Karri. 2022.
FLAW3D: A Trojan-Based Cyber Attack on the Physical Outcomes of Additive
Manufacturing. IEEE/ASME Transactions on Mechatronics 27, 6 (2022), 5361–5370.
doi:10.1109/TMECH.2022.3179713

[12] Gaurav Prashar, Hitesh Vasudev, and Dharam Bhuddhi. 2023. Additive manufac-
turing: expanding 3D printing horizon in industry 4.0. International Journal on
Interactive Design and Manufacturing (IJIDeM) 17, 5 (2023), 2221–2235.

[13] Alessandro Ranellucci. [n. d.]. GitHub - slic3r/Slic3r: Open Source toolpath
generator for 3D printers — github.com. https://github.com/slic3r/Slic3r.

[14] Akash Tiwari, A L Narasimha Reddy, and Satish T S. Bukkapatnam. 2020. Cyber-
security assurance in the emerging manufacturing-as-a-service (MaaS) paradigm:
A lesson from the video streaming industry. Smart and Sustainable Manufacturing
Systems 4, 3 (2020), 324–329.

[15] Akash Tiwari, Eduardo Jose Villasenor, Nikhil Gupta, Narasimha Reddy, Ramesh
Karri, and Satish T S Bukkapatnam. 2021. Protection against counterfeiting
attacks in 3D printing by streaming signature-embedded manufacturing process
instructions. In Proceedings of the 2021 Workshop on Additive Manufacturing (3D
Printing) Security. 11–21.

[16] Syed A M Tofail, Elias P Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa
O’Donoghue, and Costas Charitidis. 2018. Additive manufacturing: scientific and
technological challenges, market uptake and opportunities. Materials today 21, 1
(2018), 22–37.

[17] Tullio Antonio Maria Tolio, László Monostori, József Váncza, and Olaf Sauer.
2023. Platform-based manufacturing. CIRP Annals 72, 2 (2023), 697–723.

[18] Mark Warren. 2015. Modern IP theft and the insider threat. Computer Fraud &
Security 2015, 6 (2015), 5–10.

[19] Massimo Zanardini, Andrea Bacchetti, Simone Zanoni, and Milad Ashourpour.
2016. Additive manufacturing applications in the domain of product service
system: An empirical overview. Procedia CIRP 47 (2016), 543–548.

[20] Steven Eric Zeltmann, Nikhil Gupta, Nektarios Georgios Tsoutsos, Michail Ma-
niatakos, Jeyavijayan Rajendran, and Ramesh Karri. 2016. Manufacturing and
security challenges in 3D printing. Jom 68, 7 (2016), 1872–1881.

https://doi.org/10.1109/ACCESS.2020.2978815
https://doi.org/10.1109/SPICES52834.2022.9774219
https://doi.org/10.1109/TMECH.2022.3179713
https://github.com/slic3r/Slic3r

	Abstract
	1 Introduction
	2 Overview of Technical Terms in Additive Manufacturing
	2.1 Computer-Aided Design(CAD) Applications
	2.2 Standard Triangle Language(STL) File
	2.3 Slicer Applications and G-Code Format

	3 Threat Model
	4 Research Approach
	4.1 Security Advantages of the Proposed Approach

	5 Implementation
	5.1 Streaming Complex Parts with Supports and Special Orientation
	5.2 Streaming Related Latency
	5.3 Results

	6 Conclusions and Future Work
	Acknowledgments
	References

