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ABSTRACT
Blockchain bridges have become essential infrastructure for en-
abling interoperability across different blockchain networks, with
more than $24B monthly bridge transaction volume. However, their
growing adoption has been accompanied by a disproportionate
rise in security breaches, making them the single largest source of
financial loss in Web3. For cross-chain ecosystems to be robust and
sustainable, it is essential to understand and address these vulnera-
bilities. In this study, we present a comprehensive systematization
of blockchain bridge design and security. We define three bridge
security priors, formalize the architectural structure of 13 promi-
nent bridges, and identify 23 attack vectors grounded in real-world
blockchain exploits. Using this foundation, we evaluate 43 repre-
sentative attack scenarios and introduce a layered threat model
that captures security failures across source chain, off-chain, and
destination chain components.

Our analysis at the static code and transaction network levels
reveals recurring design flaws, particularly in access control, val-
idator trust assumptions, and verification logic, and identifies key
patterns in adversarial behavior based on transaction-level traces.
To support future development, we propose a decision framework
for bridge architecture design, along with defense mechanisms such
as layered validation and circuit breakers. This work provides a
data-driven foundation for evaluating bridge security and lays the
groundwork for standardizing resilient cross-chain infrastructure.

1 INTRODUCTION
Blockchain bridges have become essential infrastructure in the
blockchain ecosystem, enabling interoperability between other-
wise isolated networks. In its most basic asset-based bridge type, a
bridge locks or burns assets on a source chain and mints or releases
corresponding assets on a destination chain. This coordination pre-
serves total supply across networks while facilitating asset mobility
and composability. Bridges play a foundational role in enabling
cross-chain decentralized applications, unifying fragmented liquid-
ity pools, and allowing users to leverage features across heteroge-
neous platforms. For instance, monthly bridge transaction volume
has exceeded $24B [1], underscoring their systemic significance.

However, this growing importance has been matched by an
alarming trend: bridges represent the single largest source of fi-
nancial loss in Web3 security breaches. As of mid 2025, 13 out
of 39 bridges on l2beat.com are already labelled as insecure.1 Of
the top six bridges in total-value-locked as ranked by [2] in 2022,
three (Multichain [3], Ronin [4], and Rainbow [5]) have already
been hacked for more than $750M. A critical vulnerability in the
sixth, Polygon’s Plasma Bridge [6], could have exposed $850M; it
was patched just in time after a white-hat disclosure that earned a
$2M bounty.

Vulnerabilities range from smart contract bugs and improper
verification logic to compromised multisig keys and failure-prone
trusted validators. The result is a persistent threat model with
catastrophic consequences: stealthy attacks, rapid fund drainage,
and minimal recourse for victims. The threat of large-scale, unpre-
dictable failure continues to undermine user trust and impede the
adoption of cross-chain systems. With billions of USD locked in
bridges, their current security risks make them resemble hedge
funds operating atop a swamp; highly valuable, yet dangerously
unstable and exposed to unpredictable attacks.

Despite a growing body of research and security reviews, there
is still no unified framework to evaluate bridge vulnerabilities. Ex-
isting literature tends to focus on isolated case studies [7, 8], post-
mortem hack reports [9], or abstract protocol taxonomies [9, 10].
This fragmentation limits our ability to draw general conclusions,
compare implementations, or develop preventive standards.

In this work, we take a data interoperability perspective to
present a comprehensive security and privacy systematization of
blockchain bridges, grounded in both formal modeling and empiri-
cal analysis. We argue that bridge security is fundamentally a data
transfer security problem, concerned with state consistency, trans-
action ordering, and trust-minimized replication across chains. We
believe that it must be addressed with the same rigor as traditional
interoperability standards.

We approach the study of bridge security through three orthog-
onal lenses:

1The 13 bridges marked as vulnerable (indicated with a red cross and / or brown
shield badge on the website) due to unverified contracts and past hacks are: Aptos
(LayerZero), LayerZero v2 OFTs,Multichain, Connext, Omnichain (LayerZero), Hyperlane
Nexus, Socket, Chainport, Allbridge, StarGate (LayerZero), Symbiosis, Everclear, and
Orbit Bridge.
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First, we formalize the operational layers of bridge systems, span-
ning the source chain, off-chain intermediaries, and destination
chain components. This layered model allows us to define three
core security priors, such as cross-chain causality, and to reason
about how different bridge designs instantiate or violate them.

Second, we perform a large-scale static analysis of bridge smart
contracts deployed on Ethereum [11]. Using program analysis and
custom metrics, we map the usage of role-based access control, de-
fensive programming patterns, error handling, and call structures
across 13 major bridge protocols. Next, we extract bridge-related
transaction networks from on-chain data and apply graph machine
learning to analyze usage and attacker behavior in real-world inci-
dents. Our analysis spans 43 major attacks and reveals patterns in
exploit phases, laundering strategies, and response delays.

Most importantly, we aim to answer four research questions to
evaluate proactive goals: RQ1 (Prevention): To what extent are
bridge attacks preventable? Which defense techniques, such as
static code analysis, formal verification, or trusted execution envi-
ronments, are effective? Are some bridge types inherently more se-
cure? RQ2 (Detection): If prevention is not guaranteed, can attacks
be detected in real time?What mechanisms (e.g., anomaly detection,
on-chain monitoring) support timely identification? RQ3 (Mitiga-
tion): Once an attack is detected, what mechanisms exist to mitigate
damage and minimize asset loss? How do mitigation strategies dif-
fer across bridge types? RQ4 (Outlook): What is the long-term
outlook for bridge security? What foundational steps are needed to
design formally verifiable or provably secure bridge protocols?

By unifying theoretical foundations with large-scale empirical
analysis, this work offers the first comprehensive, data-driven sys-
tematization of blockchain bridge security. Our findings serve as a
baseline for future research, standardization efforts, and the secure
evolution of bridge protocols.

Our contributions are as follows:

• We formalize a layered model of blockchain bridge architec-
tures and define core security priors relevant to cross-chain
behavior.

• We develop a vulnerability taxonomy and introduce a for-
mal notion of bridge attack surfaces based on trust assump-
tions and implementation details.

• We perform the first large-scale static analysis of deployed
bridge contracts, quantifying security patterns across access
controls, call structures, and guard mechanisms.

• We extract and analyze transaction-level behavior from
bridge exploit incidents, identifying behavioral patterns
across phases of use, compromise, and fund laundering.

• We provide security benchmarks and design recommenda-
tions to guide future bridge development, formal analysis,
and regulatory evaluation.

2 RELATEDWORK
Recent literature reflects an active effort to reconcile decentraliza-
tion, trust minimization, and performance in blockchain bridges.
We summarize case studies and surveys here and refer the reader to
Appendix A in the supplementary material (available at our reposi-
tory URL) for additional details on interoperability and benchmark
studies.

Transaction analysis for bridges can identify operational pat-
terns, including usage behaviors, anomalous activity, and indicators
of compromise. Huang et al. [12] present an in-depth empirical anal-
ysis of Stargate, a prominent Layer-0 bridge with one of the highest
total value locked (TVL) figures in the ecosystem. Using on-chain
data from six EVM-compatible blockchains (Ethereum, Polygon
[13], BSC [14], Avalanche [15], Arbitrum [16], Optimism [17]), they
examine Stargate’s transaction volume, user adoption, and opera-
tional patterns. This case study provides a data-driven benchmark
for analyzing cross-chain liquidity transfers in practice. However,
the study does not identify bridge priors nor carry out a static code
analysis.

Subramanian et al. [18] benchmark the performance of blockchain
bridge aggregators: services that route transfers across multiple
bridge protocols for optimal speed or cost. They develop a frame-
work to test popular aggregators (e.g., LI.FI, Socket, deBridge) by
executing hundreds of cross-chain swaps and recording metrics
such as fees, slippage, and latency. Their findings quantify dif-
ferences in cost-efficiency and reliability, providing performance
benchmarks for user-centric interoperability services. Our work
differs in its broader focus and the development of a taxonomy to
offer a holistic view of bridges.

Augusto et al. [19] introduce XChainDataGen, a framework for
generating large-scale bridge transaction datasets. Using this tool,
they collect approximately 35 GB of data from five major bridges
deployed on 11 blockchains during the second half of 2024, extract-
ing over 11.2 million bridge transactions that moved over $28B in
token value. They compare protocols in terms of security, cost, and
performance, contrasting, for example, full source-chain finality
with “soft” finality, alongside fee models and emerging paradigms
such as cross-chain intents. However, the study focuses on financial
aspects and does not study bridge vulnerabilities that hinder bridge
adoption in finance.

Recent surveys and taxonomies have focused on identifying
systemic vulnerabilities in bridge designs. Li et al. [10] provide a
comprehensive review of blockchain bridges, classifying architec-
tures (e.g., lock-mint vs. notary schemes) and documenting common
vulnerabilities such as smart contract flaws, centralization risks,
liquidity issues, and oracle manipulation. While the study presents
a broad taxonomy and useful design insights, it does not analyze
transaction data or investigate real-world exploits. In a recent work,
Augusto et al. [20] analyze bridge exploits; however, they do not
conduct a direct analysis of what happens to stolen funds after
bridge hacks, nor carry out static code analysis themselves. Instead,
they rely heavily on systematic literature review, audit reports, bug
bounty disclosures, and gray literature to collect information about
vulnerabilities and attacks. Our analysis covers both the code and
transaction analysis.

In contrast, Belenkov et al. [9] present a Systematization of
Knowledge focused on major bridge hacks, including the $600M
Axie Ronin exploit. They categorize failure modes such as compro-
mised keys, multisig errors, and validator logic flaws, and propose
best practices for prevention. However, the analysis is limited to
static perspectives and excludes transactional behavior. Our work
complements and extends these efforts by combining both static
and transaction analysis perspectives and grounds them in a unified
formal model.

https://github.com/FDataLab/BlockchainBridgeAnalysis/blob/main/README.md
https://github.com/FDataLab/BlockchainBridgeAnalysis/blob/main/README.md
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Most security and forensic analyses of bridge hacks have been
retrospective machine learning studies of transaction networks, typ-
ically conducted on a per-case basis and without developing gener-
alizable vulnerability taxonomies or formalizing bridge-specific as-
sumptions. For example, Augusto et al. [7] propose XChainWatcher,
a Datalog-based monitoring system that detects anomalous token
flows across bridges in real time. While it successfully reconstructs
the Ronin and Nomad [21] attacks, its scope is limited to two case
studies and does not address broader questions about interoper-
ability security. Similarly, Lin et al. [22] develop ABCTracer, an
automated framework for linking bridge transaction legs. Combin-
ing event log mining with machine learning inference, ABCTracer
achieves 91.75% F1-score in identifying transaction pairs across
12 DeFi bridges. While valuable for forensics, the work does not
define a vulnerability taxonomy nor investigate design assumptions
underpinning bridge protocols.

Finally, Wu et al. [8] focus on identifying and classifying bridge-
specific attacks. Using a dataset of 49 bridge exploits totaling nearly
$4.3B in losses, they propose BridgeGuard, a graph-based detection
system that models bridge transactions and flags anomalous behav-
ior. Evaluated on 203 known attacks and 40,000 benign transactions,
BridgeGuard outperforms prior methods in recall and detection pre-
cision. However, their work does not incorporate static analysis of
contract logic or propose a general framework for understanding
bridge security.

While these studies contribute valuable empirical and forensic in-
sights, they tend to focus narrowly on individual case studies, static
audits, or retrospective detection. In contrast, our work presents the
first unified and multi-dimensional study that combines a formal
model of bridge semantics, a systematic static analysis of deployed
bridge contracts, and a large-scale transaction analysis across mul-
tiple chains.

3 BRIDGE MODELING AND FORMALIZATION
A blockchain 𝑏 is an immutable ledger where transactions are ap-
pended chronologically. It comprises a set of peer-to-peer network
nodes𝑁𝑝 , a set of address nodes𝑁𝑎 , a chronological history of trans-
actions H between nodes in 𝑁𝑎 , and consensus rules 𝑅 that govern
transaction creation, where 𝑁𝑝 ∩ 𝑁𝑎 ≠ ∅ and 𝑏 = (𝑁𝑝 , 𝑁𝑎,H, 𝑅).

Asset Types. A clear distinction exists between coins, tokens,
and wrapped assets. Coins are native digital currencies intrinsic
to their own blockchains, such as Bitcoin (BTC) on the Bitcoin
network [23], and are essential for paying transaction fees and
participating in consensus mechanisms. A smart contract-based
token 𝜃 represents a type of blockchain currency, with its state
defined by the chronological history of transactions H𝜃 in which 𝜃
has been involved. All blockchains issue native coins (e.g., Ether on
Ethereum), but only some blockchains allow users to issue smart
contract-based tokens (e.g., Storj on Ethereum).

Wrapped tokens are a subset of tokens designed to represent
tokens from one blockchain on another, facilitating interoperabil-
ity across disparate blockchain networks. For instance, Wrapped
Bitcoin (WBTC) is issued on Ethereum, enabling BTC to be uti-
lized within Ethereum’s decentralized finance ecosystem. Despite

enhancing bridge functionality, wrapped tokens inherit the limita-
tions of standard tokens: they cannot be used to pay transaction
fees on the host blockchain (i.e., Ethereum for WBTC).

A transaction 𝑡𝑥 ∈ H on 𝑏 transfers a value 𝑣 of a token 𝜃 from
an address 𝑎1 ∈ 𝑁𝑎 to an address 𝑎2 ∈ 𝑁𝑎 , and is associated with
a timestamp 𝑡𝑡𝑥 indicating when the transaction occurred: 𝑡𝑥 =

(𝜃, 𝑣, 𝑎1, 𝑎2, 𝑡𝑡𝑥 ). If the transaction is understood, we will simplify
𝑡𝑡𝑥 to 𝑡 . Each transaction is assumed to be valid under the consensus
rules 𝑅 of 𝑏.

Blockchain Layers. Blockchain systems are structured into hierar-
chical layers to manage scalability, functionality, and specialization.
• Layer 1 (L1): Base layer of a blockchain network, encompassing

the core protocol responsible for transaction validation, con-
sensus mechanisms, and data storage. L1 blockchains operate
independently and are the foundation upon which other layers
are built. Examples include Bitcoin, Ethereum, and Solana [24].

• Layer 2 (L2): Built atop L1 blockchains, L2 protocols aim to
enhance scalability and transaction throughput without altering
the base protocol. They achieve this by processing transactions
off-chain or in parallel, subsequently settling them on the L1.
Notable L2 implementations include Optimism and Arbitrum on
Ethereum.

• Layer 3 (L3): L3 represents an emerging concept focusing on
application-specific functionalities. These are protocols or net-
works constructed on L2 solutions, offering tailored environ-
ments for decentralized applications (dApps). L3s aim to provide
enhanced scalability, interoperability, and customization, facili-
tating complex applications like decentralized finance platforms
and gaming ecosystems. Examples of L3 projects include Orbs
Network [25] and XAI Games [26] on Arbitrum.

3.1 Blockchain Bridges
A blockchain bridge facilitates the transfer of tokens across distinct
blockchain domains. While many bridges connect L1 blockchains,
others operate across layers, such as the Arbitrum Canonical Bridge
between Ethereum (L1) and Arbitrum (L2). Bridges that involve
L3 layers are an emerging area with early examples such as Arbi-
trum Orbit, zkSync Hyperchains [27], and Orbs Network. Despite
their growing importance, blockchain bridges lack a consistent
formalization in the literature, which we aim to define as follows.

We consider two blockchain domains (i.e., chains or protocols),
𝑏1 ∈ {𝐿1, 𝐿2, 𝐿3} and 𝑏2 ∈ {𝐿1, 𝐿2, 𝐿3}, which may differ in node
sets, transaction histories, and consensus rules. We define a bridge
between the domains 𝑏1 and 𝑏2 through an implementation mecha-
nism I that governs the operational logic of the bridge:

B1↔2 = ({𝑏1, 𝑏2},I) (1)
We categorize bridges along two orthogonal axes: their opera-

tional trust model and their functional type. The trust model refers
to how source domain activity is verified and includes trusted, trust-
minimized, and trustless designs, formalized shortly in Section 3.5.
The functional type captures how value is transferred and includes:
• Asset Bridges: In asset bridges (also known as burn-and-mint

models), the bridge locks or burns an asset 𝜃1 on the source
domain𝑏1 and creates a representative asset 𝜃2 on the destination
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domain 𝑏2. These assets are not inherently equivalent; their
linkage is established solely through the semantics of the bridge
protocol. They include:
– Externally-Verified Asset Bridges, which depend on multisigs,

notaries, or sidechains to verify lock events (e.g., Wormhole
[28], Ronin, Multichain).

– Rollup-Native Asset Bridges, which leverage L1 consensus to
verify L2 state transitions using fraud or validity proofs (e.g.,
Arbitrum, Optimism, Loopring [29]). These are considered the
most trustless.

The settlement process on asset-based bridges may be slow and
require specialized verification and challenge code. For example,
optimistic rollups like Arbitrum or Optimism impose a 7-day
challenge period on withdrawals.

• Liquidity Networks: In contrast to asset-based bridges, liquid-
ity network-based bridges, such as Connext[30] or Across[31],
avoid minting and instead fulfill user requests through liquidity
providers (LPs) who maintain reserves on both domains. LPs are
economically incentivized via transfer fees and, in some proto-
cols, additional yield or reward mechanisms. This design enables
faster settlement and circumvents the latency of on-chain verifi-
cation and challenge periods.

• Hybrid Bridges: These support both functional models, often
depending on the specific chain pair or asset type. For instance,
Multichain combines canonical minting with liquidity provision-
ing.
A bridge transaction 𝑡𝑥 moves a value 𝑣 of token 𝜃1 from an

address 𝑎1 ∈ 𝑁𝑎 on 𝑏1 to an address 𝑎2 ∈ 𝑁𝑎 on 𝑏2:

𝑡𝑥 = (𝜃1, 𝑣, 𝑎1, 𝑎2, 𝑡𝑡𝑥 ) (2)

The transformation of a bridge transaction state 𝜒 under the
bridge’s operation is defined as:

𝜒0
B1↔2−−−−→ 𝜒𝑡 (3)

where 𝜒0 and 𝜒𝑡 represent the initial and final states of the transac-
tion across chains.

The implementation I of the bridge includes mechanisms on
the source chain, off-chain components, and the destination chain.
Additionally, the bridge relies on a node trust set T, comprising
entities responsible for validating and securing bridge transactions.
The composition of T is determined by the specific implementation
I and the security assumptions of {𝑏1, 𝑏2}.

3.2 Bridge Mechanism
Consider that Alice wants to move some assets from the source
chain 𝑏1 to the destination chain 𝑏2. For simplicity in exposition, we
will assume that at a given time, the bridge is used by one user only
and for bridging one token only. The token Alice will be moving
is 𝜃1, and the representation of the token on 𝑏2 is 𝜃2. We track the
movement of value across the bridge B1↔2 as a function of time
and fee structure. The state of the bridge transaction 𝜒 is described
by four accounts: Alice’s addresses 𝑎1 on 𝑏1 and 𝑎2 on 𝑏2 along
with the bridge addresses 𝑐1 on 𝑏1 and 𝑐2 on 𝑏2. The state of the
bridge transaction is represented as 𝜒 = (𝑎1, 𝑐1, 𝑎2, 𝑐2).

We track the mechanisms in three stages: source chain mecha-
nism, off-chain mechanism, and destination chain mechanism.

3.2.1 Source Chain Mechanism. Alice initiates the transfer on 𝑏1.
Initially, at 𝑡 = 0, Alice holds 𝑣1 units of the token 𝜃1 at her address
𝑎1, with a total value 𝑣1 · 𝑝𝑟𝑖𝑐𝑒 (𝜃1, 𝑡), where 𝑣1 is the amount of the
token, and 𝑝𝑟𝑖𝑐𝑒 (𝜃1, 𝑡) represents the price of the token 𝜃1 in a fiat
currency such as USD at time 𝑡 . We will use 𝑎𝑥 ↦→ 𝑣 to show that
the balance of address 𝑎𝑥 is 𝑣 . Hence, the initial state of balances is
𝜒0 = (𝑎1 ↦→ 𝑣1, 𝑐1 ↦→ 0, 𝑎2 ↦→ 0, 𝑐2 ↦→ 0).

If Alice wants to transfer an amount 𝑣𝑥 ≤ 𝑣1 to her address
𝑎2 on the other blockchain, she initiates the transaction 𝑡𝑥𝑏1 =

(𝜃1, 𝑣𝑥 , 𝑎1, 𝑐1, 𝑡𝑡𝑥𝑏1 ) on 𝑏1.
She also pays a bridge fee 𝐹forward, which consists of the trans-

action processing fee 𝑓1 on 𝑏1 and 𝑓2 on 𝑏2, as well as the bridge
operation fee (𝑓 ∗). Hence the total fee 𝐹forward = 𝑓1 + 𝑓2 + 𝑓 ∗. For
simplicity, we assume that the bridge operation fee is charged on the
initiating blockchain 𝑏1. The sent amount 𝑣𝑥 and fees are deducted
from the initial balance of 𝑎1 ↦→ 𝑣1, hence 𝑎1 ↦→ (𝑣1 − 𝑣𝑥 − 𝑓1 − 𝑓 ∗).
This leaves only 𝑓2 to be paid on 𝑏2.

After 𝑏1’s block confirmation duration 𝑑𝑏1 , the bridge smart
contract on 𝑏1 acknowledges 𝑡𝑥𝑏1 and locks (𝑐1 ↦→ 𝑣𝑥 ) or burns
(𝑐1 ↦→ 0) the received assets depending on the implementation I.
We follow the locked asset scenario, and the state is updated as
𝜒𝑡𝑡𝑥𝑏1

= (𝑎1 ↦→ (𝑣1 − 𝑣𝑥 − 𝑓1 − 𝑓 ∗), 𝑐1 ↦→ 𝑣𝑥 , 𝑎2 ↦→ 0, 𝑐2 ↦→ 0). The
blockchain state changes as 𝑏1 = (𝑁𝑝 , 𝑁𝑎,H ∪ {𝑡𝑥𝑏1 }, 𝑅).

3.2.2 Off-chain Mechanism. An off-chain communicator observes
transactions to bridge address 𝑐1, specifically transactions of the
form: 𝑡𝑥𝐵1 = (𝜃, 𝑣, 𝑎, 𝑐, 𝑡). Upon detection, it instructs 𝑐2 to mint
𝑣𝑥 − 𝑓2 worth of 𝜃2. The off-chain mechanism takes time 𝑑off to
notice the first transaction and send a signal to the 𝑏2. Thus, at
𝑡off = 𝑡𝑡𝑥𝑏1

+ 𝑑off, the off-chain mechanism signals the start of the
token transfer process on the second blockchain 𝑏2. Specifically, the
mechanism signals the smart contract on 𝑏2 accordingly. There are
multiple mechanisms to create this signal, and we refer the reader
to [9] for a comprehensive list. In a simple oracle-based solution, a
network of oracles monitors transactions on blockchain 𝑏1. These
relayers are either permissioned (managed by a specific entity)
or decentralized (e.g., a set of staked validators). When a bridge
transaction 𝑡𝑥𝑏1 is observed, relayers submit proofs or messages
(through transactions that push data to the blockchain) to a contract
on 𝑏2 to trigger the minting or unlocking of assets. The node trust
set T validates these processes based on the implementation I.

3.2.3 Destination Chain Mechanism. The transfer completes when
𝑣𝑥 − 𝑓2 worth of 𝜃2 is minted on 𝑏2 and sent to Alice’s address
𝑎2: 𝑡𝑥𝑏2 = (𝜃2, 𝑣2 = 0, 𝑎2 ↦→ 𝑣𝑥 − 𝑓2, 𝑐2 ↦→ 0, 𝑡off). After 𝑏2’s block
confirmation duration 𝐷𝑏2 , the complete bridge process ends at
𝑡 = 𝑡𝑡𝑥𝑏1

+ 𝑑off + 𝑑𝑏2 . The final state is: 𝜒𝑡 = (𝑎1 ↦→ (𝑣 − 𝑣𝑥 − 𝑓1 −
𝑓 ∗), 𝑐1 ↦→ 0, 𝑎2 ↦→ 𝑣𝑥 − 𝑓2, 𝑐2 ↦→ 0).

The destination domain is 𝑏2 = (𝑁𝑝 , 𝑁𝑎,H∪ {𝑡𝑏2 }, 𝑅). The smart
contract on 𝑏2 handles the transaction and updates the blockchain
state accordingly.

3.2.4 Reverse Process. The reverse transfer follows the same mech-
anism as the forward transfer but in the opposite direction. Alice
initiates a transaction on 𝑏2 to send 𝑣𝑥 of 𝜃2 back to 𝑏1. The bridge
smart contract on 𝑏2 locks (𝑐2 ↦→ 𝑣𝑥 ) or burns (𝑐2 ↦→ 0) token 𝜃2,
and after confirmation, an off-chain mechanism signals𝑏1 to release
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(𝑣𝑥 − 𝐹reverse) of 𝜃1 to Alice’s address 𝑎1. The final state transition
mirrors the forward process, with updated fees and timestamps.

3.3 Formalization of Bridge Implementations
Blockchain bridges can be categorized based on their trust assump-
tions, yielding three classes: trustless, trusted, and trust-minimized.
A trustless bridge has no external trusted entities, with Ttrustless =
{}, relying exclusively on the security guarantees of the underlying
blockchains. A trusted bridge introduces external dependencies, re-
quiring Ttrusted ≠ {}. A trust-minimized bridge is a subset of trusted
bridges in which all trusted entities Ttrustmin consist of determin-
istic, publicly auditable algorithms (for example, on-chain smart
contracts, oracles, or relays). While trust-minimized bridges rely
on external components, their correctness can be independently
verified by users.

The bridge trust set is expressed as T = Tsrc ∪ Toff ∪ Tdest,
where Tsrc captures trust assumptions on the source blockchain,
Toff captures trust in off-chain mechanisms (such as relayers or
validators), and Tdest captures trust in the destination blockchain.
Two key metrics, 𝑆𝑖𝑧𝑒 (T) and 𝑐𝑜𝑠𝑡 (T), characterize the scale of the
trusted set and its overall fee impact, respectively. These metrics
influence the security, decentralization, and efficiency of a bridge.

3.3.1 Source Chain Implementation for Trust Set Tsrc. The source
chain component locks or burns assets before triggering Toff. It
can be realized via smart contracts (so Tsrc = {𝑆𝐶𝑠}), validator-
controlled mechanisms (Tsrc = {}), or hybrid approaches that
combine both. Smart contract mechanisms require trusting the
correctness of the contract logic, whereas validator-based methods
rely on the blockchain’s consensus, eliminating additional trust.
Hybrid methods usually trade off fees or time for scalability and
security. As shown in Table 1, these components appear on both
source and destination chains, but since their role is more critical
on the destination side, where bridged tokens are released, we omit
their detailed explanation here and defer it to the destination chain
discussion to avoid repetition.

3.3.2 Off-chain Implementation for Trust Set Toff. Bridges typically
use either a set of notaries (𝑁 ) or a set of light clients (𝐿) for off-
chain processing.

Notaries. Notaries introduce additional trust in external parties
(Toff ≠ {}) that monitor transactions and ensure bridge causality,
with security depending on the number of notaries 𝑆𝑖𝑧𝑒 (𝑁 ) and
their operational costs 𝑐𝑜𝑠𝑡 (𝑁 ). As 𝑆𝑖𝑧𝑒 (𝑁 ) and 𝑐𝑜𝑠𝑡 (𝑁 ) grow, se-
curity improves, but so do fees and transaction delays. The expected
loss costs E(𝐶), bridge fees 𝐹 , and transaction time delay 𝐷 follow
E(𝐶) ∝ 1/𝑆𝑖𝑧𝑒 (𝑁 ) and 𝐹, 𝐷 ∝ 𝑆𝑖𝑧𝑒 (𝑁 ),𝐶𝑜𝑠𝑡 (𝑁 ).

Figure 1: Light Client Implementation

Light Clients. Light clients rely on Merkle proofs (𝑀) and per-
form verification on-chain via light client contracts (𝐿). These sys-
tems do not depend on external entities, so the off-chain trust set
is Toff = {𝐿,𝑀}. These bridges are trust-minimized because no ex-
ternal entities are needed beyond the blockchain itself. Verification
time 𝑡proof affects expected loss costs E(𝐶) and bridge cost 𝐹, 𝐷
according to E(𝐶) ∝ 1/𝑡proof, 𝐹 , 𝐷 ∝ 𝑡proof . Although frequent
proof generation boosts security, it also increases fees. Light clients
must run on each chain, reducing overall scalability. Figure 1 illus-
trates a standard light client implementation used in many trustless
bridge designs.

Some bridges blend the two approaches. A security-optimized
hybrid requires that either the light client or the notary set remain
honest, so Toff = {𝐿,𝑀} ∩ {𝑁 }. Another hybrid uses light clients
where available and defaults to notaries otherwise: Toff = {𝐿,𝑀} ∨
{𝑁 }.

Sidechains. A third option is using sidechains, which function
as independent blockchains that can facilitate bridge transfers.
Sidechains add a secondary blockchain with its own consensus 𝑅′.
A bridge passing through a sidechain depends on Toff = ({𝐿,𝑀} ∨
{𝑁 } ∨ ({𝐿,𝑀} ∩ {𝑁 })) ∪ 𝑅′ .

In other words, instead of relying exclusively on a notary net-
work or on-chain light clients to handle the bridging, a sidechain
can be set up with built-in asset-transfer features. Bridge transac-
tions then pass through that sidechain, inheriting its consensus and
security properties.

While the idea of a sidechain can still incorporate notaries or
light clients under the hood, the main distinction is that a sidechain
is an entire blockchain in its own right, rather than a narrowly de-
fined tool like a light client or a notary service. This extra layer can
increase scalability (since the sidechain can process many transac-
tions internally) but also introduces new trust assumptions. Specif-
ically, the correctness and security of the sidechain’s consensus
mechanism. Figure 2 illustrates a representative sidechain-based
bridge design.

Figure 2: Sidechain Implementation

3.3.3 Destination Chain ImplementationTdest. The destination side
enforces token minting, final validation, and recipient assignment.
Possible methods include smart contracts (Tdest = {𝑆𝐶𝑠}), validator-
control (Tdest = {}), custodian-based (Tdest = {𝐶}), or a hybrid that
integrates these techniques. The choice depends on constraints
related to cost, security, and overall efficiency.

Smart Contracts. A smart contract can be deployed on the des-
tination chain to handle final token transfers. After receiving a
valid signal and data from Toff, the contract locks, mints, or releases
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Table 1: Cross-chain bridge classification for the highest vol-
ume bridges. : trusted, : trust minimized, : trustless.

Bridge Source
Chain

Destination
Chain Trust

Notaries

Nomad Bridge Hybrid Smart Contracts
Allbridge Classic Smart Contracts Smart Contracts
deBridge Smart Contracts Smart Contracts
Multichain Smart Contracts Smart Contracts
Wormhole Bridge Smart Contracts Smart Contracts
Avalanche Bridge Smart Contracts Validator Control
Ronin Bridge Smart Contracts Smart Contracts
Wanchain Bridge Smart Contracts Smart Contracts

Light
Client

BTC Relay Validator Control Smart Contracts
zkBridge Validator Control Validator Control
Rainbow Bridge Validator Control Validator Control
PeaceRelay Smart Contracts Smart Contracts

Hybrid
Connext Smart Contracts Smart Contracts
Optics Bridge Smart Contracts Smart Contracts

Sidechain

Cosmos IBC Validator Control Validator Control
Gravity Bridge Smart Contracts Smart Contracts
zkRelay Smart Contracts Smart Contracts
Cactus Smart Contracts Smart Contracts
Celer cBridge Smart Contracts Smart Contracts
Orbit Bridge Smart Contracts Smart Contracts
Axelar Smart Contracts Smart Contracts
Chainswap Smart Contracts Smart Contracts
PolyBridge Smart Contracts Smart Contracts
pNetwork Smart Contracts Smart Contracts
Meter Passport Smart Contracts Smart Contracts
QANX Bridge Smart Contracts Smart Contracts
Binance Bridge Smart Contracts Smart Contracts
Horizon Bridge Smart Contracts Smart Contracts
Plasma Bridge Smart Contracts Smart Contracts

tokens to the designated address. Because users must trust the
correctness of the contract code, we have Tdest = {𝑆𝐶}.

Validator Control. If the destination blockchain’s existing consen-
sus participants validate the bridging process, no additional trusted
entities are introduced. The bridge may still have predefined logic
to identify the destination address, but final checks are performed
by decentralized validators. Thus Tdest = {}.

Hybrid. Ahybridmodel combines smart contracts with validator-
based consensus to balance security, cost, and time. The exact com-
position of Tdest depends on how responsibilities are allocated be-
tween on-chain code and validator consensus.

3.4 Bridge Security Priors
We formalize three key security properties that bridges must satisfy
to ensure token parity, transaction causality, and value preservation
across blockchains. A fourth foundational requirement is the live-
ness of the bridge, but we assume that the underlying blockchains
are live and capable of processing transactions in a timely manner,
allowing us to focus on security properties specific to the bridge
itself.

Bridge Peg. Blockchain domains 𝑏1 and 𝑏2 often have disparate
implementations of tokens. For users to reliably use token 𝜃1 on 𝑏1
as a representation of token 𝜃2 on 𝑏2, the bridge must establish that
the asset amounts remain equivalent, i.e., 𝑣1 ≡ 𝑣2. This holds only
if a peg exists between 𝜃1 and 𝜃2, ensuring that one 𝜃1 can always
be exchanged for one 𝜃2. For simplicity, we ignore the total fee
𝐹𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 that would be incurred to use the bridge, and state that

given token prices at time 𝑡 , denoted as price(𝜃1, 𝑡) and price(𝜃2, 𝑡),
the bridge must ensure

𝑣1 · price(𝜃1, 𝑡) ≡ 𝑣2 · price(𝜃2, 𝑡), ∀𝑡 . (4)

To uphold this peg, the bridge must maintain both liveness and
security. If the bridge experiences technical failure or an attack,
equivalency in (4) may break down, leading to price divergence
between the native and bridged tokens, which can disrupt user
trust and capital efficiency.

Bridge Causality. A secure bridge must enforce causality, ensur-
ing that no user extracts value that was never created or loses value
that was not meant to be lost. Formally:

∀𝑡𝑥𝐵2 = (𝜃2, , , 𝑐2, 𝑡2), ∃!𝑡𝑥𝐵1 = (𝜃1, , , 𝑐1, 𝑡1)
∀𝑡𝑥𝐵1 = (𝜃1, , , 𝑐1, 𝑡1), ∃!𝑡𝑥𝐵2 = (𝜃2, , , 𝑐2, 𝑡2)
such that 𝑡1 < 𝑡2 .

(5)

This ensures a bijective mapping between transactions on 𝑏1 and
𝑏2, preventing double-minting or loss of funds. Additionally, the
bridge must preserve temporal ordering, enforcing 𝑡1 < 𝑡2 so that a
transaction on 𝑏1 must occur before its corresponding transaction
on 𝑏2.

Bridge Consistency. The bridgemust guarantee that tokens locked
on 𝑏1 remain inaccessible until the corresponding tokens on 𝑏2 are
either burned or locked. This consistency constraint ensures that
the system does not create or destroy value arbitrarily.

𝑣2 ≠ 0 ⇒ ¬∃𝑡𝑥𝐵1 (𝜃2, 𝑣1, , 𝑐1, ) (6)

Equation (6) prevents a user from simultaneously withdrawing
locked assets on 𝑏1 and holding minted tokens on 𝑏2, which could
result in infinite money creation.

𝑣2 > 0 ⇒ ∃!𝜃1 such that 𝑐1 ↦→ 𝑎2 . (7)

Equation (7) strengthens this by enforcing a strict one-to-one
correspondence between locked and minted tokens.

Value at Risk. Failures in bridge security can lead to asset loss
with custodial, contract, and economic risks. In custodial risk, an
externally controlled address or multi-sig wallet is compromised,
and funds are permanently stolen. In contract risk, a smart contract-
based bridge has a vulnerability (e.g., reentrancy attack) where
attackers can extract tokens illicitly. In economic risk, a bridge
relies on economic assumptions (e.g., optimistic rollups or bonded
validators), but adversaries manipulate incentives to destabilize the
system.

Losses may occur at i) the bridge contract level, where contract
𝑐1 on 𝑏1 and contract 𝑐2 on 𝑏2 impact all users of the bridge, or ii) at
the user level, where losses occur for individual user addresses 𝑎1 or
𝑎2. User-level losses (e.g., 𝑎2 is not a valid address) are orthogonal
to bridge security as long as they are not caused by flaws in bridge
design.

A bridge’s trust model (custodian-based, validator-based, or
smart contract-based) influences its risk profile and determines
how funds are secured.
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3.5 Formalization of Bridge Attack Surfaces
Current research on bridge attacks is fragmented, lacking a consis-
tent definition of attack surfaces and vectors. We present a formal-
ized model for analyzing bridge security.

Definition 3.1 (Attack). If (4), (5), (6), or (7) are violated due
to malicious agents, the bridge is under attack.

Definition 3.2 (Failure). If (4), (5), (6), or (7) are violated due
to technical errors but without malicious intent, the bridge is experi-
encing failure.

Theorem 1. If a bridge experiences an attack or failure, then (4)
is always violated.

Due to space limitations, the proof is given in Appendix B.

Definition 3.3 (Attack Vector 𝑉 ). A vulnerability, pathway,
or method that a malicious agent can exploit to launch an attack on
a bridge B1↔2.

Definition 3.4 (Attack Surface Σ). The sum of all attack vec-
tors for a given B1↔2. Formally, an attack surface is defined as
Σ = ⟨T,I⟩, where T represents trusted entities and I represents
implementation details.

An attack surface can be decomposed into sub-surfaces for finer-
grained analysis. A sub-surface Σ′

B1↔2
∈ ΣB1↔2 is defined as:

Σ
′
B1↔2

= ⟨T
′
,I

′
⟩, where T

′
∈ T, I

′
∈ I .

Attack vectors in Σ
′
B1↔2

use all trusted entities T′ and span spe-
cific implementations I′ .

3.5.1 Examples of Attack Surfaces. In custodial key compromise
(T = {𝐶}), a centralized custodian’s private key is compromised,
and all assets in the bridge are at risk. In the reentrancy attack
on smart contract-based bridges (T = {𝑆𝐶𝑠}), an attacker exploits
an improper withdrawal function to repeatedly drain funds. In
validator collusion (T = {𝑉 }), the validators of a PoS-based bridge
collude; they approve fraudulent transactions and steal assets.

3.5.2 An Attack Surface-Damage Model.

Definition 3.5 (Damage Potential/Effort Ratio). The Dam-
age Potential/Effort Ratio of an attack vector𝑉 , denoted𝑑𝑒𝑟 (𝑉 ), quan-
tifies the feasibility of an attack and is defined as 𝑑𝑒𝑟 (𝑉 ) =

𝐼 (𝑉 )
𝐸 (𝑉 ) ,

where 𝐼 (𝑉 ) represents the expected damage or impact of the attack
vector and 𝐸 (𝑉 ) represents the computational, economic, or proce-
dural effort required to execute the attack.

An attack vector𝑉 is viable if and only if 𝑑𝑒𝑟 (𝑉 ) > 1, indicating
that the expected damage outweighs the effort required to execute
the attack. Hence,

𝑑𝑒𝑟 (𝑉 ) =
{
1, if 𝑑𝑒𝑟 (𝑉 ) > 1
0, otherwise

We define the attack surface area of a bridge B1↔2, or a subset
of it, containing 𝑛 attack vectors as:

𝐴𝑟𝑒𝑎(Σ
′
B1↔2

) =
𝑛∑︁
𝑖=1

𝑑𝑒𝑟 (𝑉𝑖 ) (8)

We apply this framework to analyze security across distinct
bridge implementation layers, including i) on-chain contracts (han-
dling token locking, minting, and withdrawal), ii) off-chain relayers
(notary or validator networks responsible for cross-chain verifica-
tion) and iii) finality mechanisms (ensuring transaction irreversibil-
ity and bridging safety). This layered security model enables tar-
geted risk mitigation by isolating attack surfaces based on imple-
mentation constraints.

3.6 Attack Surfaces of Blockchain Bridges
Blockchain bridges rely on multiple components (on-chain smart
contracts, off-chain relayers, and destination chain mechanisms),
each introducing distinct security risks. We formalize these risks
through attack surface analysis and summarize them in Table 2.
Vectors are defined in Appendix E.

3.6.1 Source Chain Layer Security. The attack surface of a bridge’s
source chain implementation is given by Isrc = ⟨Tsrc, 𝑅src⟩. For a
bridge deploying 𝑛 smart contracts on the source chain, we model
its attack surface as Σsrc = ⟨{𝑆𝐶1, 𝑆𝐶2, . . . , 𝑆𝐶𝑛},Tsrc⟩ (i.e., contract
implementations and trusted entities), with an attack surface area
𝐴𝑟𝑒𝑎(Σsrc) =

∑𝑛
𝑖=1 𝑑𝑒𝑟 (𝑆𝐶𝑖 ) . For validator-controlled implementa-

tions (𝑆𝐶𝑖 = ∅), the attack surface consists solely of the trust set Tsrc
(i.e., the validators). While the contractual surface area is zero, the
system remains exposed to validator-level risks such as economic
incentives, collusion, or key compromise.

3.6.2 Off-Chain Layer Security. The off-chain layer, which han-
dles bridge communication, consists of notaries, light clients, or
sidechains, each with unique trust assumptions as we discuss next.

Notary-BasedMechanisms. For notary-based bridges (Toff = notaries),
security improves with more notaries, but decentralization is costly.
If a sufficient fraction of notaries turn malicious, they can control
the bridge for a duration 𝑡 > 𝑡∗, enabling asset theft.

Light ClientMechanisms. For light-client bridges (Toff = {𝐿𝐶,𝑀𝑃}),
security depends on Merkle proofs (𝑀𝑃 ). If an attacker controls the
light client, they can alter transaction verifications. The attack sur-
face reduces to 𝐴𝑟𝑒𝑎(Σoff | Toff = light client) = 𝑑𝑒𝑟 (light client)

Sidechain-Based Mechanisms. Sidechains use independent con-
sensus rules (i.e., 𝑅𝑠𝑟𝑐 ). If 𝑅𝑠𝑟𝑐 is compromised, an attacker can mint
arbitrary tokens or modify the bridge state. If the sidechain guar-
antees 𝑅𝑠𝑟𝑐 security, the attack surface vanishes 𝐴𝑟𝑒𝑎(Σoff |Toff =

sidechain) = 0 ⇔ 𝑑𝑒𝑟 (𝑅𝑠𝑟𝑐 ) = 0.

3.6.3 Destination Chain Layer Security. The destination chain’s
attack surface depends on its reliance on smart contracts (𝑆𝐶) and
custodians Σdest = ⟨𝜏dest,Tdest⟩, 𝜏dest = {𝑆𝐶1, 𝑆𝐶2, . . . , 𝑆𝐶𝑛} ∪
{custodian}. Attack surface area is 𝐴𝑟𝑒𝑎(Σdest) = 𝑛 + 1, assuming a
custodian is present.

3.6.4 Total Attack Surface of a Blockchain Bridge. The total bridge
attack surface is ΣB1↔2 = Σsrc ∪ Σoff ∪ Σdest ∪ Σother . Other attack
vectors include updates to bridge protocols, governance failures,
or rug-pulls. We validate our framework by classifying past major
bridge exploits under this model.
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Table 2: Categorized attack/disruption vectors across bridge
layers. A dagger (†) marks vulnerabilities that only arise
when a bridge architecture actually employs the relevant
component (for example, an oracle).

Attack Vector Source Chain Off-Chain Destination Chain

Contract Logic & Code Vulnerabilities
V1: Reentrancy attacks ✓ ✓
V2: Integer and arithmetic errors ✓ ✓
V3: Access control and forged account flaws ✓ ✓
V4: Race condition attacks ✓ ✓
V5: Unsafe external call exploits ✓ ✓
V6: Malicious event log manipulation ✓ ✓
V7: Contract upgrade risks ✓ ✓

Authentication & Authorization Failures
V8: Fake burn/lock proofs ✓ ✓ ✓
V9: Malicious transaction modification ✓ ✓ ✓
V10: Light-client verification flaws ✓ ✓ ✓
V11: Oracle manipulation ✓† ✓ ✓†
V12: Malicious custodian manipulation ✓† ✓ ✓†
V13: Private key leakage or theft ✓† ✓† ✓†
Replay, Race, and Timing–Based Attacks
V14: Timestamp manipulation ✓ ✓
V15: Replay attacks ✓ ✓

Consensus & Infrastructure Risks
V16: Consensus failure (51% attack) ✓ ✓
V17: Delayed finality exploitation ✓ ✓
V18: Validator equivocation or misbehavior ✓† ✓ ✓†
V19: Denial of Service attacks ✓ ✓ ✓
V20: Deep chain reorganization ✓ ✓
V21: Unbounded withdrawal limits ✓ ✓
V22: Rugpull ✓ ✓†
Front-End and Off-Chain Manipulation
V23: Front-end deception ✓

4 BRIDGE DESIGN PATTERNS AND
IMPLEMENTATION LANDSCAPE

To contextualize our formalism and threat model, we survey rep-
resentative bridge implementations, analyzing their design across
three key layers: source chain, off-chain coordination, and desti-
nation chain. Appendix Table 9 summarizes their implementation
patterns, trust assumptions, functional types, and blockchain cov-
erage. Full protocol descriptions appear in Appendix C and the
ecosystem is described in Appendix D.

4.1 Static Analysis of Bridges

Table 3: Access control and code structure metrics of bridge
smart contracts

Bridge Name Local vars Inheritances Modifier Count RoleBased Standard Libs

Avalanche BridgeToken 2 1 0 Yes 1
Wormhole BridgeImplementation 58 2 1 No 3
Arbitrum L1GatewayRouter 9 5 2 No 0
Arbitrum L1ERC20Gateway 3 1 1 No 1
Arbitrum L1CustomGateway 5 2 2 No 1
Arbitrum L1WethGateway 0 1 0 No 2
Stargate Router 30 3 1 No 3
DeBridge DeBridgeGate 44 5 4 Yes 1
Across HubPool 50 5 3 No 3
Stargate Bridge 35 3 1 No 1
Allbridge Bridge 12 4 0 No 1
Nomad BridgeToken 6 4 0 No 0
Base L1StandardBridge 1 2 0 No 0
Optimism L1StandardBridge 0 2 0 Yes 0
Hyperliquid Bridge2 66 2 0 Yes 5
Meson BridgeV2 2 2 4 Yes 3

To assess the security robustness of bridge smart contracts, we
conduct a static analysis across key dimensions drawn from our lay-
ered attack surface model. Static analysis focuses on examining the

Table 4: Lines of code (LOC), function visibility, and variable
usage in bridge smart contracts

Bridge Name LOC Total lines Public External Internal Private Global vars
Funcs Funcs Funcs Funcs Declared

Avalanche BridgeToken 155 226 9 0 0 1 6
Wormhole BridgeImplementation 630 776 19 3 14 0 0
Arbitrum L1GatewayRouter 208 305 5 4 1 0 2
Arbitrum L1ERC20Gateway 112 161 5 2 0 0 6
Arbitrum L1CustomGateway 165 243 5 3 0 0 6
Arbitrum L1WethGateway 78 92 2 1 4 0 2
Stargate Router 280 323 0 17 4 0 5
DeBridge DeBridgeGate 905 1110 7 23 15 0 27
Across HubPool 610 1076 24 2 13 0 16
Stargate Bridge 249 310 2 14 4 0 9
Allbridge Bridge 215 320 1 11 2 0 5
Nomad BridgeToken 150 245 7 5 0 0 6
Base L1StandardBridge 260 321 8 8 6 0 2
Optimism L1StandardBridge 220 324 3 9 6 1 3
Hyperliquid Bridge2 570 840 17 15 2 14 18
Meson BridgeV2 167 210 8 8 0 2 4

Table 5: Analysis of external call behavior and defensive
programming practices in bridge implementations

Bridge Name Ext Funcs Low-level Untrusted Reentry Guard Require/Assert Custom Errors Checks/Fn

Avalanche BridgeToken 5 0 0 No 14 0 1.56
Wormhole BridgeImplementation 2 5 0 Yes 21 0 0.58
Arbitrum L1GatewayRouter 3 0 0 No 9 0 1
Arbitrum L1ERC20Gateway 2 1 0 Yes 3 0 0.43
Arbitrum L1CustomGateway 4 0 0 Yes 6 0 0.75
Arbitrum L1WethGateway 0 0 0 No 3 0 0.43
Stargate Router 15 0 0 No 8 0 0.38
DeBridge DeBridgeGate 18 3 3 Yes 26 20 0.87
Across HubPool 13 3 3 Yes 26 0 1
Stargate Bridge 13 0 0 No 8 0 0.5
Allbridge Bridge 5 0 0 No 11 0 0.9
Nomad BridgeToken 4 0 0 No 4 0 0.33
Base L1StandardBridge 4 0 0 No 4 0 0.25
Optimism L1StandardBridge 4 0 0 No 0 0 0
Hyperliquid Bridge2 7 0 0 Yes 19 0 1
Meson BridgeV2 7 1 1 No 7 0 0.58

contract’s code without executing it, allowing us to detect vulnera-
bilities in logic, structure, and access control that may compromise
the security priors bridge causality, consistency, and token peg in-
tegrity. We analyze the bridges in terms of i) access control and
code structure metrics (Table 3), ii) function visibility and variable
usage (Table 4) and iii) call behavior and defensive programming
constructs (Table 5). This analysis maps to several high-impact
attack vectors from Table 2, notably: V1: reentrancy attacks, V3:
access control and forged account flaws, V5: unsafe external call ex-
ploits, V7: contract upgrade and misconfiguration risks. We identify
several notable patterns and anomalies that offer insights into the
heterogeneous security postures and implementation philosophies
across bridges.

One immediate observation in Table 5 is the inconsistent use
of reentrancy protection mechanisms. Despite having multiple ex-
ternally callable functions, contracts such as Stargate Router (15
external functions) and Stargate Bridge (13 external functions) do
not implement any form of reentrancy guard. In contrast, simi-
larly sized contracts like DeBridgeGate and Across HubPool use
such guards appropriately. The absence of reentrancy protection in
these high-exposure contracts reflects a reliance on architectural
assumptions.

We also find a curious disconnect in Table 3 between the use of
role-based access control and the deployment of Solidity modifiers.
For example, Hyperliquid Bridge2 and Avalanche BridgeToken both
report role-based access (“RoleBased = Yes”) but have zero modifiers.
This suggests that access restrictions may be implemented inline via
“require” statements rather than modularized through modifiers,
leading to less auditable and reusable control logic. In contrast,
Nomad BridgeToken and Allbridge show zero modifier usage and
lack role-based protection, increasing susceptibility to unauthorized
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access or logic misbehavior (V3). Nomad’s exploit history confirms
this: a faulty initialization allowed any user to spoof legitimate
senders.

A particularly unusual case in Table 5 is theOptimism L1Standard
Bridge contract, which lacks any require or assert statements despite
being externally callable and declaring role-based control. While
this absence would typically raise concerns (since most bridges
include basic sanity checks), it reflects a deliberate design choice.
Optimism and Base L1StandardBridge rely on rollup-native archi-
tecture, where Ethereum layer-1 consensus enforces external vali-
dation. This structural safeguard reduces reliance on in-contract
defensive coding against V3 and V5 vectors, but the lack of internal
guards still poses risks if such contracts are reused outside this
tightly scoped context.

In terms of architectural modularity, some contracts in Table 4
show a preference for deeply internalized logic structures.Worm-
hole BridgeImplementation and Hyperliquid Bridge2 contain large
numbers of internal or private functions (13-15 each), indicating
encapsulated logic. While this may reflect thoughtful separation of
concerns, it also complicates external audits and transparency.

We further observe disproportionate uses of access control infras-
tructure relative to contract size in Tables 3 and 4. Meson BridgeV2,
with just 167 lines of code, defines four modifiers and a complete
role-based access layer. In contrast, Stargate Router spans over 280
lines but employs one modifier. Such disparity shows divergent
security philosophies among bridge developers, with some opting
for granular control at all costs and others prioritizing operational
simplicity.

A notable structural pattern in Table 4 appears in the allocation
of global versus local variables. DeBridgeGate maintains a high
number of global state variables (27), reflecting rich on-chain logic
and persistent data tracking. Conversely, Wormhole Bridge holds
58 local variables but defines no global state, potentially due to
reliance on proxy patterns or off-chain state.

Low-level calls (call, delegatecall, staticcall) introduce
attack surface via vector V5.Wormhole, DeBridge, and Across use
them multiple times, sometimes in the presence of untrusted in-
puts. While call can be necessary (e.g., for token forwarding), its
misuse or failure to handle return values correctly has led to major
incidents such as the Poly Network and Qubit [32] exploits. Bridges
like Avalanche BridgeToken, Nomad, and Allbridge avoid low-level
calls entirely, reducing exposure to unsafe execution paths.

Lastly, we compute the average number of checks per function
(#Checks/#Functions) as a coarse proxy for defensive programming
density. Contracts such as Avalanche BridgeToken (1.56) and Hy-
perliquid Bridge2 (1.00) stand out as aggressively guarded, while
Optimism L1StandardBridge (0.00) again reflects an absence of such
measures. These findings indicate varying degrees of maturity in
secure smart contract engineering practices.

Static analysis reveals that bridge contracts vary widely in their
defensive quality. DeBridgeGate sets a high bar for smart contract
hygiene, leveraging modifiers, role-based controls, and comprehen-
sive assertions to guard its complex logic. Wormhole and Across
balance complexity with modular defenses but remain susceptible
to implementation flaws, as demonstrated in Wormhole’s histor-
ical signature validation failure. Stargate, Nomad, and Allbridge
show critical gaps in protective constructs, leaving them exposed

to known attack vectors. These are particularly concerning given
their public deployment.

4.2 Transaction Analysis of Bridges
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Figure 3: Attackflowof theRoninBridge exploit. The attacker
gained control of 5 out of 9 Ronin Bridge validators and
used them to sign and submit forged withdrawals. The stolen
funds amounted to 173,600 ETH, along with an additional
25.5 million USDC that was exchanged for 8,564 ETH.

To better understand the on-chain behavior of bridge exploiters,
we perform a transaction-level analysis focused on Ethereum ad-
dresses used by attackers, as Ethereum is commonly chosen for
fund collection due to its exchange access and availability of mix-
ing services. We obtain Ethereum transaction data by running a
full node using Geth (https://github.com/ethereum/go-ethereum)
and parsing all transactions via Ethereum-ETL (https://github.com/
blockchain-etl/ethereum-etl). We visualize the attack patterns in
transaction graphs to capture attacker behavior. The analysis in-
cludes both externally owned account transactions and internal
transactions, covering pre-attack, attack, and post-attack phases,
where the phase lengths span the full Ethereum history up to March
2025.

Due to space limitations, an example transaction subgraph is
shown in Figure 3, and seven other notable attacks are visualized in
Appendix F. In the figure, the Ronin bridge to Ethereum was victim
to a validator key compromise in an attack now attributed to North
Korea’s Lazarus Group. Ronin used a 5-of-9 multisig validation
for bridge withdrawals. Attackers compromised five private keys
through social engineering. Once in control, they issued two fraud-
ulent transactions, draining 173,600 ETH and 25.5M USDC (worth
approximately $624 million at the time) from the Ronin bridge in
a single stroke. This event, the largest DeFi hack ever, was essen-
tially a failure of the bridge’s trust model: the off-chain validators
were assumed honest, but the minimal quorum and centralized key
management (a single entity controlled 4 of 9 validators) made it
easy for an attacker to breach. The breach went unnoticed for six
days until a user discovered it.

Most exploiter addresses have little to no previous on-chain ac-
tivity. In many cases, the wallets were newly created and funded
with just a sufficient amount to cover gas fees. The average number
of pre-attack transactions was 28, suggesting that even the more
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“active” wallets were only lightly used. Some of these initial funds
even originated from mixers, most notably Tornado Cash [33] in
the Wormhole bridge hack, where the exploiter received ETH from
Tornado Cash before launching the attack, an indication of deliber-
ate obfuscation of the funding source. In other instances, such as
the Nomad and Horizon bridge [34] hacks, attackers used unlabeled
intermediate wallets, further complicating traceability, and as a
strategy to hide the funding sources.

During the attack period, the behavior is highly focused. The
attacker often interacts directly with the bridge contract via a few
function calls, most of the time, only one forged withdrawal or
proof verification. In attacks such as Nomad, we observe many
small transactions from multiple addresses exploiting the same
vulnerability after it became public, showing replication once the
vulnerability was made public.

Internal transactions are important for creating the contract
call sequences. The contract call traces highlight how the attack is
carried out at the smart contract level, often using call stacks in-
volving specific functions like withdrawERC20For() or verifyProof().
This helps verify the exploit strategies and confirms the role of
compromises or logic flaws.

After the exploit, the stolen funds are moved rapidly to avoid
detection. Some exploiters transferred stolen funds through mul-
tiple intermediate wallets before returning them to a central ex-
ploiter address, for instance, in the Ronin Bridge hack. Some others
bridged funds to other blockchains such as Ethereum, Polygon, and
Avalanche using bridges. Many proceeds are laundered through
privacy tools like Tornado Cash or converted via decentralized
exchanges (DEXs).

After initial laundering, several attacker addresses remain active.
In our analysis, 6 out of 18 wallets continued transacting for more
than one year after the exploit, indicating possible long-term usage
or reactivation of compromised wallets.

Although certain early detection remains challenging, our analy-
sis identifies behavioral clues that may serve as early warning signs
of an upcoming exploit. A common pattern is the initial funding of
a wallet with just enough ETH to cover gas fees, which is sourced
frommixers. These wallets usually indicate little to no prior activity.
Moreover, in order to verify system reactions or contract behavior,
numerous low-value probing transactions are occasionally issued
prior to the main exploit. These patterns could be leveraged to flag
suspicious activity in near-real time.

5 SECURITY ANALYSIS OF BRIDGE ATTACKS
Our analysis reveals that bridge causality and consistency priors
are violated in bridge attacks. Most attacks involve violations of
the cross-chain causality prior. While Equation (4), the peg prior, is
formally violated as a result of these attacks, the peg itself is not
the target of the attacks. That is, attackers do not manipulate token
prices or attempt to create price divergence across chains. Instead,
the violations arise indirectly because tokens are minted or released
without proper backing, breaking the assumption of value parity
that the peg prior encodes. Due to space limitations, we describe
the attacks in Appendix F, and show a meta-analysis in Table 8.

Attack Vector Analysis. Table 8 shows that V3 (access control) and
V13 (key leakage) have been exploited 10 times each. The exploits

reveal two broad categories of failures: (1) Off-chain trust failures
and (2) On-chain validation failures. The off-chain trust failures
encompass all incidents where the bridge’s security relied on in-
dividuals or off-chain systems that were compromised, notably
the multisig key compromises (Ronin, Harmony, Multichain, Orbit)
and related cases. In Ronin and Harmony, the sources of failure
were outside the blockchain: hackers penetrated the organizations
controlling the validators and obtained the private keys needed
to sign fake transactions. These attacks did not exploit a bug in
code; they exploited insufficient decentralization and operational
security. Essentially, the assumption that a small set of validators
would remain honest was violated. When 5 of 9 Ronin validators
and 2 of 5 Harmony signers turned malicious (via key theft), the
bridge smart contracts on-chain duly obeyed the malicious sig-
natures, an example of how improperly validated inputs led the
system to execute unintended behavior. Similarly, Multichain’s col-
lapse was an off-chain failure: the system’s architecture secretly
concentrated too much trust in one individual. These illustrate that
trusted or trust-minimized bridges are vulnerable by design. They
introduce new trust points (keys, signers, servers) that attackers
target through phishing, insider collusion, malware and more. The
on-chain validation failures, on the other hand, cover exploits like
Poly Network, Wormhole, Nomad, BSC Token Hub, Qubit, where the
bridge smart contracts or crypto verification routines on one of
the chains had a flaw. In these cases, the attacker manipulated the
code logic (e.g., forging a message that the contract erroneously
accepted as valid). For Poly, the bug was an unchecked external call
in a privileged contract; for Wormhole, a bypassed signature verifi-
cation on Solana; for Nomad, an incorrect initialization setting that
trusted everyone; for BSC, a flawed light-client proof verification.

Despite different mechanics, these represent software/security
bugs in the bridge implementation. The failures occurred either on
the source chain contract (for Poly on Ethereum) or the destination
chain contract (forWormhole, Nomad, Qubit) or the intermediate
relay logic (as in BSC’s light client). Crucially, these attack vectors
map to points of validation in the bridge architecture.

In several cases (Wormhole, Nomad, BSC), the violated core as-
sumption was that the smart contract correctly validates the cross-
chain proof. These were not fundamental cryptographic failures
(algorithms such as secp256k1 were sound), but errors in how the
algorithms were applied. This suggests many bridge exploits are
avoidable withmore rigorous software engineering, such as compre-
hensive audits, formal verification of bridge contracts, and in-depth
defense (e.g., requiring multiple independent checks of a proof).

Importantly, many of these incidents exhibit high damage-to-
effort ratios. The impact of a successful exploit has often reached
hundreds of millions of dollars, while the effort required, whether
key theft, phishing, or exploiting a poorly audited contract, remains
relatively low. These high der(𝑉 ) values underscore why such
attack vectors persist across different bridge designs and why they
dominate the historical incident landscape.

RQ1: Are bridge attacks structurally preventable, or can they be mit-
igated by design? Yes, the evidence suggests that certain designs
are far more robust. Notably, no major exploits have occurred
on fully trustless light-client bridges or rollup bridges. For
example, Cosmos’s L1-to-L1 IBC channels have operated without
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incident between dozens of chains since 2021 (a lossless reentrancy
bug was discovered early [35]), and Ethereum’s (young) rollup L1-
to-L2 bridges have not been breached to date. Avalanche L1-to-L1
bridge to Ethereum continues functioning without any incidents.
These systems benefit from minimal attack surface: there are no
external signers to target, and the verification logic is often sim-
pler or inherited from consensus (IBC uses tendermint-like light
clients, which are well-vetted; rollups use post validity/fraud proofs
checked by L1). This suggests that trustless designs inherently elim-
inate entire classes of attacks (notably, attack vector V3 of Table 2).
These architectures inherently exclude common attack vectors like
compromised keys or poorly controlled access mechanisms, offer-
ing significantly lower der(𝑉 ) values.

By contrast, most attacks struck bridges that added a new layer
of validation on top of the two blockchains. Each additional com-
ponent (e.g., a multisig, an off-chain oracle network, or a novel
smart contract) introduced complexity and potential weakness. Our
analysis shows evidence that the more a bridge can lean on intrin-
sic blockchain security (native verification), the safer it will be. In
contrast, trust-minimized L1-to-L1 bridges are often only as strong
as their validator set, which could be much weaker than either
chain’s consensus. A quantified framework by LI.FI found in 2022
that many so-called trust-minimized bridges still effectively rely
on a majority of a few validators, leaving them vulnerable to 51%
attacks or key compromises [36]. Indeed, Ronin and Harmony hacks
demonstrated that a <10-member validator set offers poor resilience.
Increasing the set (e.g., Axelar has 70+ validators) improves secu-
rity, but unless those validators are as robust as a full blockchain
consensus (with hundreds of nodes and economic security), the
bridge remains a tempting honeypot for hackers. Therefore, trust-
minimized bridges offer better resilience than naive trusted models,
but they still concentrate trust among a group.

Properly decentralized networks with bonding (to slash mali-
cious validators) are harder to attack; for instance, a hack of the
scale of Ronin on a larger bonded validator bridge has not occurred
yet. However, Ethereum-to-Solana (L1-to-L1) Wormhole’s Feb 2022
case reminds us that even absent collusion, a bug in the validation
code can be just as catastrophic. This blurs the line between funda-
mental and implementation issues: we argue that the complexity of
blockchain bridge protocols is a fundamental weakness, as more
complex logic yields a higher chance of errors.

Finally, the prevalence of hacks has spurred research into failure-
resistant bridges. For example, designs like “circuit breaker” bridges
propose that if an unusually large withdrawal is attempted, the
bridge only allows it after a delay or community vote, to mitigate
instant draining. Others suggest blending multiple validation mech-
anisms, e.g., requiring both an off-chain multi-sig and an on-chain
light client to agree, which could guard against either one failing
alone (at the cost of added complexity). From a benchmarking per-
spective, we argue that diversity in validation (multi-layer security)
might drastically reduce the probability of a successful exploit,
albeit with performance trade-offs. Moreover, as bridges adopt tech-
niques like zero-knowledge (zk) proofs for validation (e.g., zkBridge
frameworks), some traditional attack vectors might be closed (a zk
proof can attest to a source chain state without any trusted signer
at all). Such bridges could offer the holy grail: trustless interop-
erability between any two chains, with cryptographic guarantees

and no reliance on human validators. Early prototypes (like zkRe-
lay and light-client circuits) are promising, but they require heavy
computation and are just entering practical deployment.

RQ2: Are bridge attacks detectable in real-time? A surprising inabil-
ity of the blockchain ecosystem is the lack of a strong analytics
foundation that could monitor bridges for potential attacks. In the
Ronin hack, it took days (and a user complaint) to notice that $620M
had vanished. An obvious insight here is that real-time auditing
and alerts are essential, but it raises a more fundamental question:
why have such systems not been developed, despite the substantial
capital invested in decentralized finance?

We outline four reasons. First, many DeFi projects operate with
lean teams focused primarily on product development and pro-
tocol maintenance, with their expertise originating from smart
contract development. Allocating resources to build and maintain
sophisticated monitoring systems often falls outside their immedi-
ate capabilities. Second, implementing real-time detection systems
requires a scalable analytics infrastructure capable of handling
large volumes of blockchain data. This necessitates expertise in
data engineering and analytics, skills that may not be prevalent
among smart contract developers. Third, analyzing blockchain data
presents unique challenges, including model scalability and the
accuracy of anomaly detection. Traditional data analytics methods
are often ill-suited to address the decentralized and heterogeneous
structure of blockchain networks. Moreover, only a limited number
of research efforts have focused on foundational questions spe-
cific to blockchain, such as identifying influential addresses within
transaction networks (e.g., Alphacore [37]; see [38] for a recent
survey). Lastly, investing in detection systems does not directly
generate revenue, making it less appealing for projects to allocate
funds toward such initiatives. While white-hat hacking offers some
incentives, it often involves high effort with uncertain rewards.
Nonetheless, advancements in automated security testing, partic-
ularly fuzzing [39], are emerging as promising solutions. Fuzzing
involves providing invalid, unexpected, or random data inputs to
smart contracts to uncover vulnerabilities.

The anomaly detection effort must eventually fall on bridge man-
agers. Some bridges (e.g., Gravity, Chainlink CCIP [40]) are now
deploying independent, on-chain monitoring tools that can pause a
bridge if suspicious activity is detected (for example, if an invariant
is violated or if an unrecognized validator signature appears). In
centralized finance, analogous systems flag large transfers for man-
ual review; bridges could implement similar safeguards or circuit-
breakers, but this reintroduces trust if not done in a decentralized
way.

RQ3: What mechanisms exist to mitigate damage and minimize asset
loss? There is no standard set of mechanisms for limiting damage
once a bridge is under attack, and mitigation strategies remain
ad hoc and uneven across protocols. Gravity and Chainlink are
developing anomaly detection tools that can halt bridge operations
in the face of an attack. In Celer, there is a buffer delay period during
which transactions can be independently verified before a transfer is
finalized. If inconsistencies are detected, the transfer can be halted,
offering an added layer of fraud prevention. Post-factum, blockchain
transparency does aid forensics; after these hacks, investigators
(e.g., ZachXBT on Twitter) traced funds through addresses and
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often identified suspects or recovered portions. But prevention
and rapid response are clearly preferable to relying on clawbacks.
Benchmark evaluations must incorporate attack detection latency
as a metric; i.e., how quickly a breach is noticed and halted. Shorter
detection times (as in BSC’s case, hours) can significantly limit
losses compared to delayed discovery (as in Ronin).

The bridge attacks of 2021–2025 underscore a core tension in
blockchain interoperability: security vs. connectivity. Bridges ex-
pand what users can do (moving assets across chains), but they also
expand the attack surface beyond any single blockchain. Our survey
of exploits indicates that while many were due to low-hanging fruit
bugs or a lack of operational security, there are also intrinsic risks
whenever custody of funds shifts to a separate system.

RQ4: What is the long-term outlook for bridge security? What foun-
dational steps are needed to design formally verifiable or provably
secure bridge protocols? If truly trustless (or provably secure) bridge
mechanisms can be standardized, we expect far fewer catastrophic
failures. Until then, however, bridge designers must assume that
attacks are a matter of when, not if, and design accordingly. This
means employing rigorous audits, fail-safes, decentralized valida-
tion, and continuous monitoring as part of any cross-chain system.
Past events suggest that increasing decentralization and using estab-
lished, simple verification methods (light clients, chain consensus)
correlate with higher security, whereas highly complex or central-
ized bridges have correlated with the largest failures.

On the other hand, the multisig key hacks raise the question of
whether those bridges were destined to fail, i.e., was it an inevitabil-
ity that eventually some signer’s key would get compromised? One
can argue that any valuable honeypot (whether a contract with
billions of locked value or a key controlling billions) will, over time,
face relentless attack until a weakness is found. Even with multi-
party validators, if the set is small or the keys are not protected
by robust hardware security modules and operational security, at-
tackers have a focal point to strike. Thus, fundamental architecture
choices (like using a 2-of-5 multisig with hot keys) can be seen as
structural vulnerabilities, not in the theoretical sense, but in prac-
tical terms of presenting an irresistibly weak link (humans with
keys) compared to the surrounding blockchain’s security.

A lesson learnedwith pain is that trusted bridgesmust be avoided
due to significant management risks [2]. Rollups offer a trustless
solution but are limited to chains with compatible runtimes. New
protocols like the IBC protocol of Cosmos and Chainlink’s Cross-
Chain Interoperability Protocol aim to bridge heterogeneous chains.
However, even those new-generation solutions introduce varying
trust assumptions. IBC uses light clients when both chains natively
support it. However, when adapted for non-IBC-compatible chains,
additional trust assumptions are required. CCIP, on the other hand,
relies on Chainlink’s decentralized oracle network to facilitate cross-
chain interactions, introducing a trust-minimized model where
users depend on the honesty and reliability of the oracle nodes.

6 CONCLUSION
Blockchain bridges have become indispensable infrastructure for
cross-chain interoperability, yet they remain among the most vul-
nerable components of the decentralized ecosystem. Our study
presents the first comprehensive, data-driven systematization of

bridge security, combining formal modeling, large-scale static anal-
ysis, and empirical transaction-level investigations. We show that
the majority of bridge attacks violate core security priors, particu-
larly causality and consistency, without breaching the value peg
itself.

Our analysis reveals that most successful exploits stem from two
dominant classes: off-chain trust failures and on-chain validation
bugs. These vectors frequently exhibit high damage-to-effort ra-
tios, which we formalize through the der(𝑉 ) metric. We also find
that architectural design plays a decisive role in resilience. Trust-
less models, such as light-client and rollup-native bridges, have so
far withstood real-world adversarial conditions, while trusted and
loosely trust-minimized bridges remain disproportionately vulner-
able. Emerging defense mechanisms like circuit breakers, buffer
delays, and hybrid validation schemes offer promise but are incon-
sistently implemented and lack formal standardization.

Finally, we identify critical gaps in real-time detection and miti-
gation. Despite billions in locked value, most bridges lack robust
monitoring infrastructure or containment protocols, and responses
to attacks are often delayed and improvised. Bridging this gap
will require new research into on-chain anomaly detection, decen-
tralized fail-safe mechanisms, and benchmarking frameworks that
account for detection latency and systemic risk.

We hope this work provides a foundation for rethinking how
cross-chain systems are built, evaluated, and secured. As bridges
continue to evolve, their long-term viability will depend not only on
throughput and composability but also on their ability to withstand
failure in adversarial conditions. Bridging across blockchains should
not mean bridging across trust assumptions.
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APPENDIX
A RELATEDWORK ON SCALABILITY,

INTEROPERABILITY AND BRIDGE
DESIGNS

Due to space constraints in the main text, this appendix outlines
three additional research areas relevant to our work. We will start
this section by analyzing scalability and interoperability studies.

A.1 Blockchain Scalability and Off-Chain
Protocols

Recent bridge proposals aim to shift trust off-chain and reduce
exposure by using succinct proofs, validator diversity, or formal
verification. The literature reflects an active effort to reconcile de-
centralization, trust minimization, and performance in cross-chain
systems. For example, McCorry et al. [41] and Kim et al. [42] explore
off-chain protocols and categorize scalability solutions, respectively.
Blockchain interoperability, the ability for different blockchain sys-
tems to interact, is a core focus of Lee et al. [43], Wang [44], Belchior
et al. [45], Zamyatin et al. [46], Qasse et al. [47], Monika et al. [48],
Schulte et al. [49], Hardjono et al. [50], Lafourcade et al. [51], and
Duan et al. [52]. These studies highlight the challenges in ensuring
ACID properties across diverse blockchains [44], the limitations due
to blockchain isolation [47], and the lack of interaction between dif-
ferent ledgers and legacy systems [48]. Methods vary: Lee et al. [43]
focus on bridges, Zamyatin et al. [46] on communication protocols,
Schulte et al. [49] suggest transitioning from closed to open sys-
tems, while Hardjono et al. [50] propose standardized architectures.
Lafourcade et al. [51] advocate for a unified blockchain.

A.2 Security and Privacy Concerns in
Blockchain Interoperability

Security risks inherent to cross-chain protocols are discussed in
Lee et al. [43], Zamyatin et al. [46], and Duan et al. [52]. Lee et al.
examine bridge-specific vulnerabilities, Zamyatin et al. propose a
trust-evaluation framework, and Duan et al. categorize systemic
attack vectors. Borkowski et al. [53] provide a comprehensive re-
view of cross-blockchain technologies through the TAST research
project. Caldarelli [54] introduces wrapped tokens for interoper-
ability, though with reintroduced trust assumptions. Borkowski
et al. [55] explore atomic cross-chain transfers as a means to link
otherwise isolated systems.

A.3 Protocol Design, Relays, and Bridges
Pioneering work by Herlihy et al. [56] introduced the notion of
cross-chain deals, formulating atomic cross-chain transactions un-
der adversarial conditions. Their protocol ensures that mutually
distrusting parties exchanging assets across separate blockchains ei-
ther all succeed or all abort, without a trusted intermediary. Atomic
cross-chain swaps and hashed timelock contracts emerged from this
foundation [56], with further developments such as Anonymous
Multi-Hop Locks [57] and Universal Atomic Swaps [58] generaliz-
ing these mechanisms for broader interoperability.

Relay and light-client protocols enable cross-chain state verifica-
tion. BTC Relay provided a working, though costly, Ethereum-based
verifier for Bitcoin transactions. Efficiency enhancements such as

FlyClient [59] and NiPoPoW [60, 61] offer logarithmic communi-
cation overhead and succinct proofs. zkBridge demonstrates state
transition verification via zk-SNARKs [62], showcasing low-cost,
trust-minimized bridging across Ethereum and Cosmos.

Asset-based bridges also remain prominent. XCLAIM [63] intro-
duced trustless, collateral-backed cross-chain assets. While projects
like Wormhole and PolyNetwork use validator-based event notaries,
they pose risks if quorum assumptions fail. These are complemented
by formal frameworks such as zkRelay and ETH Relay, and concep-
tual models like Bitcontracts for Bitcoin–Ethereum smart contract
interoperability.

Security of these bridges is increasingly scrutinized. SmartAxe [64]
detects Cross-Chain Vulnerabilities through fine-grained static anal-
ysis. Attacks like the $320M Wormhole and $610M PolyNetwork in-
cidents illustrate the cost of flawed validation and inadequate trust
assumptions. Alba [61] proposes Pay2Chain bridges that combine
off-chain payment guarantees with cryptographic proofs to reduce
bridge attack surfaces.

B PROOF OF THE FAILURE THEOREM
Theorem 2. If a bridge experiences an attack or failure, then

Equation (4) is always violated.

Proof. Equation (4) formalizes token parity across two blockchains
𝑏1 and𝑏2, requiring that the locked value on𝑏1 matches the released
or minted value on 𝑏2:

𝑣1 · price(𝜃1, 𝑡) ≡ 𝑣2 · price(𝜃2, 𝑡), ∀𝑡 .

Suppose a bridge undergoes an attack or failure. By Defini-
tions 3.1 and 3.2, this implies that at least one of Equations (5),
(6), or (7) is violated.

Case 1: Violation of causality ( (5)). If a token transfer occurs on
𝑏2 without a corresponding event on 𝑏1, or vice versa, then either
tokens are created without backing (𝑣2 > 𝑣1), or locked value is
unclaimed (𝑣1 > 𝑣2). In both cases, the equivalence in (4) is broken.

Case 2: Violation of consistency ( (6) or (7)). If a user holds tokens
on𝑏2 while also being able to access funds on𝑏1, or if the one-to-one
correspondence between locked and minted tokens is violated, then
value duplication or loss occurs. Again, this leads to 𝑣1 ·price(𝜃1, 𝑡) .
𝑣2 · price(𝜃2, 𝑡).

In all such cases, the bridge no longer preserves token parity,
hence Equation (4) is violated.

□

C CROSS-CHAIN BRIDGE SOLUTIONS
We will discuss several popular cross-chain bridge protocols, cross-
referencing them with their formalization. Specifically, we examine
i) the implementation choices made by each bridge at different
layers, ii) the trust assumptions underlying each bridge, iii) fee
and time considerations, including comments on security where
relevant, iv) the specific blockchains that each bridge connects.
Table 9 provides an overview of cross-chain bridge implementations
and architectural components.
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Table 6: Notations for Bridge Mechanisms

Notation Description

𝑏 A blockchain.
𝑁𝑝 Set of peer-to-peer network nodes in a blockchain.
𝑁𝑎 Set of address nodes in a blockchain.
H Chronological history of transactions in a blockchain.
𝑅 Consensus rules governing transaction creation in a blockchain.
𝜃 A token, with state defined by its transaction history H𝜃 .
𝑡 A point in time.
𝑡𝑥 A transaction, defined as 𝑡𝑥 = (𝜃, 𝑣, 𝑎1, 𝑎2, 𝑡𝑡𝑥 ), transferring value 𝑣 of token 𝜃 from address 𝑎1 to 𝑎2 at time 𝑡𝑡𝑥 .
𝑎 A user address.
𝑏1, 𝑏2 Source and destination blockchains in a bridge.
I Implementation mechanism of a bridge.
B1↔2 A blockchain bridge between 𝑏1 and 𝑏2, defined as B1↔2 = {𝑏1, 𝑏2,I}.
𝜒𝑡 The state of a cross-chain transaction at time 𝑡 .
𝑇𝑆 A node trust set.
𝑐 A smart contract address.
𝑣 Quantity of a token 𝜃 .
𝑎 ↦→ 𝑣 An address 𝑎 holds value 𝑣 of a token.
𝐹forward Bridge fee for forward transfer, defined as 𝐹forward = 𝑓1 + 𝑓2 + 𝑓 ∗.
𝐹reverse Bridge fee for reverse transfer.
𝑓1, 𝑓2 Transaction processing fees on 𝑏1 and 𝑏2, respectively.
𝑓 ∗ Bridge operation fee.
𝑑 Duration associated with a blockchain operation.
Toff Off-chain implementation.
𝑑𝑏𝑥 Block confirmation durations for 𝑏𝑥 .
𝑑∗ Time for off-chain mechanism to process and signal a transfer.
T Bridge trust set.
Tsrc,Tdest Trust assumptions related to the source and destination blockchains.
Toff Trust assumptions in off-chain mechanisms.
𝐿 Light client verifier.
𝑀 Merkle proof.
𝑁 Notary validator set.
𝐹 Total bridge fee for a transaction.
𝐷 Delay introduced in a bridge due to proof.
𝑄 Quantity of token being referenced.
𝑀𝑃 Message propagation.
𝑉 Attack vector.
E(𝐶) Expected loss or cost.
E(𝐿) Expected value at risk in a 𝐶𝐶𝐵.
𝑆𝐶𝑠 Set of smart contracts.

C.1 Arbitrum Bridge
Arbitrum is not a bridge itself, but a layer two rollup solution
designed to prepare large batches of transactions off-chain, signifi-
cantly reducing gas costs and scaling Ethereum. However, Arbitrum

also includes a native token bridge, which lets users move assets be-
tween Ethereum (L1) and Arbitrum (L2). This is commonly referred
to as the Arbitrum Bridge, and it’s used to deposit and withdraw
tokens like ETH or ERC-20s.
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As an optimistic rollup, Arbitrum assumes transaction validity by
default and relies on economic incentives to detect and correct fraud.
A centralized sequencer currently assembles and orders transaction
batches, producing a new Arbitrum block for each Ethereum block.
These transactions are compressed and posted as calldata (read-only,
byte-addressable region) on Ethereum.

A set of smart contracts deployed on Ethereum manages the
core protocol logic, including the rollup mechanism, cross-chain
messaging, fraud proofs, bridging, and third-party gateway inter-
actions. The trust set is defined as 𝜏 = {SCs}, representing these
deployed smart contracts, which collectively enforce the security
and correctness of the rollup.

Arbitrum’s bridge is structured around a gateway bridge contract
that delegates to more specific contracts (e.g., ERC20, WETH, or
custom contracts). These specialized contracts are responsible for
minting the corresponding tokens on layer 2. This modular design
enhances security and extensibility by isolating token-specific logic
across separate contracts.

To guard against fraud, Arbitrum implements a challenge-response
protocol during a designated challenge period. Off-chain partici-
pants can dispute the validity of a rollup block through an interac-
tive verification process often described as the “grasshopper game”,
where the correct and fraudulent segments of execution are itera-
tively narrowed down. If fraud is detected, the protocol rolls back
to the last valid state and removes the invalid block. A successful
challenger receives a financial reward, typically derived from the
stake of the fraudulent party. Conversely, false challengers lose
their stake, discouraging frivolous disputes.

Finality on Arbitrum is delayed by the challenge period, which
affects asset bridging. Users must wait until this period ends before
safely withdrawing assets to Ethereum. Although this delay is in-
herent to optimistic security models, it is a practical consideration
in bridge comparisons.

C.2 Wormhole protocol
Wormhole defines itself as a cross-chain message-passing protocol
that enables communication between heterogeneous blockchains.
Bridging protocols are built on top of Wormhole to facilitate token
and data transfers across chains.

On-chain, Wormhole uses a set of smart contracts deployed to
both the source and destination chains. The emitter contract on
the source chain initiates a transfer by invoking the ‘publishMes-
sage‘ method on the Wormhole core contract. These core contracts
are responsible for emitting and verifying cross-chain messages,
forming the trust set 𝜏 = {SCs} on both ends. The user relies on
the correct and secure execution of these smart contracts for the
protocol’s integrity.

The off-chain implementation Toff relies heavily on a guardian
network, composed of 19 independent nodes operated by various
institutional entities. These guardians observe on-chain activity,
verify messages, and collectively sign a Verifiable Action Approval
(VAA). A quorum of at least 13 of 19 guardians must sign the VAA
for it to be considered valid. This introduces an additional trust
assumption, so the full trust set includes off-chain actors, i.e., 𝜏 ≠ {}.
In practice, this makes Wormhole a trusted bridge, as its security
hinges on the honest majority of the guardian set.

Once the VAA is generated, a relayer (which may be a user
or a third party) delivers the signed message to the destination
chain. There, the Wormhole core contract verifies the guardian
signatures and executes the associated instructions via the target
smart contract. As with the source chain, the destination chain also
has a trust set 𝜏 = {SCs}.

Fee and time considerations in Wormhole are variable. Since the
relayer role is permissionless, users or third parties may bear the
cost of relaying messages across chains, and some applications built
onWormhole subsidize or automate these steps. Finality and latency
depend on the source chain’s block confirmation time, guardian
network processing, and delivery to the destination chain. As such,
it does not provide instant finality but is generally faster than
optimistic rollups that require challenge periods.

Wormhole connects a broad range of blockchains, including
Solana, Algorand, Near [65], Aptos [66], Sui [67], and CosmWasm
chains [68], aswell as EVM-compatible blockchains such as Ethereum,
Arbitrum, Avalanche, Polygon, Base [69], andOptimism. Thismakes
it one of the most widely integrated cross-chain messaging proto-
cols.

C.3 Celer cBridge
Celer cBridge offers two models for cross-chain asset transfers: a
liquidity-pool-based model and an OpenCanonical token bridging
model. In the pool-based model, liquidity providers lock assets into
pools on both the source and destination chains, allowing users to
swap assets between chains directly. In the OpenCanonical model,
token transfers follow a mint-and-burn approach. On the source
chain, tokens are locked in a smart contract called TokenVault,
initiating the bridging process. The trust set on the source chain
is 𝜏 = {SCs}, as users must rely on the correct execution of these
smart contracts.

The off-chain implementation Toff involves the State Guardian
Network (SGN), a Cosmos-based proof-of-stake blockchain built on
Tendermint. SGN acts as a validator and orchestrator of the bridge,
confirming transactions off-chain. Since SGN is a third blockchain
mediating between the source and destination chains, cBridge op-
erates as a sidechain-based bridge. The system’s trust assumptions,
therefore, include the consensus protocol of SGN, denoted ℜSC, as
well as the live correctness of validators (𝐿𝐶), message propagation
(𝑀𝑃 ), and the honest majority of SGN nodes (𝑁 ). The resulting
trust set is 𝜏 = ({𝐿𝐶,𝑀𝑃} ∩ {𝑁 }) ∪ ℜSC, characterizing cBridge
as a trust-minimized bridge relative to fully trusted notary-based
models.

After validation by SGN, the transaction is relayed to the Pegged-
Token contract on the destination chain, which mints pegged tokens
to complete the transfer. The destination chain’s trust set is again
𝜏 = {SCs}, as users rely on the correct behavior of the deployed
smart contracts.

An additional layer of optional security is available through an
optimistic-rollup-style model. In this mode, before SGN finalizes a
transfer, there is a buffer delay period during which transactions
can be independently verified. If inconsistencies are detected, the
transfer can be halted, offering an added layer of fraud prevention.

Fee and time considerations for cBridge vary by model and con-
figuration. Both xAsset (mint-and-burn) and xLiquidity (pool-based)
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bridges impose a base fee and a protocol fee. The base fee includes
the destination chain’s gas costs, while the protocol fee, which
ranges from 0 percent to 2 percent, depends on the source and
destination chains and the transfer amount. This fee compensates
SGN validators and stakers for securing the protocol.

cBridge currently supports a wide range of chains (41 at the time
of this writing), including Ethereum, Arbitrum, Avalanche, BNB
Chain, Celo [70], Polygon, and Fantom, among others.

C.4 Avalanche Bridge
The Avalanche Bridge is designed to enable fast, secure, and low-
cost asset transfers between Avalanche and external networks such
as Ethereum and Bitcoin. On the source chain, a smart contract
is invoked to initiate the bridging process, forming a trust set 𝜏 =

{SCs}, where users rely on the correct execution of the deployed
smart contracts.

The off-chain implementation Toff of the Avalanche Bridge is
distinctive and combines a committee-based relayer design with
hardware-based verification. A group of eight relayers, known as
Wardens, monitor on-chain events and submit signed messages
to a secure enclave powered by Intel SGX. This enclave, running
verified and attested code, acts as a trusted execution environment
that verifies the correctness of submitted data. Once at least six out
of eight Wardens agree on the same transaction, the SGX enclave
signs off on the transfer. This architecture introduces off-chain trust
assumptions, and the trust set satisfies 𝜏 ≠ {}, making Avalanche
Bridge a trusted bridge. Although the Warden set is geographically
and institutionally distributed, the need for a quorum and reliance
on Intel SGX introduces centralization risks in the event of collusion
or compromise.

On the destination chain, the implementation Tdest involves a
validator-controlled process. After off-chain validation, a smart con-
tract is called to mint the bridged tokens.While this minting process
is smart contract-based, finality is dependent on the decentralized
consensus of the underlying blockchain (e.g., Avalanche C-Chain),
where validators validate the resulting state. As this process is fully
decentralized, the trust set at this stage can be written as 𝜏 = {}.

Fee and time considerations vary depending on the asset and
direction of transfer. Transfers from Ethereum to Avalanche typi-
cally take around 15–20 minutes, while Bitcoin transfers may take
up to 1 hour due to Bitcoin’s block time. On the Avalanche side,
confirmations complete within seconds. ERC-20 tokens sent from
Ethereum to Avalanche incur a 0.025 percent fee (minimum USD
3, maximum USD 250), while USDC is charged at a reduced rate
of 0.02 percent (minimum USD 3, maximum USD 250). Bridging
WBTC or WETH from Ethereum to Avalanche incurs a flat fee
of USD 3. Transfers in the opposite direction, from Avalanche to
Ethereum, are charged a 0.1 percent fee (minimum USD 12, maxi-
mum USD 1000). WBTC and WETH offboarding carries a flat USD
20 fee. Native Bitcoin transfers to Avalanche incur a minimum fee
of approximately USD 3 in BTC and result in the minting of BTC.b
tokens. Returning BTC.b from Avalanche to the Bitcoin network
incurs a fee of approximately USD 20 plus Bitcoin miner fees, with
a minimum transfer threshold in place to ensure the transaction is
economically viable.

The Avalanche Bridge currently supports bi-directional cross-
chain transfers between Ethereum or Bitcoin and the Avalanche
C-Chain. ERC-20 tokens bridged from Ethereum are wrapped and
appear with a .e suffix (e.g., USDC.e, WBTC.e), while Bitcoin is rep-
resented as BTC.b. One exception is USDC, which now uses Circle’s
Cross-Chain Transfer Protocol (CCTP) and is natively burned and
minted on each side, removing the .e suffix. Avalanche-native as-
sets cannot be bridged to other chains using the Avalanche Bridge.

C.5 Multichain
Multichain, formerly known as Anyswap, presents itself as infras-
tructure for arbitrary cross-chain interactions. On the source chain,
the bridge locks the user’s assets in a smart contract that operates
under a Secure Multi-Party Computation (SMPC) scheme. This
smart contract is referred to by Multichain as a Decentralized Man-
agement Account, which securely holds assets during the bridging
process. The source chain trust set is 𝜏 = {SCs}, as users must trust
the correct behavior of this contract.

The off-chain implementation Toff relies on a network of SMPC
nodes, which collectively validate and sign transactions before
initiating actions on the destination chain. These nodes serve as
notaries in the bridging process, making the trust set 𝜏 ≠ {}, and
thus Multichain is categorized as a trusted bridge. Because the off-
chain signing controls minting and releasing assets, the integrity
of this notary network is critical to the bridge’s security.

On the destination chain, once a transaction is validated off-chain
by the SMPC network, a smart contract responsible for minting
wrapped assets is triggered. The tokens are minted 1:1 relative to
the assets locked in the Decentralized Management Account on
the source chain. The trust set on the destination chain is again
𝜏 = {SCs}, reflecting reliance on the execution of deployed smart
contracts. For reverse transfers, the wrapped token contract burns
tokens on the destination chain, and the SMPC nodes authorize the
release of the original assets from the source chain’s smart contract.

Fee and time considerations depend on the chain and transaction
size. For non-Ethereum chains, the cross-chain fee ranges from
USD 0.9 to USD 1.9. For Ethereum, a 0.1 percent fee applies, with
a minimum of USD 40 and a maximum of USD 1000. Minimum
transfer amounts are USD 12 for non-Ethereum destinations and
USD 50 when bridging to Ethereum. Maximum transfer size is
capped at USD 20 million, though transactions above USD 5 million
may incur delays of up to 12 hours.

Multichain supports a broad range of blockchains, including
Bitcoin, Litecoin [71], Blocknet [72], ColossusXT [73], Terra [74],
and many EVM-compatible networks such as Ethereum, Avalanche
C-Chain, Binance Smart Chain, Celo, Polygon, and Arbitrum. This
wide integration makesMultichain one of the most expansive cross-
chain bridges currently available.

Table 7 shows a connectivity matrix for major blockchains and
selected Layer-2 networks. Each cell is color-coded to indicate the
nature of the bridge connection (if one exists) between the row and
column blockchains: Trustless, Trust-Minimized, or Trusted. For
example, Rainbow Bridge connecting Ethereum and NEAR is trust-
less, while Binance Bridge (BNB Chain) and Polygon PoS Bridge are
trusted/custodial solutions. Cosmos IBC and Polkadot’s upcoming
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Table 7: Connectivity matrix of major blockchain networks
based on existing bridge protocols. Each cell indicates
whether a direct bridge exists and, if so, categorizes the bridge
by its trust model: TL: Trustless. Verification relies solely on
the blockchains’ own consensus (no third-party custodian),
TM: Trust-Minimized. Decentralized validators or bonded
operators secure the bridge (additional assumptions, but no
single custodian), and TR: Trusted. A custodial or centralized
entity/committee secures the bridge (users must fully trust
this intermediary).

Chains BTC ETH SOL AVAX ATOM NEAR DOT XRP XLM ALGO ADA ARB OP MATIC BNB

BTC – TM TM TM TM TL TL TM TR TL TL TM TM TM
ETH TM – TM TM TM TL TL TM TM TM TM TL TL TR TM
SOL TM TM – TM TM TM TM TM TM TM TM TM
AVAX TM TM TM – TM TM TM TM TM TM TM TM TM TM
ATOM TM TM TM – TL TM TM TM TM
NEAR TL TL TM TM – TM TM TM TM
DOT TL TL TL – TM TM TM TM TM
XRP TM TM TM TM – TM TM TM TM TM TM
XLM TM TM TM TM TM – TM TM
ALGO TR TM TM TM – TM TM TM TM
ADA TL TM TM TM – TM TM TM TM
ARB TL TL TM TM TM TM TM TM TM TM – TM TM TM
OP TM TL TM TM TM TM TM TM TM TM TM – TM TM
MATIC TM TR TM TM TM TM TM TM TM TM TM TM TM – TM
BNB TM TM TM TM TM TM TM TM TM TM TM TM TM TM –

Snowbridge are also designed to be trustless. In contrast, multi-
signature or externally validated bridges like Wormhole and Multi-
chain are trust-minimized (they decentralize validation but still rely
on additional trust assumptions beyond the base blockchains. Blank
cells indicate no widely used direct bridge between those networks.
All entries are based on up-to-date bridge protocols (e.g.,Wormhole,
Multichain, LayerZero, IBC, etc.) and public documentation of their
trust models.

D STATE-OF-ART FOR BLOCKCHAIN
BRIDGES

Blockchain interoperability has created an ecosystem of bridges
linking most L1 and L2 networks. For example, the Wormhole
protocol alone connects 23+ blockchains across six different smart
contract runtimes [75], and the Axelar network bridges over 40
chains [76]. In parallel, Ethereum serves as a hub in this web; many
chains deploy bridges to Ethereum to tap its liquidity and user
base. Even previously siloed platforms are integrating. For instance,
Cardano [77] has explored the Inter-Blockchain Communication
(IBC) Protocol [78] to join the Cosmos network.

D.0.1 Trust Models. Classic examples of trustless bridges fall into
two categories: L1-to-L1 bridges, such as IBC, and L1-to-L2 bridges,
such as in Arbitrum. On IBC channels, light clients on each chain
validate each other’s consensus state [79], so IBC’s security reduces
to the underlying chains’ security with no additional trusted parties
(native chain security). Rollup-based L1-to-L2 bridges fall into opti-
mistic and zero-knowledge-based bridges [80]. A zero-knowledge
rollup bridge includes a validity proof with every state update, so
Ethereum only accepts withdrawals with a valid proof, whereas
an optimistic rollup bridge relies on fraud proofs with a challenge
period. In optimistic rollup bridges, the bridge inherits the source
chain’s security and does not introduce new trust assumptions,
aside from at least one honest watcher in optimistic systems [81].

Indeed, industry analyses consider Ethereum’s rollup bridges (L1-to-
L2) among the most trustless interoperability solutions available [2].

Rollups cannot facilitate bridging between L1 chains with differ-
ent runtimes (e.g., Bitcoin and Ethereum). As a result, most L1-to-
L1 connectivity relies on trust-minimized intermediaries (i.e., net-
works of validators, relays, or oracles) that verify transactions across
chains. Users must trust that a majority of these actors behave hon-
estly, often incentivized through mechanisms like staked collateral
or slashing penalties. Examples include Axelar [82],Wormhole [28],
LayerZero [83], Multichain [3], and Celer’s cBridge [84]. These per-
missioned or federated bridges require a predefined set of entities
to authorize transfers and offer stronger assurances than single
custodians, but fall short of the security provided by native chain
verification. For instance, bridging assets from Ethereum to BNB
Chain [85] or Solana often involves a validator coalition verify-
ing the source chain deposit and minting a wrapped asset on the
destination chain.

At the far end of the spectrum are trusted bridges, which include
custodial bridges (e.g., wrapped Bitcoin via BitGo’s WBTC, where
a single custodian holds the asset reserve) and some early L1-to-L1
bridges run by a single team or exchange. A notable example was
Binance’s original bridge connecting Ethereum and BSC (BNB Smart
Chain) [86], essentially operated by Binance as a trusted custodian.
Similarly, the Ronin bridge for Axie Infinity (prior to its 2022 hack)
relied on just nine validators controlled by a single organization
(Sky Mavis) and its partners, effectively a federated multisig under
one entity’s control. Such trusted models have minimal decentral-
ization: users must trust that the custodian or signers will never
misbehave, as there are no protocol-level penalties or verifications
of their actions. While simple and fast to deploy, these bridges have
the weakest security guarantees and have often proven fragile un-
der attack, such as the Ronin bridge hack of 2022 (see Table 8). Even
when the underlying bridge technology is secure, adversaries may
compromise physical infrastructure to exfiltrate private keys.

Table 8: Documented security incidents and failures in cross-
chain bridge and routing architectures. Most attacks involve
violations of the cross-chain causality prior.

Bridge Architecture Type Date (↓) Loss (USD) Technique Violation Target Vector
Thorchain Sidechain/Relay 2021-06-29 140K False top-up Causality Source chain V3
ChainSwap Notary 2021-07-02 800K Contract vulnerability Consistency Source chain V3
ChainSwap 2 Notary 2021-07-11 4M Contract vulnerability Consistency Source chain V3
Multichain MPC (custodial) 2021-07-10 7.9M Private key compromised (Bad ECDSA) Causality Source chain V13
Thorchain 2 Sidechain/Relay 2021-07-15 7.6M False top-up Causality Source chain V9
Thorchain 3 Sidechain/Relay 2021-07-22 8M Refund logic exploit Causality Source chain V3
Thorchain 4 Sidechain/Relay 2021-07-24 76K Phishing attack Causality Off-chain relayer V23
Poly Network Notary 2021-08-10 611M Trusted state root exploit Causality Source chain V9
pNetwork Notary 2021-09-20 13M Inconsistent event parsing Consistency Off-chain relayer V6
Plasma Bridge Sidechain/Relay 2021-10-05 None Reused burn proof Consistency Destination chain V15
Optics Bridge Notary 2021-11-23 None Multi-signature permission vulnerability Causality Off-chain relayer V3
Multichain 2 MPC (custodial) 2022-01-18 1.4M Token contract vulnerability Consistency Source chain V3
Qubit Finance Relay 2022-01-28 80M Deposit function exploit Causality Source chain V3
Wormhole Validator-based 2022-02-02 326M Signature exploit Causality Destination chain V12
Meter Sidechain/Relay 2022-02-06 7.7M Deposit function exploit Causality Source chain V3
Ronin Sidechain 2022-03-23 624M Private key compromised (social engineering) Causality Off-chain relayer V13
Marvin Inu Custodial 2022-04-11 350K Private key compromise Causality Source chain V13
QANX Bridge Notary 2022-05-18 2.2M Deploy fake bridge contract onto BSC Consistency Source chain V3
Horizon Bridge Notary 2022-06-23 100M Private key compromised (unknown method) Causality Off-chain relayer V12
Nomad Relay 2022-08-01 190M Trusted state root exploit Causality Destination chain V10
Celer Sidechain/Relay 2022-08-18 240K DNS cache poisoning attack on frontend UI appprox Causality Off-chain relayer V23
Omni Bridge Notary 2022-09-18 290K Possible ChainID vulnerability Consistency Destination chain V15
Binance Bridge Custodial 2022-10-06 570M Proof Verifier Bug Consistency Off-chain relayer V9
QANX Bridge 2 Notary 2022-10-11 2M Weak address key vulnerability Consistency Destination chain V13
Thorchain 5 Sidechain/Relay 2022-10-28 None Network interruption Causality Off-chain relayer V17
pNetwork Hash-locking 2022-11-04 10.8M Misconfiguration of the pNetwork-powered bridge Consistency Token contract V3
Multichain 3 MPC (custodial) 2023-02-15 130K Rush attack Consistency Source chain V13
Dexible Trade router 2023-02-20 2M Unchecked destination address Consistency Source chain V5
Allbridge Sidechain/Relay 2023-04-02 570K Logic flaw in withdraw function Consistency Destination chain V2
Celer Hybrid 2023-05-24 None Double-voting vulnerability Causality Off-chain relayer V18
Poly Network Notary 2023-07-02 10M Private key compromised Causality Off-chain relayer V13
Poly Network Notary 2023-07-03 4.4M Compromised multisig Causality Off-chain component V13
Multichain 4 MPC (custodial) 2023-07-07 126M Compromised address Causality Off-chain component V13
Multichain 5 MPC (custodial) 2023-07-14 unknown State seized multisigs Causality Off-chain component V12
Shibarium L2 Sequencer Bridge 2023-08-17 None Frozen withdrawals due to L2 bug Causality Off-chain component V17
HTX MPC (custodial) 2023-11-22 12.5M Hot wallet compromised Causality Off-chain component V13
HECO Bridge MPC (custodial) 2023-11-22 86.6M Hot wallet compromised Causality Off-chain component V13
HYPR Network Sidechain/Relay 2023-12-13 220K Vulnerability in external code dependency Consistency Destination chain V7
Socket’s Bungee Aggregator (router) 2024-01-16 3.3M Compromised multisig Consistency Source chain V12
Alex Notary 2024-05-14 4.3M Compromised deployer Causality Source chain V12, V7
Lifi/Jumper Aggregator (meta-router) 2024-07-16 9.73M Buggy function Consistency Source chain V2
Ronin 2 Sidechain 2024-08-06 12M Whitehat MEV attack (parameter error in update) Causality Source chain V4
Feed Every Gorilla Notary (Wormhole-based) 2024-12-30 1.3M Message spoofing Causality Source chain V9

https://rekt.news/thorchain-rekt2
https://rekt.news/chainswap-rekt
https://rekt.news/chainswap-rekt
https://rekt.news/multichain-rekt2
https://rekt.news/thorchain-rekt2
https://rekt.news/thorchain-rekt2
https://rekt.news/thorchain-rekt2
https://rekt.news/poly-network-rekt2
https://rekt.news/poly-network-rekt2
https://rekt.news/multichain-rekt2
https://rekt.news/qubit-rekt
https://rekt.news/wormhole-rekt
https://rekt.news/meter-rekt
https://rekt.news/ronin-rekt
https://rekt.news/harmony-rekt
https://rekt.news/nomad-rekt
https://cointelegraph.com/news/celer-network-shuts-down-bridge-over-potential-dns-hijacking
https://chainbulletin.com/ethw-replay-exploit-caused-by-omni-contract-vulnerability
https://rekt.news/bnb-bridge-rekt
https://finance.yahoo.com/news/quantum-resistant-blockchain-qanplatform-suffers-121549717.html
https://rekt.news/thorchain-rekt2
https://rekt.news/poly-network-rekt2
https://rekt.news/multichain-rekt2
https://rekt.news/dexible-rekt
https://blog.solidityscan.com/allbridge-hack-analysis-improper-business-logic-564fbadf38b2
https://cointelegraph.com/news/jump-crypto-finds-double-voting-vulnerability-in-celer-s-sgn
https://rekt.news/poly-network-rekt2
https://rekt.news/poly-network-rekt2
https://rekt.news/multichain-rekt2
https://rekt.news/multichain-r3kt
https://rekt.news/shibarium-bridge-rekt
https://rekt.news/hecoi-htx-rekt
https://rekt.news/heco-htx-rekt
https://rekt.news/hypr-network-rekt
https://rekt.news/socket-rekt
https://cointelegraph.com/news/alex-bridge-bnb-drained-after-suspicious-upgrade-certik
https://rekt.news/lifi-jumper-rekt
https://rekt.news/roninnetwork-rektII
https://protos.com/feg-token-holders-in-despair-after-third-hack-causes-99-dump/
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D.0.2 Connectivity Trends. Appendix Table 7 shows the current
bridge topology with clear patterns. Ecosystems with homoge-
neous technology (e.g., shared virtual machine) use trustless native
bridges among themselves, whereas heterogeneous connections
(e.g., Bitcoin-Ethereum) gravitate toward trust-minimized hubs.
The Cosmos ecosystem is a prime example of the former: dozens of
Cosmos-SDK chains (e.g., Osmosis [87], Cosmos Hub, Cronos [88],
and Juno [88]) all interconnect via IBC channels with no external
mediators.

To bridge out to Ethereum and other ecosystems, Cosmos projects
deployed separate bridge modules and networks. For example,
the Gravity Bridge chain [89] and Axelar network act as Cosmos-
Ethereum L1-to-L1 bridges by having their validator sets observe
events on Ethereum and vice versa [90]. These are trust-minimized
solutions (essentially multisig validator bridges) added onto Cos-
mos to import assets like USDC, DAI, and WETH into the IBC
realm.

Ethereum and its orbiting chains illustrate a different connec-
tivity paradigm. Virtually every major L1 (Solana, BNB Chain,
Avalanche, Polygon, Fantom [91], etc.) has at least one bridge to
Ethereum, given the high value of assets and liquidity on Ethereum.
For example, Wormhole operates as a cross-chain message network
connecting Ethereum with Solana, BSC, Avalanche, Polygon, and
others, using a guardian consensus (a set of 19 nodes) to validate
transfers. When a user moves ETH from Ethereum to Solana via
the L1-to-L1Wormhole, the ETH is locked in aWormhole contract
on Ethereum, and a wrapped ETH is minted on Solana, based on
a signed attestation by the guardian network. This design is trust-
minimized (no single custodian, but users trust the majority of
guardians).

Other popular Ethereum bridges follow similar patterns: Mul-
tichain (Anyswap) uses a rotated set of Multi Party Computation
signers to custody and mint assets between Ethereum and EVM
chains; Celer cBridge uses a Proof-of-Stake validator set to over-
see transfers. In all these cases, Ethereum-to-L1 bridges tend to
introduce a separate middleware layer.

Outside the Ethereum/Cosmos spheres, other ecosystems have
pursued their own bridging approacheswithmixed strategies. Solana,
for instance, developed ties to Ethereum and others mainly through
third-party bridge networks. Wormhole’s origin was as the Solana-
Ethereum L1-to-L1 bridge (also known as Portal), and it remains
the primary connector between Solana and multiple other chains.

One constraint Solana faced is that its very high throughput
(2.9K - 65K tx/sec) and non-EVM-based execution environment
meant fewer independent bridge options. The ecosystem largely
relied on Wormhole, which introduced a single point of failure for
connectivity. Recent projects are working on light-client bridges
(e.g., using Solana’s clients), and even Cosmos’s IBC was adapted in
2023 to work from Solana via an adapter chain. However, Solana’s
cross-chain connectivity is primarily driven by multi-signature
bridge protocols rather than native, trustless channels. The BNB
Chain ecosystem likewise began with a highly centralized bridging
model. BNB Chain comprises a dual-chain system, consisting of an
application-focused Beacon Chain and an EVM-compatible Smart
Chain, bridged by the “Token Hub”. The BSC Token Hub initially
operated under the tight control of a few validators, as evidenced
by the fact that a successful attack in October 6, 2022 was able to

forge just two messages and mint 2 million BNB (see Table 8, an
exploit that even forced a temporary halt to the chain. In response,
BNB Chain has moved to increase the security of its bridges (e.g.,
raising multisig thresholds and improving key management) and
has also encouraged the use of external bridges.

Nowadays, BNB Chain is connected to Ethereum and others via
both Binance’s official L1-to-L1 bridge (still centrally governed) and
alternatives like Celer, deBridge [92], and LayerZero [83], which
are more decentralized. Nevertheless, BNB’s connectivity strategy
remains cautious: its native bridge prioritizes speed and user ex-
perience (at the cost of trust), whereas third-party solutions offer
decentralization but introduce dependency on external validator
sets. We observe a similar pattern in other ecosystems, such as Poly-
gon (the Polygon PoS bridge utilizes a 5-of-8 multisig to checkpoint
withdrawals, a somewhat trusted design, alongside newer trust-
minimized options) and Tron (which relies on custodial bridges
for assets like BTC/ETH via BitGo, or exchange-mediated trans-
fers). In contrast, Polkadot [93] takes a route closer to Cosmos: all
parachains in a Polkadot parachain cluster are natively interoper-
able via the XCM (Cross-Consensus Message) format [94], which
is “trustless and secure” for in-network messaging. Polkadot’s re-
lay chain ensures the validity of messages between parachains, so
within this ecosystem, cross-chain actions (such as token transfers
and remote contract calls) don’t require external trust. However,
bridging Polkadot to external chains still entails separate bridge
projects (often with their own validator sets or light clients). Efforts
are underway (e.g., Snowfork and Darwinia for Ethereum-Polkadot
L1-to-L1 bridges) to make those as trust-minimized as possible,
potentially even integrating light-client verification.

E DESCRIPTIONS OF †ATTACK VECTORS
In Table 2, we used † to indicate that these vulnerabilities only
apply under certain design conditions. We now elaborate on those
conditions.
V1: Fake Burn/Lock Proofs. Tokens are locked or burned on
the source chain, X, before minting can occur on the destination
chain, Y. A cryptographic proof sent from X to Y is required for
confirmation before minting can occur. This attack involves forging
the proof somehow to trick the Y chain into minting before any
proper burn or lock has actually happened.
V2: Malicious Transaction Modification. Transaction details
(addresses, number of tokens, gas fees, etc.) are sent from the source
chain to the destination chain during a transaction. Malicious trans-
action modification involves somehow intercepting this detailed
payload and asserting some fake payload. This can be done off-
chain with protocols that include some centralized sequencer, or
on-chain when the destination bridge is looking for the detailed
payload.
V3: Reentry Attack Occurs when some external function is called
multiple times before the initial execution has completed. This
attack vector was used in the famous DAO attack, where the token
minting was executed many times before the balance was checked
and updated.
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V4: Integer Overflow/UnderflowWhen overflow or underflow
remain unchecked, attackers can induce attacks by creating unex-
pected results. A wrap-around can also happen, where the maxi-
mum value can wrap around to the minimum value, or vice versa,
creating room for exploitation.
V5: Access Control Flaws Access control is very important in
maintaining control over a contract, and if unchecked, an attacker
can impersonate a contract owner and manipulate the entire con-
tract.
V6: Timestamp Manipulation A large number of blockchain
protocols require some timestamp with loose limits to allow for
network delays. These loose limits allow attackers to falsify times-
tamps that will still be considered valid by the protocol, leading to
vulnerable behavior in the protocol.
V7: Inconsistent Cross-Chain Transfers Bridges can implement
different methods for withdrawing and depositing, such as burning
when performing a withdrawal but minting on a deposit. When
these operations are different, attackers can take advantage of a
lack of one-to-one consistency.
V8: Replay Attacks Attackers can take a message in transit that
was validated, then delay and retransmit the original message in
order to assume validation but cause effects unintended by the
original message.
V9: Oracle Manipulation Oracles being used to provide data,
such as token pricing, can be points of vulnerability if an attacker
were to take control of the oracle and provide fake data, leading to
incorrect fees or token amounts during minting or burning. Oracles
can provide more data than just token prices, leading to more points
of possible attack.
V10: Consensus Failure Commonly referred to as a 51% attack,
if an attacker were to control 51% of the mining or staking power
(depending on the protocol) then that attacker would be able to
create a new chain segment that builds faster than the legitimate
chain. This control can lead to false transactions that could mint
tokens on other chains.
V11: Malicious Custodian Manipulation Custodial wallets are
commonly used to hold locked tokens or private keys via a cen-
tralized source. Compromising or maliciously colluding with this
custodial wallet leads to access of locked tokens, private keys, or
other sensitive data.
V12: Key Leakage / Private Key Theft Locked assets can exist
within bridges accessible by private keys and bridges themselves
can hold keys along with their controlling proxy contracts. Any
compromising of these keys through phishing or other targeted
attacks can create vulnerabilities, potentially giving an attacker full
control over a bridge.
V13: Race Condition AttacksA vulnerability is created when two
or more processes access the same data, such as when withdrawals
and deposits are processed without proper synchronization, and
conflicting transactions can occur.
V14: Unsafe External Call ExploitsWhen a smart contract ac-
cesses some external call to third-party contracts or off-chain con-
tracts, these new calls create vulnerability in their own code security
that can be exploited.
V15: Forged Account AttacksOccurs when an account or address
is deliberately created to impersonate the identity of another party.

This can lead to the redirection of tokens in a bridge structure if a
fake account is validated.
V16: Malicious Event Log Manipulation Key actions are logged
by smart contracts, typically off-chain. Falsification of the event log
can lead to relaying of some fake events that have not happened.
This results in tricking the chain into a false state.
V17: Denial of Service Attacks Bridge contracts can be flooded
with transactions and requests sent by an attacker, overwhelming
the bridge protocol and slowing processes for all transactions on
the bridge. This could potentially lead to the complete halting of a
bridge protocol.
V18: Arithmetic Accuracy Deviation Exact calculations are re-
quired to maintain consistency across chains. Tiny errors in integer
overflow or underflow can cause precision errors, leading to incon-
sistency between chain states.
Function Visibility and Modifier Use.

F DESCRIPTIONS OF HACKS AND ATTACKS
ON BRIDGES

In one of the earliest and largest bridge hacks, attackers exploited
a flaw in Poly Network’s cross-chain transaction handling contract,
“literally tricking the project to hack itself”. The Poly Network bridge
connected multiple chains, including Ethereum, BSC, Polygon, and
others. Its core contract (EthCrossChainManage) had an insecure
design: it could make an external call to an arbitrary target con-
tract with supplied data, without proper authorization checks. The
attacker crafted a call payload that misled the manager contract
into invoking Poly’s own storage contract (EthCrossChainData) and
updating the keeper of funds as if the attacker were the owner.
As a result, approximately $611 million worth of cryptocurrency
was drained from Poly Network in a single attack, with the hacker
subsequently returning the funds. The attack flow is illustrated in
Figure 4.
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Figure 4: Attack flow of the Poly Network exploit.

The Ronin bridge to Ethereum was victim to a validator key com-
promise in an attack now attributed to North Korea’s Lazarus Group.
Ronin used a 5-of-9 multisig validation for bridge withdrawals. At-
tackers compromised five private keys through social engineering.
Once in control, they issued two fraudulent transactions, draining
173,600 ETH and 25.5M USDC (worth approximately $624 million
at the time) from the Ronin bridge in a single stroke. This event,
the largest DeFi hack ever, was essentially a failure of the bridge’s
trust model: the off-chain validators were assumed honest, but the
minimal quorum and centralized key management (a single entity
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Table 9: Cross-Chain Bridge Implementations and Architecture

Bridge Source Chain (Asset Custody & Locking) Off-Chain Mechanism (Cross-Chain Validation) Destination Chain (Asset Release & Minting)

Allbridge Classic Smart Contracts – Assets locked in source-chain bridge contract2 Notaries/Relays – Small validator set observes lock and signs confirmations3 Smart Contracts – Target chain bridge contract verifies signature and mints tokens4

deBridge Smart Contracts – Gateway contract escrows assets5 Notaries/Relays – Decentralized validator committee signs off-chain6 Smart Contracts – Destination contract verifies signatures and releases assets7

Multichain Smart Contracts (MPC custody) – Deposited assets held by MPC-controlled vault8 Notaries/Relays – Multi-party computation (MPC) validators co-sign transactions9 Smart Contracts – Destination contract mints wrapped assets upon MPC authorization10

Wormhole Bridge Smart Contracts – Core contract locks assets or emits transfer message11 Notaries/Relays – Guardian network signs verified action approvals (VAA)12 Smart Contracts – Destination chain contract verifies VAA and mints assets13

Avalanche Bridge Validator Control – Ethereum escrow EOA with multi-sig custodian14 Notaries/Relays – Intel SGX enclave validators approve transactions15 Smart Contracts – Destination bridge contract mints assets upon SGX approval16

Ronin Bridge Smart Contracts – Ethereum bridge contract locks assets17 Sidechain – Ronin validators (5 of 9 required) approve transfers18 Validator Control – Ronin validators execute mint/burn on sidechain19

Wanchain Bridge Validator Control – Storeman group (25 nodes) holds escrow20 Notaries/Relays – Storeman nodes verify transactions using MPC21 Validator Control – Storeman group authorizes mint/release on target chain22

Connext Smart Contracts – NXTP protocol escrow locks tokens23 Relays – Liquidity routers observe lock and relay signed messages24 Smart Contracts – Destination contract releases assets using router liquidity25

Axelar Smart Contracts – Gateway contract on source chain locks assets26 Sidechain – Axelar validators reach consensus and use threshold cryptography27 Smart Contracts – Destination gateway releases tokens upon validator approval28

Binance Bridge Validator Control – Binance custodial wallet holds assets29 Notaries/Relays – Binance-controlled relay system detects deposits30 Validator Control – Binance mints BTokens pegged to locked assets31

Horizon Bridge Validator Control – 2-of-5 multi-signature custody on Ethereum32 Notaries/Relays – Federated validators approve transfers33 Validator Control – Multi-sig bridge mints tokens on Harmony34

BTC Relay Validator Control – Bitcoin transactions are verified by BTC Relay’s on-chain light client, but funds must be sent to an externally controlled address35 Light Client – BTC Relay runs a Merkle proof verification contract on Ethereum that allows Bitcoin transactions to be verified on-chain36 Smart Contracts – Ethereum contracts verify Bitcoin transactions and trigger asset issuance or validation37

zkBridge Smart Contracts – Source chain tokens are locked in a bridge contract before proof generation38 Light Client – zk-SNARK proofs verify block headers across chains without external validators39 Smart Contracts – Destination chain contracts validate proofs and mint or release tokens40

PeaceRelay Smart Contracts – Ethereum-based contracts escrow tokens and validate state transitions41 Light Client – Smart contracts maintain Merkle-Patricia proofs for cross-chain validation42 Smart Contracts – Contracts on Ethereum Classic or other chains verify proofs and mint assets43

Rainbow Bridge Smart Contracts – NEAR and Ethereum smart contracts escrow tokens and initiate cross-chain transfers44 Light Client – Each chain hosts a light client verifying the other chain’s consensus, eliminating external trust45 Smart Contracts – Contracts on NEAR or Ethereum validate and execute transactions upon light-client verification46

Cosmos IBC Smart Contracts – The IBC module in Cosmos SDK escrows assets and generates proofs47 Light Client – Chains run light clients of each other, verifying block headers using the Tendermint consensus48 Smart Contracts – The receiving chain validates IBC messages and mints corresponding assets49

Gravity Bridge Validator Control – Ethereum assets are locked in a Gravity.sol contract controlled by the Gravity Bridge validators50 Sidechain – Gravity Bridge validators observe Ethereum transactions and reach consensus on transfers51 Validator Control – Tokens are minted on Cosmos chains upon validator consensus52

zkRelay Validator Control – Transactions from PoW chains like Bitcoin are observed, with no native smart contracts on the source chain53 Light Client – zk-SNARKs are used to verify large batches of Bitcoin headers efficiently54 Smart Contracts – Ethereum or other chains verify the zk-proof and execute transactions accordingly55

Cactus Validator Control – A permissioned set of validators controls funds and relays messages56 Notaries/Relays – Cross-chain transactions are notarized by trusted relayers in enterprise settings57 Validator Control – The target blockchain executes transactions based on validator approvals58

Celer cBridge Smart Contracts – Liquidity pools and lock-mint contracts facilitate asset transfers59 Sidechain/Relayer Network – Celer’s State Guardian Network (SGN) validates transfers via PoS consensus60 Smart Contracts – cBridge smart contracts process releases based on SGN validators’ signed messages61

Orbit Bridge Validator Control – A federation of Orbit Chain validators governs asset custody62 Sidechain – Orbit Chain runs a dedicated blockchain that validates cross-chain transactions63 Validator Control – Assets are minted or unlocked on the target chain by Orbit validators64

controlled 4 of 9 validators) made it easy for an attacker to breach.
The breach went unnoticed for six days until a user discovered it.
Figure 5 summarizes the transaction flow of this exploit.
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Figure 5: Attack flow of the Ronin bridge exploit.

Wormhole’s Ethereum–Solana bridge was hacked for 120,000
WETH (worth $326 million) in a smart contract bug on the Solana
side.Wormhole relies on a set of guardian nodes to attest cross-chain
messages, generating a signed VAA (Verifiable Action Approval).
On Solana, a Wormhole program should verify guardian signatures
before minting new tokens. However, a critical mistake was intro-
duced in an update: the Solana verification function was using an
outdated system call for signature checks, effectively bypassing the
actual verification. The attacker discovered that they could sim-
ply fabricate a data account that pretended to be a valid signature
set, since the contract wasn’t actually validating the signatures
against the guardian keys. By exploiting this signature verification
bypass, the attacker called Wormhole’s complete_wrapped routine
on Solana to mint 120k wrapped ETH for themselves with no real
backing. The exploit structure is depicted in Figure 6.

Qubit Finance’s bridge between Ethereum and BSC was hit for
$80 million in an attack that abused improper input validation.
Qubit’s contract allowed users to deposit an asset on Ethereum
and mint a pegged version on BSC. The hack targeted the BSC
side’s deposit function: due to a logic error in a single overlooked
condition, the bridge’s smart contract did not verify that a call
to transfer ETH actually happened when a deposit message was
processed. In simpler terms, an attacker invoked the bridge deposit
with zero ETH but bypassed the intended failure check, tricking the
contract into believing collateral was provided. This exploit allowed

~$320–326 million USD in value stolen by spoofing guardian signatures to mint 
unauthorized wETH on Solana. The stolen funds were then bridged to Ethereum.
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Figure 6: Attack flow of theWormhole bridge exploit.

the attacker to mint limitless xETH (the bridged ETH on BSC)
without any real ETH locked on Ethereum. The exploit structure is
depicted in Figure 7.

The Qubit Finance exploit involved a vulnerability in the deposit function, 
allowing the attacker to mint unlimited xETH collateral without depositing ETH, 
resulting in the theft of $80 million in tokens.
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Day 0
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PancakeSwap
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Figure 7: Attack flow of the Qubit bridge exploit.

The Nomad bridge (connecting Ethereum with Moonbeam and
other chains) suffered a $190 million loss in one of the most chaotic
exploits to date. Nomad was an optimistic messaging bridge, mean-
ing it had a system of bonded updaters and a fraud challenge win-
dow. Unfortunately, after a routine smart contract upgrade, a critical
initialization bug was introduced: the Nomad Replica contract on
Moonbeam was set with a trusted root of 0x00. . . 00 (zero) by mis-
take, which immediately enabled every message to be accepted
as valid. Attackers quickly realized this and began submitting bo-
gus withdrawal messages to drain tokens. The incident became a
free-for-all: once the method was public, dozens of copycats (some
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white-hat, some black-hat) jumped in to also withdraw funds by
replaying the attacker’s transaction call data. The drain pattern
across wallets is illustrated in Figure 8.
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Figure 8: Attack flow of the Nomad bridge exploit.

Harmony’s Horizon bridge (connecting Harmony’s chain with
Ethereum) was hacked for about $100 million in assets, through a
straightforward attack on its 2-of-5 multisig validators. Similar to
Ronin, the attackers somehow obtained the private keys for at least
two of the five signer addresses that controlled the bridge. Figure 9
shows the flow of compromised validator-controlled funds.
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Figure 9: Attack flow of the Horizon bridge exploit.

An attacker exploited the Binance Smart Chain’s main bridge
(between BSC and its Beacon Chain) and managed to mint 2 million
BNB (≈ $586 million). The root cause was a bug in the light-client
based proof verification on the BSC side. The bridge used an inter-
nal light client (IAVL tree-based) to verify bridge messages. The
attacker created a fake proof for a past block that the BSC light
client would accept as valid, bypassing the normal transaction inclu-
sion checks. By forging this cryptographic proof, the attacker was
able to inject a malicious block update that instructed the bridge
to mint new BNB to their address. It was a complex exploit at the
cryptography/verification layer, essentially an attack on the con-
sensus verification between the two Binance chains. In response,
Binance halted the entire BSC chain for 8 hours to prevent the
attacker from moving more funds. A large portion of the illicit BNB
never left Binance-controlled wallets, limiting the realized theft
to around $100M. This incident revealed that even a seemingly
trustless bridge (a light-client-based one) can have implementation
flaws in its verification logic. The exploit structure is depicted in
Figure 10.
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Figure 10: Attack flow of the Binance exploit.

In mid-2023, the Multichain bridge (formerly Anyswap), which
linked over a dozen EVM chains, experienced a sudden breach
resulting in approximately $126 million in assets withdrawn. Subse-
quent investigation suggested a compromise of the project’s private
keys or server infrastructure. It came to light that all ofMultichain’s
critical MPC key shares were under the control of its CEO, who had
been detained by authorities in China. The attackers (or insiders)
managed to use these keys to authorize massive transfers from the
bridge’s liquidity pools on multiple chains. Essentially, this was an
insider compromise. The fallout also disrupted many linked chains’
assets and led to the project’s collapse. The fund outflow pattern
across chains is shown in Figure 11.
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Figure 11: Attack flow of theMultichain exploit.
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Following Ethereum’s transition from proof-of-work to proof-
of-stake, the OmniBridge was exploited in September 2022 using a
replay attack. Initially, the attacker sent 200 WETH using the Om-
niBridge on the Ethereum PoS chain. Since transaction format was
identical did not have chain ID verification, the attacker replayed
the same transaction on the EthereumPoW fork. OmniBridge failed
to distinguish between the two chains, therefore it processed the
transaction and then released 200 ETHW to the attacker again. This
exploit highlights the need for implementing strict chain ID valida-
tion during hard forks or network upgrades due to the possibility
of having identical transaction histories across chains.
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Figure 12: Attack flow of the Omni bridge exploit.

Smaller but instructive bridge attacks continued through 2024.
For example, Orbit Chain (Jan 2024) lost $10M when 7 of its 10
bridge validators were compromised, another case of federated
signer failure. An exploit in ALEX Bridge (May 2024) (connecting
Stacks to other chains) also occurred, reportedly due to a logic bug
in its code. These ongoing incidents show that despite industry
awareness, bridge security remains challenging.

STATIC CODE TABLE COLUMN DESCRIPTIONS
Tables 3, 4, and 5 summarize features of bridge smart contracts
extracted via static code analysis. Below, we define each column
and its relevance.

• Local vars: Number of local (function-scoped) variables,
indicating complexity of internal logic.

• Inheritances: Number of Solidity contracts inherited, re-
flecting code reuse or modularity.

• Modifier Count: Number of modifier constructs used to
restrict access or enforce invariants.

• RoleBased: Indicates whether role-based access control
mechanisms (e.g., AccessControl) are implemented.

• Standard Libs: Count of imported standard libraries such
as SafeMath or Ownable.

• LOC (Lines of Code): Number of non-comment, non-
whitespace lines in the source code.

• Total Lines: Full line count including comments and white-
space.

• Public / External / Internal / Private Funcs: Number
of functions by visibility. Public and external functions are
externally callable and represent direct attack surfaces.

• Global vars Declared: Number of state variables declared
at the contract level.

• Ext Funcs: Number of externally callable functions.

• Low-level: Number of low-level calls (call, delegatecall,
staticcall).

• Untrusted: Instances where the target of a low-level call
is not a hardcoded or trusted address.

• Reentry Guard: Presence of reentrancy protection (e.g.,
via the nonReentrant modifier).

• Require / Assert: Total number of require and assert
statements used for validation and safety checks.

• Custom Errors: Count of Solidity custom error definitions
used for gas-efficient error handling.

• Checks/Fn: Average number of require or assert checks
per function, used as a proxy for defensive programming
density.
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Table 10: Blockhain Bridge Exploits

Exploit Address Attack Name Attack Date Bridge Name Bridge Address

0xc8a...963 Poly Network Trusted State Root Exploit 1 2021-08-10 Poly Network EthCrossChainManager 0x144...88c
0x5dc...214 Poly Network Trusted State Root Exploit 2 2021-08-10 Poly Network EthCrossChainManager 0x144...88c
0x123...678 Multichain Rush Attack 1 2023-02-15 Multichain Router V4 0x6b7...522
0x9d5...b68 Multichain Rush Attack 2 2023-02-15 Multichain Router V4 0x6b7...522
0xefe...c88 Multichain Rush Attack 3 2023-02-15 Multichain Router V4 0x6b7...522
0x418...bb7 Multichain Rush Attack 4 2023-02-15 Multichain Router V4 0x6b7...522
0x622...ba0 Multichain Rush Attack 5 2023-02-15 Multichain Router V4 0x6b7...522
0x48b...537 Multichain Rush Attack 6 2023-02-15 Multichain Router V4 0x6b7...522
0x027...cd8 Multichain Rush Attack 7 2023-02-15 Multichain Router V4 0x6b7...522
0x489...bec Binance Bridge Proof Verifier Bug 2022-10-06 Binance Bridge Ethereum Contract 0x69F...66D
0x82f...677 Omni Bridge ChainID Vulnerability Exploit 2022-09-18 OmniBridge Multi-Token Mediator 0x88a...671
0xb5c...90e Nomad Trusted State Root Exploit 1 2022-08-01 Nomad BridgeRouter 0x88a...0a3
0x56D...4e3 Nomad Trusted State Root Exploit 2 2022-08-01 Nomad BridgeRouter 0x88a...0a3
0xBF2...179 Nomad Trusted State Root Exploit 3 2022-08-01 Nomad BridgeRouter 0x88a...0a3
0x0d0...d00 Horizon Bridge Private Key Compromised 2022-06-24 Horizon Bridge 0x2dc...857
0x098...f96 Ronin Private Key Compromised (Social Engineering) 2022-03-23 Ronin Bridge Vault (V1) 0x1A2...4F2
0x629...71a Wormhole Account Spoofing 2022-02-02 Wormhole Portal Token Bridge 0x3ee...585
0xd01...5c7 Qubit Finance Deposit Function Exploit 2022-01-28 Qubit QBridge (Ethereum) 0xD88...726
0x8c1...d62 Thorchain Private Key Compromised (Phishing Attack) 2021-07-24 THORChain Bifrost ETH Router 0xc14...2ce

https://etherscan.io/address/0xc8a65fadf0e0ddaf421f28feab69bf6e2e589963
https://etherscan.io/address/0x14413419452aaf089762a0c5e95ed2a13bbc488c
https://etherscan.io/address/0x5dc3603c9d42ff184153a8a9094a73d461663214
https://etherscan.io/address/0x14413419452aaf089762a0c5e95ed2a13bbc488c
https://etherscan.io/address/0x1234567890abcdef1234567890abcdef12345678
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x9d5765ae1c95c21d4cc3b1d5bba71bad3b012b68
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0xefeef8e968a0db92781ac7b3b7c821909ef10c88
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x418ed2554c010a0c63024d1da3a93b4dc26e5bb7
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x622e5f32e9ed5318d3a05ee2932fd3e118347ba0
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x48bead89e696ee93b04913cb0006f35adb844537
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x027f1571aca57354223276722dc7b572a5b05cd8
https://etherscan.io/address/0x6b7A87899490EcE95443E979ca9485cbe7E71522
https://etherscan.io/address/0x489a8756c18c0b8b24ec2a2b9ff3d4d447f79bec
https://etherscan.io/address/0x69F4201EE81d155971AcC695AE5963eE8798366D
https://etherscan.io/address/0x82faed2da812d2e5cced3c12b3baeb1a522dc677
https://etherscan.io/address/0x88ad09518695c6c3712AC10a214bE5109a655671
https://etherscan.io/address/0xb5c55f76f90cc528b2609109ca14d8d84593590e
https://etherscan.io/address/0x88a69b4e698a4b090df6cf5bd7b2d47325ad30a3
https://etherscan.io/address/0x56D8B635A7C88Fd1104D23d632AF40c1C3Aac4e3
https://etherscan.io/address/0x88a69b4e698a4b090df6cf5bd7b2d47325ad30a3
https://etherscan.io/address/0xBF293D5138a2a1BA407B43672643434C43827179
https://etherscan.io/address/0x88a69b4e698a4b090df6cf5bd7b2d47325ad30a3
https://etherscan.io/address/0x0d043128146654c7683fbf30ac98d7b2285ded00
https://etherscan.io/address/0x2dccdb493827e15a5dc8f8b72147e6c4a5620857
https://etherscan.io/address/0x098b716b8aaf21512996dc57eb0615e2383e2f96
https://etherscan.io/address/0x1A2a1C938CE3eC39b6D47113c7955BAa9DD454F2
https://etherscan.io/address/0x629e7da20197a5429d30da36e77d06cdf796b71a
https://etherscan.io/address/0x3ee18B2214AFF97000D974cf647E7C347E8fa585
https://etherscan.io/address/0xd01ae1a708614948b2b5e0b7ab5be6afa01325c7
https://etherscan.io/address/0xD88E328C305F541E2dE6d3C85Ed081653Cd8A726
https://etherscan.io/address/0x8c1944FAC705ef172f21f905b5523Ae260F76d62
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