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Abstract. We present a privacy-preserving telemetry aggregation scheme.
Our underlying frequency estimation routine works within the frame-
work of differential privacy. The design philosophy follows a client-server
architecture. Furthermore, the system uses a local differential privacy
scheme where data gets randomized on the client before submitting the
request to the resource server. This scheme allows for data analysis on de-
identified data by carefully adding noise to prevent re-identification at-
tacks, thereby facilitating public data release without compromising the
identifiability of the individual record. This work further enhances pri-
vacy guarantees by leveraging Oblivious HTTP (OHTTP) to achieve in-
creased privacy protection for data in transit that addresses pre-existing
privacy vulnerabilities in raw HTTP. We provide an implementation that
focuses on frequency estimation with a histogram of a known dictionary.
Our resulting formulation based on OHTTP has provided stricter pri-
vacy safeguards when compared to trusting an organization to manually
delete identifying information from the client’s request in the ingestor as
deployed in reference work [3].
Source code available at https://github.com/kenluck2001/miscellaneous/
tree/master/src/Privacy-Preserving-Telemetry
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1 Introduction

Understanding the usage patterns of deployed devices can provide insight into
improving customer experience from an organizational perspective. De facto at-
tempts to obtain user data can increase privacy risks. Coincidentally, there is
a market for trading customer data to facilitate precise advertisement target-
ing. Acxiom 1 is one of the world’s largest data brokers that harvests data from
nearly a billion users worldwide. A privacy attack can result from the actions
of malicious actors who act surreptitiously and pursue goals that are inconsis-
tent with those of the users. Increasing financial motives for abusing users’ data
have motivated our research into novel privacy-enhancing mechanisms to provide
privacy by design.

1 https://www.acxiom.com/
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Internet standards 2 led by a consortium of technology firms, university re-
searchers, hobbyists, and others have a higher chance of building higher quality
internet protocols due to the increased scrutiny of multiple industrial partners.
Similarly, these setups are analogous to peer reviews in that they help researchers
improve their engineering thinking through the critical evaluations of their work.
In the same way, it is prudent to build industrial systems utilizing the privacy
guarantees afforded by the Oblivious HTTP protocol rather than blindly trusting
an Apple internal aggregator service. Given how recent news has demonstrated
the prevalence of blatant privacy abuse of user data in the industry. Hence, we
have taken this approach in this manuscript.

Differential privacy (DP) is a structured mathematical framework that sup-
ports principled reasoning about privacy loss in a database. Randomization
happens by adding calibrated noise to the original data to prevent reverse-
engineering the original value of the randomized data, thereby providing privacy
protection. DP protects sensitive data while maintaining a trade-off between
added noise and expected utility. As a result, DP has increased the adoption
of privacy-preserving data mining tasks that facilitate public data release with-
out compromising individual privacy. The rigorous nature of the DP mechanism
makes it ideal for satisfying evolving privacy regulations.

Gathering telemetry is a necessary prerequisite for several data analytics
tasks. Our work has adopted differential privacy as a standard for guarantee-
ing privacy protection. This work extends the privacy guarantee of the system
built by Apple [3]. Their work [3] requires trust that the ingestor will not abuse
client-identifying data. This expectation of trust is unrealistic as monetary ben-
efits arise from potential trading on customer data. The unanswered question is
how to improve privacy on this system without resorting to onion routing [6]?
TOR utilizes flooding in its operation and incurs unacceptable overhead that
can impact scalability. In contrast, systems such as Prio [8], DPrio [12], and
Prio+ [1] may provide higher privacy guarantees due to their incorporation of
multiparty-based secret sharing. On the contrary, several applications require
reasonable privacy guarantees with minimal setup costs, which is the premise of
our manuscript.

Our thesis focuses on enhancing the privacy of our telemetry scheme based
on Oblivious HTTP [22] with significant simplification. We seek to understand
common user patterns across devices by generating snapshot readings for sum-
mary device health or other information. Hence, we have developed a privacy-
preserving telemetry system that uses local differential privacy, where data gets
randomized on the client before submitting the request to the resource server.
Therefore, it delivers a higher degree of privacy guarantee when compared to the
central differential private scheme. The paper is structured as follows: a summary
of contributions in Section 2, a literature review of previous works in Section 3,
a brief explanation of differential privacy in Section 4, Oblivious HTTP in Sec-
tion 5, an overview of our base implementation in Section 6, a discussion of the
merits of our solution in Section 8. We have demonstrated the usefulness of our

2 https://www.ietf.org/standards/

https://www.ietf.org/standards/
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architecture with a case study and several experiments in Section 7. Finally, we
present limitations, future work, and conclusions in Section 9 and Section 10.

2 Contributions

Our contributions are summarized as follows:

– We provide an implementation focused on frequency estimation with a his-
togram of known dictionary words. However, the reference work [3] has a
known limitation where we trust the ingestor will not cooperate with bad
actors that may abuse the customer’s privacy.

– HTTP does not provide privacy by design. The quest for rigorous privacy
protection has motivated us to build our privacy scheme based on Oblivious
HTTP, which fixes many privacy vulnerabilities in HTTP.

– We demonstrate a conceptual framework for enhancing privacy protection
using a standardized internet protocol. Therefore, we no longer need to trust
the ingestor will not abuse client identifiers (such as IP addresses or session
data). This setup [3] results in a weaker notion as it is difficult to audit
whether the required deletion happened.

3 Related Work

Private telemetry is very interesting to all service providers, as seen in all major
browsers and operating systems. Procho [5] introduced the Encode, Shuffle, An-
alyze(ESA) framework widely used in telemetry, error reporting, and continuous
monitoring. STAR [9] is a data aggregation system that enforces k-anonymity
based on well-known cryptographic primitives. Privacy leaks from this scheme
can impact users’ confidence. Similarly, several deployed telemetry systems exist
in the industry, but most lack privacy-preserving characteristics. For example,
Facebook created a system named PCAT [25] to continuously monitor produc-
tion assets and offer support for change detection, alerting, monitoring, and diag-
nostics. As a result, when this telemetry scheme gets deployed beyond the sand-
boxed production environment to real-user devices on the edge. Privacy leaks
from this scheme can impact users’ confidence. Subsequently, privacy-preserving
data mining methods have evolved from theoretical abstractions to solving real-
world applications.

Differential privacy [10] (DP) is a robust method for quantifying how pri-
vacy degrades under frequent adversarial evaluation of database records. DP
can work in local or central settings where a local DP scheme has higher pri-
vacy guarantees. There are examples of public-facing industrial DP deployment
in local settings such as RAPPOR [11] and central settings in PINQ [17]. Fur-
thermore, alternative notions of privacy-enhancing technology include Verifiable
Distributed Aggregation Functions (VDAFs) [19] and TOR [6] can provide more
privacy guarantees at a higher cost than Oblivious HTTP [22].
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Several lines of work utilize sketch-based algorithms for network monitor-
ing because of their efficient approximate count estimation as follows: OctoS-
ketch [24], TrustSketch [7], and HeteroSketch [2]. Hence, we have adopted sketch-
based estimation as seen in (Algorithms 1, 3, 5, and 7) of our reference paper [3].
Several privacy-preserving analytics processing engines exist to support down-
stream data analysis. One such scheme is PRIVAPPROX [20] utilizing a zero-
knowledge proof construction to provide higher privacy guarantees than differ-
ential privacy. POPSTAR [15] uses oblivious PRF and polynomial commitment
for privacy-preserving aggregation schemes.

One such case is the privacy-aware deployment at Apple [3] to capture in-
sights into crashes (and other events) from a collection of phones using well-
known security policies and differential privacy. Through our work, we propose
privacy-preserving frequency estimation without trusting that the ingestor will
delete client-identifying information without a persistent audit. We have elimi-
nated the trust by providing a simplified implementation with extended privacy
guarantees by adopting Oblivious HTTP [22] to increase clients’ privacy assur-
ance.

4 Differential Privacy

Differential Privacy (DP) is a privacy-enhancing technology that allows for data
analysis on de-identified data by carefully adding noise to prevent re-identification
attacks, thereby facilitating public release without impacting the privacy of the
individual record.

Definition 1: (Differential Privacy) Following Definition 7 of [10], for each
pair of the data record D and D′, noise, ϵ, and a randomizer, M satisfies
P(M(D) ∈ O) ≤ eϵP (M (D′) ∈ O)

When ϵ ≈0, we attain higher privacy guarantees with more similarities across
the data set. Note, when ϵ =0, at that point, perfect secrecy is achieved by limit-
ing the ability to perform statistical analysis. When ϵ = ∞, we have a blatantly
non-private mechanism. Therefore, we aim to achieve reasonable privacy within
an appropriate budget.

5 Oblivious HTTP

Oblivious HTTP [22] (OHTTP) is an encapsulated abstraction built on top
of HTTP to address inherent privacy risks within communicating peers. There
are some industrial deployments of privacy-enhancing protocols such as iCloud
private relay [13] and Flo period tracker app [23].

This OHTTP protocol allows exchanging encrypted messages where the server
cannot link the request to the client. This setup eliminates the risk of leaking
client information when communicating. For example, exposing an IP address
can uncover an individual, as it is an identifier linked to a physical node (client),
or reveal information about an IoT device in a house. We can mitigate privacy
leaks between communicating parties (client-server architecture) using HTTP.
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OHTTP operates by using a proxy (relay server) to send the request between
the client and server by adopting this level of indirection to prevent request
linkability.

We have added a simplification where we removed the gateway and instead
used a 3-party system (client, relay server, resource server) instead of the 4-
party system (client, relay server, gateway server, resource server) as defined in
the standard [22].

Fig. 1. Simplified Oblivious HTTP

The description of our simplified Oblivious HTTP protocol considering only
the request flow (response flow got omitted because our requirement is unidirec-
tional) is as follows, as shown in Figure 1:
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– The Client creates an encrypted message using the (public key of the resource
server) and forwards it to the relay server.

– The relay server forwards the encrypted message to the resource server. It is
a requirement that the relay server cannot read the message, as it does not
have the required key to decrypt the message on the relay server. The relay
transfers information without knowing the message content.

– The resource server can decrypt the message using its private key.

6 System Overview

This work demonstrates privacy-aware frequency aggregation of event telemetry.
Our implementation focuses on frequency estimation of events where we compute
a histogram from a known word distribution. This formulation allows counting
the frequency of a term from a known dictionary of terms. Furthermore, we have
provided an aggregate of known terms as event identifiers. Apple deployment
follows an equivalent naming convention with substitute names as described in
paper [4] as shown in Figure 2.

Fig. 2. DP Architecture [5]

Where u, v, w, x, y are variables depicting the life cycle of the data as it tran-
sits different stages through the pipeline as given the input data, u and resulting
system output data, y, and transformation functions X,Y, Z are randomizer,
shuffler, and analyzer respectively. The shuffler is optional based on the use case.
This data processing pipeline has the following phases: randomizer (privatiza-
tion), shuffler (ingestor), and analyzer (aggregator) as shown in Figure 3. From
the perspective of a single user, they randomize the data in their device and send
it to the ingestors, where identifying information is removed, and the resulting
data gets forwarded to the analyzer, where aggregate statistics get computed.

We have implemented the following algorithms from the paper [3] that in-
clude Aclient−HCMS in Algorithm 5 of [3], Hadamard count mean sketch HCMS
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Fig. 3. Apple DP system [3]

in Algorithm 6 of [3], Aserver in Algorithm 4 of [3], and computing the Sketch ma-
trix known as Sketch-HCMS in Algorithm 7 of [3]. We extend previous work [3]
by utilizing a proven privacy mechanism in Oblivious HTTP [22]. We can re-
place the ingestor shown in Figure 3 with a relay server in the setup of Oblivious
HTTP. The relay server does not know anything about the requests forwarded
through it. Hence, our scheme based on OHTTP has provided a stricter pri-
vacy safeguard when compared to trusting an organization to manually delete
identifying information from the client’s request in the ingestor.

The DP algorithm has a server and client mechanism shown in Figure 1,
where the client-side algorithm is a locally differentially private scheme where
the client randomized each data instance before sending transformed results to
the server. Consequently, the server provides a near-precise count of events where
aggregated results can handle customers’ information-seeking needs. Data trans-
fer between the client and the server can impact communication costs. Calibrated
noise added to the client during the privatization phase can dictate the amount
of privacy afforded and achievable accuracy at the analyzer stage. Therefore, we
can achieve a trade-off between privacy, communication cost, and computation
accuracy. The server-side algorithm averages the count for m number of hash
functions. Similarly, the hash function should be a set of m instances of 3-wise
independent hash functions where m is the number of hash functions.

k-wise independent hash function 3: k-wise independent is satisfied for a
set of discrete random variables X1, . . . , Xn given that for any set I ⊆ {1, . . . , n}
with |I| ≤ k and any values xi as shown in Equation 1.

Pr [∧i∈IXi = xi] =
∏
i∈I

Pr [Xi = xi] . (1)

Following Equation 1, k-wise independence is satisfied if we can choose a
function from a hash family with a guarantee that any k keys are independent
random variables. One example of a k-wise independent hash function follows
the polynomial structure as shown in Equation 2.

H(x) = a0 + a1x+ a2x
2 + ...+ ak−1x

k−1 (2)

Where H(x) is a polynomial of degree ≤ k

3 https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/12.pdf

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/12.pdf
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7 Case Study

Sports tracking apps are vulnerable to adversary eavesdropping and capturing
user activity to target individuals as recent news has shown 4. Following the
prevalence of privacy abuse, we present a case study on one of our users named
"Jane" who is a sports enthusiast and uses our fictitious generic sports track-
ing app 5, who wears a tracking device. We have demonstrated our privacy-
preserving telemetry architecture with sport tracking. Our scheme supports a
client-server architecture. The client side is the device tracker worn on the per-
son, while the server component aggregates the data.

Our implemented scheme protects users’ privacy as data gets randomized
on the clients before transferring the same data to the server. As a result, we
can achieve local differential privacy in our implementation. By utilizing this
architecture, there is less chance of privacy risk, as an attacker can intercept the
scrambled data on transmission to the server, and the adversary becomes inca-
pable of reverse-engineering to uncover the original data from the randomized
data. The device tracker uses sensors such as a GPS locator, gyroscope, ac-
celerometer, and others to categorize the activities of users into telemetry events
that include: "walking", "running", and "sleeping".

As part of our evaluation, we have arbitrarily randomly sampled these events
("walking", "running", and "sleeping") using the given probabilities ( 35 ,

3
10 ,

1
10 ).

The sampled data is a list of snapshots of original data (telemetry events) on
the client device and gets transformed using the privatization algorithm. The
de-identified scrambled data is then transferred to the aggregator (relay server)
and then to the analyzer, where aggregate statistics are estimated. We can claim
that our telemetry scheme works as expected if the distribution of the events
after the analyzer stage matches the data distribution of the original sampled
events before randomization.

Jane always wears a device tracker to monitor her activities for health rea-
sons. Let us define two concepts used in our discussion.

– Original data proportion: This measure is the ratio of the occurrence of
telemetry events captured in the data before randomization on the clients.
For example, if the data has the following events as follows: 10 "walking",
5 "running", and 5 "sleeping", then the resulting probabilities are ( 12 ,

1
4 ,

1
4 )

for ("walking", "running", and "sleeping") respectively.
– Randomized data proportion: This measure is the ratio of the occurrence of

telemetry events captured in the data (after randomization). For example,
if the data has the following events as follows: 10 "walking", 5 "running",
and 5 "sleeping", then the resulting probabilities are ( 12 ,

1
4 ,

1
4 ) for ("walking",

"running", and "sleeping").

4 https://www.cnn.com/2023/07/11/europe/russian-submarine-commander-killed-krasnador-intl/
index.html

5 https://www.bbc.com/news/av/technology-24379432

https://www.cnn.com/2023/07/11/europe/russian-submarine-commander-killed-krasnador-intl/index.html
https://www.cnn.com/2023/07/11/europe/russian-submarine-commander-killed-krasnador-intl/index.html
https://www.bbc.com/news/av/technology-24379432


Private Telemetry System 9

We have provided two experiments to demonstrate the usefulness of our im-
plementation as shown in SubSections 7.1, 7.2, and 7.3. The y-axis is the count
of telemetry events after randomization in Figures 4 and 5.

7.1 Distributional mismatch between analyzer output and original
data (input)

We have designed an experiment to understand how the randomized data pro-
portion of telemetry events varies as the data size increases. The original data
probability is kept constant for random sampling as ( 35 ,

3
10 ,

1
10 ) for ("walking",

"running", and "sleeping") respectively as shown in Figure 4 with the noise,
ϵ = 4, and the data get increased to observe the influence on the randomized
data proportions. The x-axis is the original telemetry count before privatization
in Figure 4 and the combined telemetry count (y-axis) due to the approximate
nature of the sketch-based frequency algorithm.

Similarly, we can see from Figure 4 that the randomized data proportion
of events (after privatization) does not significantly change. This phenomenon
implies that the privatization algorithm does not impact its utility at the set
noise level. Our implementation shows that the frequency counting estimate is
robust and preserves the distribution of the original data (before randomization).

Fig. 4. Impact of original data size (before randomization) on proportion of randomized
data



10 K.Odoh

7.2 Noise level impact on randomized data distribution

The experiment demonstrates how the proportions of randomized data change
with increasing noise levels shown in Figure 5. The x-axis is the telemetry count
before privatization in Figure 5.

Furthermore, we can observe from Figure 5 how increasing the noise, ϵ, during
randomization changes the proportion of randomized data.

Fig. 5. Impact of noise levels on proportions of randomized data

7.3 Interpreting experimental results

We have derived insights from the experimental results visualized in Figures 4
and 5. The results show that the accuracy of the total count of original telemetry
events can vary with the estimate obtained from the analyzer after applying
the sketch count algorithm for frequency estimation on the telemetry event.
The estimated count is an approximation of the actual telemetry event count.
However, the total count of a class of telemetry elements from the sketch-based
frequency algorithm in this work ensures that the data proportions are relatively
fixed even if the data size keeps increasing. We also observe that the proportion of
randomized events is relatively constant in the face of increasing noise levels, so
the predefined noise in our sketch-based frequency estimation within reasonable
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bounds does not impact the counting process. This finding implies that we obtain
an approximate count of telemetry events. It captures the trend in the data as the
original data distribution gets relatively unchanged from the output distribution
of the analyzer phase within reasonable bounds.

8 Discussion

The system architecture demonstrated in this manuscript supports a variety of
use cases. First, we can provide a platform for analyzing the sports activities
of a group of users while restricting the identifiability of a single user without
hindering the applicability of understanding the collective actions of individu-
als under observation. Second, we can organize each user’s sporting events into
groups and relax our privacy definition, where each group is linkable to the in-
dividual, and the randomized events in the group result in uncertainty in each
event. For example, after randomization, a user "sleeping" may be confused with
the same user "running" at a given time. As a result, individuals can analyze
their sporting activities over an extended time horizon with a reasonable data
size. The user gleans information about aggregated sporting activities. Further-
more, the successful deployment of differential privacy-based systems requires a
principled way to determine the noise, ϵ, with minimal influence on the system’s
utility. As a result, several lines of work [14], [18] have focused on estimating the
optimal noise magnitude, ϵ.

Setting up OHTTP requires a set of precautions to prevent privacy violations.
OHTTP mandates that each request be stateless to avoid correlations between
requests that can impact privacy and uncover the identity of the connecting
client. OHTTP provides privacy, given that the relay and the resource server do
not form a collusion ring. Our approach favors forwarding over flooding. As a
result, we favor the forwarding scheme in OHTTP instead of TOR [16]. Relaying
(forwarding by proxy) can likely impact latency. However, OHTTP fits nicely
within the pre-existing internet infrastructure. We built our infrastructure on
the foundation of distributed computing principles, including replication and
failover, to provide high availability for the relay server. Hence, the existing
fault-tolerant setup is sufficient for our unidirectional scheme.

We have used two layers of security, where the channel is secured using public
key cryptography as part of the OHTTP protocol, and the data itself gets trans-
formed utilizing differential privacy as part of the telemetry scheme based on
the paper [3]. Denial-of-service and replay attacks are other security challenges
when using OHTTP. This protocol can prevent denial-of-service attacks by be-
ing rate-limited. An attacker can stage a replay attack by positioning a rogue
server to monitor packet traffic. Subsequently, OHTTP has a built-in method
for mitigating replay attacks 6.

Let us consider the implementation intricacies of our DP implementation.
Our approach to creating a family of hash functions, H(x) shown in Equation 2

6 https://www.rfc-editor.org/rfc/rfc8446#section-8

https://www.rfc-editor.org/rfc/rfc8446#section-8
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was to generate a random matrix and extract the parameter for each hash func-
tion using vectors obtained row-by-row or column-by-column based on matrix
dimensions. This setup provides an advantage to having a set of shared hash
family functions for sampling the hash functions for both the client and the
server. Another approach is to create a family of hash functions on the server
and send them to the client. This scenario may be undesirable if we consider
communication costs. A compromise solution may bias our frequency count es-
timates by utilizing different hash function families for clients and servers with
similar distributions. As a result, we avoid sending huge matrices over the net-
work. Eventually, a better optimization is to adopt an identical random seed with
the same Pseudorandom Generator 7 (PRG) on the client and server, thereby
enabling local sampling from the same hash family distribution without commu-
nication costs. Hadamard transforms help to reduce the variance of estimates
at the analyzer (aggregator) stage as shown in Figures 2 and 3. The Hadamard
count sketch algorithm is an optimized variant utilizing a dense vector instead
of a sparse matrix. We observed that the quality of the solution depends on the
choice of a hash function. Therefore, we created a custom hash function with
appropriate statistical properties for ASCII 8 strings.

9 Limitations and Future Work

Our work has a limitation due to using a family of hash functions that support
only ASCII strings, thereby restricting our ability to handle events in wide-
character languages requiring more than 8 bits to represent a character. Fur-
thermore, we can improve our work by categorizing client devices by utilizing
a set of gateway servers in our Oblivious HTTP flow to support the logical
grouping of requests. Also, the relay server can strengthen privacy protection
by using anycast [21] address on a cluster of relays by purposefully increasing
uncertainties linking a client’s request to a particular relay server. It is impera-
tive to ensure that the relay servers are not under any big tech firm to prevent
compromise.

10 Conclusion

We have extended the privacy-preserving frequency of event telemetry [3] with
oblivious HTTP. Furthermore, we have provided a working implementation of
the privacy-preserving architecture with several significant improvements. Our
work would facilitate a privacy-aware telemetry system for obtaining internet
measurements (or other measures) while providing privacy protection.

7 https://en.wikipedia.org/wiki/Pseudorandom_generator
8 https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/Pseudorandom_generator
https://en.wikipedia.org/wiki/ASCII
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