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Abstract—Local differential privacy (LDP) has become a
prominent notion for privacy-preserving data collection. While
numerous LDP protocols and post-processing (PP) methods have
been developed, selecting an optimal combination under different
privacy budgets and datasets remains a challenge. Moreover,
the lack of a comprehensive and extensible LDP benchmark-
ing toolkit raises difficulties in evaluating new protocols and
PP methods. To address these concerns, this paper presents
LDP? (pronounced LDP-Cube), an open-source, extensible, and
multi-threaded toolkit for LDP researchers and practitioners.
LDP? contains implementations of several LDP protocols, PP
methods, and utility metrics in a modular and extensible de-
sign. Its modular design enables developers to conveniently
integrate new protocols and PP methods. Furthermore, its multi-
threaded nature enables significant reductions in execution times
via parallelization. Experimental evaluations demonstrate that:
(i) using LDP?® to select a good protocol and post-processing
method substantially improves utility compared to a bad or
random choice, and (ii) the multi-threaded design of LDP? brings
substantial benefits in terms of efficiency.

Index Terms—Ilocal differential privacy, post-processing, data
privacy, frequency estimation, privacy toolkit.

I. INTRODUCTION

In recent years, local differential privacy (LDP) has emerged
as a popular notion for privacy-preserving data collection. In
LDP, each user perturbs their sensitive data on their device
before sharing it with a central server. Since the privacy
protection step occurs on the user’s device through a ran-
domized algorithm, LDP allows for privacy-preserving data
analysis when users do not trust the central server (i.e., data
collector). Considering that LDP offers privacy to users while
enabling the data collector to estimate aggregate statistics,
it has become popular in both research and industry [1],
[2]. For example, Google developed RAPPOR to analyze
users’ default browser homepages and search engines, Apple
used LDP to identify popular emojis and trending words for
typing recommendations, and Microsoft implemented LDP in
Windows 10 to collect app usage telemetry [3]-[5].

The popularity of LDP has led to the development of
various LDP protocols, such as GRR, BLH, OLH, RAPPOR,
OUE, and SS [6]-[8]. In addition, to improve the utility of
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server-side estimations, several post-processing (PP) methods
have been proposed, such as Base-Pos, Norm, Norm-Cut,
Norm-Sub, Norm-Mul, Power, and PowerNS [9], [10]. Yet, no
standardized criteria exist for selecting an optimal combination
of LDP protocol and PP method across all possible ¢ and
datasets. Furthermore, to advance development in LDP, it
would be beneficial to have a toolkit where researchers and
practitioners can conveniently integrate their new protocols
and PP methods, and benchmark them against existing ones.
The existence of such a toolkit would also provide guidance for
practitioners in terms of which protocols and methods would
yield the highest utility in their specific deployments.

To address these needs, in this paper, we propose and
develop LDP? (pronounced LDP-Cube, stands for: Local
Differential Privacy with Post Processing). LDP? is an open-
source toolkit! containing implementations of 6 LDP proto-
cols, 7 post-processing methods, and several utility metrics
in a multi-threaded setup. By housing many of the popular
protocols and PP methods, LDP? aims to offer a holistic
resource for researchers and practitioners to integrate and
test their newly proposed methods, or to benchmark existing
methods on new applications and datasets. The modular design
of LDP? enables it to be an extensible privacy toolkit, allowing
the addition of new protocols, methods, and metrics as needed.
Furthermore, the multi-threaded nature of LDP? is particularly
beneficial, since the execution and benchmarking of multiple
protocols and PP methods with many repetitions (to combat
LDP’s randomness and achieve statistical significance) causes
high execution times. The parallelization in LDP? helps to
reduce execution times substantially.

There are several potential uses of LDP? which makes it
beneficial to advance LDP research (from a researcher’s per-
spective) and deployment (from a practitioner’s perspective).
For example:

o Say that a privacy researcher proposes a new LDP pro-
tocol or PP method. The researcher can implement their
protocol or method into LDP? and experimentally com-
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pare it with existing methods. Furthermore, for a newly
developed protocol, the best-performing PP method can
be found by experimenting with LDP3,

« Say that a practitioner wants to apply LDP to a real-world
data collection task. The practitioner has a surrogate data
sample, the £ budget, and the utility metric in hand. Using
LDP3, the practitioner can find which LDP protocol and
PP method yields the lowest utility loss and apply this
combination to the real-world data collection task.

o Existing PP methods have so far only been validated
using a limited number of LDP protocols and settings
(e.g., only OLH in [10]). A broader and more holistic
benchmarking of different protocol and PP method com-
binations can be performed using LDP? to validate (or
challenge) previous findings.

The remainder of this paper is organized as follows. In
Section II, we provide the necessary LDP background and
explain the differences between LDP? and other LDP-related
libraries and toolkits. In Section III, we describe the design
and current implementation of LDP3, as well as how to use
LDP? in practice. In Section IV, we experimentally show the
benefits and contributions of LDP? from two perspectives:
(i) using LDP? to select a good protocol and PP method
combination indeed helps improve utility substantially, and (ii)
multi-threaded design of LDP? brings substantial benefits in
reducing execution times. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. LDP Background and Notation

In a typical LDP setting, there exist multiple clients (users)
and a data collector (server). Each user perturbs their data
locally on their device before sending it to the server. After
perturbed values are collected, the server performs aggre-
gation and estimation to recover population-level statistics.
Since each user’s data is perturbed using a randomized LDP
algorithm, the server cannot infer exact information about any
specific user.

Let U denote the user population and D denote the domain
of users’ values. We denote values in the domain by v € D.
For user u € U, we denote this user’s true value by v,. We
denote the true frequency of v by f(v), its estimated frequency
after LDP by f(v), and its post-processed frequency by f(v).
A randomized mechanism v is said to satisfy e-LDP if the
following holds.

Definition 1 (¢-LDP). A randomized mechanism 1 satisfies
e-LDP, if and only if for any two values vy, v in D:

Pr[t(v1) = y]
Pr[p(va) = y]

where Range(1)) denotes the set of all possible outputs of ).

Yy € Range(v)) : <ef (1

Here, ¢ is the parameter that determines the strength of
privacy protection. It is often called the privacy parameter or
privacy budget. Smaller ¢ yields stronger privacy.

B. Related Work

The popularity of LDP has led to its application in a variety
of contexts and data analysis tasks, such as high-dimensional
data collection [11]-[13], heavy hitter identification [14], [15],
set-valued data analysis [16], [17], geospatial data analysis
[18], [19], and deep learning [20], [21]. LDP protocols and
PP methods serve as the fundamental building blocks of many
such applications. There have also been a few works which
build practical systems or toolkits for the analysis of LDP
protocols. However, LDP? has some key differences compared
to them, which are described below.

Earlier works such as [6] and [10] focus solely on protocols
without post-processing, or evaluate post-processing only on a
single protocol. The PURE-LDP package was proposed in [8];
however, it contains a subset of the post-processing methods
in LDP? and it does not support multi-threading. The MULTI-
FREQ-LDP package was proposed in [22]; however, the
main focus of MULTI-FREQ-LDP is multi-dimensional and
longitudinal frequency estimation [12], [23]. Hence, it does
not contain post-processing methods. LDPLENS was proposed
in [7]; however, it is focused on protocols’ adversarial anal-
ysis and does not contain post-processing. Overall, LDP? is
novel in combining many LDP protocols and post-processing
methods under a single umbrella in a multi-threaded setup.

III. LDP? DESIGN AND IMPLEMENTATION

LDP? is an open-source toolkit designed to address the
need for a systematic and comprehensive tool to evaluate
combinations of different LDP protocols and PP methods.
Built in a modular and extensible way, LDP3 allows users to
experimentally find the optimal LDP protocol and PP method
for a given dataset, utility metric, and privacy budget . It
consists of the following primary modules (i.e., components):

¢ The Protocol Module contains implementations of mul-
tiple state-of-the-art LDP protocols such as GRR, BLH,
OLH, RAPPOR, OUE, and SS. It offers a standardized
interface, allowing developers to add new protocols to
LDP? by implementing the protocols’ user-side perturba-
tion and server-side estimation functions.

o The Post-Processing Module contains implementations of
PP methods which take as input the estimated frequencies
f(v) and produce post-processed f(v). In the current
implementation of LDP3, several PP methods are already
included. The module is designed in an extensible way
so that new PP methods can be added in the future.

e The Utility Measurement Module contains implementa-
tions of utility metrics to measure the differences between
f(v) and f(v), or f(v) and f(v). Examples of currently
implemented metrics include ¢; distance, ¢5 distance, and
KL-divergence. New metrics can be added as desired.

e The Multi-Threading Module aims to address high execu-
tion times when running many combinations of protocols
and PP methods. It leverages Python’s concurrency fea-
tures to parallelize the data perturbation and aggregation
processes, and significantly improves the computational
efficiency of large-scale experiments.



« Finally, the Execution Module provides a command-line
interface to run experiments, saving detailed results to an
output file or displaying aggregate results on the terminal.
This module also facilitates the handling of datasets, e.g.,
reading and writing to files with standard formats (such
as txt or csv).

In the rest of this section, we describe the design and current
implementation of each module in more detail.

A. Protocol Module

Several LDP protocols have been developed in the lit-
erature [6]-[8]. These protocols are often used as building
blocks in more complex data analysis tasks and downstream
applications. An LDP protocol can be characterized by two
main components: (i) user-side encoding and perturbation to
satisfy LDP, and (ii) server-side aggregation and estimation
to recover population-level statistics. LDP? currently contains
the implementations of six protocols: GRR, RAPPOR, OUE,
BLH, OLH, and SS. New protocols can be added to LDP? by
implementing two functions: one function for the protocol’s
user-side encoding and perturbation, and one function for the
protocol’s server-side aggregation and estimation. The details
of the protocols are provided below.

Generalized Randomized Response (GRR). Randomized
response is a method originally introduced for survey data
collection, and GRR is an extension of this method designed
for LDP. It allows for multi-valued domains (i.e., |D| > 3)
and works for any privacy parameter €. Given a user’s true
value v,,, GRR generates a perturbed value y,, € D based on
the following probabilities:

PTW(%) = yu] = {p - m’ lf Yu = Uy (2)

1
9= =yp—1 if Yy # vy

Once the server receives perturbed values from all users,

it estimates the frequency of a specific value v € D by first

calculating C (v), which is the number of users who reported

Yy = v as their perturbed value. Then, the estimate f (v) is
found by:

; Cv)— Ul g
fv) = 3)
(p—aq)- U
RAPPOR. The Randomized Aggregatable Privacy-

Preserving Ordinal Response (RAPPOR) protocol, introduced
by Google, ensures LDP by encoding a user’s value into a
bitvector and applying randomized perturbation. Although the
original RAPPOR protocol uses Bloom filters for encoding,
we describe a simpler version of RAPPOR with unary
encoding, which is commonly used in the literature. Each
user u initializes a bitvector B,, of length |D|, setting all bits
to 0 except for the one corresponding to the user’s true value
Uyt Bylvy] = 1. The RAPPOR perturbation mechanism then
iterates through each bit ¢ € [1,|B,]|] and keeps or flips the
bit with probabilities defined in the following equation:
ec/2
Viep,Ba)) : Pr(Byli =1] = {es/iﬂ,
/2417

if B,[i] =1

if Bu[i] =0 @

The perturbed bitvector B, is sent to the server. After receiv-
ing perturbed bitvectors from all users, the server calculates
C'[v], the count of 1’s at index v across all received bitvectors:

=Y Bl 5)

ueU

Finally, the server computes the estimate f (v) using the
formula: N
p Clhvl+ U]l (a—1
by ClLe (0 1)
(2a—1)- |

(6)
where « is the bit-keeping probability: o = eg/#
Optimized Unary Encoding (OUE). In OUE after ini-
tializing the bitvector B, in the same way as in RAPPOR,
the perturbed bitvector B!, is determined according to the fol-
lowing probabilities. These probabilities were mathematically
derived to minimize the variance of server-side estimation [6],
improving protocol utility.

if B,li] =1

if Bu[i] =0 @)

Viel,|Bal :

1
PrB,[i] = 1] = {2’1

ec+17
The perturbed bitvector B, is sent to the server. After receiv-
ing perturbed bitvectors from all users, the server calculates
the count C[v] in the same way as in Equation 5. The server
then computes the estimate f (v) using the following formula:

o2 (e -l - ) .
f) EETRT ®)

Binary Local Hashing (BLH). Both RAPPOR and OUE
utilize bitvectors of length |D|, which can lead to significant
user-side computation costs and user-server communication
costs when |D| is large. BLH addresses these costs by applying
hash functions to reduce the domain size. To address potential
issues with hash collisions, BLH uses a set of hash functions
H, from which each user selects a different function.

Let H represent a set of hash functions such that each H €
‘H maps a value from D to an integer in the set {0,1}, i.e.,
H : D — {0,1}. Each user u with true value v,, randomly
selects a hash function H,, from H and computes the integer
Zy = Hy(vy,). The perturbation step in BLH then takes x,,
and produces a perturbed value z, € {0,1} according to the
following probabilities:

ef . .
Viego,) : Prlzl, = i] = {egfrl %f T Z )]

a7 iz #1i
The user sends the tuple (H,,z!) to the server. Once the
server receives tuples from all users v € U, it estimates the
value v by first computing Sup(v), which is the total count
of tuples where the condition z], = H,(v) holds. The server

then estimates f(v) as

5 (ef4+1)-(2- Sup(v) —
flv) = .
(s = 1) - U]
Optimized Local Hashing (OLH). Unlike BLH, OLH uses
a non-binary output space for hash functions. It allows the

U

(10)



encoding of a value v into an integer within the range [0, g—1],
where g > 2 is a parameter of the protocol. The motivation
behind this modification is to overcome the utility loss that
occurs in BLH when binary encoding is not optimal. OLH
has been shown to provide significant utility improvements
over BLH, particularly when ¢ and |U{| are large. The default
value for g is derived as g = e® + 1 [6].

Let H represent a set of hash functions such that each H €
‘H maps a value from D to an integer in the range [0, g — 1],
ie., H:D — [0, g — 1]. Each user randomly selects a hash
function H,, from H and computes the integer x,, = H,,(vy,).
The perturbation step in OLH then takes x,, and produces a
perturbed value z/, € [0, g—1] with the following probabilities:

e

; . [ ef+g—1
Vze[O,g—l].Pr[ac;—z]—{ to
ec+g—1

if x,, =1

. . an
if z, £

The user sends the tuple (H,,z) to the server. Once the
server receives tuples from all users v € U, it estimates the
value v by first computing Sup(v), which is the total count
of tuples where the condition z;, = H,(v) holds. The server
then estimates f(v) as:

(ef+g—1) (g Sup(v) —U])

) =y -l

12)

Subset Selection (SS). In the SS protocol, each user reports
a subset Z, of the domain D to the server. The size of the
subset k = |Z,] is a crucial parameter of the protocol. The
default value for £ is defined as k = e'}i'l. User u initializes
subset 7, as empty. SS adds v, to Z, with probability
% The remainder of the subset Z, is constructed
as follows:

o If v, was added to Z, in the previous step, then k — 1
elements are selected uniformly at random without re-
placement from D \ {v,} and added to Z,.

e If v, was not added to Z, in the previous step, then
k elements are selected uniformly at random without
replacement from D \ {v,} and added to Z,.

The user sends the resulting Z, to the server. The server
receives the subsets Z, from all users v € U. The server
defines the parameters o and 6y as:

k-ef
* Tk e+ D -k (13)
1) k- ef DI —k)-
g (E=1) ke + (DI k) -k (14

(DI =1) - (k-es+ D] - k)

To estimate f(v), the server computes Sup(v), which is the
total number of clients in &/ whose reported subset Z,, contains
v. Then, the server estimates f(v) as:

o Suplv) — U] - 6,
) =~ W

15)

B. Post-Processing Module

Post-processing (PP) methods take as input the estimated
frequencies under LDP f (v) and produce post-processed fre-
quencies f(v), with the aim of achieving consistency and
utility improvement [9], [10]. Different PP methods result
in varying trade-offs between increase in utility and bias;
furthermore, different PP methods may be desirable for dif-
ferent datasets and LDP protocols. To facilitate the utilization
and benchmarking of various PP methods, LDP3 includes
implementations of commonly used PP methods from the
literature, which are described below. New methods can be
added to the toolkit in the future.

Base-Pos: Frequencies must be non-negative by definition;
however, due to the randomization in LDP, f (v) may be
negative for some v € D. Base-Pos addresses this problem
by converting all negative estimations to O.

flv) if f(v) =0

. (16)
0 otherwise

YoeD: f(v)= {

Norm: The sum of frequencies across all v € D should

equal 1; however, this may not hold due to the randomization

in LDP. Norm addresses this problem by adding a constant o
to each frequency so that the sum will equal 1.

VYo eD: f(v) = f(v)+o, such that Z flv)y=1 17
veED
Norm-Cut: Norm-Cut converts negative and small positive
frequencies to 0, and it also ensures that the sum of frequencies
equals 1. That is:

0 if f(v) <6
f(v) if fw) >0
where ¢ is a threshold value. The value of ¢ is chosen such
that ) . f(v) = 1 is ensured.

Norm-Sub: Norm-Sub converts negative frequencies to 0.

Then, it adds a constant J to the frequencies to ensure that the
sum of frequencies equals 1.

VUED:f(U)Z{ (18)

0 if f(v) <0

jo)y+s it fwyzo

VveD:f(v):{

Here, the value of § is chosen such that ) f(v) =1 is
ensured.

Norm-Mul: Norm-Mul converts negative frequencies to 0.
Then, instead of an additive factor, it uses a multiplicative
factor to the remaining frequencies so that their sum is 1.

0 if f(v)<0
af(v) if f(v) >0

Here, « is the multiplicative factor. Its value is chosen such
that > f(v) =1 is ensured.

Power: The rationale of Power is that many real-world
datasets follow a statistical distribution such as a Gaussian or
power law distribution. Therefore, Power fits a distribution to
the estimated frequencies and aims to minimize the expected

YoeD: fv)= { (20)
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square error. For example, with f (v) ~ P where P is a power
law distribution, the goal is to minimize:

m};n E 2D

veD

PowerNS: PowerNS first applies Power and then uses
Norm-Sub on Power’s outputs to obtain the final result.

C. Utility Measurement Module

LDP? adopts several utility metrics to calculate the errors
between frequencies. We exemplify four utility metrics imple-
mented in LDP?: ¢; distance, /5 distance, Kullback-Leibler
Divergence, and Earth Mover’s Distance (EMD). Note that
although we present the utility metrics in a way that measures
the difference between f(v) and f(v) below, it is also possible
to utilize these metrics to measure the difference between f(v)
and f(v) or the difference between f(v) and f(v).

/1 distance, also known as Manhattan distance, measures
error using the ¢; norm (absolute value norm). It is defined
as:

¢, distance = Z ‘f(v) -

veD

)| 22)

{5 distance, also known as Euclidean distance, measures
error using the ¢, norm (squared error norm). It is defined as:

{5 distance = Z (f(v) - f(U>)2

veD

(23)

Kullback-Leibler Divergence (KL-divergence) is a mea-
sure of how one probability distribution diverges from a
second. Here, f(v) and f(v) are treated as probability dis-

tributions:
«(760)

Earth Mover’s Distance (EMD) measures the minimum
cost of transforming one distribution into another. It can be
interpreted as the amount of work required to transform the

KL-divergence = Z fw)l
vED

(24)

Multi-threaded execution in LDP3

original frequency distribution f(v) into the post-processed
distribution f(v). Mathematically, it is defined as:
(25)

EMD = mﬂin Z m(vy,v2) - [vg — V2|

v1,v2€D

where 7(v1,v2) represents the amount of mass moved from
vy to ve, and |v; — v is the distance between vy and vs.

D. Multi-Threading Module

In practice, finding which protocol and PP method yields
the highest utility requires experimenting with many protocol
and method combinations. Furthermore, due to the randomized
nature of LDP, repeating each experiment multiple times is
needed to obtain a reliable and statistically significant result.
On the other hand, performing many experiments with many
repetitions yields undesirably high execution times.

To address this problem, we implemented LDP? in a multi-
threaded architecture as shown in Figure 1. The process can
be broken down into several key steps. First, the dataset is
divided into ¢ equal-sized chunks, where ¢ is the number
of threads. Each chunk is assigned to a separate processing
thread. A unique random seed is generated for each thread
to maintain independence between threads. Second, on each
thread, individual user values in the chunk (denoted by v; to
vy, in Figure 1) undergo LDP perturbation using the selected
protocol (e.g., GRR, OLH, RAPPOR, etc.). Intra-thread results
are aggregated and estimated within the thread’s execution.
Each thread executes in parallel and independently from the
others. Third, LDP? collects estimation results from all threads
and combines them via averaging. This results in the estimated
frequencies denoted by f(v). Finally, f(v) undergo selected
PP method(s) from the Post-Processing Module (Section
III-B). This results in the post-processed frequencies denoted
by f(v). The errors between f(v) and f(v) are calculated
using metrics implemented in the Utility Measurement Module
(Section III-C).

We note two important remarks which are taken into con-
sideration when designing the multi-threading module. First,
by default, sizes of all ¢ chunks are equal. This ensures that the
averaging performed by LDP? is suitable for obtaining f (v). If



the sizes of the chunks are different, then weighted averaging
(where each chunk is given a weight directly proportional to
its size) would ensure correctness. Second, domain size D,
privacy budget €, and other protocol parameters are treated
as global parameters which are fixed across all threads. This
ensures that the protocol behavior remains consistent across
all threads.

E. Execution Module

This module provides an interface for executing LDP? in
practice. The general command structure to run LDP? is shown
in Figure 2. It can be observed that the command includes
several options:

e —e EPSILON is used to determine the privacy budget ¢.

e —p PROTOCOLS specifies the LDP protocol(s) to use.
Possible protocols are those implemented in the Protocol
Module of LDP? (Section III-A). One or more protocols
can be used in the same execution. Specifying "all"
for this option prompts LDP? to repeat the experiments
with all available protocols in the Protocol Module.

e« —m METHODS specifies the PP method(s) to use. Possible
methods are those implemented in the Post-Processing
Module (Section III-B). One or more PP methods can be
used in the same execution. Specifying "all" for this
option prompts LDP? to repeat the experiments with all
available methods.

e —r REPEAT: LDP? performs each experiment multiple
times (i.e., multiple repetitions) to tackle the inherent
randomness of LDP and to achieve statistical significance.
The —r option is used to determine the number of
repetitions per experiment, e.g., 10.

e —t THREAD_NUMBER specifies the number of parallel
threads to use in the multi-threaded execution of LDP3.

e —d DATASET specifies the dataset path, e.g.,
my_dataset.csv. Currently, it is expected that
datasets will contain rows of values where each row
corresponds to one user’s data. The code in LDP? which
reads and parses the datasets can be modified to support
datasets with different formats.

e —u UTILITY METRIC specifies the utility metric to
evaluate errors, selected among those implemented in the
Utility Measurement Module (Section III-C).

IV. EXPERIMENTAL EVALUATION
A. Experiment Setup

In this section, we perform experiments to demonstrate that:
(1) to improve utility, it is highly beneficial to run experiments
with different LDP protocol and PP method combinations
using LDP? to find a good combination, rather than using
a fixed protocol or PP method; and (ii) multi-threading in
LDP? brings substantial benefits that speed up experiment
execution.

We used three real-world datasets for experimentation:
BMS-POS, Kosarak, and Porto. We obtained Kosarak from
the SPMF Dataset Repository?, BMS-POS from the public

2www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

python3 main.py —-e EPSILON —-p PROTOCOLS
-m METHODS —-r REPEAT -t THREAD_NUMBER
—-d DATASET -u UTILITY_METRIC

Fig. 2. Command structure to run LDP? with various options and parameters.

Github repository?, and Porto is from the ECML-PKDD Taxi
Service Prediction Challenge.

o Kosarak contains click-stream data of a Hungarian online
news portal. Due to many URLs having very few occur-
rences (e.g., one or two), we pre-processed the dataset by
identifying the top-128 most visited URLs and removed
the rest, i.e., |D| = 128. For users who had more than
one URL in their resulting stream, the most frequently
occurring URL in their stream was picked as their v,,.

« BMS-POS includes market basket sales data from a major
electronics retailer, consisting of 515,596 transactions and
1,657 unique items sold. In our experiments, we pre-
processed the dataset in a similar fashion to Kosarak
by keeping only the top 256 most frequently purchased
items.

e Porto contains trips of 442 taxis driving in the city of
Porto. While the dataset contains full taxi trips, we pre-
processed it by keeping only the starting location of each
trip and applied a 15 x 15 grid for discretization. Each
trip was treated as a new v,,. Consequently, we have |D|
=225 and |U| = 1,620,157.

Each experiment was conducted 10 times on an Intel Alder
Lake Core i7 1255U CPU and the average results are reported.
We use ¢; distance as the utility metric.

B. Utility Benefits of LDP>

In the first set of experiments, we demonstrate the utility
benefits of LDP? by reporting the errors in frequency esti-
mations without post-processing (w/o PP), with each post-
processing method from Section III-B, and the average of all
post-processing methods. Results with the Kosarak dataset are
shown in Table I, BMS-POS dataset are shown in Table II, and
Porto dataset are shown in Table III. For each protocol (each
row), the lowest error among all post-processing methods is
underlined.

We observe that in many cases, errors are high when there is
no post-processing. Post-processing methods consistently help
in reducing errors. This consistent improvement demonstrates
the effectiveness of post-processing methods and motivates the
utility of LDP? in enabling the convenient integration and
execution of various post-processing methods. Additionally,
different post-processing methods yield different amounts of
improvement, and the optimal post-processing method varies
depending on the protocol and dataset. In other words, there
is no post-processing method that performs universally best
across all protocols and datasets. For example, in Table II,
Norm-Mul is best for GRR, Norm-Sub is best for OLH,

3https://github.com/cpearce/HARM/blob/master/datasets/BMS-POS.csv




TABLE I
£1 DISTANCES OF ESTIMATIONS UNDER DIFFERENT COMBINATIONS OF LDP PROTOCOLS AND POST-PROCESSING METHODS. KOSARAK DATASET AND &
=1 ARE USED. ALL VALUES IN THE TABLE ARE x 1073,

Protocol w/o PP | Avg. w/ PP | Base-Pos | Norm | Norm-Cut | Norm-Mul | Norm-Sub | Power | PowerNS
GRR 5.65 3.83 3.87 5.65 3.53 3.98 3.08 3.66 3.02
OLH 1.56 1.44 1.33 1.56 1.47 1.39 1.27 1.59 1.49
BLH 1.84 1.65 1.48 1.83 1.71 1.58 1.39 1.84 1.70
OUE 1.48 1.35 1.23 1.47 1.35 1.27 1.19 1.50 1.46

RAPPOR 1.66 1.51 1.37 1.65 1.52 1.47 1.30 1.71 1.61

SS 1.60 1.39 1.34 1.60 1.49 1.43 1.28 1.32 1.21
TABLE II

£1 DISTANCES OF ESTIMATIONS UNDER DIFFERENT COMBINATIONS OF LDP PROTOCOLS AND POST-PROCESSING METHODS. BMS-POS DATASET AND &
=1 ARE USED. ALL VALUES IN THE TABLE ARE X103,

Protocol w/o PP | Avg. w/ PP | Base-Pos | Norm | Norm-Cut | Norm-Mul | Norm-Sub | Power | PowerNS
GRR 10.79 5.94 6.74 10.79 5.15 4.01 432 6.36 4.20
OLH 2.14 2.00 1.76 2.14 1.98 1.67 1.66 2.52 2.26
BLH 2.45 2.24 1.95 2.45 2.19 1.83 1.84 291 2.53
OUE 2.17 2.03 1.78 2.17 1.98 1.71 1.71 2.53 2.30

RAPPOR 2.21 2.02 1.81 2.21 2.01 1.73 1.73 2.44 2.23

SS 2.08 1.79 1.70 2.08 1.92 1.62 1.61 1.74 1.57
TABLE III

£1 DISTANCES OF ESTIMATIONS UNDER DIFFERENT COMBINATIONS OF LDP PROTOCOLS AND POST-PROCESSING METHODS. PORTO DATASET AND ¢ = |
ARE USED. ALL VALUES IN THE TABLE ARE x 1073,

Protocol w/o PP | Avg. w/ PP | Base-Pos | Norm | Norm-Cut | Norm-Mul | Norm-Sub | Power | PowerNS
GRR 5.66 3.97 3.84 5.66 3.45 3.19 3.03 4.33 4.33
OLH 1.17 1.06 0.93 1.17 0.93 0.94 0.87 1.27 1.27
BLH 1.34 1.19 1.05 1.34 1.04 1.06 0.97 1.45 1.45
OUE 1.21 1.09 0.96 1.21 0.97 0.97 0.90 1.33 1.33

RAPPOR 1.27 1.14 1.01 1.27 1.01 1.01 0.94 1.39 1.39

SS 1.18 0.94 0.94 1.18 0.94 0.95 0.88 0.86 0.86

and PowerNS is best for SS. Furthermore, choosing the best
protocol and post-processing method is indeed important since
the best choice (e.g., SS - PowerNS combination) yields
substantially lower error (1.57) compared to a bad choice or
an average choice (e.g., > 2.0 error). By offering a range
of post-processing methods, LDP? can empower researchers
and practitioners to experiment with multiple configurations,
enabling them to find the best combination of LDP protocol
and post-processing method for their specific requirements.

C. Benefits of Multi-Threading

In the second set of experiments, we demonstrate the
benefits of the multi-threaded design of LDP? by evaluating
the impact of multi-threading on the execution times of various
protocols. Figures 3, 4, and 5 show the total time required to
run each experiment (10 repetitions) on the Kosarak, BMS-
POS, and Porto datasets, respectively.

As expected, we observe that the execution times decrease
as we increase the number of threads from 1 to 8. However,
the decrease is not linear. This is because, as shown in Figure
1, LDP? needs to divide the input dataset into ¢ chunks at
the beginning. In addition, it needs to combine the estimation
results from all threads (chunks) and apply post-processing
to the combined estimation result. These actions cannot be

multi-threaded; therefore, their time cost cannot be eliminated
or reduced by increasing the number of threads. On the
other hand, for many protocols, the total execution times are
halved or reduced to one-third as we go from a single thread
to 4 or more threads. The benefits of multi-threading are
especially noticeable in cases where the protocol’s execution
times are generally high (such as OLH, BLH). Overall, these
results highlight the benefits of LDP?’s multi-threading and its
suitability for large-scale experimentation.

V. CONCLUSION

In this paper, we introduced LDP3, an extensible, open-
source, and modular toolkit designed to advance research
and practical applications of local differential privacy (LDP).
By integrating widely used LDP protocols, post-processing
methods, and utility metrics within a multi-threaded frame-
work, LDP? provides researchers and practitioners with a
powerful resource for benchmarking and testing existing or
newly proposed methods, as well as exploring the optimized
combinations protocols and post-processing methods suitable
for their task. Our experimental results highlight the significant
utility and efficiency gains enabled by LDP3. We hope that
LDP? will be helpful in accelerating LDP research and deploy-
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Fig. 5. Execution time vs number of threads (Porto).

ment, as well as fostering collaboration and reproducibility
through the public open-source repository.
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