arXiv:2507.06092v1 [cs.CR] 8 Jul 2025

Taming Data Challenges in ML-based Security
Tasks: Lessons from Integrating Generative Al

Shravya Kanchi*, Neal MangaokarT, Aravind Cheruvu®*, Sifat Muhammad Abdullah*,
Shirin Nilizadeh!, Atul Prakash!, Bimal Viswanath*
*Virginia Tech, TUniversity of Michigan, ¥The University of Texas at Arlington
*{shravya, acheruvu, sifat, vbimal} @vt.edu, T{nealmgkr, aprakash } @umich.edu, tshirin.nilizadeh @uta.edu

Abstract—Machine learning-based supervised classifiers are
widely used for security tasks, and their improvement has
been largely focused on algorithmic advancements. We argue
that data challenges that negatively impact the performance
of these classifiers have received limited attention. We address
the following research question: Can developments in Generative
Al (GenAl) address these data challenges and improve classifier
performance? We propose augmenting training datasets with
synthetic data generated using GenAl techniques to improve
classifier generalization. We evaluate this approach across 7
diverse security tasks using 6 state-of-the-art GenAl methods
and introduce a novel GenAl scheme called Nimai that enables
highly controlled data synthesis. We find that GenAl techniques
can significantly improve the performance of security classifiers,
achieving improvements of up to 32.6% even in severely data-
constrained settings (only ~180 training samples). Furthermore,
we demonstrate that GenAl can facilitate rapid adaptation to
concept drift post-deployment, requiring minimal labeling in the
adjustment process. Despite successes, our study finds that some
GenAl schemes struggle to initialize (train and produce data) on
certain security tasks. We also identify characteristics of specific
tasks, such as noisy labels, overlapping class distributions, and
sparse feature vectors, which hinder performance boost using
GenAl. We believe that our study will drive the development of
future GenAl tools designed for security tasks.

I. INTRODUCTION

The application of machine learning (ML) to counteract
cybersecurity threats is becoming increasingly prevalent. A
widely adopted approach involves creating ML-based security
classifiers through supervised learning to identify or categorize
threats. These classifiers serve to identify or categorize mali-
cious users or behaviors on online platforms [[108]], malicious
software [110], network breaches [71]], harmful network traf-
fic/devices/entities [96], [88]], software vulnerabilities [118]],
and web security hazards [[112]. These defense mechanisms
emphasize lowering error rates (false alarms), enhancing gen-
eralization to unfamiliar test scenarios, and adding robustness
against adaptive attackers. In pursuing these goals, primary
attention has been paid to addressing the algorithmic chal-
lenges, which pertain to developing effective ML models and
feature engineering techniques. However, the data challenges
that affect the practical effectiveness of these defenses have
received limited attention, resulting in significant limitations
in further advancing performance. Our examination uncovers
the following crucial data challenges in security (Section [II):
significant class imbalance, insufficient representation of at-

tack patterns, inadequate training samples, high-dimensional
features, and concept drift [[111].

In this study, we explore how recent advancements in Al
can alleviate data-related challenges to enhance classification
performance. This leads to our primary research inquiry: What
are the challenges and opportunities associated with employ-
ing Generative Artificial Intelligence (GenAl) to address data
challenges in machine learning (ML)-based security applica-
tions? GenAl models are capable of learning the distribution
of a dataset and generating varied synthetic instances [83]].
A pivotal concept is utilizing carefully crafted synthetic data
from GenAl to augment the existing training dataset of a
security classifier, thereby enhancing generalization capabil-
ities. Figure [1] (a) depicts the process of leveraging GenAl for
data augmentation to refine performance before the classifier’s
deployment. We specifically concentrate on tabular data tasks,
as this represents a prevalent methodology for developing ML-
based security classifiers. Examples of such tasks are presented
in Sections [and [Vl

Employing GenAl to tackle data challenges in security is
difficult for multiple reasons:

o Data synthesis in the security domain is inherently harder.
Unlike other domains, e.g., computer vision [67]], [69],
[22]], data in the security domain is inherently “adversar-
ial” and captures behavior of an entity aiming to evade
defenses. Thus, defenders typically have less knowledge
of attack data distributions than of benign data. A GenAl
scheme has to work with biased and limited attack data,
as well as data with noisy samples (erroneous labels).

o Existing state-of-the-art GenAl models for tabular data
are not tailor-made for security tasks. Several GenAl
models for tabular data have emerged recently, e.g.,
TVAE [106], CTAB-GAN+ [117], TabDDPM [57], Tab-
Syn [[115], REaLTabFormer [92] and GReaT [16]. No
study has systematically tested these GenAl schemes on
security tasks. It is unclear how these GenAl schemes (for
tabular data) can adapt to the data challenges in security.

o Instantiating a GenAl model for diverse security tasks
is challenging. Widely varying feature dimensionality,
multi-class settings, and class imbalances can raise scal-
ability issues or even model collapse during training.

o Existing GenAl schemes for tabular data do not offer
controlled data generation targeting specific regions of
data manifold. Uncontrolled data synthesis that simply

https://arxiv.org/abs/2507.06092v1

Real Real Augmented data

data samples AC) Train ‘ﬁﬁ
@ %
Security

@ classifier
Train Synthetic samples
GenAl
(a) Pre-deployment
Deployed + Drifting

security qj’ Drift detected from ’\'samples @
classifier
N performance drop b

GenAl
Train/update
security @ 4
classifier Sy et
EJ P m“"‘e Real samples 8
Augmen?éd data Real data

(b) Post deployment

Fig. 1: Overview of data augmentation using GenAl.

creates many samples broadly mimicking the real data
may not always alleviate complex biases within a class.

o A GenAl scheme for security should not only address data
challenges before deployment, but also after deployment.
Security classifiers are known to suffer from concept drift
due to adaptive attackers [6]. It is unclear how GenAl
schemes can help with recovery from concept drift with
minimal data labeling effort.

We perform the first systematic investigation to reveal the
difficulties and advantages of applying GenAl within our
specific problem domain. Our contributions are as follows:

o We start by highlighting key data challenges impacting
development of security classifiers. We review 35 papers
published in top security venues. We find 32/35 papers
report at least one data challenge negatively impacting
their classifier performance. We use our findings to select
7 security tasks suffering from these data challenges for
evaluation. This includes diverse tasks: malware classifica-
tion [IL10]], [S], [96], OS fingerprinting [48]], BGP hijacking
detection [97], Tor-based malware traffic detection [31]], and
web cookie privacy classification [[15].

o We present the first systematic study of the effectiveness
of SoTA GenAl schemes (designed for tabular data) to
address data challenges and boost performance of security
classifiers. We evaluate 6 SoOTA GenAl schemes on our 7
security tasks. This includes GenAl models based on VAE,
LLM, GAN and Diffusion models. We use synthetic data
from GenAl schemes to augment training data for security
tasks and boost performance.

e We identify a missing capability in existing GenAl
schemes (for tabular data)—none provide any control to
target specific regions of the data manifold to alleviate
complex biases. To fill this gap, we propose Nimai, a
novel VAE-based scheme, which uses a discrete latent space
to enable controlled sample-conditioned generations. Given
an existing sample, Nimai can generate samples in its

vicinity, providing more fine-grained control to the defender
to address bias issues. Our analysis shows that carefully
crafted synthetic data improves classifier generalization by
mitigating biases in the data.
e Our analysis identifies both significant opportunities and
challenges with using GenAl.
Opportunities before deployment: This part focuses on
mitigating data challenges before deployment of the classi-
fier. We measure the performance gain (or degradation) from
data augmentation compared to using only real training data.
We obtain two key findings: (1) Existing GenAl schemes,
among TVAE, CTAB-GAN+ and TabDDPM demonstrate
performance improvement in 2 to 4 tasks, e.g., with up to
14.8% gain in the BGP hijacking detection task. (2) Our
new scheme, Nimai which offers highly controlled data
generation, achieved the best performance gain in 3/4 tasks.
In an extremely data-challenged BGP hijacking detection
task (< 200 training samples), Nimai outperformed all base-
lines with up to a 32.6% gain. Our findings demonstrates
the significant untapped potential of GenAl in security.
Opportunities after deployment: We evaluate the potential
of GenAl schemes in augmenting data to rapidly recover
from concept drift scenarios, i.e., after deployment. When
drift occurs in testing data, significant labeling effort is
required to update the classifier based on the drifted set. We
design a hybrid approach using Nimai that combines both
controlled (sample-conditioning) and uncontrolled (class-
conditioning) data synthesis schemes to generate samples.
Using this hybrid approach, synthetic samples can be rapidly
generated using only a few labeled samples. Figure [I] (b)
illustrates the application setting. Using a case study of
Portable Executable (PE) malware classification, we show
Nimai can quickly recover from concept drift with up to
60.4% boost in performance by only labeling as few as 64
new samples, once drift is detected.
Challenges: Our analysis also revealed significant chal-
lenges with using GenAl: (1) We discover fundamental
challenges with instantiating (training and generating data)
existing GenAl models on our diverse tasks. 5/6 existing
GenAl schemes failed to instantiate in at least one of
the 7 tasks. For example, the LLM-based GenAl scheme
called GReaT [16] failed to generate data in 6/7 tasks due
to scalability issues. (2) We identify 3 tasks with shared
challenges of limited or biased data, and added complexities
for GenAl: noisy labels, sparse features, and class overlap.
Most GenAl schemes, including our new approach, fail to
improve performance, highlighting key directions for future
work.

We anticipate that our findings will lead to the creation of
a GenAl tool specifically designed for security classification
tasks, effectively tackling all the challenges we highlighted.
In Section [[X] we outline several specific directions for future
work. We will make all our code and datasets accessible to
the community.

II. DATA CHALLENGES IN SECURITY DEFENSES

We conduct a study to characterize data challenges faced
by researchers in ML-based cybersecurity tasks. We review
35 papers [/ published in leading venues (e.g., IEEE S&P,
USENIX Security and IMC) that developed at least one
security classifier. The articles are semi-automatically selected
based on their relevance to ML in security researchE]

We find that 32/35 articles explicitly reported at least one
data challenge that negatively affected classifier performance.
We identify the following broad data challenges:

1) Limited or biased training data (20/35 papers).
includes the following subcategories:

a) Imbalanced class distribution (10/35 papers). Certain
classes in the training set have a disproportionately lower
number of samples compared to others, which degrades clas-
sifier performance [25], [84], [105], [1O], [15]. In security,
commonly, the “attack” class has limited samples compared
to the benign class, e.g., for malware detection, due to the
challenges in sourcing attack data.

b) Under-represented in-class attack patterns (9/35 papers).
Training dataset lacks enough instances of the different attack
patterns that may arise [108]], [47], [84]], [51], [42]. Under-
represented regions can exist within a class.

c) Insufficient number of samples to fit a high-quality
classifier (8/35 papers). Labeling or feature extraction pro-
cesses are expensive in terms of computing effort, human
effort (requires domain expertise), or other required resources.
This is especially true in security where domain expertise is
required to analyze software binary or run-time behavior to
assign labels. This limits the amount of data collected to train
an effective classifier [85]], [51], [32], [98], [[L18].

d) High dimensionality of features (3/35). As feature size
increases, the number of samples needed for training increases
exponentially, due to the ‘curse of dimensionality’ [[12]. Such
tasks tend to underperform, when the training data is lim-
ited [108], [LL1], [75].

2) Concept drift (14/35 papers). The classifier generalizes
poorly to a test set distribution that has evolved and “drifted”
away from the training distribution. Attackers are known
to adapt over time to bypass defenses, leading to concept
drift [S10, [42], [111], [112], [10].

3) Adversarial examples (6/35 papers). Attackers exploit
a core vulnerability of ML models by perturbing samples
in the problem space (e.g., the malware binary to bypass
classifiers) [20], [32]], [19], [49], [[15]. For example, Pierazzi et
al. [[78] identified problem-space transformations for Android
malware to create evasive malware samples. Training data
lack samples that capture such adversarial behavior, leading
to degraded performance against adversarial inputs.

In this work, we focus mainly on addressing the challenge
of limited or biased training data, which is the most common
challenge in our measurement study (Sections [VII). In addi-
tion, we explore some preliminary directions to rapidly recover

This

IListed in Appendix Table [VIII
2Qur paper selection methodology is detailed in Appendix Section

from concept drift (Section [VIII). We leave the problem of
adversarial examples for future work.

III. BACKGROUND AND RELATED WORK
A. Problem setting and threat model

Security tasks and tabular data. We study ML-based
security classification tasks that use tabular data. Our analysis
in Section [found that 28/35 articles utilize tabular data for
ML-based security classification, highlighting its prevalence.

A tabular data sample can include p continuous random

variables: ci,...,c, and/or ¢ discrete (multinomial) random
variables dy, ..., d, that follow an unknown joint distribution.
All training/validation/testing samples are encoded as tabular
features. This is usually done by transforming the data from
the problem space (original input space), such as a malware
binary, into the feature space, e.g., a tabular feature, via static
or dynamic analysis of the malware binary. We explore GenAl
techniques that operate in a tabular feature space for training
and generating data. Our focus is on supervised classifiers that
need labeled datasets, covering binary and multi-class tasks.
Tabular data can represent ‘attack’ and ‘benign’ samples, e.g.,
malware binary vs benign binary, or only attack samples, e.g.,
malware family attribution. Any ML model is applicable for
classifier development.
Defender and threat model. The defender builds an ML-
based security classifier to counter a cybersecurity threat. The
task suffers from one or more of the data challenges discussed
in Section [[Il The defender has access to a dataset to train and
validate the performance of the security task. The existing
training dataset is called the real dataset. Defender aims to
use a GenAl tool to improve the performance of their security
classifier before deployment and to maintain the performance
after deployment, by updating the model over time. The GenAl
tool is trained on the real data and then used to augment the
real dataset with synthetic data to mitigate data challenges.

Prior work has mainly studied privacy-preserving synthetic
data generation for ML tasks [93], to facilitate open data
sharing while balancing privacy and utility.

However, privacy is not the focus of this study due to the
substantial challenges in improving and sustaining classifier
performance, with data sharing being a non-goal. We see it
as complementary and a potential avenue for privacy-focused
research.

B. Research questions

Our contributions are based on the following key questions:

1) What are the challenges with instantiating a GenAl
model (designed for tabular data) to generate synthetic
data for diverse security tasks? Extremely skewed and
limited real data can present various challenges in training
a GenAl tool and generating effective synthetic samples.
For example, models can fail to train and converge, result
in model collapse during training, or generate poor-quality
synthetic samples. Incorrectly estimated hyper-parameters can
also derail the GenAl training process. Note, we consider
SOTA GenAl tools for tabular data, comprising of diverse

models, based on Diffusion, LLMs, GANs and VAEs. Our
analysis highlights the effectiveness of diverse model families
to learn complex security data distributions.

2) Can generating synthetic data using existing SOTA
GenAl tools, and training a classifier on the augmented
data boost the performance, compared to training only on
real data? We investigate the potential of the existing SOTA
GenAl tools (designed for tabular data). We hypothesize that
complementing real data with synthetic samples created using
advanced GenAl tools can improve classification performance.

Note that existing GenAl tools are not tailor-made for
security tasks, and no study has systematically tested these
SOTA GenAl tools for security tasks. We also compare GenAl
tools with traditional data augmentation strategies such as
SMOTE.

A reasonable question about our approach is how GenAl can

help when training data is biased/limited. Our insight is that
GenAl models that incorporate certain strategies can be trained
on biased data to still produce effective synthetic samples.
For example, we evaluate CTAB-GAN+ [117], a GAN-based
GenAl scheme. CTAB-GAN+ uses strategies to prioritize
more occurrence of rare samples (e.g., underrepresented attack
patterns) in training set. It also uses special loss terms to
weight rare samples during training. Conditional vectors are
also used to guide the generator to generate synthetic samples
for a specific class. Similarly, VAE-based GenAl models
which use powerful priors over the latent space [94], [34],
[56], can produce realistic variations of rare samples in the
training set. That said, we do not expect all GenAl schemes to
handle biased datasets equally well. Therefore, our work aims
to provide a balanced perspective—both opportunities and
challenges with using GenAl for security data augmentation.
3) Can highly controlled synthetic data generation provide
performance improvements for security tasks? Exist-
ing GenAl tools provide limited control over the generation
process—methods only allow generation conditioned on a
class label. Such an uncontrolled synthesis that broadly mimics
the real data is unlikely to capture complex biases within a
class. We propose a novel GenAl scheme named Nimai that
uses a VAE to facilitate highly controlled data generation.
Conditioning on real samples, the tool provides greater control
to correct biases and improve generalization.
4) Can synthetic data from GenAl tools help with rapidly
recovering from concept drift scenarios after deployment?
We leverage our controlled data synthesis tool, Nimai to enable
fast recovery from concept drift scenarios. Given a limited
number of labeled samples from the drifted distribution, Nimai
can generate new synthetic samples that capture the drift. We
study the efficacy of this rapid recovery.

C. Related work

Synthetic data for security. Compared to other domains,
limited work in security has used GenAl tools for data aug-
mentation to improve performance. We do not target privacy-
preserving data synthesis. Security work using synthetic data
can be categorized as follows: (1) Data augmentation using

GenAl methods that are tightly integrated with the classifier.
This includes work by Jan et al. [49], where they developed a
GAN-based data augmentation scheme for web bot detection.
Xu et. al [109] developed a VAE-based data augmentation
scheme for intrusion detection. VGX [73] use LLMs to
generate textual features retrieved from code samples to boost
the performance of software vulnerability detection systems.
These methods are tightly coupled with the security classifier
and are harder to generalize to other tasks. (2) Off-the-shelf
use of GenAl models from vision. Instead of using GenAl
models designed specifically for tabular data, researchers have
applied GAN models from the vision domain for malicious
traffic detection [43], [[70]. (3) GenAl methods to generate
time-series data. Gong et. al [37/]] designed a GAN to create
time series data for website fingerprinting detection. Taylor
et. al [95] generate attack data by performing perturbations in
the time series sequences for Controller Area Network attacks.
STAN[107] is a Gaussian Mixture Model proposed to generate
multivariate time series network traffic data for cybersecurity
tasks.

(4) Methods like SMOTE. Prior work extensively uses

simple linear interpolation strategies to create synthetic data,
including the SMOTE family and its variants [18]], [S8]], [45],
[59]. Methods like SMOTE are known to perform poorly on
high-dimensional tasks [14], common to security. We compare
GenAlI with SMOTE-based methods.
Synthetic data in other domains. Computer vision domain
has well-established pipelines for data augmentation that are
built into popular ML frameworks [1]. This includes im-
age transformation schemes (e.g., cropping, rotation). Qui et
al. [79] apply image transformation-based data augmentation
to protect DNNs from backdoor attacks in computer vision
tasks. Generative models such as GANs have been extensively
used to improve performance of image classifiers, in the
fields of agriculture [67]], medicine [22] and robotics [69].
The networking community has done work to synthetically
generate CDN caches [81], BGP network configurations []]
and network traffic [66], [113], [50].

IV. DATA-CHALLENGED SECURITY TASKS

To address Section s research questions, we select 7 ML-
based security classification tasks. This includes 3 binary and
4 multi-class classification tasks. These tasks were selected
because they (a) use tabular data for learning, (b) demonstrate
degraded classification performance, (c) exhibit one or more
of the data challenges identified in Section and (d) have
publicly released data and source code, allowing us to repro-
duce their work. All 7 tasks use real-world threat data, and not
synthetic data, making our findings applicable to real-world
scenarios.

We highlight two more points about these tasks: (1) Most of
these are recently studied security tasks, i.e., 6 out of 7 studies
were conducted in the last 3 years. (2) We follow the orig-
inal authors’ recommended classification schemes. Notably,
traditional ML models (e.g., tree-based) often outperform
deep learning in these security tasks. Recall that improving

performance by using more advanced ML schemes is not our
focus. Table [summarizes the tasks.

BGP [97]]. A binary classification task, in which Autonomous
Systems (AS) are classified as either serial hijackers or non-
hijackers. Serial hijackers are adversaries that exploit vul-
nerabilities in the BGP protocol to repeatedly hijack ad-
dress prefixes over a long period for malicious purposes.
Each data sample contains 52 features covering 8 categories,
e.g., prefix origination behavior, prefix visibility, longevity
of prefix announcements, and address space fragmentation.
This is an extremely data-challenged task that suffers from
limited or biased training data challenges (a)-(c) (Section [II).
The dataset includes just 17 serial hijacker samples and 163
benign samples, used to train an Extremely Randomized Trees
classifier [36]. The model achieves only a 60.5% F-score on
the attack class. We focus our evaluation on this class, since the
benign class already yields a high F-score of 98.53%, leaving
minimal room for improvement.

Tor [31]. A binary classification task that labels network traf-
fic as either Tor-based malware or benign. This is developed
using a 175 sized feature vector based on website fingerprint-
ing features from Haze et al. [44], capturing connection-level
traffic characteristics e.g., packet ordering statistics.

The training dataset has 1,183 malware and 6,932 benign
samples used to train an XGBoost classifier which achieves
only a 43.9% F-score on the attack class. However, like the
BGP task, we focus on the attack class since the benign class
F-score class is already high 96%. This task suffers from
limited or biased training data challenges (a)-(c) (Section .

IoT [96]]. A binary classification task to distinguish between
cryptojacking malware and benign applications using features
extracted from IoT device network traffic streams.

Each data sample comprises 273 tabular features extracted

from time-series using tsfresh [23]. The training set contains
1,116 malicious and 42,750 benign samples. Four classifiers
i.e., a Logistic Regression, Gaussian Naive Bayes, Support
Vector Machine and K-Nearest Neighbors are trained to report
an average performance. We focus on the Logistic Regression
model for simplicity, which achieves a macro F-score of
74.16%. This task also suffers from the limited or biased
training data challenges (a)-(c) (Section .
Cookie [15]. A multi-class classification task which classi-
fies website cookies into 4 privacy invasion categories (as per
GDPR regulations). Each sample comprises 1,689 features that
characterize several cookie properties such as name, domain,
path, expiration timestamp, and flags such as ’HttpOnly’
and 'HostOnly’. The original dataset contains 89k, 70k, 46k,
and 15k samples across the classes, for which the authors
emphasize the high human effort in labeling. To reduce
computational effort, we use a random sub-sample of 8.4k,
6.6k, 4.4k, and 1.4k samples per class. These samples train an
XGBoost classifier, yielding a macro F-score of 71.8%. This
task suffers from limited or biased training data challenges (a),
(d) (Section [M).

MS-Malware [3]. A multi-class classification problem,

Task Features Number of samples |Class F-score
Train | Valid| Test | size
BGP s2 | 180 | 60 | 19,103 | 2 [60.5%
Tor 175 | 8,115 (2,706| 4420 | 2 | 43.9%
IoT 273 [43.866(2,309| 13,128 | 2 | 74.16
Cookie 1,689 [21,046|1,108| 55381 | 4 | 718
MS-Malware| 1,804 | 434 (8260 2,174 | 9 | 84
BODMAS | 2831 | 752 | 190 |Table[x1] 5 | Fig]
nPrintML | 4,169 | 8271|436 | 3732 | 13 | 755

TABLE I: Performance and data statistics for the 7 security
tasks. F-score is reported after data normalization. * indicates
F-score for only malicious class. Test set statistics and macro
F-scores across 12 BODMAS months are presented in Ta-
ble [XI| (Appendix) and Figure [2} respectively.

where malware files are classified into one of 9 classes,
originally from a 2015 Kaggle competition [2]]. As per the
winning team’s approach [S]], each data sample comprises
1,804 features representing the outputs of a hex-dump and
disassembled files.

Ahmadi et al. [5] achieve a 98% macro F-score with an

XGBoost classifier using the entire training set of 10,868
samples, leaving minimal room for improvement. We induce a
data-challenged setting by using only "4% of the dataset (434
samples) for training. An XGBoost classifier trained on the
updated dataset achieves a lower macro F-score of 84%. The
task suffers from limited or biased training data challenges (a),
(b) and (d) (Section [I).
BODMAS [110]. A multi-class classification problem where
portable executable (PE) files collected over a period of 13
months are classified into one of 40 malware classes. Each
sample comprises of 2,831 statistical features extracted using
LIEF feature extractor [99]. A Gradient Boosted Decision Tree
(GBDT) classifier is trained on the first month’s data and tested
on the next 12 months. We observe that only 5 of the 40 classes
show significant performance degradation. Thus, our analysis
focuses on these 5 classes. The updated training set includes
49 to 367 samples per class, totaling 752 samples. As shown in
Figure 2] performance drops notably in months 5 and 6. This
task suffers from limited or biased training data challenges (a),
(b), and (d), as well as concept drift (Section [II).

Macro F Score

| | | | | | | | | | | |
1 23 456 7 8 9101112
Testing Month

Fig. 2: Macro F-score for BODMAS classifier.

nPrintML [48], [88]. A multi-class classification of network
traffic originating from one of 13 operating systems (OS)

for intrusion detection. Using the nPrintML framework [48]],
raw traffic is converted into tabular form, and AutoML [46]
suggests a classifier. Each sample includes 4,169 binary fea-
tures indicating the presence or absence of protocol fields
and payloads. The training set contains between 289 and
689 samples per class, totaling 8,271 samples. An AutoML-
selected Light Gradient Boosted Machine (LGBM) classifier
is trained, achieving a macro F-score of 75.5%. This task faces
limited or biased training data challenges (a), (b), and (d)

(Section [M).
V. DATA AUGMENTATION TECHNIQUES

To perform data augmentation using synthetic data, we use
state-of-the-art GenAl tools and propose a new GenAl scheme
called Nimai. We also consider traditional (non-GenAl) data
augmentation tools.

A. Augmentation strategy

All the tasks chosen for our analysis have imbalanced
class distributions. We use a simple strategy for data
augmentation—we balance out the class distribution, i.e., we
generate enough synthetic samples for all the minority classes,
until they match the size of the largest class. This class-
balancing augmentation strategy can be implemented by gen-
erating synthetic samples in 2 ways: (1) Class-conditioning:
In this case, the data synthesis tool provides an explicit
mechanism for conditioning on the class label while generating
samples, or we resort to rejection sampling [13], until we
obtain enough samples for each class. All the existing GenAl
schemes use this method. (2) Sample-conditioning: Sample-
conditioned techniques generate synthetic data by sampling in
the vicinity of an existing data sample in the training set (i.e.,
real samples). The generated sample is assigned the same label
as the conditioned sample. Our new GenAl scheme, Nimai can
perform both sample and class conditioning.

B. Existing GenAl tools for tabular data

We describe each GenAl scheme used in our study. The
implementation details are in Section |C| (Appendix).

TVAE [106]. TVAE is based on a Variational Autoencoder
and uses a class-conditional sampling technique. Specifically,
TVAE comprises an encoder network that maps to a lower-
dimensional latent space, and a decoder network that maps
back to the feature space. TVAE uses special data processing
schemes to handle tabular data challenges. To handle mul-
timodal continuous-valued columns, TVAE uses Variational
Gaussian Mixture (VGM) models [13] to estimate modes
and fit a Gaussian mixture. To generate a synthetic sample,
a TVAE samples from the latent space and feeds this sample
through the decoder. TVAE does not natively support class-
conditional sampling, i.e., generating synthetic data from a
specific class. As such, we employ rejection sampling [13] to
obtain samples for any given class. We disregard another VAE-
based generator [27] as it is limited to binary classification.
CTAB-GAN+ [117]. CTAB-GAN-+ is based on a Conditional
Generative Adversarial Network (cGAN) and uses a class-
conditional sampling technique. CTAB-GAN+ belongs to a

series of GAN-based techniques proposed for synthetic tabular
data generation [106], [40l], [116]. Specifically, it comprises
generator and discriminator networks as part of a GAN [38]].
Akin to image generation, CTAB-GAN+ uses Wasserstein
distance with gradient penalty as loss [40] term to improve
training stability for underrepresented sample patterns. Also,
it uses training-by-sampling method to over-sample rare data
points in the training batches for their emphasized learning. To
generate a synthetic sample, CTAB-GAN+ randomly samples
from a Gaussian distribution, and feeds this sample through
the generator. Continuous features are processed using the
same approach as used by TVAE, i.e., mode-specific nor-
malization [[106]]. Unlike TVAE, CTAB-GAN+ supports class-
conditional sampling using a class conditional vector to guide
the generator. We use CTAB-GAN+ because it outperforms
other GAN-based tabular data generators [106], [40], [L16]].

TabDDPM [S7]. TabDDPM leverages a Diffusion model and
uses a class-conditional sampling technique. It comprises a
network that progressively denoises Gaussian-corrupted sam-
ples as part of a reverse Markov process. For generation, it
samples randomly from a Gaussian distribution and recursively
feeds this sample through the network. TabDDPM performs
hyperparameter search for optimal architecture parameters.

TabSyn [115]. TabSyn leverages a VAE in conjunction with
a Diffusion model operating in the VAE latent space and
uses a class-conditional sampling technique. To generate a
synthetic sample, TabSyn draws from a Gaussian distribution
and passes it through a Diffusion model to obtain a VAE latent
space sample, which is then decoded using the VAE’s decoder.
TabSyn does not natively support class-conditional sampling.
Like TVAE, we use rejection-sampling to obtain samples for
the required class. TabSyn outperforms other Diffusion-based
tabular data generators, i.e., CoDi [61]] and STaSy [55].

GReaT [16]. GReaT leverages an LLM for tabular data
generation. Specifically, GReaT encodes tabular features to
natural language text representation for autoregressive lan-
guage modeling with an LLM. During training, a pretrained
LLM (distilGPT-2 [83])) is fine-tuned on the encoded textual
data. To generate a synthetic sample, GReaT encodes feature
names or values and autoregressively samples the remainder
values as text, then decodes it back to the tabular space. In
theory, GReaT can generate synthetic samples by conditioning
on any field of the feature vector. However, it does not propose
a method for targeted conditioning—i.e., generating samples
in the vicinity of certain samples. Thus, we condition only on
the class field for class-conditioning, and treat GReaT as a
class-conditional approach in our evaluation.

REaLTabFormer [92]. REalLTabFormer (like GReaT) fine-
tunes a pre-trained LLM (e.g., GPT-2) to generate realistic
tabular data. Continuous features are encoded as fixed-length,
sub-columnar string tokens mapped to a unique vocabulary.
Training employs early stopping based on similarity between a
held-out validation set and synthetic samples to prevent over-
fitting. During generation, output is constrained to generate
tokens belonging to the tokens in the training vocabulary, and

class-conditional sampling enables controlled data generation.
Other LLM-based generators were not considered because
CLLM [86] is proposed for datasets under 100 samples, and
TabMT [39]] did not make the code available.

C. Traditional data augmentation tools

We select two off-the-shelf non-GenAl baseline methods for
comparison. These “traditional” approaches use rule-based
techniques to weight existing samples and augment data under
specific constraints. Implementation details are provided in
Appendix Section

SMOTE [18]. SMOTE is a popular sample-conditioned
technique that leverages linear interpolation between samples.
Specifically, given an existing data sample from the real
dataset, it generates synthetic data by sampling along the
lines that connect the sample to its k-nearest neighbors.
SMOTE does not scale well to high-dimensional imbalanced
datasets [14]]. A plethora of methods build on SMOTE [335].
DeepSMOTE [26] uses a latent-space interpolation via an
encoder-decoder, but supports only image data, making it un-
suitable for tabular tasks (Appendix [D)). Despite its limitations,
we include SMOTE for comparison, as it remains the most
widely used data augmentation method [335].

MC-CCR [58]. MC-CCR is a sample-conditioned technique
with specific adaptations for the multi-class setting. Before
generating synthetic data, MC-CCR performs a “cleaning”
stage, where samples with “wrong” labels are repositioned by
moving samples from other classes which are close to samples
of the target class. Re-positioning is achieved by translating
the mislabeled samples to the surface of a sphere around
it. If many wrong labeled samples are re-positioned around
a data sample, it is considered “difficult”. MC-CCR thus
generates synthetic data by sampling within the sphere, with
more synthetic data being generated for “difficult” samples.
Additional details are in Appendix Section

Other methods. We do not evaluate other SMOTE-based
oversampling methods, as MC-CCR has been shown to outper-
form both other multi-class oversampling techniques and sim-
ple GAN-based generators in highly imbalanced settings [26].
We also exclude MC-RBO [59], a comparable method, since
unlike MC-CCR, it lacks a cleaning strategy to remove outliers
before augmentation in multi-class scenarios.

D. Nimai: Enabling controlled data synthesis

Recall that existing GenAl schemes are class-conditional syn-
thesis schemes. To alleviate complex biases within a class, the
defender may require more control over the data generation
process. Class-conditional synthesis or uncontrolled synthe-
sis that creates many synthetic samples to broadly mimic
real samples may not be the best strategy in all cases. We
propose a new GenAl scheme called Nimai that provides
highly controlled data synthesis through a sample-conditioning
scheme. Such an approach would help target regions of the
data manifold that are underrepresented. That said, Nimai
also supports class-conditional synthesis. In addition, Nimai

@ Feature Space

s

7,0.4,18,73 <
4,0.1,16,73 Codebook ///

2,0.5, 12, 36 > Encoder < {1,09,2,53
5, 0.2, 25, 96 VQVAE Desoder — ‘
20 S5 S Synthetic
Training L sample

Data A
Latent prior
@ Generation
@ Discrete Latent Space

coosaoo Train Masked Token
Ooo@EdOs Model
®e000®e0 (@R Synthesized latent
s0Oooee vector

OXOXORX

Masked latent vector

Latent prior
training distribution

Fig. 3: Architecture of Nimai framework.

provides automated mechanisms to efficiently tune its hyper-
parameters. Recall that among the existing GenAl schemes,
only TabDDPM offers strategies for hyper-parameter tuning
when fitting the model to diverse datasets. We emphasize that
the goal of Nimai is not to provide a “one-fits-all” solution
that supersedes the GenAl schemes discussed in Section
rather, we aim to understand the impact of using sample-
conditioning, compared to a class-conditional approach, for
security tasks.

Architecture and training. Nimai is a VAE-based GenAl
model. Unlike GANs, VAEs are easier to train due to their
tractable likelihood loss [[17], and their likelihood maximiza-
tion encourages greater sample diversity [[100]. Compared to
Diffusion models, VAEs offer faster sampling, avoiding the
costly iterative denoising process.

We aim to create synthetic samples in the “neighborhood”
of existing samples (e.g., in minority classes), thus improving
generalization performance. Our key idea is to use a discrete
latent space for the VAE model to controllably produce syn-
thetic samples that generalize better. In comparison, existing
VAE-based methods like TVAE and TabSyn encode features
into a continuous latent space, which can result in prior holes
and posterior collapse [7], [68] impacting performance.

Recently, discrete latent codes have driven success across
tasks, especially in text generation [S3], as well as image and
video generation [9]]. For instance, LLMs model distributions
over discrete variables, enabling highly controlled text gener-
ation [53]], [28]].

Nimai adapts a Vector Quantized Variational AutoEncoder
(VQ-VAE) [101]] to enable a discrete latent space. We convert
the 2D discrete latent tokens used for images into 1D latent
vectors suitable for tabular data. Figure [3] depicts Nimai’s
architecture. We implement a discrete latent space by main-
taining a shared embedding space or a codebook that contains
as many embedding vectors as the size of the discrete latent
space (e.g., 1 of K categorical values). Transformer blocks are
used as encoder/decoder. Tabular data is normalized between
0 and 1 to support stable encoder/decoder learning. An input
tabular sample, alongwith its class label, is first converted to a

continuous representation by the encoder block. This continu-
ous output is discretized by identifying the nearest embedding
vectors in the (trainable) codebook, i.e., discretized by using
the indices of the nearest vectors in the codebook. The decoder
receives this discrete latent vector as input. This model is
trained to bound the log-likelihood using the evidence lower
bound (ELBO), in addition to optimizing other loss terms that
maintain the codebook vectors closer to the encoder’s output,
and ensure the encoder commits to an embedding. Nimai’s
training objectives include the following loss terms:

Reconstruction loss (Ly.con) This term ensures accurate
reconstruction in feature space using mean squared error
(MSE). For input x and reconstruction &, Lecon is defined
in Equation

Lrecon = Hf_joz (D

Commitment Loss (Lcommir) This loss aligns encoder outputs
with nearest codebook embeddings. As shown in Equation [2}
ze(x) is the encoder output, e the closest embedding, sg(-)
stops gradients, and 3 scales the loss.

Kcommit = BHZG(Z') - Sg(e)H2 (2)

Embedding Loss (Lempeq) This term adjusts embedding
vectors to match encoder outputs. Equation [3| shows the em-
bedding loss, where the stop-gradient sg(-) prevents gradients
from flowing to the encoder output.

ﬁembed = ||Sg(Ze($)) - 6“2 (3)

Nimai’s objective, shown in Equation 4] combines all three
losses, weighted by «. Early stopping on validation loss
prevents overfitting.

L = Lrecon + ([fembed + ﬂcommit) “4)

Synthesizing samples. To synthesize generalizable samples,
we need to train a prior over the discrete random variables.
This mechanism enables choosing a suitable prior to generate
samples near existing ones, including underrepresented sam-
ples, enhancing targeted sample synthesis. Once trained, new
discrete latent vectors can be sampled from this prior and fed
to the decoder to generate new synthetic samples.

We develop Masked Token Modeling (MTM) to build
the prior. This is inspired by work in the image [17] and
natural language domain [S2]. More concretely, to perform
sample-conditioning, we use the encoder to project a sample
in the input feature space to the latent space, and then mask,
i.e., “blank-out” a subset of the latent features. Our MTM
technique takes a feature vector and its class label as input,
and predicts masked feature values using surrounding context.
It is implemented using the BERT model [52]]. We fill-in (infer)
new features in a non-autoregressive manner in a constant
number of timesteps. MTM’s objective in Equation [5| uses
cross-entropy loss to estimate the log-likelihood of quantized

latent tokens. Here, y; is a latent feature, Y. a masked
token filled by MTM, and c the class label.

Lyrn = By o)np | — > 10gp (vi | Yoasii€) | (5)

At generation time (Stage III of Figure [3), a latent feature
vector with the “blanks-filled-in” (synthesized vector) with its
class label is passed through the decoder, mapping it to a
nearby sample in the input feature space.

Note that sample-conditioning via MTM reduces to the
class-conditioned case when all the latent features are masked
out. As such, Nimai inherently allows for interpolating be-
tween sample-conditioned or class-conditioned sampling, i.e.,
treats the latent feature masking ratio as a hyper-parameter
that can be chosen using the validation set. We refer to the
sample-conditioned and class-conditioned versions of Nimai
as Nimai-S and Nimai-C, respectively. Nimai uses a hyperpa-
rameter search with the ASHA algorithm[65] across various
architectural choices (Table Appendix), making it more
adaptable to diverse security data. Further details are provided
in Appendix Section

VI. EVALUATION SETUP

Feature Pre-processing. Tabular data in some of our tasks
contains mixed data types like continuous, and discrete-valued
features. Training generative models on mixed feature types is
a non-trivial task [116]. We leave this aspect for future work.
This work focuses on alleviating the data challenges mentioned
in Section [l In our evaluation, we standardize all feature
values between 0 and 1, irrespective of the data type. We find
that this scaling has minimal impact on model performance in
6/7 datasets where the end defense classifier is a tree-based
model e.g., XGBoost, LightGBM, etc. The exception was IoT,
where a non-tree based classifier, i.e., Logistic Regression
is used, the performance increases from 46% to 74.16%
macro F-score after data standardization. Note that despite
the improvement, all augmentation schemes (both GenAl and
traditional approaches) are evaluated on the same standardized
dataset, allowing relative performance comparison.
Performance metrics. For each task in Section we
use the same training configuration (including the proposed
classifier and associated hyperparameters) with and without
data augmentation. We measure the macro average F-score
for all tasks, except for Tor and BGP, where we report the F-
score for the malicious class (see Section [[V). For any given
N —class classifier, let P; and R; represent the Precision and
Recall on the i class. The macro average F-score is then
given by:

2 XL PR,

F=— B
N~ P, + R,
i=1

(6)
which may be viewed as an unweighted average of individual
F-scores across each of the N classes. We focus on evaluating
relative gains in classifier performance. Gain may also be
negative if there is performance degradation after data aug-
mentation. Let F..,; and Fy,, represent the F-scores of the

classifier before and after data augmentation. We then measure
relative gain AG as:

Faug - Freal

AG = Freal

(N
When measuring AG, we repeat experiments across 10 trials
with different random seeds and compute the mean and stan-
dard deviation of F-scores. Note that for two tasks BODMAS
and MS-Malware, when computing AG, we omit classes with
too few test set samples (< 20). Higher, positive values of
AG indicate better performance from data augmentation. Note
that our experimental setup allows us to directly attribute any
performance gain (or degradation), i.e., AG, to the synthetic
data used for the augmentation. Our setup also enables
comparison across data augmentation schemes (GenAl and
non-GenAl schemes) for a given task. For the same task, all
data augmentation schemes share the same classifier training
setup, except for the differences in the augmented datasets.
Identifying unreliable measurements. = We use the Co-
efficient of Variation (CV) [3] metric to identify unreliable
measurements of AG. CV is computed as the ratio of the
absolute standard deviation to the absolute mean. Notably, we
observe cases where the CV for AG exceeds 1 — in such
cases, we consider the data augmentation scheme to have a
high performance dispersion, and deem the measurement to
be unreliable. We focus our discussions primarily on reliable
schemes and label unreliable schemes as such.

Statistical tests. In certain cases, comparing reliable data
augmentation schemes using a simple ordering of their mean
AG scores can be problematic, e.g.,, when a scheme with
larger mean is accompanied by a larger standard deviation.
To address these ambiguities, we compare such AG rankings
using statistical tests. We use the non-parametric Kruskal-
Wallis [[60]] test to determine if there is indeed a ranking of the
schemes. We chose this test because it does not require one to
satisfy the assumption of homogeneity of variance [[/2]. When
Kruskal-Wallis test ranks differ, we apply Dunn’s [33] test for
post-hoc pairwise ranking comparisons.

VII. EVALUATION: PRE-DEPLOYMENT

The focus here is on improving performance via data augmen-
tation before deploying the classifier (see Figure[I)). Evaluation
using the 7 data-challenged tasks (Section [[I)) are divided into
two parts: (1) cases where GenAl schemes demonstrate clear
potential, and (2) cases where most GenAl schemes fall short,
i.e., failed to significantly boost performance. Our analysis
sheds light on the strengths and limitations of GenAl schemes.
We list the quantity of synthetic samples added per task in
Appendix Table [XII] and the training times for all GenAl
schemes in Appendix Table

A. Cases where GenAl shows potential

We evaluate IoT, BGP, MS-Malware and BODMAS tasks.
Recall that this covers two broad categories of tasks: IoT
and BGP classifiers are based on network features, while

Technique Mean AG with standard deviation
IoT BGP MS-Malware
Nimai-S 17.37 (0.28) 1| 32.61 (3.76) |} 6.89 (6.47)
Nimai-C 3.93 (0.68) 27.65 (0.81) {1 11.67 (5.15)
TVAE 2.02 (0.66) [1-20.83 (3.22)[f 11.32 (5.86)
TabSyn -0.69 (1.21) |- | -2.78 (5.94) X
GReaT X x| -71.7 (2.56) X
REaLTabFormer X x|-15.35 (5.37) X X
CTAB-GAN+ | 5.84 (1.18) [14.83 (4.07) |]13.53 (3.92)
TabDDPM |-38.01 (0.00) 0.51 (6.76) |-|14.34 (0.37)
SMOTE 14.23 (0.23) i 12.63 (4.56) [{{-0.22 (0.38)| -
MC-CCR 0.27 (0.37) | - | -8.64 (0.66) §-0.15 (0.18)] -

TABLE II: Mean AG with standard deviation for IoT, BGP,
and MS-Malware tasks, where GenAl shows potential. 1 and |
indicate positive and negative gains, respectively. ‘-’ indicates
unreliable gains (CV > 1), and ‘X’ indicates model failures.

MS-Malware and BODMAS classifiers are based on features
extracted from the software binary.

IoT. The IoT task suffers from limited or biased data
challenges (a)-(c) (Section , with a notable challenge of
high class imbalance ratio of 38:1 (Section [[V]. Recall that
the task has a total of 43,866 training samples of which only
1,116 are attack samples. Results are in Table

Finding 1. Sample-conditioned GenAl schemes have the
potential to boost performance in highly imbalanced class set-
tings in binary classification tasks, outperforming traditional
data augmentation schemes.

We observe that the best-performing approaches use sample-
conditioning. Nimai-S achieves a mean AG of 17.37% outper-
forming all the schemes. Class-conditional GenAl approaches
also demonstrate positive AG, notably TVAE, CTAB-GAN+,
and Nimai-C. One possible reason for CTAB-GAN+’s im-
proved performance over Nimai-C and TVAE is due to its
special loss terms designed to handle imbalanced data. We
also note that Nimai-C gives a mean AG of 3.93%, which is
greater than that of TVAE (mean AG of 2.02%). This could
be due to the quantized space used by Nimai. The traditional
scheme SMOTE is able to beat most GenAl schemes, but
not Nimai-S. This again highlights the potential for GenAl
to further push the boundaries of data augmentation. TabSyn
and MC-CCR exhibit unreliable behavior as per our definition
in Section [VII

Failure cases. Only 3/6 existing GenAl tools (i.e., excluding
Nimai) were successfully instantiated on the IoT task data.
We find that TabDDPM, GReaT and REal.TabFormer are un-
successful at producing usable classifiers. Specifically, GReaT
produces an inordinately large natural language representation
of the 273 IoT features, requiring about 5,714 hours to train
for one epoch using an NVIDIA A100 GPU (See Appendix
Table [VII). REaLTabFormer fails to train on IoT as it does
not reach stopping criteria even after 40 hours of training.
TabDDPM faces different problems and suffers from mode

Technique Mean AG with standard deviation for months
2 3 5 6 7 9 10 11

Nimai-S 243 (7.75) |-| -3.64 (5.42) | - [36.68 (21.60) |4} 30.45 (15.69) 2.10 (4.41) |-| 8.00 (12.66) |-| 6.84 (5.27) 4.03 (11.49) |-

Nimai-C 6.88 (3.16) 5.57 (4.78) 59.42 (8.69) | 28.24 (21.25) 4.34 (3.47) 21.73 (11.32) 10.23 (2.60) 12.77 (2.01)
TVAE -10.05 (10.01) | -8.81 (10.34) [-{52.09 (18.00) [50.06 (20.81) [f|-7.71 (12.43)|-| 19.65 (9.06) -4.70 (15.67) |-|-16.64 (17.09)| -
TabSyn -11.10 (5.23) [-16.77 (5.67) [15.77 (10.86) | 13.84 (12.73) {f] -7.09 (9.86) |- |-14.49 (8.49) |$|-13.20 (15.98)|-|-20.98 (25.20) | -

CTAB-GAN+| 1.98 (6.72) |-| 0.39 (7.37) 55.99 (21.87) [45.45 (33.85) 1.59 (1.64) [-[14.09 (15.36)|-| 3.70 (4.20) -5.29 (3.45)
TabDDPM -2.02 (2.46) |-|-2.71 (2.09) 27.20 (9.81) 18.96 (3.77) 2.57 (0.45) -0.63 (1.05) |-| 10.45 (0.42) 0.03 (0.37) |-
SMOTE -3.38 (1.44) -3.00 (2.69) 10.96 (11.77)|-| 5.45 (6.72) |-| 1.78 (0.96) 0.45 (1.43) [-| 3.27 (4.29) 0.13 (0.19) |-
MC-CCR -2.14 (5.79) |- -2.55 (2.03) -0.05 (9.91) H 1.70 (5.56) ‘—‘ -1.39 (5.35) |-| 0.72 (1.49) |-| -4.55(9.98) |-|-7.82 (15.93) |-

TABLE III: Mean AG with standard deviation for BODMAS task for 2, 3, 5, 6, 7, 9, 10 & 11 months. 1 and | indicate

(3]

positive and negative gains, respectively.

indicates unreliable gains (CV > 1). GReaT and REaLTabFormer’s failures are

not shown here. Results for months 1, 4, 8 & 12 where we did not observe any performance gains are in Table |ZI| (Appendix).

collapse, i.e., it is unable to produce samples from the minority
class. Training on such synthetic samples (i.e., only from the
majority class) yields an unusable classifier that labels all
inputs as the majority class.

BGP. The BGP task suffers from limited or biased data
challenges (a)-(c) (Section[I), with the notable challenge being
the extremely limited training data. The training data has only
180 samples across 2 classes, with only 17 samples in the
malicious class. Results are in Table [II

Finding 2. Even in extremely data challenged settings,
a properly engineered GenAl scheme can provide signifi-
cant performance boost. Sample-conditioned GenAl scheme,
i.e., Nimai-S, again achieves the highest performance gain,
with a high mean AG of 32.61%. We also see that other
GenAl schemes, Nimai-C and CTAB-GAN+ outperforms the
traditional data augmentation schemes. These results under-
score the potential of GenAl schemes.

Four GenAl schemes, TVAE, TabSyn, GReaT and
REaLTabFormer produce performance degradation. These
schemes are not best suited for extremely data-challenged
settings. Despite using a large pre-trained LLM backend
(i.e., Distill GPT-2 [83]), GReaT and REalLTabFormer fail
to demonstrate any gains, again highlighting that LLM-based
schemes require further engineering advances before they can
be practically adopted. The traditional scheme, MC-CCR also
results in a performance degradation. We posit that, in high-
class imbalance cases, the minority point spheres become
extremely small, leading to points highly similar to the original
data samples, thereby likely leading to overfitting.

Failure cases. No scheme failed to generate data.

BODMAS. The BODMAS task has limited and bias data
challenges (a), (b) and (d), along with the notable challenge
of concept drift (Section [[). Concept drift can be observed
by the drop in macro F-score across the 12 test months,
especially for months 5 and 6 (see Figure[2). Data from month-
0 is used to train a GDBT classifier and testing is done on
the subsequent 12 months of malware traces. The results are
shown in Table [l and Table [VI] (Appendix).

Mitigating concept drift is a challenging problem [6]]. We

10

find that practitioners can significantly improve the perfor-
mance of security classifiers before deployment by integrating
GenAl. For 8/12 months, we observe a positive gain in
performance, when using a GenAl scheme. In fact, we achieve
over 59% mean AG for month 5, where the largest impact of
the concept drift was observed (Figure[2). This is a substantial
result. The results are shown in Table [Tl For the remaining 4
months, none of the data augmentation schemes demonstrate
a gain in performance (see Table in the Appendix). This
is expected, given the challenging nature of the problem.
However, achieving performance gains in 8/12 mounts is a
notable result. For the remainder of this section, we analyze
the 8 months shown in Table [

Finding 3.
well suited for tasks where there is concept drift. A key
finding is that class-conditioned GenAl approaches are a
better fit for tasks with concept drift, compared to sample-
conditioned schemes. Class-conditioning can better explore
novel regions of the data manifold, where distribution shift
may have occurred. This is because we are not explicitly
focusing on generating samples near the vicinity of existing
samples. Our class-conditioned Nimai-C achieves the best
performance in 6 out of the 8 months (Table m), i.e., months
2,3,5,9, 10, and 11. Detailed statistical test results to arrive
at this conclusion are discussed in the Appendix Section [G|
On the other hand, our sample-conditioned scheme Nimai-S
produces unreliable performance estimates in 5 out of the 8
months, and trails behind other GenAl schemes in 2 out of
the remaining 3 months. Other notable schemes are TVAE and
TabDDPM, which perform similar to Nimai-C (no statistically
significant difference) in months 9 and 10, respectively. TVAE
outperforms all schemes only in month 6.

Class-conditioned GenAl approaches are

Traditional schemes (also sample-conditioned), SMOTE and
MC-CCR perform poorly for this task. For 7 out of the
8 months, these schemes produce either negative gains or
unreliable performance estimates. This highlights the limita-
tions of traditional methods to mitigate concept drift. Failure
scenarios. Two schemes GReaT and REaL.TabFormer failed to
converge on BODMAS. GReaT could not be trained on this

task due to its feature dimensionality exceeding 1,000. After
feature processing, GReaT needs to be trained on over 21K
tokens per sample, which far exceeds the token limit 1024 of
the backend LM. REaLTabFormer’s training failed as encoded
features do not fit into the memory (NVIDIA A100 GPU).
MS-Malware. MS-Malware, a multi-class classification
task (9 classes) suffers from limited or biased training data
challenges (a), (b) and (d) (Section [M)), with the notable
challenge being the high dimensionality of features (1,804
features). Results are in Table

Class-conditioned GenAl schemes, including our new
Nimai-C scheme, show significant performance improvement.
Amongst the class-conditioned GenAl schemes, large standard
deviation values make it difficult to directly compare means.
We thus perform the Kruskal-Wallis test, and find no difference
in rankings of these schemes due to a p-value of 0.286 >
0.05. Interestingly, our sample-conditioned scheme, Nimai-
S, despite achieving a performance improvement, does not
perform as well as the class-conditioned schemes. Similar
to the BODMAS task, we suspect that this task has test
samples that have drifted from the training data distribution
and requires data points in more novel/diverse regions of
the data manifold to achieve better performance. Recall that
class-conditioning is well suited for this goal. This is further
confirmed by the fact that the traditional sample-conditioned
schemes, SMOTE and MC-CCR perform poorly in this task.

Failure scenarios. The high dimensionality of the MS-
Malware task resulted in failures for the GReaT, REalLTab-
Former and TabSyn schemes. GReaT suffers from issues
similar to those in the IoT task, with the high-dimensionality
features further exacerbating the problem. GreaT needs 17k
tokens per sample for training, exceeding the backend LLM’s
1024-token limit. REaL.TabFormer and TabSyn failed to train
on the MS-Malware task due to large feature encoding which
does not fit into the memory (NVIDIA A100 GPU).
Why does augmentation improve performance?. We
perform a deep dive into IoT and BGP tasks to understand
why synthetic data improved performance. Our hypothesis
is that synthetic data helped mitigate certain biases in the
real dataset, thereby enhancing generalization performance.
We randomly selected 50 test instances per task that Nimai-
S’s synthetic samples helped classify correctly after being
misclassified before augmentation. Using Local Interpretable
Model-agnostic Explanations (LIME) [80], we extract the top
10 most influential features for each corrected prediction and
observe substantial distributional changes. We measure the
distribution changes using entropy i.e., the randomness of the
probability distribution; and skewness [30], a measure of the
degree of asymmetry of a probability distribution. Skewness
ranges from —oo to 400, indicating the dominant tail of a
distribution: negative for lower values, positive for higher, and
zero for symmetry. Classifiers generalize better on symmetric
distributions.

For the IoT task, these features show a 36.8% increase
in entropy and a 93.87% absolute reduction in skewness
towards O; for the BGP task, entropy increases by 175.33%

11

e Malicious eBenign

Fig. 4: t-SNE plot for BGP and Tor task data.

and absolute reduction of skewness towards 0 by 72.8%. For
both tasks, there is a consistent reduction in the absolute value
of skewness for most features after augmentation, depicted
in Figure [5| (Appendix). These shifts suggest that synthetic
augmentation reduces bias and promotes more symmetric
feature distributions, leading to better classifier generalization.

B. Cases where most GenAl schemes show insufficiency

We study three tasks, Tor, Cookie, and nPrintML, where we
discover significant challenges with improving performance
using GenAl schemes.
Tor. Tor is a binary classification task that suffers from
limited or biased training data challenges (a)-(c) (Section .
The results are in Table

Finding 4. Tasks with significant class overlap are
challenging for GenAl-based data augmentation. No scheme
except REaL.TabFormer produces a positive gain (considering
only reliable measurements). To understand this result, we vi-
sualize the t-SNE [102] feature representations of Tor samples
and contrast them with the BGP samples in Figure {] Recall
that the GenAl schemes showed significant performance gains
for the BGP task. We see that Tor classes appear largely
inseparable even in their non-linearly projected feature spaces,
i.e., with a large volume of class overlap, whereas BGP classes
have distinct separability. This indicates that GenAl data
augmentation faces challenges in datasets with class overlap,
often caused by suboptimal features or noisy labels.

REaLTabFormer is the only method to demonstrate im-
provement on Tor task. This is likely due to its use of
a statistical measure for early stopping, which helps avoid
both overfitting and underfitting. Thus, the model can be
properly instantiated even in the presence of overlapping class
samples. Recall that REal.TabFormer failed in all previous
settings, but here the lower feature dimensionality (175) and
sufficient training samples also helped the model converge.
The success of REaLTabFormer highlights the promise of
correctly instantiated LLM-based GenAl schemes for tasks
with class overlap.

Failure cases. Only GReaT failed to converge on the Tor
task. GReaT requires a large compute time to train on the Tor
task—an estimated 22 hours per epoch (Appendix Table [VTI).
Cookie and nPrintML. Cookie and nPrintML are multi-
class classification tasks with 4 and 13 classes, respectively.
The Cookie task has limited or biased data challenge (a) & (d),

Technique Mean AG with standard deviation
Tor nPrintML Cookie
Nimai-S -3.18 (0.00) —O 03 (0.66)| - [-0.16 (0.08)
Nimai-C -3.87 (0.00) —O 23 (0.57)| - | -0.1 (0.07)
TVAE -16.03 (6.62) |$1-0.68 (0.47). X X
TabSyn -19.54 (7.96) X x| 0.01 (0.08) | -
GReaT X X X X X
REaLTabFormer| 16.40 (6.01) X X X X
CTAB-GAN+ | 5.89 (12.52) 0.3 (0.50) |- |-0.11 (0.07)
TabDDPM |-21.75 (14.03)[§1-0.22 (0.62)| - |-0.19 (0.08)
SMOTE 4.3 (5.12) I -0.3 (0.58) | -{2.15 (0.08)
MC-CCR -30.06 (0.00) 0.37 (0.55) | - |-0.17 (0.06)

TABLE IV: Mean AG with standard deviation for Tor,
nPrintML and Cookie tasks, where GenAl schemes do not
show performance improvement. 1 and | indicate positive and
negative gains, respectively. ‘-’ indicates unreliable gains (CV
> 1), and ‘x’ indicates model failures.

whereas nPrintML task has limited or biased data challenges
(), (b) and (d) (Section[Ml). The results are shown in Table [[V]

Finding 5. Tasks with noisy class labels and highly
sparse feature vectors are challenging settings for GenAl
schemes. Similar to the Tor task, none of the GenAl schemes
demonstrate positive AG values on both these tasks (for reli-
able estimates). The only exception is the traditional scheme,
SMOTE which shows achieves a small mean AG of 2.15%.
The poor performance of GenAl schemes can be attributed to
one or more of the following reasons:

1) Overlapping class distributions. Similar to Tor, we sus-
pect the issue of overlapping class distributions. In the Cookie
task, 3,707 samples in the training set have identical feature
vectors assigned to more than one class label. The authors
of this work acknowledge the issue of noisy labels because
ground truth labels were obtained from multiple sources that
may not agree uniformly on the labels. This is a clear problem.
On the other hand, for nPrintML, while we are unable to find
any evidence for noisy labels, the authors hint at poor dis-
tinguishability of samples among certain classes—suggesting
potential class overlap. Figure 6(b) in their work [48], shows
poor fingerprinting performance among samples belonging
different variants of the same major OS, namely Windows,
and Linux. The authors attribute this problem to the different
variants (of the same OS) sharing similar network stack,
leading to more similarity in the extracted feature vectors.

2) Sparse feature vectors. The training datasets of nPrintML
and Cookie show high feature sparsity (percentage of feature
values that are zero)—78.73% and 98.66%, respectively. To
assess the impact of sparsity on performance, we run a new
experiment, minimizing potential class overlap by reducing
the 13-class nPrintML task to 5 carefully selected classes.[|

3We only retain 5 OS classes - i.e. Mac, Kali-linux, Ubuntu-desktop
(combining all variants), Ubuntu-server and Windows (combining all variants).

F-score for months
Method (w/ standard deviation)

5 6
w/o GenAl 36.40 (-) 33.60 (-)
Nimai-C 58.03 (3.00) 43.09 (6.77)
INSOMNIA 34.40 (-) 33.40 (-)
Nimai-hybrid 59.78 (8.34) 53.92 (10.39)

TABLE V: Mean macro F-scores and standard deviation for
Nimai-C and Nimai-hybrid across 10 trials and macro F-scores
for w/o GenAl and INSOMNIA on BODMAS months 5 & 6.
(-) indicates no standard deviation.

SMOTE applied to this setting produced a mean AG of -
0.31%, showing no improvement in performance, suggesting
sparsity plays a role in the non-improvement of performance.

To further examine whether GenAl schemes struggle with
performance improvement in noisy/overlapping data, we artifi-
cially induce class overlap in BGP. Recall that GenAl schemes
(Nimai-S and CTAB-GAN+) performed well on BGP. We flip
20% of class 0 samples to class 1 to induce overlap. This
resulted in these GenAl methods yielding negative gains of up
to -37%. This further strengthens our Finding 5. The experi-
mental setup and results are detailed in Appendix Section [H]

Failure scenarios. Four GenAl schemes, GReaT, REaLTab-
Former, TVAE and TabSyn failed in one or both tasks. We
were unable to train GReaT for both tasks. Both tasks have
feature dimensionality over 1,000, resulting in over 11K and
28K tokens per sample, which is inordinately greater than the
token limit of 1024 of the backend LLMs. REal.TabFormer
failed to train on both tasks. For nPrintML, training fails due
to large encoded features which does not fit into the memory
(NVIDIA A100 GPU). For Cookie, training does not converge
as our early stopping criteria is not met even after 40 hours.
TVAE failed for the Cookie task, because we failed to generate
new samples, even after 100 hours of rejection sampling (see
Appendix [C). TabSyn failed for the nPrintML task. TabSyn’s
VAE training on the pre-processed data does not fit into the
memory (NVIDIA A100 GPU) for nPrintML due to the large
feature size and number of classes.

VIII. EVALUATION: POST-DEPLOYMENT

GenAl schemes are still limited by existing training data
in improving classifier generalization. We again focus on a
concept drift setting, where GenAl schemes may struggle to
generate points that fit the drifted test. To mitigate drift after
deployment, the traditional practice involves a costly and time-
consuming labeling process for the drifted test set, followed
by retraining the classifier on the new data. Security threats
are known to change abruptly [6], requiring a faster reaction
(e.g., for NIDS and malware detection). In this section, we
investigate whether GenAl can be used to perform faster
recovery from concept drift, without requiring a complete data
labeling effort on the test set. To achieve this, we propose
a novel scheme called Nimai-hybrid that combines both the
Nimai-C and Nimai-S approaches.

Similar to the setup in Section we train our Nimai
scheme on month 0 data. We focus to mitigate concept drift
on months 5 and 6, which show the highest performance
drop (Figure [2). We assume the defender has detected the
concept drift in month k (k € [1,5]). Existing methods such
as CADE [111] and Transcend [51]], [[10]] can be used to detect
concept drift. To rapidly recover from concept drift, we use
Nimai-S’s sample conditioning to generate synthetic points
from a small labeled subset of the drifted test set from month
k. This is possible as Nimai can perform sample-conditioned
generation on new samples without the need for retraining,
unlike other GenAl techniques that perform class-conditioned
generation. The samples for labeling are chosen using un-
certanity sampling [6], an active learning technique [4]. It
chooses samples close to the decision boundary based on
classifier confidence scores. We show that even a small subset
is sufficient to boost performance via data augmentation, with
subset sizes ranging from 9 to 64 for the BODMAS task (see
Table [X). This significantly reduces the cost of labeling effort,
speeding adaptation to drift, i.e., fast recovery.

For a testing month N (N can be months 5 and 6), we
evaluate whether uncertainty samples from any of the previous
(N —1) months can improve performance. We use a confidence
interval of 0.3-0.7 from a random 1% subset of the test
set to determine uncertainty samples. We augment Nimai-S
with 5 times the synthetic samples conditioned on uncertain
samples. The remaining synthetic samples are generated using
Nimai-C (i.e., class-conditioned) to balance the class sizes. We
compare Nimai-hybrid with the three baseline schemes: (1)
w/o GenAl: This reports classifier performance without any
data augmentation, i.e., only using the real data. (2) Nimai-
C: This mirrors the setting in Section [VII-A]l where class
conditioning uses only month O data for generating synthetic
samples. (3) INSOMNIA: The security classifier is retrained
on a combination of real and uncertainty samples (the same
samples used by Nimai-hybrid). This strategy is equivalent
to the existing method called INSOMNIA [6] which aims to
adapt classifiers to concept drift using uncertainty samples.
We use the macro F-score, reporting the mean and standard
deviation across 10 trials for Nimai-C and Nimai-hybrid.

Finding 6. A combination of class and sample-
conditioned GenAl schemes can help to quickly recover from
concept drift with low-cost labeling effort. For months 5
and 6, we present the best performance obtained by any
of the previous (N — 1) months across 10 trials of data
augmentation. Results for months 5 and 6 are shown in
Table [Vl Complete results are in Table [X] (Appendix). Due
to high standard deviations, we applied Kruskal-Wallis test
to compute ranks in both months. In month 5, Nimai-hybrid
and Nimai-C show no difference in means, making them
equivalent schemes. In month 6, which shows the maximum
drop in performance in all test months of BODMAS, we find
Nimai-hybrid outperforms Nimai-C. This shows the potential
for Nimai to rapidly recover using drifting samples post-
deployment. We conducted our experiment for the remaining

13

10 months (which did not degrade as much as months 5 and 6)
but observed no performance improvement from using Nimai-
hybrid, indicating room for advancing our recovery strategy.
However, we provided significant gains for the worst affected
months.

IX. CONCLUSION & FUTURE WORK

We now address Section [III-B| questions using Section [VII|
findings and suggest future directions.

Challenges with instantiating GenAl models. Unlike
traditional data augmentation schemes (e.g., SMOTE), GenAl
methods are highly complex ML schemes, which are chal-
lenging to correctly instantiate for wide diversity of security
tasks. 5/6 GenAl schemes fail to generate data for at least 1/7
security tasks. TabDDPM suffered from mode collapse, TVAE
failed to generate sufficient samples while class-conditioning,
and TabSyn is unable to manage large, high-dimensional
datasets. While REaL.TabFormer shows potential in Tor task,
both GReaT and REaL.TabFormer fail on most tasks (6/7 and
5/7, respectively) due to limitations with high-dimensional
feature vectors. Re-engineering LLM-based approaches like
GReaT and REaLTabFormer for greater scalability with large,
high-dimensional security datasets offers several benefits: (1)
LLMs have robust methods for controlled text generation
which could help to design effective sample-conditioning
schemes, (2) potential for prompt-based data generation via
instruction-tuning [24f], (3) ability to handle complex data
types (discrete or continuous) as everything is represented in
text, and (4) ability to augment in overlapping distributions.
GenAl-based data augmentation to boost classifier per-
formance. Data augmentation using GenAl is a promising
approach to boost performance of diverse security classifiers—
we improved performance for 5/7 security tasks, without any
changes to the underlying classification algorithm. Therefore,
a carefully engineered GenAl tool can reignite progress for
security problems stagnated by slow algorithmic innovations—
i.e., by simply addressing any underlying data challenges.
Future work can explore more challenging scenarios, including
overlapping class distributions, noisy labels, sparse feature
vectors. Developments in LLMs [103]], [64], Diffusion mod-
els [82], [74l, [87], VAE [94], [34], [56] and GANs [54]
such as strategic sampling methods and weighted learning
approaches can be leveraged to produce rare/limited data
points from training data manifolds.

Impact of highly controlled generation. Existing GenAl
schemes do not provide mechanisms for highly controlled
generation. To fill this gap, we proposed Nimai-S, a novel
scheme based on a VAE using a discrete latent space to enable
generation of samples targeting specific regions of the data
distribution. This sample-conditioned approach achieved the
best performance in 3 security tasks with complex biases.
Future work can explore this direction using other schemes,
such as LLMs, Diffusion models and GANS.

Rapid recovery from concept drift. We showed that GenAl
can help maintain classifier performance post-deployment
through a malware classification task exhibiting concept

drift. A hybrid Nimai scheme, combining sample- and class-
conditioning, enabled rapid recovery with a few labeled
samples from the drifted set. While effective, our recovery
approach has room for improvement. Future work could
explore using GenAl to recover from adversarial attacks. We
discuss the ethical considerations of this work in Appendix
Section [Al

(1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[l

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

PyTorch Vision Transforms. https://pytorch.org/vision/0.15/transforms
.html.

Microsoft Malware Classification Challenge - Kaggle. https://www.ka
ggle.com/c/malware-classification, 2015.

Hervé Abdi. Coefficient of variation. Encyclopedia of research design,
2010.

Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and
S Yu Philip. Active Learning: A Survey. In Data Classification.
Chapman and Hall/CRC, 2014.

Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofi-
mov, and Giorgio Giacinto. Novel Feature Extraction, Selection and
Fusion for Effective Malware Family Classification. In Proc. Of ACM
CODASPY, 2016.

Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado
Loglisci, Annalisa Appice, and Lorenzo Cavallaro. INSOMNIA:
Towards Concept-Drift Robustness in Network Intrusion Detection. In
Proc. of ACM AlSec, 2021.

Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A contrastive
learning approach for training variational autoencoder priors. Advances
in neural information processing systems, 34:480-493, 2021.
Mahmoud Bahnasy, Fenglin Li, Shihan Xiao, and Xiangle Cheng.
DeepBGP: A Machine Learning Approach for BGP Configuration
Synthesis. In Proc. of NetAI Workshop, 2020.

Yutong Bai et al. Sequential modeling enables scalable learning for
large vision models. In Proc. of CVPR, 2024.

Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo
Cavallaro. Transcending TRANSCEND: Revisiting Malware Classifi-
cation in the Presence of Concept Drift. In Proc. of IEEE S&P, 2022.
Diogo Barradas, Nuno Santos, and Luis Rodrigues. Effective Detection
of Multimedia Protocol Tunneling using Machine Learning. In Proc.
of USENIX Security, 2018.

Samy Bengio and Yoshua Bengio. Taking on the Curse of Dimen-
sionality in Joint Distributions Using Neural Networks. IEEE TNN,
2000.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition
and machine learning. Springer, 2006.

Rok Blagus and Lara Lusa. SMOTE for high-dimensional class-
imbalanced data. BMC Bioinformatics, 2013.

Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David Basin.
Automating Cookie Consent and GDPR Violation Detection. In Proc.
of USENIX Security, 2022.

Vadim Borisov, Kathrin SeBler, Tobias Leemann, Martin Pawelczyk,
and Gjergji Kasneci. Language Models are Realistic Tabular Data
Generators. In Proc. of ICLR, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman.
MaskGIT: Masked Generative Image Transformer. In Proc. of CVPR,
2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique.
JAIR, 2002.

Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and Suman
Jana. Cost-Aware Robust Tree Ensembles for Security Applications.
In Proc. of USENIX Security, 2021.

Yizheng Chen, Shigi Wang, Dongdong She, and Suman Jana. On
Training Robust PDF Malware Classifiers. In Proc. of USENIX
Security, 2020.

Yuqi Chen, Christopher M Poskitt, and Jun Sun. Learning from
Mutants: Using Code Mutation to Learn and Monitor Invariants of
a Cyber-Physical System. In Proc. of IEEE S&P, 2018.

Phillip Chlap et al. A Review of Medical Image Data Augmentation
Techniques for Deep Learning Applications. JMIRO, 2021.

14

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-
Liehr. Time Series FeatuRe Extraction on basis of Scalable Hypothesis
tests (tsfresh — A Python package). Neurocomputing, 2018.

Hyung Won Chung et al. Scaling Instruction-Finetuned Language
Models. Proc. of CoRR abs/2210.11416, 2022.

Asaf Cidon, Lior Gavish, Itay Bleier, Nadia Korshun, Marco
Schweighauser, and Alexey Tsitkin. High Precision Detection of
Business Email Compromise. In Proc. of USENIX Security, 2019.

D Dablain, B Krawczyk, and NV Chawla DeepSMOTE. DeepSMOTE:
Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE TNNLS,
2021.

Wangzhi Dai, Kenney Ng, Kristen Severson, Wei Huang, Fred Ander-
son, and Collin Stultz. Generative Oversampling with a Contrastive
Variational Autoencoder. In Proc. of ICDM, 2019.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric
Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and Play
Language Models: A Simple Approach to Controlled Text Generation.
In Proc. of ICLR, 2020.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K
Landauer, and Richard Harshman. Indexing by Latent Semantic
Analysis. JASIST, 1990.

David P Doane and Lori E Seward. Measuring skewness: a forgotten
statistic? Journal of statistics education, 2011.

Priyanka Dodia, Mashael AlSabah, Omar Alrawi, and Tao Wang.
Exposing the Rat in the Tunnel: Using Traffic Analysis for Tor-based
Malware Detection. In Proc. of CCS, 2022.

Evan Downing, Yisroel Mirsky, Kyuhong Park, and Wenke Lee.
DeepReflect: Discovering Malicious Functionality through Binary Re-
construction. In Proc. of USENIX Security, 2021.

Olive Jean Dunn. Multiple Comparisons Using Rank Sums. Techno-
metrics, 1964.

Val Andrei Fajardo, David Findlay, Roshanak Houmanfar, Charu
Jaiswal, Jiaxi Liang, and Honglei Xie. Vos: a method for variational
oversampling of imbalanced data. Proc. of CoRR abs/1809.02596,
2018.

Alberto Ferndandez, Salvador Garcia, Francisco Herrera, and Nitesh V
Chawla. SMOTE for Learning from Imbalanced Data: Progress and
Challenges, Marking the 15-year Anniversary. JAIR, 2018.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely Ran-
domized Trees. Machine learning, 2006.

Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. Surakav:
Generating Realistic Traces for a Strong Website Fingerprinting De-
fense. In Proc. of IEEE S&P, 2022.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Nets. In Proc. of NeurIPS, 2014.

Manbir Gulati and Paul Roysdon. TabMT: Generating Tabular data
with Masked Transformers. In Proc. of NeurIPS, 2024.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved Training of Wasserstein GANs. In
Proc. of NeurIPS, 2017.

Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song.
DEEPVSA: Facilitating Value-set Analysis with Deep Learning for
Postmortem Program Analysis. In Proc. of USENIX Security, 2019.
Xueyuan Han et al. SIGL: Securing Software Installations Through
Deep Graph Learning. In Proc. of USENIX Security, 2021.

Xingran Hao, Zhengwei Jiang, Qingsai Xiao, Qiuyun Wang, Yepeng
Yao, Baoxu Liu, and Jian Liu. Producing More with Less: A GAN-
based Network Attack Detection Approach for Imbalanced Data. In
Proc. of CSCWD, 2021.

Jamie Hayes and George Danezis. k-fingerprinting: a Robust Scalable
Website Fingerprinting Technique. In Proc. of USENIX Security, 2016.
Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. ADASYN:
Adaptive Synthetic Sampling Approach for Imbalanced Learning. In
Proc. of IEEE WCCI, 2008.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A Survey of the
State-of-the-Art. Knowledge-Based Systems, 2021.

Grant Ho, Asaf Cidon, Lior Gavish, Marco Schweighauser, Vern Pax-
son, Stefan Savage, Geoffrey M Voelker, and David Wagner. Detecting
and Characterizing Lateral Phishing at Scale. In Proc. of USENIX
Security, 2019.

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. New
Directions in Automated Traffic Analysis. In Proc. of CCS, 2021.

https://pytorch.org/vision/0.15/transforms.html
https://pytorch.org/vision/0.15/transforms.html
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal,
Gang Wang, and Bimal Viswanath. Throwing Darts in the Dark?
Detecting Bots with Limited Data using Neural Data Augmentation.
In Proc. of IEEE S&P, 2020.

Xi Jiang et al. Netdiffusion: Network data augmentation through
protocol-constrained traffic generation. POMACS, 2024.

Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide
Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting
Concept Drift in Malware Classification Models. In Proc. of USENIX
Security, 2017.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. In Proc. of NAACL-HLT, 2019.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming
Xiong, and Richard Socher. CTRL: A Conditional Transformer
Language Model for Controllable Generation. CoRR abs/1909.05858,
2019.

Saeed Khorram, Mingqi Jiang, Mohamad Shahbazi, Mohamad H
Danesh, and Li Fuxin. Taming the tail in class-conditional gans:
Knowledge sharing via unconditional training at lower resolutions. In
Proc. of CVPR, 2024.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STaSy: Score-based
Tabular Data Synthesis. In Proc. of ICLR, 2023.

Juno Kim, Jaehyuk Kwon, Mincheol Cho, Hyunjong Lee, and Joong-
Ho Won. $t"3$-variational autoencoder: Learning heavy-tailed data
with student’s t and power divergence. In Proc. of ICLR, 2024.
Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem
Babenko. TabDDPM: Modelling Tabular Data with Diffusion Models.
In Proc. of ICML, 2023.

Michat Koziarski, Michat WozZniak, and Bartosz Krawczyk. Combined
Cleaning and Resampling Algorithm for Multi-Class Imbalanced Data
with Label Noise. Knowledge-Based Systems, 2020.

Bartosz Krawczyk, Michat Koziarski, and Michat WozZniak. Radial-
Based Oversampling for Multiclass Imbalanced Data Classification.
IEEE TNNLS, 2019.

William H Kruskal and W Allen Wallis. Use of Ranks in One-Criterion
Variance Analysis. JASA, 1952.

Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: Co-evolving
Contrastive Diffusion Models for Mixed-type Tabular Synthesis. In
Proc. of ICML, 2023.

LemaAZtre, Guillaume and Nogueira, Fernando and Aridas, Christos
K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of
Imbalanced Datasets in Machine Learning. JMLR, 2017.

Huichen Li, Xiaojun Xu, Chang Liu, Teng Ren, Kun Wu, Xuezhi
Cao, Weinan Zhang, Yong Yu, and Dawn Song. A Machine Learning
Approach To Prevent Malicious Calls Over Telephony Networks. In
Proc. of IEEE S&P, 2018.

Huihan Li et al. In search of the long-tail: Systematic generation of
long-tail inferential knowledge via logical rule guided search. In Proc.
of EMNLP, 2024.

Liam Li et al. A System for Massively Parallel Hyperparameter Tuning.
In Proc. of MLSys, 2020.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar.
Using GANs for Sharing Networked Time Series Data: Challenges,
Initial Promise, and Open Questions. In Proc. of ACM IMC, 2020.
Yuzhen Lu, Dong Chen, Ebenezer Olaniyi, and Yanbo Huang. Gen-
erative Adversarial Networks (GANs) for Image Augmentation in
Agriculture: A Systematic Review. Comput. Electron. Agric., 2022.
James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi.
Understanding posterior collapse in generative latent variable models.
2019.

Guozheng Ma, Zhen Wang, Zhecheng Yuan, Xuegian Wang, Bo Yuan,
and Dacheng Tao. A Comprehensive Survey of Data Augmentation in
Visual Reinforcement Learning. CoRR abs/2210.04561, 2022.

Fares Meghdouri, Thomas Schmied, Thomas Girtner, and Tanja Zseby.
Controllable Network Data Balancing with GANS. In Proc. of NeurlPS
Workshop, 2021.

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: An Ensemble of Autoencoders for Online Network Intrusion
Detection. In Proc. of NDSS, 2018.

Douglas C. Montgomery. Design and Analysis of Experiments. John
Wiley & Sons, 10th edition, 2019.

Yu Nong et al. Vgx: Large-scale sample generation for boosting
learning-based software vulnerability analyses. In Proc. of ICSE, 2024.

15

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Dongmin Park et al. Rare-to-frequent: Unlocking compositional gener-
ation power of diffusion models on rare concepts with LLM guidance.
In Proc. of ICLR, 2025.

Sunnyeo Park, Dohyeok Kim, and Sooel Son. An Empirical Study of
Prioritizing JavaScript Engine Crashes via Machine Learning. In Proc.
of AsiaCCS, 2019.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic
Data Vault. In Proc. of IEEE DSAA, 2016.

Christian Peeters, Hadi Abdullah, Nolen Scaife, Jasmine Bowers,
Patrick Traynor, Bradley Reaves, and Kevin Butler. Sonar: Detecting
SS7 Redirection Attacks With Audio-Based Distance Bounding. In
Proc. of IEEE S&P, 2018.

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo
Cavallaro. Intriguing Properties of Adversarial ML Attacks in the
Problem Space. In Proc. of IEEE S&P, 2020.

Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and
Bhavani Thuraisingham. Deepsweep: An evaluation framework for
mitigating dnn backdoor attacks using data augmentation. In Proc. of
Asia CCS, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should
i trust you?: Explaining the predictions of any classifier. In Proc. of
KDD, 2016.

Anirudh Sabnis and Ramesh K Sitaraman. TRAGEN: A Synthetic
Trace Generator for Realistic Cache Simulations. In Proc. ACM IMC,
2021.

Dvir Samuel, Rami Ben-Ari, Simon Raviv, Nir Darshan, and Gal
Chechik. Generating images of rare concepts using pre-trained dif-
fusion models. In Proc. of AAAI, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. In Proc. of NeurlPS, 2019.

Samuel Schiippen, Dominik Teubert, Patrick Herrmann, and Ulrike
Meyer. FANCI : Feature-based Automated NXDomain Classification
and Intelligence. In Proc. of USENIX Security, 2018.

B Sebastian, C Christian, and P Alexander. Predicting the Resilience
of Obfuscated Code Against Symbolic Execution Attacks via Machine
Learning. In Proc. of USENIX Security, 2017.

Nabeel Seedat, Nicolas Huynh, Boris van Breugel, and Mihaela van der
Schaar. Curated LLM: Synergy of LLMs and Data Curation for tabular
augmentation in low-data regimes. In Proc. of ICML, 2023.

Jie Shao, Ke Zhu, Hanxiao Zhang, and Jianxin Wu. DiffuLT: Diffusion
for long-tail recognition without external knowledge. In Proc. of NIPS,
2024.

Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al.
Toward Generating a New Intrusion Detection Dataset and Intrusion
Traffic Characterization. In Proc. of ICISSP, 2018.

Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and
Suman Jana. Neutaint: Efficient Dynamic Taint Analysis with Neural
Networks. In Proc. of IEEE S&P, 2020.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi
Ray, and Suman Jana. NEUZZ: Efficient Fuzzing with Neural Program
Smoothing. In Proc. of IEEE S&P, 2019.

Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 6thSense:
A Context-aware Sensor-based Attack Detector for Smart Devices. In
Proc. of USENIX Security, 2017.

Aivin V Solatorio and Olivier Dupriez. Realtabformer: Generating
realistic relational and tabular data using transformers. Proc. of CoRR
abs/2302.02041, 2023.

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic
Data — Anonymisation Groundhog Day. In Proc. of USENIX Security,
2022.

Samuel Stocksieker, Denys Pommeret, and Arthur Charpentier. Data
augmentation with variational autoencoder for imbalanced dataset.
Proc. of CoRR abs/2412.07039, 2024.

Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly
Detection in Automobile Control Network Data with Long Short-Term
Memory Networks. In Proc. of IEEE DSAA, 2016.

Ege Tekiner, Abbas Acar, and A Selcuk Uluagac. A Lightweight IoT
Cryptojacking Detection Mechanism in Heterogeneous Smart Home
Networks. In Proc. of NDSS, 2022.

Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti, and
David Clark. Profiling BGP Serial Hijackers: Capturing Persistent
Misbehavior in the Global Routing Table. In Proc. of ACM IMC,
2019.

[98] Saravanan Thirumuruganathan, Mohamed Nabeel, Euijin Choo, Issa
Khalil, and Ting Yu. SIRAJ: A Unified Framework for Aggregation
of Malicious Entity Detectors. In Proc. of IEEE S&P, 2022.

Romain Thomas. Lief - library to instrument executable formats.
https://lief.quarkslab.com/, 2017.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals,
Alex Graves, et al. Conditional Image Generation with PixelCNN
Decoders. In Proc. of NeurIPS, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural Discrete Represen-
tation Learning. In Proc. of NeurIPS, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. JMLR, 2008.

Pengkun Wang, Zhe Zhao, HaiBin Wen, Fanfu Wang, Binwu Wang,
Qingfu Zhang, and Yang Wang. LLM-autoDA: Large language model-
driven automatic data augmentation for long-tailed problems. In Proc.
of NIPS, 2024.

Shuhei Watanabe. Tree-Structured Parzen Estimator: Understanding
Its Algorithm Components and Their Roles for Better Empirical
Performance. CoRR abs/2304.11127, 2023.

Jiahua Xu and Benjamin Livshits. The Anatomy of a Cryptocurrency
Pump-and-Dump Scheme. In Proc. of USENIX Security, 2019.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Modeling tabular data using conditional gan. In Proc. of
NIPS, 2019.

Shengzhe Xu et al. STAN: Synthetic Network Traffic Generation
with Generative Neural Models. In Deployable Machine Learning
for Security Defense: Second International Workshop, MLHat 2021,
Virtual Event, August 15, 2021, Proceedings 2, 2021.

Teng Xu et al. Deep Entity Classification: Abusive Account Detection
for Online Social Networks. In Proc. of USENIX Security, 2021.
Xing Xu, Jie Li, Yang Yang, and Fumin Shen. Toward Effective Intru-
sion Detection Using Log-Cosh Conditional Variational Autoencoder.
IEEE IoT, 2020.

Limin Yang, Arridhana Ciptadi, Thar Laziuk, Ali Ahmadzadeh, and
Gang Wang. BODMAS: An Open Dataset for Learning based Temporal
Analysis of PE Malware. In Proc. of IEEE S&P Workshop, 2021.
Limin Yang et al. CADE: Detecting and Explaining Concept Drift
Samples for Security Applications. In Proc. of USENIX Security, 2021.
Zhiju Yang, Weiping Pei, Monchu Chen, and Chuan Yue. WTA-
GRAPH: Web Tracking and Advertising Detection using Graph Neural
Networks. In Proc. of IEEE S&P, 2022.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar.
Practical gan-based synthetic ip header trace generation using netshare.
In Proc. of SIGCOMM, 2022.

Lingjing Yu, Bo Luo, Jun Ma, Zhaoyu Zhou, and Qingyun Liu. You
Are What You Broadcast: Identification of Mobile and IoT Devices
from (Public) WiFi. In Proc. of USENIX Security, 2020.

Hengrui Zhang et al. Mixed-Type Tabular Data Synthesis with Score-
Based Diffusion in Latent Space. In Proc. of ICLR, 2024.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. CTAB-
GAN: Effective Table Data Synthesizing. In Proc. of ACML, 2021.
Zilong Zhao, Aditya Kunar, Robert Birke, Hiek Van der Scheer, and
Lydia Y Chen. CTAB-GAN+: Enhancing Tabular Data Synthesis.
Frontiers in big Data, 2024.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective Vulnerability Identification by Learning Com-
prehensive Program Semantics via Graph Neural Networks. In Proc.
of NeurIPS, 2019.

Yadong Zhu, Xiliang Wang, Qing Li, Tianjun Yao, and Shangsong
Liang. BotSpot++: A Hierarchical Deep Ensemble Model for Bots
Install Fraud Detection in Mobile Advertising. ACM TOIS, 2021.

[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]
[113]
[114]

[115]
[116]

[117]

[118]

[119]

APPENDIX
A. Ethics Considerations

We used data and models that have been publicly shared
for research purposes. We did not use human subjects in
our research. Team members were not exposed to sensitive,
private information, or disturbing content. All experiments
were conducted in controlled lab settings, and no deployed
services were affected by our newly trained classifiers. For
the study investigating data challenges, we collected titles

and abstracts of papers published between 2017 and 2021
from publicly available proceedings on the USENIX and ACM
websites, ensuring full compliance with their respective terms
and conditions. To minimize any potential strain on the servers,
data was scraped at low request rates. The proposed/studied
GenAl schemes generate synthetic data in the feature space
(used by the defense schemes) and not in the problem space.
We do not propose any methods for translating the data from
the feature space to the problem space, and doing so would
be challenging. Therefore, this limits any potential dual-use
concerns of such GenAl technology by adversaries. That said,
an adversary can use GenAl schemes to generate training
data to build a surrogate classifier, which can potentially be
used to craft adversarial samples against the defense classifier.
However, we believe that the benefits of the work toward
cybersecurity defenses outweigh any potential harm caused
by our study. We will publicly release code and pre-trained
models for GenAl schemes (including Nimai) and security
classifiers, along with all associated data, to encourage more
work in this space.

. AG for months
Technique
1 4 8 12
Nimai-S |-8.3 (3.9) 1 -5.4 (7.1) |-]-12.1 (10.1)i -7.6 (6.7)
Nimai-C |[-8.8 3.6) |} 6.5 (7.4) |-| 6.0 (9.2) |-|-12.5 (9.1)
TVAE -12.5 (5.3)41-3.3 (10.1)|-|-4.8 (18.6) |-|-35.6 (10.2)
TabSyn [|-11.4 (4.7){-16.8 (9.5 -25.2 (6.0) “—34.6 (14.6)
CTAB-GAN+|-4.9 (4.4) 3.5 (10.0)|-| 3.6 (14.9) |-|-8.3 (15.2) |-
TabDDPM |-2.5 (0.8) [} -2.5 (0.8) § -1.4 (4.4) |-|-12.1 (7.1)
SMOTE |-2.9 (1.1) 1 -2.9 (2.1) §| -6.0 (5.2) -9.6 (7.4)
MC-CCR |-1.5(0.6) | -3.4 (1.6) # -5.7 (5.9) |-|]-19.5 (14.4)

TABLE VI: Mean AG with standard deviation for BODMAS
task for 1, 4, 8, & 12 months. | indicates negative gains. ‘-’ in-
dicates unreliable gains (CV > 1). None of the methods show
positive AG in these months. GReaT and REal.TabFormer’s
failures are not shown.

Task TVAE| CT | TD |TabSyn|GReaT| RT |Nimai
BGP 1 8.2 |0.004| 18.6 5.9 14 0.6
Tor 2 168 [0.158| 209 [0.92 d*| 1041 | 9.46
IoT 16.6 | 837 | 0.27 | 652 |[238d*|2.7h*| 72
Cookie | 77.5 |2,074]0.223| 51 X 1.45 h*| 16.5
MS 10 | 206 | 0.01 X X X 3.57
BODMAS| 3.9 | 232 |0.123| 14.7 X X 1
nPrintML | 59.4 |2,368|0.047 X X X 21.8
Avg. time | 24.3 (841.8]0.119 - - - 17.84

TABLE VII: Training times per epoch for GenAl schemes on
an NVIDIA A100 GPU (in seconds unless marked as h = hours
or d = days). x indicates model failure; * indicates estimated
time. CT, TD, and RT refer to CTAB-GAN+, TabDDPM, and
REaLTabFormer, respectively.

B. Paper selection methodology

In a semi-automated process, we shortlisted 35 cybersecurity
papers (from top conferences) that use ML-based classifiers for
network and application security tasks. We scraped titles and
abstracts of 1,254 papers from USENIX Security and IEEE
S&P (2017-2021), then ranked them using latent semantic
indexing [29] based on manually curated keywords (e.g.,
classifier, prediction, accuracy, epoch). We manually reviewed
top-ranked papers, selecting 25 that used security classifiers.
An additional 10 papers came from team member suggestions.

Domain Papers with task descriptions
Network intrusion detection system [91], [71],
infections with domain generation algorithm [84],
Network | botnets [49]], [T19]], IoT cryptojacking [96]], telephony
security |scams [77], [63], BGP serial hijackers [97]], malicious
traffic [48]], [[114], abnormal cyber-physical
patterns [21]], and covert tunneling [11].

. Impersonation [25], phishing emails [47]], abusive
Social | ocial media accounts [T08], stock pump-and-dump
media schemes [[103]], web traffic/ad fraud [112], malicious
& web |URLs [98], [19], website fingerprinting [37], GDPR
security violations in cookies [13], and security vs. non-security

browser crash causes [75].

Malicious files [20], executable binary code [S1], [32],
Software| [TT1]), [10], [110], software crash analysis [41],
security |resilience against automated attacks [35], [42], [89],

and vulnerability detection [90], [118].

TABLE VIII: Measurement study papers with task categories.

C. Implementation of existing GenAl tools

This section discusses the hyper-parameters and implementa-
tion details of our chosen GenAl/non-GenAl tools.

TVAE [106]. We use Synthetic Data Vault (SDV) [76]
to implement TVAE with early stopping. The model has 7
hyper-parameters: latent space size, encoder/decoder units,
learning rate, batch size, loss factor, and number of epochs.
As the authors provide no tuning guidelines, we use default
settings. CTAB-GAN+ [117]. We implement early stopping
on CTAB-GAN+’s official source code. CTAB-GAN+ has 7
hyper-parameters, which include number of classifier layers,
size of classifier layers, batch size, number of training epochs,
number of channels, learning rate, number of encoding sides.
Similar to TVAE, the authors provide no guidelines on how
to tune the hyper-parameters, so we use the default settings.

TabDDPM [S7]. We implement TabDDPM using the official
codebase. It has 10 hyper-parameters, including learning rate,
iterations, diffusion timesteps, batch size, and MLP layers.
The authors recommend and use the Tree-Structured Parzen
Estimator [104]] (TPE) for hyper-parameter search.

TabSyn [115]. We implement TabSyn using the official
code, adding early stopping to the VAE training (already
built-in for the Diffusion model). TabSyn’s architecture has
7 hyper-parameters: for the VAE—token dimension, number
of layers, transformer layer dimension, A\, and min/max [;

17

for the Diffusion model—hidden dimension. We skip hyper-
parameter search, as the authors claim their parameter settings
generalize across feature sizes.

GReaT [16]. We use GReaT’s Python package with distil-
GPT as the backend LLM. We add early stopping and increase
the context window from 512 to 1024 for tasks with >100
features. GReaT has no tunable hyper-parameters.
REaLTabFormer [92]. We implemented REal.TabFormer
using their official Python package.

SMOTE [18]. We use the imbalanced-learn [62] imple-
mentation of SMOTE, with the number of neighbors in the
k-nearest neighbors algorithm set to the default of 5.
MC-CCR [58]. We implemented MC-CCR using their
source code, and best recommended generation settings: pro-
portional selection and translation cleaning strategy.

D. DeepSMOTE methodology

DeepSMOTE [26] uses an encoder-decoder architecture with
SMOTE-like interpolation in the latent space. During training,
feature space samples are encoded into the latent space, where
they are permuted and decoded to learn varied sample gener-
ation. During generation, feature space samples are encoded
to the latent space, where SMOTE is applied, and decoded to
produce feature space synthetic samples.

E. MC-CCR methodology

Here we describe MC-CCR’s methodology in detail. MC-
CCR [58] follows a two-step process. In the first step, a
cleaning procedure is performed i.e., the majority samples
in the proximity of the minority samples are removed. In
the second step, additional minority samples are added in
spherical regions around each minority sample. MC-CCR uses
a weighting strategy similar to ADASYN [45] to compute the
positions of synthetic samples to be added around difficult
samples. The augmentation radius (sphere) is determined by
the energy or budget allocated.

F. Nimai Hyper-parameter search methodology

Nimai’s hyper-parameter search is conducted in two stages:
first for the VQVAE model, then for the MTM model. To speed
up the process, we use a stratified 10k-sample subset for tasks
with over 10k training samples. Table [IX]lists the architectural
hyper-parameters and their search spaces. For VQVAE, ASHA
identifies parameters that minimize codebook (embedding +
commitment) loss on a validation set, excluding those causing
codebook collapse. For MTM, ASHA minimizes cross-entropy
loss on the validation set.

G. Monthwise statistical tests on BODMAS

This section provides a month-by-month analysis of the 8
testing months where positive gains are observed, presented in
Table In months 2, 3 and 11, Nimai-C is the only scheme
that shows a positive gain over all other schemes (both GenAl
and non-GenAl), further validating Finding 3 (Section [VII-A).
In months 5, 6, 7, 9, and 10, several schemes show positive

gains with high std values. Therefore, we apply statistical tests
to compare the rankings of reliable schemes for these months.

In months 5 and 6, all GenAl schemes show positive
gains. These months also experience the highest performance
degradation under concept drift (Figure [2). The Kruskal-
Wallis test shows a significant difference in rankings in both
months 5 and 6, with p-values of 1.044e-5 and 2.42e-3
(< 0.05), respectively. Dunn’s test for month 5 ranks the
schemes as follows: Nimai-C > CTAB-GAN+ > TVAE >
Nimai-S > TabDDPM > TabSyn; clearly showing Nimai-C
to be the best performing scheme amongst all GenAl schemes
with a percentage gain of 59.42%. Dunn’s test for month
6 ranks the schemes as follows: TVAE > CTAB-GAN+ >
Nimai-S > Nimai-C > TabDDPM > TabSyn, with TVAE
outperforming all other schemes. Note, Nimai-S is the only
sample-conditioned scheme to outperform TabDDPM, TabSyn
and Nimai-C class-conditioned GenAlI schemes. Traditional
sample-conditioned schemes exhibit unreliable performance in
both months.

In month 7, only Nimai-C, TabDDPM and SMOTE show
positive gains. Kruskal-Wallis test shows a significant differ-
ence in means with a p-value of 0.0982 < 0.05. Post-hoc tests
rank the schemes as SMOTE > Nimai-C > TabDDPM. Here,
traditional sample-conditioned SMOTE method outperforms
all class-conditioned schemes including Nimai-C and TabD-
DPM. In month 9, Nimai-C and TVAE show positive gains.
In month 10, Nimai-C, Nimai-S, and TabDDPM show positive
gains. The results of Kruskal-Wallis test indicate that there is
no difference in means for the schemes with positive gains
in both months. p-values for months 9 and 10 are 0.409 and
0.239 (>0.05) respectively. Therefore, in month 9, Nimai-C
and TVAE are the top performers, and in month 10, Nimai-
C, Nimai-S and TabDDPM lead, all 3 of them being class-
conditioned schemes.

Component Hyper-parameter Search space
Encoder, Number.of multi-heads (2, 4,8, 16}
Decoder. 1 attention layer.

MTM > | Number of neurons in {16, 32, 64,

feed-forward layer. 128, 256, 512}
Number of transformer (1,2, 4}
layers.
Number of vectors in {32, 64, 96, 128,
codebook. 256, 512, 1024}
Length of vectors 2°n where n

VQVAE | in the latent space. between (5, 49)
Size of embedding {2,4,6, 12,
vectors in codebook. 16, 24, 32, 48}
Weighting factor of
codebook loss. (1, 50)
Weighting factor of (1. 50)
reconstruction loss.
Decay loss factor in ©. 1)

VQVAE EMA quantizer.

TABLE IX: Architectural hyper-parameters used in Nimai’s
VQVAE, encoder/decoder and MTM model components.

18

(N-1) F-score for mo?tl?s Subset
Month (w/ standard deviation) size
5 6

1 56.23 (4.55) / 35.4| 52.26 (2.77) / 33.8 | 34

2 |42.79 (2.81)/36.4| 37.79 (4.01)/ 33.4 | 49

3 159.78 (8.34) / 34.4|53.92 (10.39) / 33.4| 64

4 50.11 (5.10) / 39 | 44.13 (3.85) / 33.7 | 33

5 48.27 (5.20) / 39.6 9

TABLE X: Mean macro F-scores w/ standard deviation for
Nimai-hybrid separated (/) by macro F-scores for INSOMNIA
on BODMAS months 5 & 6. Best scores are bolded.

20
a
qc') 10
= 0
2
5] -10
-20 1 1 1 1 1
0 50 100 150 200 250
Feature index
(a) IoT
20
7] Before
S 10 - After
g 0 _\fﬁf&,‘pw:,’-\/&/zﬁv\%
g2
] -10
-20 | | | | |
0 10 20 30 40 50
Feature index
(b) BGP

Fig. 5: Feature-wise skewness comparison of attack-class
samples before and after augmentation.

Test samples for BODMAS months
123 4 | 5|6 (7| 8 |9 |10]11|12
826(829]1563|1205]623|1087|945|1073|283|268 (312|559

TABLE XI: Test set statistics for BODMAS over 12 months.

Task |BGP| Tor | ToT |Cookie|MS|/BODMAS |nPrintML
of
samples

TABLE XII: Number of synthetic samples added during
augmentation to balance out class distribution for all tasks.
Here, MS refers to MS-Malware.

146 |5,749|41,634| 12,882 |619

11,592 686

H. Impact of noisy class labels

We study how noisy/overlapping class samples affect data
augmentation. In the original BGP task, sample-conditioned
schemes show positive gains (Table [). We induce class
overlap by flipping 20% of class-0 labels. Results for top-
performing GenAl and traditional methods are in Table
All methods degrade under overlap, highlighting the lim-
ited robustness of current augmentation schemes, especially
GenAl, to noisy/overlapping data.

Technique | Mean AG
BGP Overlap
Real 40.50 (-)
Nimai-S -14.02 (2.26)
Nimai-C -0.46 (2.28)
CTAB-GAN+ | -25.35 (2.54)
SMOTE -37.40 (3.99)

TABLE XIII: Mean AG with

standard deviation for overlap-

ping class data setting in BGP. | indicates negative gains.

19

	Introduction
	Data Challenges in Security Defenses
	Background and Related Work
	Problem setting and threat model
	Research questions
	Related work

	Data-challenged Security Tasks
	Data Augmentation Techniques
	Augmentation strategy
	Existing GenAI tools for tabular data
	Traditional data augmentation tools
	Nimai: Enabling controlled data synthesis

	Evaluation Setup
	Evaluation: Pre-Deployment
	Cases where GenAI shows potential
	Cases where most GenAI schemes show insufficiency

	Evaluation: Post-Deployment
	Conclusion & Future Work
	References
	Appendix
	Ethics Considerations
	Paper selection methodology
	Implementation of existing GenAI tools
	DeepSMOTE methodology
	MC-CCR methodology
	Nimai Hyper-parameter search methodology
	Monthwise statistical tests on BODMAS
	Impact of noisy class labels

