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Abstract. For securing systems, it is essential to manage their vulner-
ability posture and design appropriate security controls. Vulnerability
management allows to proactively address vulnerabilities by incorporat-
ing pertinent security controls into systems’ designs. Current vulnerabil-
ity management approaches do not support systematic reasoning about
the vulnerability postures of systems’ designs. To effectively manage vul-
nerabilities and design security controls, we propose a formally grounded
automated reasoning mechanism. We integrate the mechanism into an
open-source security design tool and demonstrate its application through
an illustrative example driven by real-world challenges. The automated
reasoning mechanism allows system designers to identify vulnerabilities
that are applicable to a specific system design, explicitly specify vulner-
ability mitigation options, declare selected controls, and thus systemati-
cally manage vulnerability postures.

Keywords: Vulnerability assessment - Threat modelling - Secure devel-
opment processes - Security by design.

1 Introduction

Vulnerabilities in systems can be exploited by malicious actors, and are the pri-
mary, enabling factor of cyber security attacks [11]. Vulnerability management
is therefore a critical aspect of secure system development and operation. Estab-
lishing the vulnerability posture of systems involves identifying and associating
vulnerabilities with system components, and identifying the potential mitigation
of these vulnerabilities by using security controls. Maintaining the vulnerability
posture involves regularly updating the pertinent vulnerabilities and mitigation,
to align with design decisions and the dynamic threat landscape (e.g., newly dis-
closed vulnerabilities affecting the system). Establishing and maintaining vulner-
ability postures allow the involved stakeholders (e.g., designers, risk managers,
and executives) to proactively identify, understand and mitigate potential risks,
consequently improving the trustworthiness of systems [8,12,15,25].

In general, vulnerability management can relate to vulnerabilities found in
the implementation of specific system constituents, which we relate to as imple-
mentation vulnerabilities; as well as to conceptual classes of vulnerabilities (i.e.,
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types of vulnerabilities), which we relate to as mechanism vulnerabilities. Miti-
gating vulnerabilities at the mechanism level, rather than individually mitigating
implementation vulnerabilities, is a desirable security-by-design approach to vul-
nerability management, because it addresses the root causes of potential security
issues and prevents a wide range of existing as well as potential vulnerabilities
and threats [1,4].

The standard security taxonomy provided by MITRE — a global leader in
systems engineering and cyber security — refers to mechanism vulnerabilities at
various levels of abstraction as weaknesses, and to implementation vulnerabil-
ities simply as wvulnerabilities. The Common Weakness Enumeration (CWE)3
is a hierarchical organisation of weaknesses, while Common Vulnerabilities and
Exposures (CVE)* lists implementation vulnerabilities. Implementation vulner-
abilities can manifest weaknesses [3,7]. In this paper, we use vulnerability as a
unified term to indicate either a mechanism issue or an implementation issue,
unless otherwise specified.

Traditional vulnerability management approaches focus mainly on implemen-
tation vulnerabilities that are identified and addressed after system development.
This reactive approach typically addresses individual implementation vulnera-
bilities but fails to address their underlying mechanisms — mechanisms that may
give rise to future implementation vulnerabilities. As a result, similar implemen-
tation vulnerabilities may remain unaddressed, leaving the system exposed to
future attacks, sometime exploiting the same underlying mechanisms [20]. This
requires to regularly check for new threats and design mitigation to address
them [2,9].

Most approaches either focus narrowly on specific vulnerabilities or lack the
scalability and rigor required to systematically integrate vulnerability manage-
ment into system design processes [17-19]. In a comprehensive review of cyber
security vulnerabilities and related concepts, Aslan et al. acknowledge the dif-
ficulty of “applying domain knowledge for automated analysis” and list it as a
major challenge alongside other related challenges, such as the time-consuming
design of “a secure system”, the detection and prevention of unknown attacks,
the protection of multiple components (as a system) and the increasing num-
ber of software vulnerabilities [2]. Consequently, organisations struggle to adopt
security-by-design principles, limiting their ability to ensure a robust, policy-
driven security posture from the outset and proactively mitigate risks. A sys-
tematic literature review on security risks and practices calls for better ways of
securing systems during development and, specifically, in its early stages [9].

In recent years, security by design has received increasing attention [18]. This
is due to the premise that the earlier the security information is integrated into
the system development lifecycle, the lower the overall debugging and mainte-
nance costs incurred at later phases [13]. In previous work, we analyse current
security-by-design approaches and their characteristics [14,24]. One of the chal-
lenges that remain is the lack of ability to rigorously reason about vulnerabilities

3 https://cwe.mitre.org/, Accessed: 3/4/2025
4 https://www.cve.org/, Accessed: 3/4/2025
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at varying levels of abstraction during the design of a system. This challenge is
also highlighted by other researchers [20, 26].

To address this challenge, there is a need for a formally specified reasoning
mechanism that can support the association of vulnerabilities with specific sys-
tem designs and reason about their mitigation, which includes the incorporation
of relevant security controls into the designs. Such a mechanism should inte-
grate seamlessly with existing design tools, enabling stakeholders to incorporate
security considerations as part of the development process rather than as an
afterthought.

In this paper, we present our work to develop a formally specified automated
reasoning mechanism for vulnerability management by design and implement it
as an extension of an open-source security modelling tool. We also illustrate how
the mechanism is used to reason about the vulnerability posture of a system
design. This illustration relies on real-world vulnerability data.

2 Related Work

Numerous studies have addressed vulnerability management. We overview some
related work, highlighting how our approach complements existing methods and
uniquely addresses the gap in scalable automated reasoning for vulnerability
management.

Some approaches suggest addressing the increasing number of reported vul-
nerabilities and the limited organisational capacity of remediation by prioritisa-
tion. A recent survey overviews dozens of approaches that attempt to prioritise
vulnerabilities based on their exploitability [5]. Like many of the survey ap-
proaches, Nowak et al. attempt to use the Common Vulnerability Scoring System
(CVSS) to prioritise vulnerabilities for remediation, also taking into considera-
tion the possible impact of their exploitation [16]. Such attempts often involve
the use of machine learning, which has limitations such as classification errors
and need of representative data [2]. Our work does not aim to prioritise vul-
nerabilities. Instead, we aim to identify vulnerabilities that are pertinent to a
specific system design and reason about this in a way which allows to filter out
the vulnerabilities that are already mitigated by existing security controls.

Formal methods offer rigorous ways to reason about design characteristics,
including security. Sengupta et al. propose a formal methodology limited to
detecting managerial vulnerabilities in enterprise information systems, without
addressing technical system vulnerabilities [22]. Fithen et al. model vulnera-
bilities formally, using propositional logic [6]. Their formalisation is limited to
specific product types (associated with Microsoft Windows) and to implementa-
tion vulnerabilities, with patching being the only demonstrated security control
and without addressing the temporal evolution of the security landscape [2,23].
Huff and Li propose a formal approach to model software vulnerability risk in the
context of the network environment and firewall configuration [7]. Focused on
operations, the approach does not trivially translate into system design contexts,
where system constituents are considered within their designated operating envi-
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ronment. To the best of our knowledge, there is no formally specified mechanism
that allows reasoning to scale about the vulnerability posture of systems, while
considering vulnerabilities at different levels of abstraction and their potential
mitigation.

Other approaches lack formal foundations. For example, the approach pro-
posed by Longueira-Romero et al. assesses known vulnerabilities in industrial
components using directed graphs, without any formalisation of their mitiga-
tion [10]. Almorsy et al. use the declarative language OCL to automate limited
aspects of vulnerability analysis, without providing formal definitions [1].

Rouland et al. propose a model-driven formal approach to specifying mecha-
nism vulnerabilities and controls with respect to software architecture [21]. The
implemented vulnerabilities library is limited, and the approach does not take
into consideration implementation vulnerabilities and, accordingly, does not inte-
grate with common vulnerability management practices (e.g., addressing CVEs
via patching). This can be seen as complementary to our work, as it allows to
formally define mechanism vulnerabilities, while our more conceptual approach
aims to curate such information within the context of existing security design
practices and body of knowledge and with respect to high-level system design.

TRADES Tool [23] is an open-source systems security design tool. It is under-
pinned by a semi-formal modelling methodology and relies heavily on a domain
metamodel. We have previously extended TRADES Tool with vulnerability man-
agement concepts [24]. However, the lack of formal foundations for addressing
vulnerability management by design — including the hierarchical organisation
and mitigation of vulnerabilities — remains a significant gap. In this paper, we
present our work to develop a formally specified automated reasoning mecha-
nism for vulnerability management by design and implement it as an extension
of TRADES Tool.

3 Formally Specified Automated Reasoning for
Vulnerability Management

We provide a formally specified, automated reasoning mechanism to analyse the
vulnerability posture of systems designs. The contribution of this mechanism
is two-fold. First, it associates potential vulnerabilities with system components
based on pre-specified associations between vulnerabilities and component types.
Second, it assesses the vulnerability posture of the design by determining whether
the security controls associated with the components are sufficient to mitigate
the associated vulnerabilities. The latter is performed according to pre-specified
rules that provide guidance for the mitigation of vulnerabilities — in the context
of specific component types — by suggesting pertinent controls.
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We employ the following finite sets to formalise concepts related to vulnera-
bility management:

— the components ¢ € C' available in a system design or threat model
— the component types t € T available

the known vulnerabilities v € V' available

— the security controls s € S available

— the security rules r € R available

TN Q
|

To obtain a formal vulnerability management model, we would define the fol-
lowing mappings: VULNS : T'— P(V) maps a component type to the vulnera-
bilities that affect it; TYPES : C — P(T), maps a component to the component
types it manifests; CONTROLS : C' — P(S), maps a component to the controls
associated with it; AVULNS : V' — P(V), maps a vulnerability to vulnerabili-
ties of higher abstraction that it manifests, in a unidirectional, acyclic manner;
RVULNS : R — P(V), maps a rule to the vulnerabilities to which it applies;
RTYPES : R — P(T), maps a rule to the component types to which it applies;
RCONTROLS : R — P(S), maps a rule to the security controls it suggests as
mitigation.

In our framework, these sets and mappings can be manually defined and/or
automatically generated, without loss of generality or limitation. The result is a
body of formally codified knowledge about the system design and security at a
particular point in time, which can then be used as the basis for reasoning about
the vulnerability posture of the system. Evolution of the design — for example
adding components or augmenting the mitigations in place — can be done by
augmenting the relevant mappings. Likewise, new vulnerabilities or rules can be
added by augmenting the relevant sets and mappings. The reasoning can then
be performed by an automated reasoning mechanism, as further explained.

As part of our vulnerability management reasoning mechanism, we wish to
derive an indication whether a specific component is vulnerable. First, the rea-
soning mechanism can collect all the vulnerabilities that apply to a component
¢ € C based on the component’s types:

CVULNS(c) = | VULNS(t)

teTYPES(c)

The mechanism can then check whether each vulnerability so obtained is mit-
igated by a collection of security controls that is deemed appropriate by some
security rule. For a given vulnerability v of a component ¢, a rule is pertinent if
one of its types is also a type possessed by ¢ and applies to v. Proper mitigation
for the vulnerability is considered as a situation in which all the security controls
s identified by the rule are associated with the component. Formally:

3t € RTYPES(r).t € TYPES(c) A
MitigatedV (v, ¢) = Ir € R. { v € RVULNS(r) A
Vs € RCONTROLS(r). s € CONTROLS(c)
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MitigatedV defines whether a vulnerability is directly mitigated by a relevant
control. But a vulnerability can also be mitigated indirectly, by mitigating all
the higher level abstractions it manifests. Formally, this is expressed by

Mitigated (v, c) MitigatedV (v, ¢) V
itigated(v, ¢) = ..
8 (AVULNS(v) # @ A Vv’ € AVULNS(v). Mitigated (v’ ¢))
where the well-foundedness of this recursive formulation is established by the
fact that the abstraction relation on vulnerabilities is a finite partial order.

We can now define a predicate that allows the reasoning mechanism to indi-
cate whether a component has a vulnerability that remains unaddressed by the
associated controls:

Vulnerable(c) = Jv € CVULNS(c¢). -Mitigated(v, ¢)

Finally, the automated reasoning mechanism can make sure that the design
model satisfies the following property, indicating that no unmitigated vulnera-
bilities exist in any of the components in the design model:

Property 1. Ye € C. = Vulnerable(c).

4 Implementation

Fig. 1 shows an excerpt from the metamodel of the TRADES Tool, into which the
above vulnerability management concepts and automated reasoning mechanism
are integrated. The metamodel has five classes that correspond to the five sets
introduced above: C, T', S, V and R (Fig 1 (b)). For example, Rule corresponds
to the set R and Control corresponds to the set S. The labeled arrows represent
the family of mappings introduced above, with the label giving the name of the
mapping in TRADES Tool. For example, componentTypes from Component
to ComponentType represents the mapping TYPES : C' — P(T).

In TRADES Tool, the Analysis concept ((Fig 1 (a)), is the root element
of a design model and can store instances of the other concepts/classes. The
reasoning mechanism implementation adds derived elements, annotated in blue
and with a slash prefix. These include: the cVA relation between Component
and Vulnerability, corresponding to the formalism’s CVULNS mapping; and
the derived attributes vulnerable for the Component and
property DesignAddressesVulnerabilities for the Analysis, corresponding to
the Vulnerable predicate and Property 1, respectively. Operations are also added
to the Component, implementing the MitigatedV and Mitigated predicates.

5 Illustrative example

We describe an illustrative example application using the formally-specified au-
tomated reasoning mechanism for vulnerability management and its TRADES
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E] Analysis

= /property_DesignAddressesVulnerabilities : EBoolean = false
&3 components : Component

(@
=+ controlOwner : ControlOwner

G* vulnerabilityOwner : VulnerabilityOwner

G#* componentTypeOwner : ComponentTypeOwner

‘f-’ ruleOwner : RuleOwner

(b)
[1..*] componentTypesAffected E Rule [1..*] vulnerabilities

2 [0..*] controls

[H Component

Control
= /vulnerable : EBoolean = false [0.7] B
& ofType(type ComponentType) : EBoolean assignedControls

mitigatedV(vulnerability Vulnerability) :
EBoolean

mitigated(vulnerability Vulnerability) :
EBoolean

[0..¥] /cVA

[1.*] componentTypes

] ComponentType ] [ Vulnerability

( J
fl‘ T [0.*] affects [0.%] affectedByT

[0..*] manifests

Fig.1. TRADES Tool metamodel excerpt, showcasing integration of the formally-
specified vulnerability analysis mechanism.

Tool implementation. The TRADES Tool extension is available from the TRADES
Tool Github repository®. The example application TRADES model is also avail-
able online®.

Consider the following case of assessing the vulnerability posture of a com-
puter system being developed for the internal use of an organisation. Accord-
ing to the preliminary design, the system comprises two software components:
a UNIX-like operating system instance, and an organisational application in-
stance. The set of types for the system’s components accordingly includes two
types: “UNIX-like operating system” and “internally developed application”.

For the preliminary design, we — as security engineers — identify the vulnera-
bility Improper Restriction of Operations within the Bounds of a Memory Buffer
(CWE-119) as being of interest. A recommended mitigation for such vulnerabili-
ties is to use memory-safe programming languages |3|7. Accordingly, we design a
security rule, called “rulel”, to address this vulnerability in internally-developed

5 https://github.com/UKRI-DSbD/TRADES
5 https://github.com/UKRI-DSbD/TRADES/tree/VulManEx/VulManEx
" Also: https://cwe.mitre.org/data/definitions/119.html, Accessed: 3/4/2025
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applications, mandating the recommended security control. The formalisation of
this design situation defines the following sets:

C = {OperatingSystem, Application}

T = {UNIX _like operating system, internally developed application}
V = {CWE-119}

S = {use_memory_safe languages}

R = {rulel}

and these mappings:

VULNS(internally developed application) = {CWE-119}

TYPES(OperatingSystem) = {UNIX like operating system}
TYPES(Application) = {internally developed application}
RVULNS(rulel) = {CWE-119}

RTYPES(rulel) = {internally developed application}
RCONTROLS(rulel) = {use_memory safe languages}

Fig. 2 shows the various model elements and highlights rulel in TRADES Tool.
We note that TRADES Tool extension that we developed allows to import the
entire CWE catalogue of mechanism vulnerabilities and their hierarchical organ-
isation into our design workspace. Once this is done, the catalogue can be used
as a resource for vulnerabilities.

At this point in the development life cycle, no controls have been assigned to
any component. If we exercise the automated reasoning mechanism, Property 1 is
violated, with Vulnerable(Application) being true, with a counterexample being
—Mitigated(CWE-119, Application). Fig. 3 shows the initial Vulnerable status
of the Application component (at the very bottom), alongside other mappings,
including the unmitigated vulnerabilities mapping to CWE-119, which is auto-
matically set by the automated reasoning mechanism as a counterexample.

To deal with the vulnerable component, we can use the knowledge codified in
rulel to assign a security control as a requirement to the Application component,
setting CONTROLS(Application) to be {use_memory safe languages}. If we
now re-apply the reasoning mechanism, Property 1 is satisfied, i.e., all of the
specified components are not vulnerable. Fig. 4 shows the assignment of the
{use_memory safe languages} control to the Application component, resulting
in the component being assessed as not vulnerable (based on rulel).

As our system design evolves, we identify the specific operating system we
wish to use — FreeBSD version 14. Common Platform Enumeration (CPE)® is
a structured naming scheme for information technology systems, software, and
packages. CPE is useful in associating vulnerabilities with affected software. Ac-
cordingly, we introduce a new component type, with the CPE of FreeBSD version
14: cpe:2.3:0:freebsd:freebsd:14.0:-:*:*:*:%:%:* This is shown in Fig. 5. We can
now query the NIST’s National Vulnerability Database (NVD) to retrieve imple-
mentation vulnerabilities associated with the newly incorporate component type.

® https://cpe.mitre.org/
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For conciseness and readability, and to reduce cognitive load on the reader, we
query the NVD only for vulnerabilities that manifest the aforementioned CWE-
119, which results in two CVE records: CVE-2011-2895 and CVE-2020-10565
(Fig. 6). These vulnerabilities are then imported into our design space, along
with their associations — as detailed in the NVD database — with mechanism
vulnerabilities and with the queried component type (Fig. 7).

Fig. 8 shows the consequences of setting the type mapping of the Operat-
ingSystem component to include the new FreeBSD 14.0 component type. Auto-
matically, the reasoning mechanism deduces that the component is vulnerable,
and lists the unmitigated vulnerabilities (the two CVEs that were imported into
our design space).

The vendor advisory for CVE-2020-10565 is to apply a specific patch. We
capture this using rule2. Similarly, the NIST NVD record for CVE-2011-2895
provides links to another patch, to solve this issue. We capture this using rules.
Each of these newly added rules refers to newly identified security controls in
the form of specific patches. Fig. 9 shows that our design space now includes two
new rules and two new controls, and the details of rule3 as an example.

We can capture a design decision to incorporate the two patches — for exam-
ple, while preparing a new deployment of our system — into the system design
model by associating the relevant security controls with the OperatingSystem
component. Fig. 10 shows the immediate results of the automated reasoning
mechanism following such association: the OperatingSystem component is no
longer vulnerable.

As new implementation vulnerabilities emerge, new patches should be identi-
fied as security controls and new rules should address each specific vulnerability.
Alternatively, we can address vulnerabilities by design, i.e., by eliminating the
class of vulnerabilities, pending pertinent security controls. One such mitigation
is to use a capability based addressing hardware (such as CHERI-Morello [3]).
We introduce this new security control into the knowledge base within our design
environment, and specify a new rule — rule — to guide system designers in ad-
dressing CWE-119 in FreeBSD instances (Fig. 11). We can then assign the new
control to our OperatingSystem, instead of the previous patches. Fig. 12 shows
this assignment as well as the assessment — by the automated reasoning mech-
anism — that the component is not vulnerable. This explicitly shows that the
mechanism considers the mitigation of the CWE-119 mechanism vulnerability
also as mitigation to the implementation vulnerabilities that manifest CWE-119:
the potentially applicable vulnerabilities listed under the computed ¢VA map-
ping — which is the implementation of the CVULNS(c) collection (as indicated
in the previous section) — do not appear under the Unmitigated Vulnerabilities,
indicating that they are mitigated in the current system design.

9 https://svnweb.freebsd.org/ports?view=revision&revision=525916, Accessed:
3/4/2025
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& vulmanex.trades *
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~ < Analysis VulManEx
v i System Scope
{} OperatingSystem
] Application
4 Data Owner
~ 1T Controls
=) use_memory_safe_languages
£ Threats
@ Vulnerabilities
~ 4 Component Types
4 Component Type UNIX_like_operating_system
4 Camponent Type internally_developed_application
~ < Rules
< Rule rule1
4 Score System
|= platform:fresource/VulManEx/Catalogs/cwec_v4.16.cwe

Selection| Parent| List| Tree| Table | Tree with Columns

# cwec_vd.16.cwe X

(¥ CWE-1188: Initialization of a Resource with an Insecure Default ~
(® CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC)

(9 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

@ CWE-1190: DMA Device Enabled Too Early in Boot Phase

(® CWE-1191: On-Chip Debug and Test Interface With Improper Access Control

(® CWE-1192: Improper Identifier for IP Block used in System-On-Chip (SOC)

@ CWE-1193: Power-On of Untrusted Execution Core Before Enabling Fabric Access Control
(& CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

(9 CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)

@ CWE-1204: Generation of Weak Initialization Vector (IV)

v
< >
& Console [ Properties x [£] Problems @ Error Log EY BRRE=mi =13
Property Value

Companent Types Affected “ Component Type internally_developed_application

Controls @ use_memary_safe_languages

Id '=b4c37895-e7d0-41a9-ac5a-5edc3fe13af9

Name =rulel

Vulnerabilities & CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Fig. 2. The illustrative example in TRADES Tool: the Resource Set panel shows the
model elements grouped by their concepts, the middle panel shows an excerpt from the

imported CWE catalogue, and the Properties panel shows the attributes and mappings
of rulel.

B Console [ Properties x [2 Problems @ Error Log EyEREEkmE =10
Property Value
Assigned Controls
Associated Controls

Category =

Component Types + Component Type internally_developed_application

CVA =

CWA & CWE-119: Improper Restriction of Operations within the Bounds of a Memaory Buffer
Name = Application

Rules + Rule rule1

Threat Allocations =
Unmitigated Vulnerabilities

Unmitigated Weaknesses @ CWE-119: Improper Restriction of Operations within the Bounds of a Memaory Buffer
Vulnerable I true

Fig. 3. The Application component assessed as Vulnerable.
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Property
Assigned Controls
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Component Types
CVA
CWA
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Unmitigated Vulnerabilities
Unmitigated Weaknesses
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B Console [ Properties % [£ Problems @] Error Log

Value

2 use_memory_safe_languages
@ use_memory_safe_languages

+ Component Type internally_developed_application

(@ CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
= Application

4 Rule rule1

L false

B
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u?}i.
&

1
o

Fig. 4. The Application component assessed as not Vulnerable due to the assigned

control.
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Download progress:
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CVE-2011-2895
CVE-2020-10565

Property Value
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Manifests < Component Type UNIX_like_operating_system
Name 1= cpe:2.3:0:freebsd:freebsd: 14.0:-:%* %%
Subject To Threats = @ < Back Dext > Cancel
Fig.5. A new CPE-based component type is Fig. 6. Querying NVD for CWE-119 re-
incorporated into our design space. lated vulnerabilities in FreeBSD 14.
» CVE-2011-2895
® CVE-2020-10565
General | Property Value
Dt Affects 4 Component Type cpe:2.3ioxfreebsd:freebsd:14.0:- General | Property Value )
Fault Affects + Component Type cpe:2.3:0:freebsd:freebsd:1 4.0 o
1d = 795¢7bdc-e7c1-4e06-966e-163957995¢25 Defauit - 1 25084305 <01 02 S B DecT BT
Manifests (& CWE-119; Improper Restriction of Operations within the Bounds of a Mem... Manifests (9 CWE-119: Improper Restriction of Operations within the Bounds of a Mem
Name E= CVE-2011-2895 Name = CVE-2020-10565
Vulnerability Type =CVE Vuinerability Type = CVE

Fig. 7. Imported implementation vulnerabilities (CVEs) and their association with
mechanism vulnerabilities (CWEs) and component types.
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& Console [ Properties > (& Problems € Error Log

Property Value
Assigned Controls =
Assaciated Contrals
Category
Component Types
CVA (9 CVE-2011-2895, CVE-2020-10565
CWA =
Name
Rules
Threat Allocations
Unmitigated Vulnerabilities CVE-2011-2895, CVE-2020-10565
Unmitigated Weaknesses
Vulnerable

peratingSystem

£
=
=
&

Fig. 8. The OperatingSystem component’s type mapping is set to include the new
FreeBSD component type. The automated reasoning mechanism assesses the compo-
nent as Vulnerable and lists unmitigated vulnerabilities.

[ vulmanex.trades x
[ Resource Set
~ [ platform;/resource/VulManEx/vulmanex.trades
~ < Analysis VulManEx
~ {1 System Scope
"} OperatingSystem
{1 Application
4 Data Owner
~ 1 Controls
7 use_memory_safe_languages
&) FreeBSD_patchi
=] FreeBSD_patch2
£ Threats
@ Vulnerabilities
~ 4 Component Types
% Component Type UNIX_like_operating_system
< Component Type internally_developed_application
< Component Type cpe:2.3:oifreebsd:freebsd:14.0:- %% %
~ 4 Rules
+ Rule rulel
4 Rule rule2
<+ Rule rule3

Selection| Parent| List| Tree Table| Tree with Columns

& Console T Properties > [£! Problems % Error Log

Property Value
Component Types Affected < Component Type cpe:2.3:oifreebsd:freebsd: 14.0:-: *
Contrals 2 FreeBSD_patch2
Id = 3f6a2843-6b6b-457b-a1b6-21e23000c06b
Name = ryle3
Vulnerabilities (& CVE-2011-2895

Fig. 9. The system design model now includes two new controls representing available
FreeBSD patches as well as two new rules to specify the use of each patch as a mitigation
for a specific implementation vulnerability.
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& Console [ Properties X [Z! Problems @ Error Log E|Y =
Property Value

Assigned Controls 2 FreeBSD_patch2, FreeBSD_patch1

Associated Controls 7 FreeBSD_patch2, FreeBSD_paich1

Category =

Component Types # Component Type UNIX_like_operating_system, Component Type cpe:2.3:0:freebsd:freebsd: 14,05 %= 5=

CVA (¥ CVE-2011-2895, CVE-2020-10565

CWA =

Name peratingSystem

Rules 4 Rule rule2, Rule rule3
Threat Allocations
Unmitigated Vulnerabilities
Unmitigated Weaknesses =
Vulnerable & false

Fig. 10. Once pertinent patches are assigned to the OperatingSystem component, the
automated reasoning mechanism assesses that the component is no longer vulnerable.
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Fig. 11. A new design rule prescribes the use of capability based addressing hardware
as mitigation for the CWE-119 mechanism vulnerability in the context of FreeBSD.
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Fig. 12. A new alternative design of the system includes an OperatingSystem that uses
a capability based addressing hardware. Accordingly, the automated reasoning mech-
anism assesses that the FreeBSD OperatingSystem is not vulnerable to the collection
of vulnerabilities (CVA).

6 Discussion

Accounting for vulnerabilities in the design of systems requires careful and rigor-
ous consideration. In this paper, we have introduced formal foundations to reason
about the vulnerability posture of a system, and have demonstrated a simple yet
representative application. While our illustrative example is intentionally simple
for clarity, it remains representative of design-related vulnerability management
for two reasons: (1) our tool’s knowledge base is populated with real-world vul-
nerability data, retrieved from the CWE and NVD databases; (2) the reasoning
mechanism operates at the design level, based on design decisions (e.g., choosing
a programming language for an internally developed application, selecting an
operating system or an hardware platform, deploying a new version of a system
with patches installed) as opposed to implementation details (e.g., specific code
addressing a buffer beyond its boundaries). Accordingly, the example makes a
valid, general case for adopting the automated reasoning mechanism for vulner-
ability management.

The suggested vulnerability management by design formalism is rooted in
well-established vulnerability management concepts, most notably the concepts
of component, component type, vulnerability (in various levels of abstraction),
and control. Consequently, the formalism is integrative. We have presented an
integration of the formalism into an open-source system security design tool.
While the integration is already fully functional, providing automated reasoning
capabilities, we are further integrating the reasoning procedure and results into
the diagrammatic representations and improving other user experience aspects
of the tool. Similarly, the formalism can be incorporated into other design and
process management tools.

We are working towards adding additional design-related reasoning based on
formal properties and establishing their value in design contexts. For example,
another property can mandate the existence of sufficient rules for addressing
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known vulnerabilities. A violation of such a property can trigger a security engi-
neer to formulate additional rules, thereby enriching the knowledge base that is
available within the modelling environment in support of more resilient designs.
We are also considering separation between implementation vulnerabilities and
mechanism vulnerabilities, to provide better quantitative assessment of mitiga-
tion strategies and their coverage of existing and future vulnerabilities.

While our formally grounded automated reasoning mechanism is scalable, we
are well aware that manually specifying the models of the systems can be time
consuming. For exercising the formalism and the automated reasoning capabil-
ities at scale, further research can attempt to automate the generation of the
models. A possible approach could be to use Software Bill of Materials records —
indicating the software components of products — to populate the formal model.
Once the formal model’s definitions are in place, the automated reasoning can be
applied without additional effort, as our TRADES Tool implementation demon-
strates.
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