
1

False Alarms, Real Damage: Adversarial Attacks
Using LLM-based Models on Text-based Cyber

Threat Intelligence Systems
Samaneh Shafee, Alysson Bessani, Pedro M. Ferreira

sshafee@fc.ul.pt, anbessani@fc.ul.pt, pmferreira@ciencias.ulisboa.pt
LASIGE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal

Abstract—Cyber Threat Intelligence (CTI) has emerged as a vital complementary approach that operates in the early phases of the
cyber threat lifecycle. CTI involves collecting, processing, and analysing threat data to provide a more accurate and rapid understanding
of cyber threats. Due to the large volume of data, automation through Machine Learning (ML) and Natural Language Processing (NLP)
models is essential for effective CTI extraction. These automated systems leverage Open Source Intelligence (OSINT) from sources
like social networks, forums, and blogs to identify Indicators of Compromise (IoCs). Although prior research has focused on adversarial
attacks on specific ML models, this study expands the scope by investigating vulnerabilities within various components of the entire
CTI pipeline and their susceptibility to adversarial attacks. These vulnerabilities arise because they ingest textual inputs from various
open sources, including real and potentially fake content. We analyse three types of attacks against CTI pipelines - evasion, flooding,
and poisoning- and assess their impact on the system’s information selection capabilities. Specifically, on fake text generation, the
work demonstrates how adversarial text generation techniques can create fake cybersecurity and cybersecurity-like text that misleads
classifiers, degrades performance, and disrupts system functionality. The focus is primarily on the evasion attack, as it precedes and
enables flooding and poisoning attacks within the CTI pipeline. Our findings reveal that the False Positive Rate (FPR) for the evasion
attack reached 97% for a specialized ML classifier model, indicating the model’s high vulnerability to adversarial samples. Additionally,
an FPR of 75% is observed for ChatGPT-4o as a classifier, indicating its susceptibility to adversarial examples. These results underscore
the need for an additional verification component at the early stage of the CTI pipeline to detect and filter out misinformation before it
spreads through the system.

Index Terms—Cyber Threat Intelligence, Fake text generation, Adversarial attacks, Chatbots, Security Operation Centers, Open
Source Intelligence, Natural Language Processing, Generative AI

✦

1 INTRODUCTION

THE increasing complexity of cyber threats has made
it difficult for existing security measures to provide

effective protection [1]. Security systems such as firewalls
and Intrusion Detection Systems (IDS) often cannot prevent
breaches and fail to detect the spread of malicious activities.
An enhancement is to keep defense mechanisms up to date
with appropriate configurations while enriching them with
relevant and up-to-date threat information. One promising
approach to enhance defensive capabilities is Cyber Threat
Intelligence (CTI), which provides insights into the tactics,
techniques, and procedures (TTPs) used in modern cyber-
attacks, along with the corresponding detection and mitiga-
tion strategies. CTI is an emerging field that analyses trends
in cybercrime, hacktivism, and cyber spying by utilizing di-
verse sources, including open-source intelligence (OSINT),
social media, and human intelligence [2]. An important
challenge for CTI systems is the potential for attackers to
inject fake intelligence across OSINT sources such as Twitter
(currently named X1), Stack Overflow, dark web forums,
and blogs, which can compromise the reliability of the
intelligence gathered and pose challenges for organizations

1. We use Twitter through the paper as our main dataset was pub-
lished before the name change.

using such sources.
To address this, CTI pipelines have typically relied on

trusted sources to reduce the risk of ingesting fake or
manipulated information. More broadly, CTI data collection
in the literature has followed two main approaches: (1)
keyword-based extraction [3, 4] and (2) source-based cura-
tion from trusted entities [5, 6]. Keyword-based methods
do not address the problem of misinformation, as they are
vulnerable to ambiguous or misleading terms. Relying on
trusted sources also introduces limitations: their accuracy
and availability may degrade over time, and maintaining
an up-to-date trusted source list is difficult, especially when
such sources become compromised or outdated.

This work explores the behavior of CTI pipelines when
data is collected from diverse and potentially unverified
sources. This alternative approach avoids the limitations of
relying solely on trusted sources and opens the possibility
of exploring dark web forums. However, it becomes more
vulnerable to misinformation and deliberate manipulation
by adversaries. The CTI extraction tools’ failure to filter
false or misleading information makes them vulnerable to
adversarial exploitation. Attackers can manipulate these
systems and compromise the integrity of the gathered threat
intelligence.

ar
X

iv
:2

50
7.

06
25

2v
1 

 [
cs

.C
R

] 
 5

 J
ul

 2
02

5

https://arxiv.org/abs/2507.06252v1


2

In this paper, we design an integrated CTI pipeline
capturing the essential stages found across existing systems.
This integrated pipeline serves as a unified reference frame-
work for assessing the CTI pipeline against adversarial
manipulation.

Despite their sophisticated workflows [7], each pipeline
stage remains susceptible to adversarial attacks, such as
evasion, flooding, and poisoning. These attacks can severely
impact the reliability of the pipeline, leading to incorrect
predictions by ML models, monitoring and validation dis-
ruptions, and increased False Positive (FP) and False Nega-
tive (FN) outcomes.

While prior work has emphasized the benefits of au-
tomation in CTI extraction by ML models, the impact of ad-
versarial manipulation on data sources has received limited
attention. This work focuses on this overlooked intersection,
where automation interacts directly with deception. It as-
sesses vulnerabilities of the CTI extraction pipeline rather
than introducing entirely new attack methodologies, aim-
ing to demonstrate how adversaries can create a platform
to deploy fake data to systematically deceive CTI models
and systems. Understanding these deception mechanisms
allows for evaluating the robustness of automated threat in-
telligence extraction processes more effectively. In summary,
the contributions of this work are as follows:

1) An integrated CTI extraction pipeline is proposed
that captures and generalizes the typical stages and
components used across prior CTI pipelines.

2) The analysis and investigation of the common limi-
tations of CTI pipelines.

3) A comprehensive exploration of the threat land-
scape encountered by automated CTI systems, in-
cluding attacks where adversaries intentionally in-
duce FPs by injecting misleading information into
the system.

4) An evaluation of the pipeline performance after
applying evasion, flooding, and poisoning attacks.

The remainder of the paper is organized as follows. Section
2 introduces key definitions establishing the basis for the
study. Section 3 explains the five stages of the proposed
CTI pipeline and Section 4 presents a deep exploration
of potential attacks on CTI pipelines. Section 5 focuses
on the progress of implementing evasion, flooding, and
poisoning attacks. The experimental results are presented
in Section 6, along with our findings. Section 7 discusses the
study’s challenges, opportunities, and future work. Section
8 reviews related studies about adversarial text generation
and adversarial attacks on ML models. Finally, Section 9
summarizes the key contributions and insights derived from
this study.

2 PRELIMINARY DEFINITIONS

This study focuses on a proposed CTI system that ingests
textual data from OSINT to generate actionable alerts. This
section provides fundamental definitions related to the in-
put textual data types and their predicted outputs by ML
models, which are the core of CTI systems.
Real vs. Fake text. It is important to distinguish between
real and fake input text in CTI systems, but there are no

universally standardized definitions. Typically, text gener-
ated by a machine is labeled as fake, while human-written
text is considered real [8]. However, this study adopts a task-
specific definition: real text refers to genuine security-related
information that reflects actual cyber threats or vulnera-
bilities; fake text refers to false or misleading information
crafted to deceive either humans or automated systems.
Such fakes may use cybersecurity-like terminology while
not corresponding to real-world threats. For example, a real
security-related tweet is: ”Vulnerability Details: CVE-2024-
52046 (CVSS 10/10) Apache MINA Remote Code Execution
(RCE) Vulnerability.” A fake version could be: ”Exploit re-
leased for CVE-2024-52046 allowing full control over Apache
MINA servers. No patch available yet—act now to secure your
systems!”. Although the fake version mimics the style and
vocabulary of a real CTI statement, it conveys false urgency
and misleading content.

Figure 1 illustrates the base taxonomy of text input
used in this study. It categorizes text as either real or fake
based on its truthfulness and intent. Furthermore, fake texts
are subcategorized based on whether they are machine-
generated or human-written.

Fig. 1. Taxonomy of input text in a CTI Pipeline.

True vs. False Positives in CTI Classification. To evaluate
the effectiveness of classification models used in the CTI
pipeline, we must distinguish between correct and incorrect
prediction outcomes. This study uses classic True Positive
(TP) and False Positive (FP) definitions, focusing on binary
classifier models that differentiate between security-related
and unrelated texts. A TP reflects an accurate classification
of a genuine CTI instance, while an FP often arises in
adversarial scenarios where fake or unrelated content is
intentionally crafted to resemble CTI text. For example:
”Vulnerability Details: CVE-2024-52046 (CVSS 10/10) Apache
MINA Remote Code Execution (RCE) Vulnerability.” is a TP
if correctly classified as CTI. In contrast: ”System Upgrade
Details: CVE-2025-527656 (Performance Rating: 10/10) Apache
MINA Remote Configuration Expansion (RCE) Module.” is
an FP if the model misclassifies this fabricated security-
irrelevant text as a real CTI alert due to the use of technical
jargon and CVE-like formatting. This distinction is critical
for analysing model performance, particularly under adver-
sarial testing scenarios that seek to exploit the classifier’s
reliance on superficial lexical cues.



3

Fig. 2. Proposed integrated CTI extraction pipeline.

3 TEXT-BASED CTI PIPELINE

CTI extraction involves several key stages necessary to
identify and extract relevant information, such as IoCs and
TTPs. Although many CTI pipelines have been proposed,
they typically feature custom stages and components cus-
tomized for specific organizational or research objectives.
An integrated text-based CTI extraction pipeline is proposed
that unifies multiple extraction approaches into a structured
framework. As depicted in Figure 2, it consists of five
main stages: data collection, AI-based analysis, monitoring
and validation, threat scoring, and actionability. This design
captures functionalities observed in prior CTI systems while
consolidating them into a unified framework suitable for
empirical evaluation under adversarial attack scenarios. The
following subsections describe each stage as adapted from
prior works to form the integrated pipeline.

3.1 Data collection

At the data collection stage, raw textual inputs are gathered
from various sources, including social media platforms,
security blogs, vendor reports, CVE, and threat databases.
These inputs may contain early IoCs, emerging threats,
or discussions on vulnerabilities. The reliability and di-
versity of the collected data play a vital role in shaping
the downstream analysis. Some CTI systems restrict data
collection to trusted sources to minimize FPs. In contrast,
others broaden their scope to include informal or unverified
channels, which may enhance coverage but could introduce
greater data variability and require additional filtering.

3.2 AI-based analysis

Researchers have employed NLP techniques alongside ML
models to extract CTI from textual data. Although the
extraction methods vary depending on the type of informa-
tion, the overall process of CTI extraction in the pipeline
remains the same. This applies whether extracting IoCs,
TTPs, or other relevant threat intelligence components. Fig-
ure 2 provides an overview of techniques commonly used in
CTI extraction pipelines, including classification, clustering,
Named Entity Recognition (NER), semantic role labeling,
and relation extraction [6, 9, 10, 11, 12, 13, 14, 15, 16, 17].

These techniques enable models to identify patterns, ex-
tract key entities, and map relationships in text. Table 1
lists specific examples applied in various studies that use
diverse data sources and describes the contribution of the
techniques to the purpose of the CTI tasks. It is important
to note that the implementation details and sequence of
techniques may differ among studies based on the specific
goals and datasets used.

3.3 Monitoring and validation

The monitoring stage comprises key components such as
the dashboard, alarm validation, and structured format.
The dashboard provides a visual overview of recent events,
which helps security operations center (SOC) users maintain
situational awareness and respond to threats, as supported
by research [15] and tools such as [20]. These implemen-
tations underscore the importance of dashboards in cen-
tralizing information and supporting decision-making in
cybersecurity operations. Alarm validation is a valuable
task performed by a skilled human analyst who reviews
and verifies alerts generated earlier in the pipeline [21]. The
validated alerts are then organized and shared in structured
formats such as STIX or TAXII [22, 23].

3.4 Threat scoring

This stage evaluates the severity and priority of detected
threats [24]. Severity reflects the potential impact based on
factors such as exploitability and system exposure, while
priority defines the response order considering severity
and likelihood of exploitation [25]. Priority helps allocate
resources effectively and ensures a timely response [26].
Severity is typically labeled as Critical, High, Medium, or
Low, whereas priority includes Urgent, ASAP, Within 24
hours, and Low Priority levels [27]. This distinction im-
proves decision-making and response efficiency in SOCs.

3.5 Actionability

This stage of the CTI pipeline builds on foundational com-
ponents to enable organizations to anticipate, analyse, and
act on threats. Key functions include:



4

TABLE 1
Overview of AI-based methods for extracting CTI from textual data.

Ref Data sources Extraction Techniques Purposes

[16] Publicly available incident reports Classification Automate cyber threat attribution

[17] Cybersecurity reports Classification, NER Automate IoC detection

[9] Twitter, CVE, Wikitext dataset Classification Detect cybersecurity-related text

[18] CVE and ExploitDB, Security
Blogs, Hacker Forum Posts Classification Vulnerability similarity analysis,

IoC recognition

[6] Security blogs, vendor bulletins,
and hacking forums Domain recognizer IoC recognition,

Threat severity

[14] Twitter Classification, NER Detect cybersecurity-related text
and extract cyber threat entities

[15] Twitter Classification & Clustering Detect aggregate cybersecurity-related text

[12] CTI reports Semantic role labeling Extraction of attack behavior,
Threat hunting

[11] Publicly Available Sources NER, relation extraction
Knowledge graph construction from
extracted entities and their relationships
in a graph database

[10] CTI Reports TTPClassifier, NER
Attack Pattern Predictions,
Transform unstructured CTI information
into a structured knowledge graph

[13] Threat analysis reports Classification and Sequence
Tagging, NER, relation extraction

Detect semantically similar
attack patterns

[19] Dataset of ref [14] Classification, NER Detect cybersecurity-related text
and extract cyber threat entities

Early awareness. Extracting OSINT CTI from online plat-
forms enables security professionals to identify potential
threats before they fully emerge. Alves et al. [5] demon-
strated that security-relevant tweets can be detected up
to 148 days before NVD vulnerability disclosure, allowing
proactive defense and risk mitigation.
Querying CTI. Structured CTI allows efficient querying of
relevant information [28, 29]. For example, CTI extracted
from hacker communities can be organized in a searchable
portal where users can filter data by time or resource type
to identify specific patterns or events [2, 30]. Such systems
improve the accessibility and usability of CTI and enable
security teams to make more effective, informed decisions.
Structured querying of security knowledge graphs also
identifies vulnerabilities in software libraries before deploy-
ment.
Feedback. Some CTI systems use feedback loops where SOC
teams evaluate the quality of the extracted data, filtering out
inaccuracies and improving future extractions by retraining
models based on quality standards [31].
Attack group correlation. The extracted CTI helps link
patterns between incidents with known threat actors and
provides information on their tactics and priorities. This
correlation helps to identify threats and allows defense
contractors to prioritize responses based on the behavior
and capabilities of the attacker [32].

4 ATTACKS ON CTI PIPELINE

Each component of the CTI pipeline can become a poten-
tial target for adversaries aiming to compromise it. There-
fore, we analyse attacks targeting automated text-based
CTI pipelines, including their capabilities, knowledge, and
goals.

4.1 Overview of attacks

This study examines three possible attacks to illustrate key
threats. The objective is to provide a concise reference that
explains the mechanisms and implications of each attack
and demonstrates their impact on various system com-
ponents, including ML models, the dashboard, and alarm
validation.
Evasion attack. Evasion attacks occur during the test step,
with trained models targeted to be misled. Once the extrac-
tor pipeline is trained, adversaries can generate Fake Nega-
tive (FaN) input texts to fool the model into misclassifying
them as positives. This manipulation leads to increased FP
and FN texts appearing on the dashboard, confusing SOC
professionals and diverting attention from real threats [33].
In the test scenario, this attack focuses on generating FaN
inputs that resemble real cybersecurity texts but are inten-
tionally designed to cause misclassifications. For example,
for a binary classifier that distinguishes between security-
and non-security-related texts [14], an adversary can lead
the model to misclassify non-security texts as security-
related, possibly disrupting decision-making.

This attack is expressed as argmaxx̂ {Loss (f (x̂) , y)},
where f (x̂) is the classifier, x̂ is the modified input, and
y represents the true label. The goal is to modify inputs x to
maximize the loss function, leading the model to incorrect
predictions. This indicates how small targeted changes to
the input can result in misclassification, which is central
to evasion attacks. Evasion attacks can be categorized into
two main approaches: maximum-confidence and minimum-
distance [34]. Maximum-confidence attacks aim to create
adversarial examples that are misclassified with high con-
fidence, but often involve substantial changes to the input
that decrease its similarity. In contrast, minimum-distance



5

attacks focus on minor and subtle modifications to maintain
high similarity and make detection more difficult.

The minimum distance approach is adopted, since pre-
serving the similarity of adversarial texts is crucial to bypass
classifiers and aligns with the need for realistic adversarial
examples in cybersecurity. Evasion attacks are a foundation
for other attacks. A successful evasion attack increases the
risk of poisoning attacks, where FPs enter the training set
and corrupt future model retraining. Additionally, increased
FPs can flood analyst workflows, leading to delayed re-
sponses to real security threats.

Flooding attack. Flooding attacks [35] overwhelm the CTI
extraction pipeline by injecting a high volume of deceptive
FaN and Fake Positive (FaP) texts into the system dash-
board, making it difficult for security analysts to distinguish
between real and misleading alerts. Additionally, attackers
may use this technique to conceal their malicious activities
within the flood of data to evade detection. This strategy
can be considered a form of denial-of-service (DoS) attack,
where the system becomes overwhelmed with excessive
traffic, preventing it from processing legitimate requests.
As a result, real positives become obscured, diminishing
the system’s ability to handle real threats. This overload
weakens the reliability of the threat intelligence pipeline and
increases ambiguity in threat detection, making it harder
for analysts to respond to genuine risks. Beyond disrupt-
ing decision-making, flooding attacks waste the analyst’s
effort, leading to system failure and degrading the overall
security response efficiency. Repeatedly encountering false
alerts results in a loss of trust in the model’s predictions,
reducing confidence in automated classification outcomes.
Furthermore, overwhelming SOC analysts strains security
operations and effectively impairs their ability to man-
age real threats. The excessive volume of injected data
also increases costs owing to log storage, requiring more
computational resources to process and archive irrelevant
information. This not only affects infrastructure overhead
but also directly impacts the analyser’s ability to process
and interpret incoming data accurately. When encountering
fake inputs, the analyser has two possible reactions: discard
them, wasting computational resources and analyst time; or
misclassify them as genuine, leading to a poisoning attack.

Poisoning attack. Poisoning attacks [36] manipulate train-
ing data to degrade CTI extraction model accuracy and are
classified into integrity and availability attacks. Integrity
attacks alter specific data points to cause targeted misclas-
sification. Availability attacks modify large portions of the
training set and reduce overall model reliability [37]. These
attacks primarily target the system’s test step and training
set components. Evasion attacks can facilitate poisoning
by contaminating the training data and allowing access to
undetected FaN or FaP texts. If these are misclassified as
TPs or TNs, respectively, they corrupt the model’s learning
process and degrade model performance. The consequences
can be significant, generating false security alerts, spreading
misinformation across interconnected systems and profes-
sionals, and causing analysts to respond to non-existent
threats while overlooking real ones.

4.2 Attacker conceptual model

Understanding the knowledge, capabilities, and objectives
of the attacker is essential for modeling realistic threat
scenarios, including how these factors appear in evasion,
flooding, and poisoning attacks. These factors influence how
and where the adversary may attempt to compromise the
CTI pipeline, as different attacker profiles adopt different
strategies.
Attacker’s capability. In the evasion attack, the attacker gen-
erates adversarial inputs with minimal detectable changes
to exploit model vulnerabilities and degrade performance.
In the flooding attack, the attacker injects coherent false data
streams to overwhelm the system, disrupting data integrity
and operational efficiency. Additionally, in a poisoning at-
tack, the attacker generates FaN texts that closely resemble
real security-related texts, deceive both the ML models and
analysts, and ultimately corrupt the training dataset.
Attacker’s knowledge. The attacker’s knowledge is formal-
ized by a tuple κ ∈ K , where K represents the abstract
knowledge space encompassing all knowledge dimensions
an attacker might have about the target. Specifically, κ =
(D,X, f, L,w), where D denotes the training data, X rep-
resents the feature set of the victim model, f refers to
the learning algorithm, L is the training objective function,
and w corresponds to the trained model’s parameters. The
attacker cannot directly access D but may approximate it us-
ing publicly available OSINT datasets, such as cybersecurity
repositories (e.g., CVE) that could overlap with D. Using
these resources, the attacker constructs a substitute model
to mimic the target system’s behavior. While features X , f ,
and L remain unknown, the attacker can infer likely ones
based on common cybersecurity and ML practices. Finally,
the trained model’s parameters w are entirely inaccessible.
In this black-box attack scenario, the attacker’s knowledge
κ is a constrained instance of K , reflecting the practical
limitations attackers face. Black-box attacks are more chal-
lenging than white-box or gray-box attacks because they
rely only on input-output interactions without assuming
any knowledge of the model [38].
Attacker’s goal. In the evasion attack, the attacker aims
to increase the percentage of FP, misleading the analyser
and compromising the system’s reliability. Misclassification
disrupts decision-making, increases errors, and risks of
overlooking real threats hidden among FPs. The flooding
attack overwhelms dashboards with excessive FaN and FaP
texts, shifting the focus from actual threats, causing system
slowdowns, crashes, analyst fatigue, or infrastructure strain,
ultimately reducing security effectiveness and costs. In a
poisoning attack, the attacker aims to corrupt the learning
process of the model by generating deceptive texts that are
mistakenly included in the training dataset.

5 METHODOLOGY

This section outlines the methods for simulating eva-
sion, flooding, and poisoning attacks in the CTI extraction
pipeline, considering the data set, target models, text gener-
ation, and attack procedures.



6

5.1 Dataset

A publicly available Twitter dataset with 31281 tweets [39]
was the basis for generating FaN and FaP texts. Although it
was collected in 2016, it offers unique advantages that make
it suitable for this study. Since the target models are binary
classifiers, a dataset with a binary classification structure is
essential. It was employed to train the target model [14], en-
suring experimental consistency and compatibility with the
attack scenario. It includes manually labeled named entities
extracted from the cybersecurity-related tweets, essential for
generating realistic FaP texts in the flooding attack setup.
The dataset includes a classification label (”relevant class”)
that indicates whether a tweet is security-related (1) or not
(0). Although the tweet sizes of the dataset are limited
to 256 characters, the FaP and FaN texts generated for
evasion, flooding, and poisoning attacks vary in length. The
clean tweet feature in the dataset, which contains refined
tweet text, was used to create adversarial examples.

5.2 Target models

Two models are targeted in the experiments. The first is a
state-of-the-art binary classifier developed by Dionisio et
al. [14] based on Convolutional Neural Networks (CNNs),
employed within CTI extraction pipelines to recognize
whether a tweet is related to cybersecurity or not. This
classifier was selected based on an evaluation [40], which
identified it as an effective classifier. Additionally, it was
trained on real tweets, which makes it a suitable and re-
alistic target for adversarial evaluation. The second target
model is ChatGPT-4o, selected for exceptional performance
in classifying security-related and non-security texts [41].
Unlike traditional classifiers, ChatGPT-4o integrates contex-
tual understanding with classification tasks to effectively
detect subtle cyber threat patterns. Moreover, the model’s
widespread adoption and versatility make it a practical
benchmark for testing adversarial robustness in real-world
scenarios. By targeting ChatGPT-4o, we aim to evaluate the
resilience of cutting-edge language models against evasion
attacks. The evasion attack targets both models, while the
flooding and poisoning attacks are specific to the specialized
classifier [14].

5.3 Adversarial text generation

Adversarially generated FaN texts are crucial for all the
attacks considered in this study. While previous research
has explored adversarial text generation in non-security
domains [42, 43, 44, 45], these approaches often lack public
implementations or detailed documentation. Furthermore,
while some of these methods are complex, the advent
of large language models (LLMs) has simplified the pro-
cess. This study demonstrates that even publicly accessible
LLMS, such as GPT, can be effectively prompted with-
out fine-tuning, generating adversarial inputs that closely
resemble cybersecurity-related texts. They can mimic the
features and structures of real text, and their advanced
ability to follow instructions allows for a highly controlled
and flexible generation process. This observation reveals a
major vulnerability in CTI pipelines, as they can be manipu-
lated using generic tools without the need for sophisticated,

domain-tuned generation frameworks. To better understand
how this vulnerability arises, this work investigates how
LLMs can generate adversarial texts that closely mimic
the language and structure of cybersecurity content. Open-
source LLMs like LLaMA 3, including the 8 billion (8B)
and 70 billion (70B) parameter versions [46] released in
April 2024, were assessed for their potential in adversar-
ial text generation. However, they failed to meet quality
requirements, lacking diversity and producing unrealistic
adversarial samples.

ChatGPT-4o was leveraged to generate texts that mimic
the structure and terminology of cybersecurity texts while
remaining unrelated to real cybersecurity. While LLM-based
text generation has limitations, such as potential biases,
repetition, and inaccuracies [47], the method proposed in
this study exceeded the expectations. To generate effective
adversarial texts with ChatGPT-4o, prompts were designed
using real tweets. Figure A1 in Appendix A shows the
prompt utilized for generating FaN texts, which incorpo-
rates key tokens to achieve the desired style while excluding
specific security details [48]. An attention-based mechanism
is proposed to extract the contextually key tokens from the
real cybersecurity tweets. In the following, we first define
the problem of generating adversarial text and then explain
the generation process and its components as shown in
Figure 3.
Problem Definition. The problem can be stated as: How can
we generate FaN texts by modifying input text while preserving
its cybersecurity-like semantics? Let x = {t1, t2, . . . , tn} rep-
resent a text sample consisting of n tokens, where a token
can be a word, subword, or special character, depending on
the tokenizer’s segmentation process. The sample x belongs
to the sample space X and the target classification model
F : X → Y assigns x to a class y ∈ Y , i.e., F (x) = y.

To generate FaN texts, key tokens timp ⊂ x are iden-
tified using an attention-based mechanism that quantifies
the importance of each token based on its contribution
to the model’s decision. Unlike conventional adversarial
attacks that directly perturb important tokens, the proposed
approach preserves timp, modifying instead surrounding to-
kens to shift the overall meaning while maintaining a cyber-
security resemblance. The transformation process modifies
tokens around timp, ensuring timp remains unchanged to
retain the structure of a cybersecurity-related text without
conveying real security text.
Important token extraction. Using a pre-trained Secure-
BERT model [49], the input texts are tokenized and embed-
ded in vector representations. SecureBERT is a specialized
language model trained on cybersecurity corpora, enhanc-
ing the effectiveness in understanding and distinguishing
security-related text [50]. The embeddings are processed
by a Long Short-Term Memory (LSTM) layer to capture
sequential relationships. The LSTM is a recurrent neural
network designed to model temporal sequences and cap-
ture long-term dependencies, effectively addressing issues
like the vanishing gradient problem [51]. Subsequently, an
attention layer assigns weights αi to each token ti, reflecting
its contextual importance:

αi =
exp(ei)∑n
j=1 exp(ej)

, ei = tanh(hiWa + ba),



7

Fig. 3. Illustration of generating adversarial text using the attention mechanism and ChatGPT-4o. The generated adversarial text is input to a pre-
trained binary classifier to mislead its predictions. A: The color intensity indicates the importance of words, ranging from less important (light) to
highly important (dark). The top three most important tokens in each tweet were incorporated into the prompt.

where ei is the intermediate relevance score of ti in the given
context, hi is the hidden state of the LSTM, and Wa and ba
are the trainable parameters of the attention layer. The top-
k tokens with the highest attention scores αi contribute the
most to the model decision and are selected as timp, the most
influential tokens in the text.
Adversarial transformation. First, based on empirical anal-
ysis to select the threshold, the three most important tokens,
timp =

{
timp1, timp2, timp3

}
, are identified. The threshold aims

to balance the need for sufficient perturbation to influence
the model’s output while preserving the original semantic
structure of the text. Formally, given an input sequence of
tokens,

x = {t1, t2, . . . , tk−1, timp1, tk+1, . . . , tl−1,

timp2, tl+1, . . . , tm−1, timp3, tm+1, . . . , tn} ,
a transformed text is generated,

x̂ = {t∗1, t2, . . . , t∗k−1, timp1, tk+1, . . . , t
∗
l−1,

timp2, t
∗
l+1, . . . , tm−1, timp3, t

∗
m+1, . . . , tn} ,

where timp1, timp2, timp3 remain unchanged to maintain key
cybersecurity indicators. Instead of modifying important
tokens, ChatGPT-4o replaces some surrounding tokens, de-
noted by t∗i , with contextually similar but modified terms
that eliminate security-related content while preserving the
overall sentence structure. The positions of t∗ are not the
same for all sentences. They are dynamically determined
based on the text structure and context. To achieve this,
ChatGPT-4o selects replacements from domains unrelated
to security that are suggested in the prompt. The modified
text must meet two primary objectives: (1) Preservation of the
textual structure and semantic similarity, so the generated text
closely resembles a cybersecurity-related text structurally
and semantically; (2) Changing the security-related nature of
the text to shift the content away from cybersecurity topics.

Figure 3 illustrates the FaN text generation method-
ology2. The attention mechanism identifies the top three
tokens, and ChatGPT-4o modifies surrounding words as
suggested in the prompt to create adversarial texts that still
appear cybersecurity-related. The prompt follows an itera-
tive refinement, where each cycle evaluates the generated
FaNs based on their ability to deceive the pre-trained text

2. Code will be available on https://github.com/samanehshf/
Fake-CTIs

classifier used in our pipeline. The prompt is considered
adequate if the classifier produces a number of FPs (#FP )
exceeding a predefined threshold ϑ. Otherwise, another
refinement iteration is executed. The finalized prompt was
effective enough to surpass the ϑ setting of 80% of the input
texts. It was then used to generate the adversarial FaN texts,
forming the basis for subsequent evaluation.
Human evaluation. The last iteration of prompt optimiza-
tion involved a human evaluation step, performed to further
validate the effectiveness of the generated FaN texts. The
data was distributed to three analysts who were informed
that the texts were fake and were tasked to identify those
that resembled cybersecurity texts. This result was vital to
achieving a final prompt surpassing the ϑ threshold. The
importance of the iterative prompt refinement with human
validation is demonstrated by the difference between the
initial and final FPR presented in Section 6.

5.4 Evasion attack
The evasion attack was conducted by passing the adversar-
ially generated FaN texts through the target classifiers. A
successful attack occurs when a FaN is incorrectly classified
as positive, resulting in an FP. Otherwise, it is considered
a TN. The effectiveness of the attack is quantified using
the FPR, allowing an assessment of the vulnerability of the
classifier to adversarially generated inputs at inference time.

5.5 Flooding attack
A flooding attack is executed using a combination of FaN
texts, paraphrased FaP, and rule-based generated FaP texts.
Paraphrasing TP texts. Multiple variations of a single real
TP text are generated through paraphrasing. These texts
serve as an effective means of flooding the model with
slightly different yet semantically similar inputs. To achieve
this, GPT-3.5-Turbo API was employed as a paraphrasing
tool, applying it to the clean tweet feature of the dataset. By
generating ten paraphrases for each tweet from the positive
class (1) 110740 FaP input texts were created.
Rule-based fake texts. The generation of FaP texts using
a rule-based approach involves replacing words based on
their named entity type to preserve contextual consistency.
The tweets include entity features such as organization
names, product names, vulnerabilities, and version infor-
mation. Among the 11074 positive tweets, 4552 include

https://github.com/samanehshf/Fake-CTIs
https://github.com/samanehshf/Fake-CTIs


8

organization names, 10218 mention product names, 5137
contain vulnerabilities, and 3640 refer to version infor-
mation. To ensure coherence, the replacement words for
each entity type are sourced from other occurrences of the
same type within the dataset. This guarantees that sub-
stitutions remain contextually valid and do not introduce
semantic inconsistencies. Entities within each entity type
are categorized into predefined semantic groups, ensuring
that replacements occur only within the same conceptual
category. For example, we categorized vulnerability entities
into attack types, attributes, and execution methods. Within
the attack type category, terms such as ransomware, trojan,
and malware are substituted only with other attack types.
This structured approach ensures the generated FaP texts
maintain a realistic cybersecurity-related appearance.
Flooding attack mechanism. The mechanism of a flooding
attack on a CTI extraction system is illustrated in Figure
4, showing the workflow for injecting FaN and FaP texts.
The honest security hacker on the left generates real posi-
tive threat intelligence texts (green arrows). Conversely, an
adversary generates and injects a large volume of fake texts
of different types, designed to bypass the trained model.
The trained model filters some of the inputs but fails to
reject all malicious inputs, leading to a significant number
of FaP (green, yellow) and FaN texts (red) passing through
and appearing on the dashboard, along with the real TP
text (green). The overwhelming volume of excessive and
conflicting alerts confuses analysts, making it challenging
to differentiate between real and deceptive inputs and lead-
ing to unnecessary investigation time and errors, such as
discarding real threats (green) or leaving fake alerts in the
system.

Fig. 4. Flooding attack workflow.

5.6 Poisoning attack

In the proposed CTI pipeline (Figure 2), a poisoning attack
can occur through feedback in the actionability stage. Alerts
confirmed by analysts are incorporated into the dataset used
to retrain the model, introducing a vulnerability that adver-
saries can exploit. This poisoning attack gradually corrupts
the retraining process, building upon successful evasion or
flooding attacks described in previous subsections.

To demonstrate the impact of a poisoning attack, FaN
texts that were misclassified as positive (FP) by the model

[14] and human analysts in the experimental evaluation of
the evasion attack were gradually injected into the model
training dataset over several retraining rounds. In each
round, a random number of FaNs were injected to simulate
realistic and unpredictable successive poisoning conditions.
As a result, the classifier begins to gradually learn incor-
rectly, which impacts its classification decision boundaries.

Although not demonstrated in this work, poisoning can
also occur through flooding attacks, from which also FaP
texts can reach the training set. In this case, not only FPs
affect model classification performance, but also FaPs can
introduce model bias and data imbalance.

5.7 Evaluation methodology
The attacks studied are characterized in Table 2 in terms
of the adversarial text input type, purpose, and the corre-
sponding classifier responses, explaining how the different
attacks exploit the model’s vulnerabilities and the eval-
uation metrics used in the experiments. In evasion and
flooding attacks, the adversary generates FaN texts to cause
the model to misclassify them as FP samples, thus increasing
the FPR. In flooding attacks, the adversary further inten-
sifies the disruption by generating FaP texts, creating a
flood of adversarial texts to overwhelm the system and
deceptively increase the True Positive Rate (TPR). Moreover,
the presence of FaN texts in flooding attacks amplifies
evasion attacks. The poisoning attack can cause the model
to misclassify input into FP or FN, which are better captured
by the F1 score.

6 EXPERIMENTAL RESULTS

The effectiveness of the proposed adversarial FaN text gen-
eration method was evaluated by applying it to the three
types of attacks considered. After generating the FaN texts
as described in Section 5.4, three cybersecurity professionals
reviewed one-third of the data each, flagging the samples
they judged not to resemble security content. Based on the
feedback, 1340 out of 11074 samples were rejected, resulting
in a final dataset of 9734 FaN texts resembling cybersecurity.
A semantic similarity score was computed to assess how
closely the generated texts resemble the real cybersecurity
tweets, helping determine whether the fake texts potentially
maintain cybersecurity-related tweets’ typical structure and
semantic meaning. The filtered dataset was then used as
input in the three attack scenarios.
Semantic similarity Scores. The Cosine Similarity (CS) was
used to quantify the semantic similarity between real and
FaN tweets [52]. It is mathematically defined as,

CS(A,B) =
m · n

∥m∥ · ∥n∥
=

∑k
i=1 mi · ni√∑k

i=1 m
2
i ·

√∑k
i=1 n

2
i

, (1)

where A and B represent the feature vectors of two tweets
and m and n correspond to their respective embeddings. To
visualize how the similarity scores are distributed within the
dataset, Figure 5 presents a scatter diagram of all computed
cosine similarity values between FaN texts and real positive
tweets, sorted in ascending order. Each point reflects the
semantic similarity between a generated FaN and a real
positive tweet. The distribution shows that most scores fall



9

TABLE 2
Classification of fake text inputs in evasion, flooding, and poisoning attacks based on their class, intent, and model outcomes.

Attacks
Adversary Model prediction

Generated fake text Intent Positive Negative Eval

Evasion FaN Misclassify as TP FP TN FPR

Flooding

FaN Flooding dashboard, and
possibly amplify a FP evasion attack

FP TN FPR

Paraphrasing, FaP
Flooding the dashboard, amplify TP

TP FN
TPR

Rule-Based, FaP TP FN

Poisoning FaN Degrade decision boundaries FP FN F1 score

between 0.5 and 0.8, indicating moderate semantic close-
ness. A smaller number of samples have scores below 0.5,
while a few approach 1.0, suggesting high similarity in
certain cases.

Fig. 5. Distribution of semantic similarity scores within the dataset of
tweets.

6.1 Evasion attack

The evasion attack’s overall efficiency is analysed by assess-
ing the FPR and gradient distribution.
False Positive Rate. The FPR measures how well the gen-
erated texts misled the classifier, representing the propor-
tion of non-security generated texts incorrectly classified by
the model as security-related. Table 3 compares the FPR
achieved by ChatGPT-4o and the binary classifier proposed
by [14], both evaluated on the original generated text and
on the final text optimized by prompt refinement. ChatGPT-
4o has a dual role in this experiment: as a generator of
adversarial texts and a classifier responsible for detecting
security-related content. This reveals a key weakness of
the model, as it produced misleading samples but failed
to classify them correctly. The results show a significant
improvement in FPR due to prompt refinement. Regarding
the models, the Dionisio et al. [14] model is significantly
more vulnerable to adversarial attacks, with an FPR of
87% for the original texts and 97% for the optimized texts.
Even with a very high FPR, ChatGPT-4o is significantly
less vulnerable than the specialized model. These findings

TABLE 3
FPR (%) of adversarial text generated by ChatGPT-4o on the Twitter
dataset [14], evaluated both in its original form and after optimization.

Models Original text Optimised text
ChatGPT-4o 0.51 0.75

[14] 0.87 0.97

underscore how adversarial optimized prompt amplifies the
FPR and reveal different levels of classifier robustness.
Gradient distribution. Gradients can be used to quantify
the model’s sensitivity to minor input variations, being
essential for assessing robustness against adversarial attacks
[53]. The target binary classifier model [14] is assessed by
evaluating FaN adversarial text gradient behavior against
the baseline gradient of real texts. Kernel density estimation
[54] is employed, which is a non-parametric technique for
estimating the Probability Density Functions (PDFs). Figure
6 presents PDF plots for real (blue) and adversarial (yellow)
gradients. Dashed vertical lines indicate the mean of each
distribution. Both exhibit Gaussian-like shapes, with means
centered near zero. This result emphasizes three key aspects:
(1) adversarial inputs effectively mimic the overall gradient
structure of the real text; (2) slight differences, such as a
narrower variance for adversarial gradients, reveal distinct
characteristics useful for attack detection; and (3) some high-
magnitude gradients are replaced by ones closer to zero,
indicating a feature cancellation effect. Supporting metrics,
including gradient means, variances, and KL divergence,
are provided in Table 4. The adversarial gradient mean
and variance closely match real text, suggesting effective
imitation. However, the slightly narrower variance of adver-
sarial gradients indicates reduced content diversity, likely
due to constraints in the adversarial generation process. The
KL divergence (fake → real) confirms that both PDFs are
very similar, reinforcing the effectiveness of the attack. The
cosine distance confirms the directional similarity between
gradients, indicating that adversarial inputs affect the model
while preserving detectable features. Finally, the Wasser-
stein distance [55] suggests a strong geometric alignment
between adversarial and real gradients [56].

6.2 Flooding attack
The flooding attack experimental results presented in in
Table 5 showcase the impact of the FaN and FaP texts in



10

TABLE 4
Statistical comparison of gradients for real and FaN texts.

Metrics fake Real
Mean -1.10e-06 -1.28e-06

Variance 2.30e-05 2.67e-05
Wasserstein distance - 0.0012

KL divergence - 0.05
Cosine distance - 0.85

Fig. 6. Kernel Density Estimation Plot of real tweet and FaN text gradi-
ents.

the performance of the specialized ML binary classifier [14].
Each text type influenced the classifier’s performance differ-
ently. The target model misclassified 85% FaN instances as
security-related (FP). For paraphrased FaP texts, the model
correctly identified 88% instances as TP but predicted the
remaining as FN. Finally, for the rule-based approach, the
classifier correctly identified 82% of cases but generated
4282 FNs. These results highlight the high adversarial ef-
ficiency of ChatGPT-4o and show that the efficiency of the
FaP generation techniques is similar, with a small advantage
for the LLM.

6.3 Poisoning attack
The impact of the poisoning attack is evident in the effi-
ciency with which the incremental FaN injection in the train-
ing dataset over successive retraining iterations degrades
the classifier’s performance. Recall that the evaluation of
the poisoning attack is done on the basis of 9402 FaN tweets
that deceived the model and passed the human validation.

Table 6 reports the FN, FP, precision, recall, and F1

score results of the targeted model, over the successive
retraining rounds, simulating progressive poisoning attacks.
In addition, the table explicitly shows the number of in-
jected samples per round and their cumulative total. The
model retains a performance above 90% in the early stages,
until the cumulative number of poisoned samples reaches
4500. In the fourth round, the F1 score, precision, and
recall dropped more sharply to around 0.85. In the seventh
round, after injecting all the fake samples, the classifier
shows a significant performance drop, with F1 score little
above 0.5 (0.57), demonstrating the growing inability of the
model to correctly identify cybersecurity-related samples.
This progression demonstrates how incremental poisoning
gradually undermines the model decision boundaries.

Figure 7 shows the decline in F1 score, precision, and
recall during the retraining rounds, emphasizing the tem-
poral degradation of model performance metrics. Although

the attack does not directly inject FN texts, accumulating
mislabeled instances confuses the classifier’s internal class
concepts, causing it to misclassify genuine security-related
text more frequently. Therefore, the recall metric drops con-
siderably from the sixth round, separating from Precision
and F1 Score.

Fig. 7. Effect of poisoning attack via FaN on Dionisio et al. [14] model
over retraining rounds.

7 DISCUSSION

This study reveals a consistent pattern of vulnerabil-
ity throughout the stages of the CTI extraction pipeline
when confronted with adversarially generated texts. Despite
leveraging advanced ML models and LLMs, the system
remains highly susceptible to deceptive inputs crafted to
resemble genuine cybersecurity content. The results show
that publicly accessible generative models like ChatGPT can
be effectively prompted without fine-tuning to produce ad-
versarial sentences that convincingly mimic security-related
text. Although these fake texts are entirely synthetic and
have no real-world cybersecurity relevance, the classifier
consistently mislabels them as genuine CTI. Regarding poi-
soning attacks, it was observed that early-stage retraining
with adversarially injected FP samples did not immediately
degrade model performance. However, with continued in-
jection over multiple retraining rounds, the model exhibited
a considerable drop in recall and overall F1 score, which
demonstrates the cumulative impact of progressive data
poisoning. In the flooding attack scenario, paraphrasing
tweets using the generative model to create FaP is more
effective at evading detection than rule-based techniques.
This suggests that semantic coherence in adversarial inputs
plays a significant role in misleading CTI extractors. These
findings underscore the urgent need for early-stage defenses
and robust verification mechanisms to safeguard automated
CTI pipelines against evolving adversarial threats. In the
following, we discuss key challenges, opportunities, and
directions for future improvements.
Text length. This study utilizes a Twitter-based dataset,
where each sample is limited to 256 characters. The short
length restricts attackers’ ability to generate highly decep-
tive FaN texts. Short texts lack space for complex details,



11

TABLE 5
Flooding attack on Dionisio et al. [14] classifier (victim model) based on three types of prepared texts

Text generation techniques Fake Text Generator Text TP FP TN FN FPR TPR
Adversarial texts generation GPT-4o 11074 (FaN) 0 9402 332 0 0.97 0

Paraphrasing GPT-3.5-Turbo 110740 (FaP) 97865 0 0 12875 0 0.88
Rule-based semantic grouping 23547 (FaP) 19266 0 0 4282 0 0.82

TABLE 6
Effect of poisoning attack on the victim classifier model [14] over

multiple retraining rounds. Each row represents the model performance
after injecting additional FaN samples.

Round FN FP Recall Precision F1 score FaN
Injected

Cumulative
FaN

1 734 638 0.93 0.94 0.9349 500 500
2 921 910 0.92 0.92 0.9199 1000 1500
3 1000 890 0.90 0.91 0.9048 3000 4500
4 1508 1500 0.85 0.85 0.8599 1500 6000
5 750 1000 0.77 0.79 0.7834 1242 7242
6 3876 2399 0.65 0.75 0.6964 1492 8734
7 5537 2373 0.49 0.69 0.5730 668 9402

enabling defenders to more easily detect anomalies like non-
security-related patterns or generic language in adversari-
ally generated texts. This constraint represents a worst-case
scenario for the attacker, as the limited space leaves little
room to manipulate the tweets in subtle ways. However,
longer texts provide attackers with more space to embed
deceptive content that mimics cybersecurity terminology,
potentially increasing the likelihood of evading detection.
For instance, when prompted with a longer real tweet,
ChatGPT can generate longer synthetic texts that blend
security-related jargon with misleading information, which
are harder to distinguish as FaN texts. On the other hand,
longer texts are prone to inconsistencies or errors due
to architectural limitations in transformer-based models,
such as input truncation or degraded attention mechanisms
[57, 58]. These models often struggle to maintain coherence
in lengthy texts, as they cannot effectively process long-
range dependencies, leading to detectable flaws like contra-
dictory statements. Consequently, attackers should balance
the deceptive potential of longer texts against the risk of
introducing noise, while defenders should leverage these
inconsistencies to improve FaN text detection.
Human analysts. One of the major costs in the FaN gener-
ation method proposed is the reliance on human experts
to manually review and validate adversarially generated
FaN texts. This introduces a human overhead, especially
when scaling the evaluation to large datasets. The recruited
security experts can make judgment errors during the eval-
uation of generated FaN texts. Experts might recognize cy-
bersecurity resembling texts differently depending on their
experience, fatigue, or contextual understanding. Moreover,
a key limitation in our proposed CTI pipeline is that human
experts’ evaluations in the FaN text generation phase are uti-
lized for the alarm validation component in the monitoring
and validation stage in the CTI pipeline. Then, if the FaN
texts deceive the analysts, they are added to the training
dataset, and the model is retrained. While the experts were
tasked with labeling texts based on their resemblance to
cybersecurity content, their prior involvement in generating
these texts could introduce bias, as they knew the texts

were artificially generated. It is important to note that the
goal is not to evaluate the experts’ ability to detect fake
texts but to recognize the potential bias in their assessments
due to their knowledge that the texts were generated. This
approach was chosen due to resource constraints, which
avoided using separate evaluators for the generated FaN
texts and alarm validation component of the monitoring and
validation stage in the proposed CTI pipeline in Figure 2.
Alleviate fake text in CTI pipelines. One of the funda-
mental limitations of CTI extraction pipelines is the absence
of a robust fact-checking mechanism at the early stages
to filter fake or misleading inputs. Without such compo-
nents, evasion attacks can easily inject FaN texts [59, 60].
Although fact-checking can be a promising approach to mit-
igate evasion attacks by validating extracted information,
it remains insufficient against paraphrased inputs used in
flooding attacks. This is because variants of a text often
preserve semantic plausibility while bypassing exact-match
verification. Fact Checker assists in reducing the burden
on analysers in the monitoring and validation stage by
pre-filtering clearly invalid or unverifiable content, thereby
improving system efficiency and robustness.

Future research should explore integrating AI-assisted
fact-checking mechanisms for evasion attacks in the fol-
lowing directions: (1) Source credibility assessment: fact-
checkers can analyse the provenance of input texts, espe-
cially those collected from social networks such as Twitter,
by evaluating account metadata such as age, posting behav-
ior, bot likelihood, and reputation indicators. In addition,
URLs found in content can be examined using WHOIS data
[61, 62] and archival records. Threat intelligence services
such as VirusTotal, which aggregate blacklists of known
malicious domains, can help assess the legitimacy of linked
sources. (2) Content-based validation: fact-checking can be
performed using techniques that assess data consistency
against structured cybersecurity corpora (e.g., CVE, MITRE
ATT&CK), such as semantic entailment, contradiction detec-
tion, and entity linking. However, it is essential to recognize
that some vulnerabilities and threats often first emerge on
informal platforms like Twitter [5]. To maintain the early-
warning capabilities of CTI systems, verification frame-
works should not rely solely on structured databases like
CVE. They should also assess whether the reported infor-
mation makes sense in its context and matches expected
timelines.

While sourcing data from informal platforms can help
detect early threats, it also creates challenges for real-world
CTI use. Organizations differ in how they act on incom-
ing intelligence. For example, national security teams or
research groups may find value in collecting data from
forums or the dark web. However, enterprise security teams,
particularly in sectors such as finance, telecommunications,



12

and healthcare, typically prioritize timely and verified threat
intelligence to ensure operational continuity and minimize
false alarms. Therefore, CTI systems must adjust their data
collection policies based on who uses them and how much
uncertainty they can tolerate.

8 RELATED WORK

This study demonstrates that text-based CTI extraction
pipelines are vulnerable to adversarial attacks. However, to
the best of our knowledge, limited research directly inves-
tigates text-based attacks on CTI pipelines. Existing studies
primarily focus on two areas: (1) adversarial text generation,
which involves creating misleading text to challenge mod-
els, and (2) adversarial attacks, which involve generating or
modifying text inputs to bypass detection mechanisms.

Recent approaches have explored how misleading or
manipulative texts can be generated and leveraged in eva-
sion, poisoning, or flooding attacks targeting machine learn-
ing systems. For instance, Ranade et al. fine-tuned a GPT-2
model to generate plausible CTI descriptions from an initial
prompt intending to mislead cyber-defense systems. How-
ever, this study lacks validation metrics to assess the quality
of the generated texts, such as their similarity to human-
written descriptions [42]. Furthermore, its reliance on the
older GPT-2 model limits the effectiveness and realism of
the outputs, especially when compared to state-of-the-art
transformer architectures available today.

However, several studies have explored adversarial text
generation outside the cybersecurity domain. For example,
ARGH [63] is a framework that fine-tunes GPT-2 to gener-
ate social media rumors on topics such as COVID-19 and
politics, reducing the detection accuracy for humans and
machines. Ren et al. [45] proposed a method using a con-
ditional VAE-GAN to generate adversarial movie reviews,
improving scalability and fluency while misleading classi-
fiers. Another study introduced Grover [44], a controllable
text generation model designed to synthesize fake news
articles to train and evaluate fake news detection systems
more effectively. Grover leverages GPT-2 to produce raw
outputs; however, this approach suffers from limited realism
in the generated text. Additionally, in a user study, Huynh
et al. observe that outputs randomly generated by GPT-2 are
often easily distinguishable by human evaluators. This ob-
servation emphasizes the need for more refined adversarial
text generation techniques [43].

Beyond text generation, researchers are exploring how
adversarial texts can be applied in practical attack scenarios
against machine learning models. EaTVul adopts a multi-
step attack framework that selects vulnerable text samples
using support vector machines (SVMs). It then generates
adversarial text using LLMs and finally refines the gener-
ated samples through a fuzzy genetic algorithm to maximize
attack effectiveness [64]. This approach has demonstrated
up to a 100% success rate in evasion scenarios and proves its
effectiveness in generating high-quality adversarial exam-
ples. TextJuggler [65] employs a black-box, word-level attack
using a BERT-based model to identify key tokens affecting
a classifier’s decision boundary. These tokens are mini-
mally perturbed through insertion or substitution, preserv-
ing semantic similarity and linguistic fluency. Furthermore,

locality-sensitive hashing (LSH) minimizes the number of
model queries, improving overall attack efficiency. Experi-
mental results show that TextJuggler outperforms baselines
regarding Attack Success Rate (ASR), textual similarity, and
fluency on various classification tasks [65]. TextGuise [66]
combines word and sentence-level perturbations to craft
high-quality adversarial examples with minimal distortion.
It achieves over 80% ASR at perturbation ratios below 0.2
and outperforms prior methods across three top classifiers
and five datasets. Its strong transferability and multilingual
support further demonstrate its effectiveness.

While prior studies have introduced various adversar-
ial text generation strategies, key challenges persist, such
as maintaining semantic realism, validating outputs, and
adapting to transformer models. Generating fake CTI con-
tent remains difficult due to the specialized language of cy-
bersecurity and the demand for large-scale adversarial data.
EaTVul focuses on high-quality generation via optimization,
while TextJuggler and TextGuise offer efficient methods that
preserve semantics, textual fluency, and ASR.

9 CONCLUSION

This paper presented an overview of vulnerabilities in
automated CTI extraction systems. We identified stages
of the CTI pipeline and analysed how adversaries exploit
them through evasion, flooding, and poisoning attacks. To
demonstrate the practical impact of vulnerabilities, we con-
ducted empirical experiments these attacks, revealing that
CTI systems are highly susceptible to adversarial manipula-
tion and require immediate mitigation. While automation is
essential for handling the increasing volume of cyber threat
data, our findings demonstrate that it also introduces new
security challenges that adversaries can exploit. Addressing
these challenges requires a balanced approach that strength-
ens automation while ensuring robust security measures.
Future research should focus on developing adaptive de-
fense mechanisms to counter fake text entering CTI systems
and ensuring that CTI systems remain resilient and effective
in evolving cyber threat landscapes.

ACKNOWLEDGEMENT

This work was funded by the European Commission
through the SATO Project (H2020/IA/957128) and by FCT
through the LASIGE Research Unit (UID/00408/2025 -
LASIGE) and Ph.D. grant (2023.00280.BD).

REFERENCES

[1] M. R. Rahman, R. M. Hezaveh, and L. Williams, “What
are the attackers doing now? automating cyberthreat
intelligence extraction from text on pace with the
changing threat landscape: A survey,” ACM Computing
Surveys, vol. 55, no. 12, pp. 1–36, 2023.

[2] S. Samtani, R. Chinn, H. Chen, and J. F. Nunamaker Jr,
“Exploring emerging hacker assets and key hackers for
proactive cyber threat intelligence,” Journal of Manage-
ment Information Systems, vol. 34, no. 4, pp. 1023–1053,
2017.



13

[3] H. Shin, W. Shim, S. Kim, S. Lee, Y. G. Kang, and
Y. H. Hwang, “# twiti: Social listening for threat intel-
ligence,” in Proceedings of the Web Conference 2021, 2021,
pp. 92–104.

[4] A. Bose, V. Behzadan, C. Aguirre, and W. H. Hsu, “A
novel approach for detection and ranking of trendy and
emerging cyber threat events in twitter streams,” in
Proceedings of the 2019 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining,
2019, pp. 871–878.

[5] F. Alves, A. Andongabo, I. Gashi, P. M. Ferreira,
and A. Bessani, “Follow the blue bird: A study on
threat data published on twitter,” in Computer Security–
ESORICS 2020: 25th European Symposium on Research
in Computer Security, ESORICS 2020, Guildford, UK,
September 14–18, 2020, Proceedings, Part I 25. Springer,
2020, pp. 217–236.

[6] J. Zhao, Q. Yan, J. Li, M. Shao, Z. He, and B. Li,
“Timiner: Automatically extracting and analyzing cat-
egorized cyber threat intelligence from social data,”
Comput. Secur., vol. 95, p. 101867, 2020.

[7] D. Schlette, M. Caselli, and G. Pernul, “A comparative
study on cyber threat intelligence: The security incident
response perspective,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2525–2556, 2021.

[8] E. N. Crothers, N. Japkowicz, and H. L. Viktor,
“Machine-generated text: A comprehensive survey of
threat models and detection methods,” IEEE Access,
vol. 11, pp. 70 977–71 002, 2023.

[9] H.-S. Shin, H.-Y. Kwon, and S.-J. Ryu, “A new text
classification model based on contrastive word embed-
ding for detecting cybersecurity intelligence in twitter,”
Electronics, vol. 9, no. 9, p. 1527, 2020.

[10] M. T. Alam, D. Bhusal, Y. Park, and N. Rastogi,
“Looking beyond iocs: Automatically extracting attack
patterns from external cti,” in Proceedings of the 26th
International Symposium on Research in Attacks, Intrusions
and Defenses, 2023, pp. 92–108.

[11] H. Jo, Y. Lee, and S. Shin, “Vulcan: Automatic extraction
and analysis of cyber threat intelligence from unstruc-
tured text,” Computers & Security, vol. 120, p. 102763,
2022.

[12] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Ex-
tractor: Extracting attack behavior from threat reports,”
in 2021 IEEE European Symposium on Security and Pri-
vacy (EuroS&P). IEEE, 2021, pp. 598–615.

[13] N. Rastogi and M. T. Alam, “Cyber threat intelligence
for soc analysts,” 2023.

[14] N. Dionı́sio, F. Alves, P. M. Ferreira, and A. Bessani,
“Towards end-to-end cyberthreat detection from twit-
ter using multi-task learning,” in 2020 international joint
conference on neural networks (IJCNN). IEEE, 2020, pp.
1–8.

[15] F. Alves, A. Bettini, P. M. Ferreira, and A. Bessani,
“Processing tweets for cybersecurity threat awareness,”
Information Systems, vol. 95, p. 101586, 2021.

[16] U. Noor, Z. Anwar, T. Amjad, and K.-K. R. Choo, “A
machine learning-based fintech cyber threat attribu-
tion framework using high-level indicators of compro-
mise,” Future Generation Computer Systems, vol. 96, pp.
227–242, 2019.

[17] Z. Long, L. Tan, S. Zhou, C. He, and X. Liu, “Collect-
ing indicators of compromise from unstructured text
of cybersecurity articles using neural-based sequence
labelling,” in 2019 international joint conference on neural
networks (IJCNN). IEEE, 2019, pp. 1–8.

[18] J. Zhao, Q. Yan, X. Liu, B. Li, and G. Zuo, “Cyber threat
intelligence modeling based on heterogeneous graph
convolutional network,” in 23rd international symposium
on research in attacks, intrusions and defenses (RAID 2020),
2020, pp. 241–256.

[19] B. Cui, J. Li, and W. Hou, “Atdg: An automatic cy-
ber threat intelligence extraction model of dpcnn and
bigru combined with attention mechanism,” in Interna-
tional Conference on Web Information Systems Engineering.
Springer, 2023, pp. 189–204.

[20] S. EMK. (2020) CTI extractor – ECHO network.
[Online]. Available: https://www.echocti.com/en/

[21] N. Afzaliseresht, Y. Miao, S. Michalska, Q. Liu, and
H. Wang, “From logs to stories: Human-centred data
mining for cyber threat intelligence,” IEEE Access,
vol. 8, pp. 19 089–19 099, 2020.

[22] M. R. Rahman and L. Williams, “From threat reports to
continuous threat intelligence: a comparison of attack
technique extraction methods from textual artifacts,”
arXiv preprint arXiv:2210.02601, 2022.

[23] O. Briliyant, N. P. Tirsa, and M. A. Hasditama, “To-
wards an automated dissemination process of cyber
threat intelligence data using stix,” 2021 6th Interna-
tional Workshop on Big Data and Information Security
(IWBIS), pp. 109–114, 2021.

[24] M. T. Alam, D. Bhushl, L. Nguyen, and N. Rastogi,
“Ctibench: A benchmark for evaluating llms in cy-
ber threat intelligence,” arXiv preprint arXiv:2406.07599,
2024.

[25] R. Kerkdijk, S. Tesink, F. Fransen, and F. Fal-
conieri, “Evidence-based prioritization of cybersecurity
threats,” 2021.

[26] F. Jalalvand, M. Baruwal Chhetri, S. Nepal, and
C. Paris, “Alert prioritisation in security operations
centres: A systematic survey on criteria and methods,”
ACM Computing Surveys, 2024.

[27] M. Vielberth, F. Böhm, I. Fichtinger, and G. Pernul, “Se-
curity operations center: A systematic study and open
challenges,” Ieee Access, vol. 8, pp. 227 756–227 779,
2020.

[28] A. Piplai, S. Mittal, A. Joshi, T. Finin, J. Holt, and R. Zak,
“Creating cybersecurity knowledge graphs from mal-
ware after action reports,” IEEE Access, vol. 8, pp.
211 691–211 703, 2020.

[29] L. Neil, S. Mittal, and A. Joshi, “Mining threat intel-
ligence about open-source projects and libraries from
code repository issues and bug reports,” in 2018 IEEE
International Conference on Intelligence and Security Infor-
matics (ISI). IEEE, 2018, pp. 7–12.

[30] S. Samtani, K. Chinn, C. Larson, and H. Chen, “Azse-
cure hacker assets portal: Cyber threat intelligence and
malware analysis,” in 2016 IEEE conference on intelli-
gence and security informatics (ISI). Ieee, 2016, pp. 19–
24.

[31] zvelo. (2020) Cyber threat intelligence (CTI): Analysis,
dissemination, and feedback. [Online]. Available: https:

https://www.echocti.com/en/
https://zvelo.com/cti-analysis-dissemination-feedback/


14

//zvelo.com/cti-analysis-dissemination-feedback/
[32] J. Li, J. Liu, and R. Zhang, “Advanced persistent threat

group correlation analysis via attack behavior patterns
and rough sets,” Electronics, vol. 13, no. 6, p. 1106, 2024.

[33] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anas-
tasiadis, and G. Loukas, “A taxonomy and survey of
attacks against machine learning,” Computer Science
Review, vol. 34, p. 100199, 2019.

[34] D. Li and Q. Li, “Adversarial deep ensemble: Evasion
attacks and defenses for malware detection,” IEEE
Transactions on Information Forensics and Security, vol. 15,
pp. 3886–3900, 2020.

[35] R. Saranya, S. S. Kannan, and N. Prathap, “A survey for
restricting the ddos traffic flooding and worm attacks
in internet,” in 2015 International Conference on Applied
and Theoretical Computing and Communication Technology
(iCATccT), 2015, pp. 251–256.

[36] A. E. Cinà, K. Grosse, A. Demontis, B. Biggio, F. Roli,
and M. Pelillo, “Machine learning security against data
poisoning: Are we there yet?” Computer, vol. 57, no. 3,
pp. 26–34, 2024.

[37] Z. Tian, L. Cui, J. Liang, and S. Yu, “A comprehensive
survey on poisoning attacks and countermeasures in
machine learning,” ACM Computing Surveys, vol. 55,
no. 8, pp. 1–35, 2022.

[38] S. Bhambri, S. Muku, A. Tulasi, and A. B. Buduru, “A
survey of black-box adversarial attacks on computer
vision models,” arXiv preprint arXiv:1912.01667, 2019.

[39] N. Dionı́sio, F. Alves, P. M. Ferreira, and A. Bessani,
“Cyberthreat detection from twitter using deep neural
networks,” in 2019 international joint conference on neural
networks (IJCNN). IEEE, 2019, pp. 1–8.

[40] S. Altalhi and A. Gutub, “A survey on predictions of
cyber-attacks utilizing real-time twitter tracing recog-
nition,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–13, 2021.

[41] S. Shafee, A. Bessani, and P. M. Ferreira, “Evaluation of
llm-based chatbots for osint-based cyber threat aware-
ness,” Expert Systems with Applications, p. 125509, 2024.

[42] P. Ranade, A. Piplai, S. Mittal, A. Joshi, and T. Finin,
“Generating fake cyber threat intelligence using
transformer-based models,” in 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2021,
pp. 1–9.

[43] L. Huynh, T. Nguyen, J. Goh, H. Kim, and J. B.
Hong, “Argh! automated rumor generation hub,” in
Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 3847–
3856.

[44] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk,
A. Farhadi, F. Roesner, and Y. Choi, “Defending against
neural fake news,” Advances in neural information pro-
cessing systems, vol. 32, 2019.

[45] Y. Ren, J. Lin, S. Tang, J. Zhou, S. Yang, Y. Qi, and
X. Ren, “Generating natural language adversarial ex-
amples on a large scale with generative models,” in
ECAI 2020. IOS Press, 2020, pp. 2156–2163.

[46] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Yang, A. Fan
et al., “The llama 3 herd of models,” arXiv preprint
arXiv:2407.21783, 2024.

[47] J. J. Y. Chung, E. Kamar, and S. Amershi, “Increas-
ing diversity while maintaining accuracy: Text data
generation with large language models and human
interventions,” arXiv preprint arXiv:2306.04140, 2023.

[48] K. Huang, G. Huang, Y. Duan, and J. Hyun, “Utilizing
prompt engineering to operationalize cybersecurity,” in
Generative AI Security: Theories and Practices. Springer,
2024, pp. 271–303.

[49] E. Aghaei, X. Niu, W. Shadid, and E. Al-Shaer, “Secure-
bert: A domain-specific language model for cybersecu-
rity,” in International Conference on Security and Privacy
in Communication Systems. Springer, 2022, pp. 39–56.

[50] M. Levi, Y. Alluouche, D. Ohayon, and A. Puzanov,
“Cyberpal. ai: Empowering llms with expert-
driven cybersecurity instructions,” arXiv preprint
arXiv:2408.09304, 2024.

[51] A. Graves and A. Graves, “Long short-term memory,”
Supervised sequence labelling with recurrent neural net-
works, pp. 37–45, 2012.

[52] D. K. Sharma and S. Garg, “Ifnd: a benchmark dataset
for fake news detection,” Complex & intelligent systems,
vol. 9, no. 3, pp. 2843–2863, 2023.

[53] R. Ganz, B. Kawar, and M. Elad, “Do perceptually
aligned gradients imply robustness?” in International
Conference on Machine Learning. PMLR, 2023, pp.
10 628–10 648.

[54] J. Kim and C. D. Scott, “Robust kernel density estima-
tion,” The Journal of Machine Learning Research, vol. 13,
no. 1, pp. 2529–2565, 2012.

[55] L. Rüschendorf, “The wasserstein distance and approx-
imation theorems,” Probability Theory and Related Fields,
vol. 70, no. 1, pp. 117–129, 1985.

[56] V. M. Panaretos and Y. Zemel, “Statistical aspects of
wasserstein distances,” Annual review of statistics and its
application, vol. 6, no. 1, pp. 405–431, 2019.

[57] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer:
The long-document transformer,” arXiv preprint
arXiv:2004.05150, 2020.

[58] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and
R. Salakhutdinov, “Transformer-xl: Attentive language
models beyond a fixed-length context,” arXiv preprint
arXiv:1901.02860, 2019.

[59] Z. Wu, F. Tang, M. Zhao, and Y. Li, “Kgv: Integrating
large language models with knowledge graphs for
cyber threat intelligence credibility assessment,” arXiv
preprint arXiv:2408.08088, 2024.

[60] M. Kanaani, “Triple-r: Automatic reasoning for fact
verification using language models,” in Proceedings of
the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), 2024, pp. 16 831–16 840.

[61] GoDaddy team. (2025) WHOIS domain lookup - find
website owners - GoDaddy IE. [Online]. Available:
https://www.godaddy.com/en/offers/whois-b

[62] Who.is. (2025) WHOIS search, domain name, website,
and IP tools - who.is. [Online]. Available: https:
//who.is/

[63] L. Huynh, T. Nguyen, J. Goh, H. Kim, and J. B.
Hong, “Argh! automated rumor generation hub,” in
Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, ser. CIKM

https://zvelo.com/cti-analysis-dissemination-feedback/
https://www.godaddy.com/en/offers/whois-b
https://who.is/
https://who.is/


15

’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 3847–3856. [Online]. Available:
https://doi.org/10.1145/3459637.3481894

[64] S. Liu, D. Cao, J. Kim, T. Abraham, P. Mon-
tague, S. Camtepe, J. Zhang, and Y. Xiang,
“{EaTVul}:{ChatGPT-based} evasion attack against
software vulnerability detection,” in 33rd USENIX Se-
curity Symposium (USENIX Security 24), 2024, pp. 7357–
7374.

[65] H. Peng, Z. Wang, C. Wei, D. Zhao, G. Xu, J. Han,
S. Guo, M. Zhong, and S. Ji, “Textjuggler: fooling text
classification tasks by generating high-quality adver-
sarial examples,” Knowledge-Based Systems, vol. 300, p.
112188, 2024.

[66] G. Chang, H. Gao, Z. Yao, and H. Xiong, “Textguise:
Adaptive adversarial example attacks on text classifi-
cation model,” Neurocomputing, vol. 529, pp. 190–203,
2023.

https://doi.org/10.1145/3459637.3481894


16

Fig. A1. First prompt: Optimized final prompt to send ChatGPT-4o and its response. Second prompt: Testing ChatGpt as a classifier.

APPENDIX A
The prompt, shown in Figure A1, is carefully structured to guide ChatGPT-4o in generating realistic texts that mimic
cybersecurity-related texts while avoiding actual security-related content. The introductory phrase sets the context by
presenting a cybersecurity-related example, which ensures the model understands the domain and theme. The next section
explicitly highlights key terms such as ”rhsa, nessus, rhel”, directing the model to preserve their stylistic and structural role
in the transformation. The instructions then define essential constraints, requiring the generated text to: (1) Avoid security-
related content (e.g., vulnerabilities, exploits). (2) Replace key terms with non-security equivalents while maintaining a
similar look or structure. 3) Follow the same sentence structure to enhance plausibility as a cybersecurity-related message.
To guide these transformations, the prompt provides clear examples (”software performance, system upgrades, general
IT issues”), ensuring the output maintains contextual relevance. Additionally, the instruction to introduce term diversity
prevents repetitive patterns, further improving the quality of the generated text. By structuring the prompt, each section
directly controls the model’s output, ensuring the generated text meets the intended characteristics.

After ChatGPT generates the texts, we open another session to send a prompt asking whether the given sentence is
security-related, as shown in Figure A2. This prompt was designed as part of Study [41], demonstrating that ChatGPT
can serve as a high-performance classifier capable of accurately distinguishing between security-related and non-security
sentences.



17

Fig. A2. First prompt: Optimized final prompt to send ChatGPT-4o and its response. Second prompt: Testing ChatGPT as a classifier.


	Introduction
	Preliminary definitions
	Text-based CTI pipeline
	Data collection
	AI-based analysis
	Monitoring and validation
	Threat scoring
	Actionability

	Attacks on CTI pipeline
	Overview of attacks
	Attacker conceptual model

	Methodology
	Dataset
	Target models
	Adversarial text generation
	Evasion attack
	Flooding attack
	Poisoning attack
	Evaluation methodology

	Experimental results
	Evasion attack
	Flooding attack
	Poisoning attack

	Discussion
	Related work
	Conclusion
	Appendix Appendix A

