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Figure 1. Comparison between the learnable event streams (i.e., clean data), unlearnable event streams generated by event pollution (E.
pol.), and our UEVs, including class-wise noise (C. noise) and sample-wise noise (S. noise). In case (b), we degrade the quality of these
event streams by polluting the coordinates, timestamps, polarity, and adding new random events (reading order).

Abstract

With more event datasets being released online, safe-
guarding the event dataset against unauthorized usage has
become a serious concern for data owners. Unlearnable
Examples are proposed to prevent the unauthorized ex-
ploitation of image datasets. However, it’s unclear how to
create unlearnable asynchronous event streams to prevent
event misuse. In this work, we propose the first unlearn-
able event stream generation method to prevent unautho-
rized training from event datasets. A new form of asyn-
chronous event error-minimizing noise is proposed to per-
turb event streams, tricking the unauthorized model into
learning embedded noise instead of realistic features. To
be compatible with the sparse event, a projection strategy
is presented to sparsify the noise to render our unlearnable
event streams (UEvs). Extensive experiments demonstrate
that our method effectively protects event data from unau-
thorized exploitation, while preserving their utility for legit-
imate use. We hope our UEvs contribute to the advance-
ment of secure and trustworthy event dataset sharing. Code
is available at: https://github.com/rfww/uevs.

∗Corresponding author.

1. Introduction

Recently, the easy availability of various event datasets [16,
28, 50, 54] has significantly accelerated the development
of event vision tasks across various domains, including
autonomous driving [40], pose estimation [25, 47], sign-
language recognition [59], etc. However, a concerning
fact is that some datasets are collected for restricted ap-
plications, without permission for unauthorized usage [50].
The lack of protection mechanisms for event datasets leaves
them susceptible to misuse for unauthorized purposes.

To prevent unauthorized dataset usage, a novel concept
known as Unlearnable Examples (UEs) [23] is proposed.
Different from data pollution that degrades the dataset qual-
ity to avoid misuse [58, 60], UEs incorporates an impercep-
tible adversarial noise in clean images to make them un-
learnable for machine learning models. This technique per-
turbs the data in a way that disrupts the learning process
of unauthorized models, effectively rendering the data un-
usable for unauthorized purposes. However, for authorized
users, these data still retain the original utility and appear-
ance. Therefore, this approach not only reduces the risk of
data misuse but also preserves the dataset’s fidelity and in-
tegrity, posing an effective way for safeguarding datasets.

Though UEs achieve great success in protecting image
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datasets [13, 46, 57], how to generate effective unlearn-
able asynchronous event dataset is unclear. As illustrated in
Fig. 1 (a), event data comprises a sequence of asynchronous
events (i.e., (x, y, t, p)), where (x, y) represents the x-y co-
ordinates, t denotes the timestamp, and p indicates the po-
larity. This special characteristic creates an event stream
that resembles spatio-temporal point clouds rather than con-
ventional 2D images [10]. Therefore, it is impossible to em-
ploy existing image UEs methods [23, 27, 57] to safeguard
asynchronous event datasets.

Owing to the unique characteristics of event data, there
are two main challenges in achieving the unlearnable func-
tionality of event data. 1) Event data are distinguished by its
binary polarity of p = ±1. It creates a highly discrete pat-
tern distinct from the image samples used in previous UEs.
Directly incorporating noise based on previous settings can
diminish the effectiveness, as the noise contains values out-
side the binary pattern. This raises a significant challenge:
generating effective error-minimizing noise that aligns with
the discrete nature of event data. 2) Current event vision
tasks need to transfer the event data into the event stack and
then feed it into the downstream DNN models. However,
these stacks prevent noise from being injected directly into
the event stream. Thus, effectively injecting noise into the
event stream presents another significant challenge.

To this end, we propose the Unlearnable Event
stream (UEVs) method with the Event Error-Minimizing
Noise (E2MN) to safeguard event datasets. First, we for-
mulate an event-based optimization function to generate
E2MN. Specifically, our E2MN includes two forms: class-
wise noise (Fig. 1 (c)) and sample-wise noise (Fig. 1 (d)),
with the former generated on the class-by-class basis and
the latter on case-by-case basis. These two forms all aim
to build a shortcut between the input sample and target la-
bels to prevent the model from learning real semantic fea-
tures. Second, we propose an adaptive projection mecha-
nism to sparsify the generated noise, resulting in the pro-
jected noise that can be compatible with event stacks seam-
lessly. Thereby, the possibility of our E2MN being detected
by malicious users is reduced. Third, we propose a new re-
trieval strategy to reconstruct the event stream from its cor-
responding representation. This strategy ensures that E2MN
is effectively transferred from unlearnable event stacks to
unlearnable event streams.

Our main contributions are as follows:
• We present the first Unlearnable Event stream (UEVs)

with an event error-minimizing noise (E2MN) to prevent
unauthorized usage of the valuable event dataset.

• We propose an adaptive projection mechanism to sparsify
the noise E2MN, enabling the noise to be compatible with
the original event stack. Subsequently, a retrieval strategy
is introduced to reconstruct the unlearnable event stream
from its corresponding event stack.

• We conducted extensive experiments to demonstrate that
our E2MN outperforms various event pollution opera-
tions (Fig. 1 (b)) in terms of effectiveness, impercepti-
bility, and robustness.

2. Related work

2.1. Event vision
Event vision [9, 11, 38] has gained increasing popularity re-
cently due to the advantages brought by the event data [26,
34], which consists of a series of asynchronous events by
recording the change of pixel-wise brightness [14]. Com-
pared with conventional images, event data shows merits in
terms of high dynamic range and temporal resolution, low
time latency, and power consumption [15, 50]. The eas-
ily available and diverse event datasets [2, 16, 28, 32, 43]
have been crucial for the increasing attention to various
event vision tasks. Researchers can effortlessly ensure
their event data is compatible with current deep vision
models via utilizing existing event representation meth-
ods [15, 24, 31], thereby effectively facilitating various ex-
plorations in event-based learning. Millerdurai et al. [42]
propose employing an egocentric monocular event camera
for 3D human motion capture, which addresses the failure
of RGB cameras under low lighting and fast motions. Sun et
al. [52] propose an unsupervised domain adaption method
for semantic segmentation on event data, which motivates
the segmentor to learn semantic information from labeled
images to unlabeled events. Moreover, event-based studies
achieve satisfactory performances in pose estimation [25],
segmentation [6], deblurring [4, 29], denoising [10], opti-
cal flow [33], object recognition [61], object tracking [56],
monitoring [19], etc.

Despite the significant interest and promising perfor-
mance of event-based learning in various domains, there
have been no investigations into preventing the unautho-
rized exploitation of event datasets. The absence of this
exploration could result in the valuable event datasets be-
ing stolen for illegal purposes, leading to serious threat.

2.2. Unlearnable examples
Unlearnable Examples (UEs) are proposed to prevent the
unauthorized training of Deep Neural Networks (DNNs)
on some private or protected datasets [23, 48]. Generally,
UEs are generated through a min-min bilevel optimization
pipeline with a surrogate model [23]. The generated noise is
called Error-Minimizing Noise (EMN) because it gradually
reduces losses from the training data. This noise aims to
deceive the target model into believing that correct predic-
tions can be made merely based on perturbations, resulting
in overlooking semantic features [23, 46]. To improve the
robustness of vanilla UEs, Fu et al. [13] introduce adversar-
ial noise into the EMN against adversarial training. He et



al. [20] propose to generate unlearnable examples based on
unsupervised contrastive learning, which extends the super-
vised unlearnable noise generation into unsupervised learn-
ing. Ren et al. [46] propose Classwise Separability Dis-
criminant, which aims to better transfer the unlearnable ef-
fects to other training settings and datasets by enhancing
the linear separability. Meng et al. [41] propose a deep hid-
ing strategy that adaptively hides semantic images into the
latent domain of poisoned samples to generate UEs. Al-
though current UEs have shown promising results in image
area [35, 36, 51], this technique cannot be directly applied
to protect asynchronous event streams due to the different
data characteristics. To this end, our work focuses on ex-
ploring the unlearnable event stream to safeguard the event
dataset against unauthorized usage.

3. Methodology

3.1. Preliminary of event data
Given an event data-based classification dataset D =
{(Ei, li)}Ni=1, where E , l, and N indicate the event stream,
the corresponding category label, and the dataset length, re-
spectively. The event stream E consists of a variety of indi-
vidual events, recorded as:

E = {ek}Kk=1 = {(xk, yk, tk, pk)}Kk=1, (1)

where (xk, yk, tk, pk) indicates the x and y direction coor-
dinates, time stamp, and polarity of the k-th event, respec-
tively. K is the length of the event stream E [14]. Specif-
ically, an event, ek, has occurred when the variation of the
log brightness at each pixel exceeds the threshold σ, i.e.,
| log(xk, yk, tk) − log(xk, yk, tk−1)| > σ. The polarity
pk = +1.0 when the difference between bi-temporal bright-
ness is higher than +σ. Otherwise, pk is set to −1.0.

3.2. Our scenario
We propose UEVs to prevent unauthorized training on the
valuable event datasets that effectively protect the data
owner’s interests. Generally, two parties are mentioned
in unlearnable event streams, i.e., the protector and the
hacker. The protector has full accessibility to the origi-
nal dataset and generates UEVs for his/her private data be-
fore the dataset is released. To ensure the unlearnability,
the protector can use various surrogate models to generate
the event error-minimizing noise. However, he/she cannot
touch any information about the models or training skills
that the hacker would use. As a hacker, he/she has no
knowledge about the original datasets and surrogate models.
He/she aims to steal these data to train their illegal models
with any training tricks. In this paper, we are the protec-
tor to make the collected event dataset unlearnable with the
imperceptible noise E2MN.

3.3. Unlearnable event stream
Overview. The overall pipeline of our UEVs is shown in
Fig. 2. The framework takes the original event stream as
input and outputs an unlearnable one. Based on the fact that
an example with higher training loss contains more useful
knowledge to be learned [13], we formulate the pipeline of
our Unlearnable Event streams (UEVs) as:

argmin
θ

E(E,l)∈D[min
δ
L(f ′

θ(R(E) + δ), l)] s.t. ||δ||∞ ≤ ϵ,

(2)
where f ′ denotes a surrogate model used for noise δ gen-
eration, L indicates the loss function, and R means event
representation. Eq. (2) is a min-min bi-level optimization
function, where both constrained optimization items all aim
to minimize the loss of the surrogate model. Specifically,
the inner minimization is employed to find the L∞-norm
bounded noise δ to improve the model’s performance, while
the outer optimization finds the optimal parameter θ to min-
imize the model’s classification loss. Obviously, the core
component of UEVs is to find the effective noise δ to min-
imize the loss of f ′, thereby suppressing the model from
learning real semantic features from input events.

To generate unlearnable event streams, first, we convert
the asynchronous event data into a regular event stack; sec-
ond, we feed this stack into a surrogate model to compute
the noise δ; third, we project δ to be compatible with the
binary-polarity event stack; and fourth, we reconstruct the
unlearnable event stream from the unlearnable event stack.

Event representation. To be compatible with existing vi-
sion models [21, 49, 53], the event stream needs to be trans-
ferred into image-like stacks and then input as images for
the following predictions [3, 45]. To meet the regular in-
put requirement of the surrogate model, we propose bin-
ning events into a C-channel event stack. We set C with
a large value to prevent possible event corruption since the
single or three-channel maps may easily lead to the cov-
erage of previous events. Each channel of this stack con-
sists of polarities of those events distributed in the divided
time bin ∆t. Hence, our event stack only contains three
types of values at each coordinate: {0, 0.5, 1.0}, denoting
an event with polarity = −1, no event, and an event with
polarity = +1, respectively. Note that the event data can-
not be reconstructed from the event stack if any values other
than these two specific values are used.

Noise generation. The event stack is then fed into the
surrogate model f ′ used for the noise generation. We
train the parameter θ of f ′ with only M iterations first
and then optimize δ across the entire Dc. The training
steps of f ′ should be limited since training the surrogate
model with larger steps would lead to ineffective event
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Figure 2. Framework of our UEVs. UEVs converts an event stream to the C-channel event stack (t = C × ∆t) and then employs a
surrogate model f ′ to generate the event error-minimizing noise (E2MN). Subsequently, the E2MN is projected into {−0.5, 0, 0.5} and
integrated with the target event stack to generate the unlearnable event stack. The final unlearnable event stream can be reconstructed from
the unlearnable event stack and original event stream via the proposed retrieval strategy.

error-minimizing noise optimization. This entire bi-level
optimization process (Eq. (2)) is terminated once the clas-
sification accuracy is higher than γ. Essentially, the gener-
ated event error-minimizing noise is a kind of easy-to-learn
feature (i.e., the shortcut between input samples and target
labels) that guides the model trained on E2MN will ignore
their realistic semantics. Our event error-minimizing noise
consists of two types:
• Sample-wise noise. Sample-wise noise ∆s is obtained by

the first-order optimization method PGD [39] as follows:

Ê
′
s+1 = Πϵ

(
Ê
′
s − α · sign(∇ÊL(f

′(Ê
′
s), l))

)
(3)

where, Ê = R(E) indicates the event stack, s denotes
the current perturbation step, ∇ÊL(f(Ê

′
s), l) is the gra-

dient of the loss with respect to the Ê , Πϵ is a projection
function that clips the perturbed event stack back to the
ϵ-ball around the event stack Ê when it goes beyond, and
α is the step size. L is the cross entropy loss function.
The generated event error-minimizing noise is achieved
by: δi = Ê

′
i − Êi and calculates it case-by-case to get

∆s = {δ1, δ2, · · · , δN}. The output Ê
′

is not our final
unlearnable event stack since it does not exhibit a binary-
polarity characteristic, which is crucial for the reconstruc-
tion of unlearnable events. We need to project this noise
into a sparse pattern that is compatible with the original
event stack to generate our unlearnable event streams.

• Class-wise noise. Since sample-wise noise depends on
each input event, memory consumption would increase
sharply as the dataset scale grows. Therefore, we in-
troduce the class-wise noise: ∆c = {δl1 , δl2 · · · , δlN },
which applies the same noise to different events within
the same class. For ∆c, we firstly initialize the noise in
the class-level and then employ Eq. (3) to optimize the

noise δl with all event streams sampled from the class
l. Class-wise noise shows advantages over sample-wise
noise in terms of practicality and efficiency. It can be
easily applied to newly captured event streams and has
a smaller noise scale. Same to the sample-wise noise,
class-wise noise cannot be directly used to generate un-
learnable event streams, which also needs to be projected
into a sparse form for UEVs generation.

Noise projection. As demonstrated in Sec. 3.1, the event
stream consists solely of polarities of −1 and +1, which
would be normalized to 0 and 1 in event stack, receptively.
Therefore, we need to project the generated event error-
minimizing noise into a sparse and event-friendly pattern
to facilitate the subsequent generation of unlearnable event
streams. Here, we propose projecting the generated noise
into {−0.5, 0.0,+0.5} as follows:

P(δ) =


−0.5, if δi,j < µ− τ × π,

0.0, if µ− τ × π ≤ δi,j ≤ µ+ τ × π,

+0.5, if δi,j > µ+ τ × π,
(4)

where, the µ and π denote the mean and 1/2 bound of noise
δ, τ is a balancing parameter.

The parameter τ would impose great influence on two
criteria of our UEVs, i.e., effectiveness and imperceptibility.
Effectiveness means that the projected noise still owns the
unlearnable functionality for event streams. Imperceptibil-
ity denotes that the injected noise is imperceptible to users.
A higher τ benefits better imperceptibility but corrupts the
effectiveness. To ensure the effectiveness of the projected
noise, we propose enforcing the surrogate model can dis-
criminate the unlearnable features and clean features during



model training. Thereby, the model can generate a strong
shortcut during noise optimization, preventing the model
from learning real semantic features. We reformulate the
loss function of the outer optimization in Eq. (2) as:

L∗ = λ1L+ λ2Ls. (5)

Ls is the similarity loss that aims to enlarge the difference
between clean and unlearnable features.
Event reconstruction. After getting the projected event
error-minimizing noise, we incorporate this noise into Ê to
generate the unlearnable counterpart. Note that what we
obtain here is only the unlearnable event stack. We need
to reconstruct the unlearnable event stream from this stack.
Therefore, a retrieval strategy is proposed to recover the
compressed dense temporal information when converting
event data into event stacks. For an event within the un-
learnable event stack Ê , 1) if it is recorded in original event
stream E then search for the time stamp t in E to assign
it directly; 2) if it is a newly generated event, initialize a
new adaptive time stamp based on the selected ∆t to set
it. Based on this strategy, the generated unlearnable events
can be transferred from unlearnable event stacks into event
streams, as shown in Fig. 1. The overall pipeline of our
UEVs is illustrated in Algorithm 1. R(·) and R′(·) denote
event representation and event reconstruction, respectively.

3.4. Implementation details
Following [23], we employ the ResNet18 [21] as the surro-
gate model. The SGD optimizer is employed with a learn-
ing rate of 10−4 and a momentum of 0.9. An exponential
learning rate scheduler with a gamma of 0.9 is used. The
iteration number M and epoch number are set to 10 and 30,
respectively. The batch size is 16. The C in the event stack
is set to 16. In noise generation, the step number S, param-
eter ϵ, and step size α are 10, 0.5, and 0.8/255, respectively.
The balancing ratio τ is 3/4. The accuracy γ is 0.99. We
train all models on a single NVIDIA V100 GPU.

4. Experiment
4.1. Setup
Dataset. Four event-based datasets are used in our exper-
iments, including N-Caltech101 [43], CIFAR10-DVS [32],
DVS128 Gesture [2], and N-ImageNet [28]. Due to the lim-
ited computing resources, the first 10 classes are sampled
from N-ImageNet [28] for experiments.

Baseline. To evaluate the effectiveness, we imple-
ment several event pollution operations (see Fig. 1 (b))
as our baselines, including coordinate shifting (CS),
time stamp shifting (TS), polarity inversion (PI), man-
ual pattern injection (MP), and area shuffling (AS).
To test the generalizibility of UEVs, we introduce

Algorithm 1: UEVs Perturbation Algorithm.
Input: Surrogate model f ′

θ(·), clean dataset Dc,
optimization number M , accuracy γ.

Output: Perturbation δ, Unlearnable dataset Du.
1 δ ← randomization;
2 Do
3 for i in range(M) do
4 (E , l) = Next(Dc);
5 θ ← θ −∇θ(L∗(f ′

θ(R(E) + [δi / δli ]), l))
▷ Sample or class -wise noise: δi/δli

6 end
7 for (E , l) in Dc do
8 δ = P(E , l, f ′, δ, θ);

▷ Perturbed by Eq. (3)
9 Clip(δ,−ϵ,+ϵ);

10 end
11 acc = evaluation(Dc, f

′, δ, θ);
12 Until acc higher than γ;
13 for (Ej , lj) in Dc do
14 δ′ = P(δ ← [δj or δlj ]); ▷ Eq. (4)
15 E ′ = R′(Clip(R(Ej) + δ′, 0, 1)

)
;

16 Du.append((E ′j , lj)); ▷ Unlearnable event
17 end

ResNet18 (RN18) [21], ResNet50 (RN50) [21],
VGG16 (VG16) [49], DenseNet121 (DN121) [22],
EfficientNet-B1 (EN-B1) [53], ViTB [8], and SwinB [37] as
baselines in our experiment.

Metric. Following the existing UEs method [23], we use
the test accuracy to evaluate the data protection ability of the
proposed method. The lower the test accuracy, the stronger
the protection ability. To assess the imperceptibility of the
generated noise, we employ PSNR, SSIM, and MSE to
measure the visual perception on the event stack [10].

4.2. Evaluation
Visualization comparison of aforementioned various
noise forms is shown in Fig. 3. We implement five kinds
of event distortion operations as baselines to evaluate our
UEVs. The coordinate shifting (CS) only introduces an
offset in x and y directions without adding any additional
noise, as shown in the 2nd column. We put off the time
stamps of each event by a fixed time bin to achieve the TS,
which shows that some new events are introduced in the cur-
rent representations. Reverse the polarity of all events (PI)
is another noise form that shows a noticeable difference
between the clean data and unlearnable counterpart in the
4th column. MP is implemented by injecting special event
streams manually, which shows an obvious pattern in the
top-left corner of the representation. We also shuffle the
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Figure 3. Visualization results of various noise forms on the N-Caltech101 dataset [43]. Blue/Red points denote the events with p =
+1/−1. Our noise E2MN does not corrupt the target objects, and the noise distributed in the background region appears quite realistic.

event in block-level (AS) to confuse the model training,
which shows a noticeable difference between the clean data
and unlearnable one poisoned by AS. Our class-wise noise
and sample-wise noise are shown in the last two columns
of Fig. 3. Detailed imperceptibility evaluation of each kind
of noise is shown in Table 1. Injecting a small manual pat-
tern (MP) can achieve a good imperceptibility. But our ∆c

and ∆s achieve the best overall performance in impercepti-
bility and unlearnability. The PSNR of ∆c and ∆s are 20.39
and 18.22, respectively.

Quantitative results of various unlearnable noise forms
on the four datasets are shown in Table 2. We can find that
our sample-wise and class-wise noise achieve a noticeable
accuracy drop among the whole classifiers compared with
the baselines. Shifting the coordinates or time stamps of the
event cannot achieve a reliable unlearnable effect. For ex-
ample, on the DVS128 Gesture dataset, ResNet18 achieves
an improvement by 1.21% when train the classifier on Du

poisoned by CS than the clean datasetDc. Setting the polar-
ity of each event to inverse can confuse the model to learn
semantic features, where PI achieves the accuracy drop by
40.87% on the N-Caltech101 dataset. However, this noise
can be removed easily via simple data augmentation skills.
Injecting a manual pattern (MP) into the event stream to
build a shortcut between the event data and target label is in-
spired by backdoor attacks [55]. We randomize patterns for

Table 1. Imperceptibility evaluation of various noise forms.

CS TS PI MP AS ∆c ∆s

PSNR 12.19 13.07 16.76 28.82 11.75 20.36 18.22
SSIM 0.316 0.418 0.996 0.997 0.245 0.791 0.571
MSE 0.182 0.143 0.067 0.069 0.212 0.028 0.040

each class to poison the event data that influences the accu-
racy of ResNet18 from 65.19% to 36.12% on the CIFAR10-
DVS dataset. On N-ImageNet, the MP achieves an obvious
accuracy drop by 45.40 since it is easier to be captured by
deep models than the real complex features of input data.
Shuffling the event in block-level (AS) (see the 6th column
of Fig. 3) cannot protect the event stream effectively, which
achieves the accuracy by 48.25%, 39.81%, 58.68%, and
28.00% on N-Caltech101, CIFAR10-DVS, DVS128 Ges-
ture, and N-ImageNet, respectively.

On the contrary, our sample-wise noise and class-wise
noise all achieve credible unlearnable performance on four
datasets. Since ResNet18 is selected as the surrogate model
in our experiment, the best unlearnable effectiveness is ob-
tained when a malicious user trains ResNet18 on the un-
learnable datasets. To evaluate the generalizability of the
UEVs, we have trained a series of popular DNN classi-
fiers on the clean data and our unlearnable counterpart. As
shown in Table 2, the class-wise noise can deceive almost
all of the classifiers to learn shortcuts on N-Caltech101,



Table 2. The testing accuracy (%) of various DNN classifiers trained on the clean training sets (Dc) and their unlearnable ones (Du)
generated by five kinds of event pollutions, sample-wise noise (∆s), and class-wise noise (∆c).

Noise Form Model N-Caltech101 CIFAR10-DVS DVS128 Gesture N-ImageNet
Dc Du Dc Du Dc Du Dc Du

CS

Res18 78.32

50.43(−27.79)

65.19

46.80(−18.39)

74.14

75.35(+01.21)

56.60

42.60(−14.00)

TS 37.54(−40.87) 35.34(−29.85) 72.92(−01.22) 41.20(−15.40)

PI 40.78(−37.45) 22.72(−42.47) 31.94(−42.20) 41.80(−4.80)

MP 50.26(−28.06) 36.12(−29.07) 68.06(−06.08) 11.20(−45.40)

AS 48.25(−30.07) 39.81(−25.38) 58.68(−15.46) 28.00(−28.00)

∆c

RN18 78.52 01.90(−76.62) 65.22 22.33(−42.89) 74.31 14.93(−59.38) 56.80 10.00(−46.80)

RN50 80.64 04.88(−75.76) 67.67 18.83(−48.84) 78.47 24.31(−54.16) 61.60 10.00(−51.60)

VG16 71.63 03.68(−67.95) 67.77 30.19(−37.58) 81.94 20.49(−61.45) 56.20 04.00(−52.20)

DN121 75.59 02.18(−73.31) 62.72 24.37(−38.35) 74.31 22.22(−52.09) 59.20 08.80(−50.40)

EN-B1 74.44 12.81(−61.63) 72.72 23.50(−49.22) 62.50 19.10(−43.40) 56.20 06.20(−50.00)

ViTB 44.69 01.55(−43.14) 45.44 09.51(−35.93) 66.67 26.74(−39.93) 41.00 10.00(−31.00)

SwinB 90.70 00.52(−90.18) 75.24 29.03(−46.21) 83.29 28.12(−55.17) 72.00 10.00(−62.00)

∆s

RN18 78.12 00.52(−77.60) 65.15 15.51(−49.64) 73.96 14.54(−59.42) 56.40 10.20(−46.20)

RN50 80.30 06.09(−74.21) 67.86 12.62(−55.24) 79.17 20.03(−59.14) 61.20 16.80(−44.40)

VG16 72.03 14.13(−57.90) 67.18 27.86(−39.32) 81.94 26.39(−55.55) 55.40 14.80(−40.60)

DN121 75.30 11.49(−63.85) 64.27 15.73(−48.54) 74.31 20.83(−53.48) 59.20 11.40(−47.80)

EN-B1 73.81 17.98(−55.83) 72.82 14.95(−57.87) 64.93 16.32(−48.61) 55.60 11.40(−44.20)

ViTB 44.73 01.09(−43.64) 47.38 26.02(−21.36) 67.01 30.21(−36.80) 40.40 08.80(−31.60)

SwinB 90.70 21.14(−69.56) 75.44 27.18(−48.26) 83.68 17.01(−66.67) 71.20 09.00(−62.20)

where the accuracy of these classifiers is less than 5% ex-
cept EfficientNet-B1. Moreover, it also achieves a great ac-
curacy drop higher than 35% on both CIFAR10-DVS and
DVS128 Gesture datasets. For sample-wise noise, every
data has a different low-error noise, which noise can reduce
the loss during the optimization process of the model, which
leads to the event data unlearnable. In Table 2, sample-wise
noise ∆s achieves the biggest accuracy drop by 77.60%,
57.87%, and 66.67% on four datasets, respectively.

4.3. Ablation study
Similarity loss. To ensure the event error-minimizing
noise can still prevent model learning after being projected,
we introduce the similarity loss to enlarge the distance be-
tween the clean and unlearnable stacks during the surrogate
model training. Detailed results are shown in Table 3. Com-
pared with E1 in Table 3, the effectiveness of our sample-
wise noise (E2) is decreased when we remove the similarity
loss. Minimizing the similarity between the clean and un-
learnable stacks is to improve the difference between the
shortcut and real semantic features of input samples under
the correct classification, avoiding possible feature learning.
As shown in Fig. 4, this similarity supervision is crucial for
ensuring the unlearnability of our UEVs due to the big dif-
ference between the original noise and projected noise.

Mixed noise. In the main experiment, we have conducted
exploration about the sample-wise noise and class-wise
noise, respectively. According to detailed results, we can
find that sample-wise and class-wise noises achieve the best

Table 3. Results of ablation experiments for UEVs (sample-wise
noise) on N-Caltech101 dataset.

RN18 RN50 VG16 DN121 EN-B1 ViTB SwinB

E1 0.52 6.09 14.13 11.49 17.98 1.09 21.14
E2 3.85 15.22 38.31 10.17 24.18 37.51 27.51
E3 5.17 5.40 22.23 6.15 18.78 1.21 16.66
E4 5.34 5.17 8.16 5.17 5.86 1.03 0.57
E5 13.04 8.04 14.99 10.74 16.54 9.88 25.73
E6 27.74 33.08 44.28 34.92 27.17 8.85 24.41

performance on different datasets among various classifiers.
Here, we propose a mixed counterpart to evaluate the effec-
tiveness of our UEVs, which is beneficial for personalized
utilization and preventing noise exposure. Since it’s hard to
optimize these two kinds of noises simultaneously, we mix
the obtained two noises as the mixed counterpart instead of
training it from scratch. Specifically, we design two modes
to generate the mixed noise. First, we randomly select δ
from ∆c and ∆s to poison the input sample, denoting as
∆c ∨∆u. Second, we employ the element-wise addition to
generate the unlearnable examples, naming ∆c +∆u.

As shown in Table 3, E3 and E4 represent the ∆c ∨∆u

and ∆c +∆u respectively, where the proposed event error-
minimizing noise remains highly effective. Although em-
ploying ∆c + ∆u can achieve a better unlearnable perfor-
mance, simple addition leads to the low stealthiness of the
noise. Randomly selecting noise from ∆c ∨ ∆u provides
another possible solution for dataset protection, making our
UEVs more flexible in practical usage.



Clean data Original C. noise Projected C. noise Original S. noise Projected S. noise

Figure 4. Visualization results of clean data representation, unlearnable representations generated by class-wise noise and sample-wise
noise with and without projection, respectively. Details are zoomed in the green box.

Robustness. In event-based learning, data augmentation
is always adopted to enhance the model’s performance.
Therefore, studying the robustness of our unlearnable event
streams against data augmentation methods is of great im-
portance. Here, we employ the common random shift, crop,
flip, and event drop [18] as augmentation techniques in our
experiments. As shown in Table 3 E5, these augmentation
techniques slightly eliminate the effectiveness of our event
error-minimizing noise. This evaluation demonstrates the
high practicality of our UEVs in various training scenarios.

Different adversarial attacks. As shown in Eq. (3), our
E2MN is generated inspired by the PGD attack. Therefore,
exploring the generalization ability of our method encoun-
tering other adversarial attack methods (e.g., FGSM [17])
becomes natural. For example, we reformulate the Eq. (3)
via FGSM as Ê

′
= Ê − α · sign(∇ÊL(f ′

θ(Ê), l)) to induce
the model focusing on easy-learned features. Here, we set
α to 8/255 and use the same configurations with Eq. (3) to
train the surrogate model. In Table 3, E6 shows the unlearn-
able performance of our UEVs via FGSM on N-Caltech101
dataset. The unlearnable ability of our method is indeed
decreased by using FGSM. However, UEVs can still pre-
vent unauthorized models from achieving reliable predic-
tions under the protection provided by UEVs.

Noise projection. To ensure the generated noise can be
compatible with event streams, the noise projection has
been proposed to process the generated noise. Here, we
conduct the ablation study to showcase the necessary of this
operation. Note that the polarity of events is normalized into
{0.0, 0.5, 1.0}, where 0.0/1.0 denote the polarity of an event
is -1/+1, 0.5 means there is no event. As shown in Fig. 4,
there are many noises in the background of the representa-
tion frames while removing the projection operation (origi-
nal noise). Hence, it’s impossible to reconstruct an unlearn-
able event stream from non-projected representations. We
propose Eq. (4) to project our noise into {-0.5, 0, +0.5}. In

Eq. (4), τ is introduced to balance the effectiveness and
stealthiness of the injected noise in our UEVs. A larger τ
can achieve higher stealthiness while corrupting the noise’s
unlearnable ability. Minimizing the τ can achieve good ef-
fectiveness but the stealthiness would be corrupted.

5. Conclusion

This paper proposes the first unlearnable framework for
asynchronous event streams (UEVs), which provides the
possibility to protect the event data from being learned by
unauthorized models. Specifically, a new form of event
error-minimizing noise (E2MN) is presented to integrate
with event data, preventing the model from learning its
real semantic features. To ensure the learned noise can
be compatible with sparse event data, we propose a pro-
jection mechanism to project the E2MN into event friendly
counterpart that facility the generation of unlearnable event
streams. Additionally, a retrieval strategy is proposed to
reconstruct the unlearnable event streams from their corre-
sponding unlearnable stacks. Extensive ablation studies and
analysis experiments conducted on four datasets with seven
popular DNN models demonstrate the effectiveness, imper-
ceptibility, and robustness of UEVs.
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6. Overview
• Sec. 7 discusses our application scenario again and

shows the difference between image baselines and our
unlearnable event streams.

• Sec. 8 illustrates the detailed explanation of our algo-
rithm.

• Sec. 9 shows more details of our E2MN and the corre-
sponding mixed counterparts.

• Sec. 10 shows the exploration about the proposed projec-
tion strategy.

• Sec. 11 illustrates the details of five kinds of event pollu-
tion operations used in our experiments.

• Sec. 12 add more experiments on event representations,
time bins, adversarial attack strategies, naive base-
lines, etc.

• Sec. 13 lists the dataset details for N-Caltech101,
CIFAR10-DVS, DVS128 Gesture, and N-ImageNet.

• Sec. 14 depicts more visualization results to evaluate the
imperceptibility of our E2MN.

• Sec. 15 discusses the social impact of our UEVs.
• Sec. 16 lists our future work, including transferabil-

ity evaluation, generation efficiency, and defense mech-
anism.

7. Our UEVs
We propose UEVs mainly focusing on preventing unautho-
rized event data usage. As shown in Fig. 5, the protector,
i.e., data owner, releases the unlearnable dataset for users,
while only the authorized models can learn real semantic
features from these data. The hacker’s unauthorized models
are prevented from learning. This mechanism effectively
protects the interests of data owners and avoids the privacy
leakage caused by data misuse. Fig. 5 shows the working
scenario of our UEVs.

Unlearnable Examples (UEs) are proposed to prevent
image dataset from unauthorized usage. Compared with
UEs, UEVs show great challenges. 1) The image pertur-
bation is directly optimized by deep models to ensure its
effectiveness and imperceptibility. However, the event data
cannot be directly input into deep models to generate the
unlearnable version. 2) Event data shows the binary polar-
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Figure 5. Our scenario of the unlearnable event streams (UEVs).
For authorized training, the UEVs can be effectively used to train
downstream models and achieve correct predictions. However, if
hackers train their authorized networks without our authority that
they cannot achieve the reliable performance.
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Figure 6. Comparison between the image noise and our
E2MN (sample-wise noise).

ity and asynchronous nature that hinders the noise injection.
This sparse property denotes that although we can represent
the event stream via image-like features, the generated noise
cannot be compatible with event data. 3) Different from
image perturbation, event noise should include time stamps
that ensure the unlearnable noise is closely aligned with the
event data, enhancing imperceptibility.

Although UEVs and UEs adopt the same core idea: er-
ror minimizing loss function, to generate unlearnable noise,
using UEs to protect event data is impossible, as shown in
Fig. 6. The noise is only injected into event representations
while the original event data is not protected. Our UEVs
perturb the original event data that shows better practicality.



8. UEVs algorithm
The algorithm of our UEVs is shown in Algorithm 1. Here,
more detailed explanations about our algorithm are pro-
vided. To generate unlearnable event streams, the protector
needs to provide the surrogate model f ′, target dataset Dc,
training step M , and classification accuracy γ. f ′ is em-
ployed to calculate the event error-minimizing noise on the
dataset Dc. M denotes the training iteration of f ′ in every
epoch of noise generation, which is limited since more ef-
forts should be attached on the δ optimization in Eq. (2).
Specifically, the training process of f ′ is listed in Lines#3-
6. We randomly sample M batches of event streams from
Dc and incorporate with the noise (sample-wise noise or
class-wise noise) to train the surrogate model. L∗ is our
loss function (Eq. (5)), consisting of the cosine similarity
loss function and cross-entropy loss function. The final loss
is calculated as:

loss = λ1([1 +
f ′(R(E))conv · f ′(R(E) + δ)conv

||f ′(R(E))conv|| × ||f ′(R(E) + δ)conv||
)]/2)+

λ2(−[lilogf ′(R(E) + δ) + (1− li)log(1− (f ′(R(E) + δ))]),

(6)

where (·)conv denotes the convolution features extracted by
the last convolution layer of surrogate model f ′, B indicates
the batch size, R means event representation, converting
an event stream into the event stack. Eq. (6) illustrates the
training pipeline of f ′ on a batch of event streams. It is
not required to calculate the cost of f ′(R(E)) because this
would cause the surrogate model to focus on learning the
real semantic features, thereby preventing the optimization
of our unlearnable noise.

After training, we generate the event error-minimizing
noise for entire Dc according to Eq. (3), as shown in
Lines#7-10. Clip(·) denotes clipping those noise that ex-
ceed −ϵ or +ϵ back to this region. The noise generation
and surrogate model training would be terminated once the
classification accuracy tested under δ is higher than γ. This
termination demonstrates that the generated noise can effec-
tively guide the model to conduct predictions without rely-
ing on image semantics. Therefore, the noise δ is able to
prevent the unauthorized model from learning informative
knowledge from our data.

Due to the special characteristic of event data, our noise
δ is generated based on the event stack. It’s necessary
to conduct event reconstruction to generate the unlearn-
able event stream from its corresponding unlearnable event
stack (Lines#13-17). To ensure the δ can be compatible
with event data, we propose a projection strategy P(·) to
sparsify the noise into {−0.5, 0,+0.5}2. Then, we inte-
grate the projected noise with an event stack and clip it

2In image area, the generated noise is directly added on the images, ren-
dering the unlearnable examples via modifying the pixel values. However,
for event data, which consists solely of binary events, we can only trans-

Figure 7. Illustrative examples of our E2MN.

into [0, 1] to generate the unlearnable event stack. Detailed
noise embedding process is shown in Table 4. Finally, a
retrieval strategy R′ is proposed to search the compressed
time stamps from the original event streams to achieve the
reconstruction. Based on this algorithm, our valuable event
data can be protected well that prevents unauthorized data
exploitation, as shown in Fig. 5.

9. Class-wise and sample-wise noise
Our E2MN consists of two kinds of noise: class-wise noise
and sample-wise noise, which are all generated based on
Eq. (2). The sample-wise noise is generated case by case,
which leads to every generated noise being only workable
for the single event stream. This limits the practicality of
sample-wise noise, especially in the dataset scale grows
or new event streams are captured. Hence, an alternative
way is class-wise noise, which is generated class by class.
It means that a kind of noise can be injected into differ-
ent event streams sampled from the sample class. Another
advantage is that class-wise noise consumes less memory
than sample-wise noise in noise optimization. Although
two kinds of noises achieve similar performance in Table 2,
class-wise noise achieves better stealthiness than sample-
wise noise as shown in Fig. 3 and Table 1.

Considering their respective advantages, we combine the
two noises to explore whether it can bring more benefits.
We have proposed union and addition operations in Sec. 4.3
to evaluate. For ∆s ∨ ∆c, we randomly choose ∆s or ∆c

to protect the event. The form of this kind of noise resem-
bles both of them because only a simple random sampling
operation is employed. For ∆s +∆c, we fuse two kinds of
noise by element-wise addition to perturb the event stream.
As shown in Fig. 7, this configuration increases the number
of perturbations introduced into the event data, resulting in
higher effectiveness (see E4 of Table 3).

10. Projection discussion
Our projection strategy is designed to sparsify the noise δ
to ensure compatibility with event stacks. We illustrate a
detailed confusion matrix of the noise embedding in Ta-

form the event stream into an unlearnable one on the event level via delet-
ing events or inserting new events. Therefore, we define the projected val-
ues as {−0.5, 0,+0.5} to be compatible with event stacks ({0, 0.5, 1.0}).



Table 4. Confusion matrix of embedding the noise (E2MN) into
an event stack (E. stack). The final unlearnable event stack would
be clipped into [0, 1].

δ
−0.5 0 +0.5

E
.s

ta
ck 0 original event original event event deletion

0.5 event generation no event event generation
1.0 event deletion original event original event

Event data Sample-wise noise

Figure 8. Visualization of event data, sample-wise noise, and the
corresponding unlearnable event streams with different projection
parameters τ .

ble 4. If δ = −0.5 is added to a negative event (0), the
event keeps its original value. If added to a positive event
(1), the event is deleted. A new event with negative polarity
is created when adding −0.5 to the pixel value 0.5 sampled
from the event stack. In this section, we showcase the im-
portance of the parameter τ in Eq. (4). As discussed in [23],
the added noise should be imperceptible to human eyes and
does not affect the normal data utility. Hence, we introduce
the parameter τ to balance the imperceptibility and unlearn-
ability of our E2MN. As shown in Fig. 8, the larger τ can
lead to better imperceptibility but the less unlearnable noise
has been introduced, which harms the unlearnability. We
have tested our sample-wise noise with τ = 7/8 on the N-
Caltech101 dataset and obtained the accuracy of ResNet18
by 4.88, which is higher than the accuracy (0.52) tested by
τ = 3/4. This demonstrates the great challenges in balanc-
ing the imperceptibility and unlearnability of our E2MN.

11. Baseline setting

To further evaluate the effectiveness of our UEVs, we intro-
duce the straightforward event distortions as our baselines,
which are inspired from event data augmentation [18] and
backdoor attacks [55]. Data augmentation is proposed to
enrich the training data for improving the model’s perfor-
mance, which usually employs data distortion operations to
augment the sample. Generally, the quality of these aug-
mented samples is lower than the original ones. There-
fore, we propose simple coordinate shifting (CS), times-
tamp shifting (CS), polarity inversion (PI), and area shuf-
fling (AS) based on [18] to corrupt the event streams for pre-
venting unauthorized usage. Additionally, we also propose
the manual pattern (MP) based on backdoor attacks [55]
to perturb our event streams. We inject a pre-defined pat-

tern for those event streams sampled from the same class
to prevent unauthorized data usage, which can be viewed
as a class-wise noise. According to Table 2, we can find
that compromising the quality of our event datasets can de-
grade the performance of downstream models. However,
the unlearnability is rather limited and does not prevent the
downstream models from learning informative knowledge.

12. Additional experiments

Various event representations. In our main experiments,
we adopt the voxel-grid event stack as our event representa-
tion to evaluate the effectiveness. To test the generalizabil-
ity of our UEVs among different representations, the event
frame (EF) [44] and Time surface (TS) [50] are adopted.
As shown in the E1 of Table 5, our UEVs can still prevent
unauthorized event data usage under EF and TS represen-
tations, showing high robustness and generalizability.

Generalizability. According to [10], we set the time bin
to 16 to represent the event stream. To evaluate the general-
izability of our UEVs on different time intervals, we change
the size of ∆t to 0.5× and 2× to conduct ablation studies.
as shown in E2 of Table 5, our UEVs still shows high pro-
tection ability to prevent the unauthorized event data usage.

Diverse Adversarial attacks. Apart from the PGD [39]
and FGSM [17] attacks, we add new adversarial attack
methods: C&W [5] and MIFGSM (MIF.) [7]. CW attack
is an optimization-based method that crafts minimal per-
turbations to mislead neural networks while remaining im-
perceptible. MIFGSM is an iterative adversarial attack that
enhances the basic FGSM by incorporating the momentum.
Compared with MIFGSM, CW attack achieves better un-
learnable functionality. As shown in E3 of Table 5, our
method can still achieve reliable unlearnable performance
while adopting different adversarial attacks.

Table 5. Quantitative results tested by Res50 on N-Caltech101.

E1 E2 E3 E4
EF TS 0.5∆t 2∆t C&W MIF. UEs

∆c 5.17 10.09 5.46 4.94 8.73 15.43 5.51
∆s 8.85 16.48 5.17 5.05 12.15 14.47 18.38

Naive image baselines. Image-based methods are unable
to directly secure event data due to data differences, which
can only safeguard the corresponding event representation.
In E4 of Table 5, although the image approach, UEs [23],
performs well in event representations, it cannot prevent
malicious users from misusing the original event.



Clean data Class-wise noise Sample-wise noiseCS TS PS ASMP

Figure 9. Visualization results of various noise forms on the CIFAR10-DVS dataset [32]. Blue/Red points denote the events with p =
+1/−1. Our noise E2MN does not introduce much noise in the background region, which maintains good imperceptibility.

Clean data Class-wise noise Sample-wise noiseCS TS PI ASMP

Figure 10. Visualization results of various noise forms on the DVS128 Gesture dataset [2]. Blue/Red points denote the events with
p = +1/−1. Our noise E2MN does not corrupt the target objects, and the noise distributed in the background region appears quite realistic.

Event to image reconstruction. We employ an event-to-
image method (E2VID [1]) to evaluate the generazibility.
As shown in Fig. 11, our method prevents E2VID [1] from
reconstructing details from the protected event data, thereby
providing solutions for privacy preserving.

Original event Protected by Sample-wise noise Protected by Class-wise noise

Figure 11. Visualization frames reconstructed by E2VID [1].

Unlearnable cluster. We extend our class-wise noise into
a cluster-wise one. We ❶ employ K-Means+ResNet50 to
cluster the N-Caltech101 into 10 classes; ❷ train a surro-
gate model on 10 classes to generate cluster-wise noise;
❸ train ResNet18 on the whole classes (101) with cluster-
wise noise. The cluster version of our method can reduce
the classification accuracy from 0.787 to 0.189.

13. Dataset details
To evaluate the effectiveness of our method, we employ four
popular event-based datasets in our experiments, includ-

ing N-Caltech101 [43], CIFAR10-DVS [32], DVS128 Ges-
ture [2], and N-ImageNet [28]. N-Caltech101 is the neu-
romorphic version of the image dataset, Caltech101 [12],
which has 101 classes and 4356, 2612, and 1741 samples
for training, validation, and testing, respectively. CIFAR10-
DVS is generated based on image datasets CIFAR-10 [30],
where the training set, validation set and testing set con-
tain 7000, 1000, and 2000 samples, respectively. DVS128
Gesture contains 11 classes from 29 subjects under 3 illu-
mination conditions, which has 1176 training samples and
288 testing samples. The N-ImageNet (mini) dataset is de-
rived from the ImageNet dataset. It utilizes an event camera
to capture RGB images shown on a monitor. This dataset
includes 100 object classes, with each class having 1,300
streams for training and 50 streams for validation. Details
of each dataset are shown in Table 6.

14. Visualization comparison

To evaluate the imperceptibility of our E2MN, we show
more visualization results in Fig. 9 and Fig. 10. In Fig. 9, we
sample event streams from the CIFAR10-DVS dataset [32]
to generate the unlearnable ones via five straightforward
distortions and our two kinds of noise. It’s clear that there



Table 6. Details of four used datasets in our experiments.

N-Caltech101 CIFAR10-DVS DVS128 Gesture N-ImageNet

Type Simulated Simulated Real Simulated
Calsses 101 10 11 1000
Resolution 180× 240 128× 128 128× 128 480× 640
Event Camera ATIS camera DVS128 DVS128 Samsung DVS Gen3
Train 4536 7000 1176 130000
Val 2612 1000 288 50000
Test 1741 2000 288 50000

is an x-y offset in the unlearnable event streams generated
by CS compared to the clean data. TS alters time stamps
to pollute the input event streams, resulting in a noticeable
difference between the distorted samples and the clean data.
PI reverses the polarity of the event stream to degrade the
quality, thereby reducing the quality of the training data.
AS rearranges the event data at the block level to produce
unlearnable data, which exhibits low imperceptibility. Our
class-wise noise and sample-wise noise perturb the event
stream with imperceptible noise that shows better invisibil-
ity than other comparison methods. The visualization re-
sults sampled from DVS128 Gesture dataset [2] are shown
in Fig. 10. It’s clear that our E2MN achieves the best un-
learnability while maintaining good imperceptibility.

To visualize the influence caused by our E2MN, we
employ GradCAM to highlight several unlearnable event
streams in Fig. 12. Figures (A), (B), (C), (D), and (E)
are rendered by A-shuffle, M-pattern, P-inverse, Class-wise
noise, and sample-wise noise, respectively. Our method
builds a shortcut between the input samples and labels that
suppresses the model learning semantic features, resulting
in a lower response on the foreground regions.

(A) (B) C) (D) (E)(

Figure 12. GradCAM of event distortions and our methods.

15. Social impact
The social impact of UEVs is multifaceted, addressing key
issues around event data security, privacy, and ethics. By
making event datasets unlearnable, our method helps pro-
tect individuals’ data from being used without authoriza-
tion. This is particularly important in an era where event
data privacy concerns are paramount, and unauthorized data
usage can lead to significant privacy breaches. The method
provides a robust protection way for event data owners, en-
suring that their event streams cannot be exploited by unau-
thorized entities. This fosters greater trust in event data
sharing. With the application of UEVs, there is a push
towards more ethical event data practices. Entities will
need to obtain proper authorization and consent before us-

ing event data, promoting a culture of respect for data own-
ership and user rights.

Overall, our UEVs contributes significantly to the ad-
vancement of secure and trustworthy data sharing, promot-
ing a safer and more ethical event data ecosystem.

16. Future work
UEVs is the first method designed for generating unlearn-
able event streams, which provides a possible solution to
prevent the unauthorized usage of our valuable event data.
We mainly focus on studying the unlearnability of event
streams in the main paper, while causing some limitations
in terms of transferability evaluation, generation efficiency,
and defense mechanism. To address these issues beyond
our research topic in this work, we will explore the follow-
ing directions in the future:
• Transferability evaluation: We plan to extend the evalua-

tion of our method from classification task to other event
datasets and event vision tasks, enhancing the transfer-
ability. This comprehensive testing is helpful to demon-
strate the effectiveness of UEVs that promote the trust-
worthy event data sharing. However, the effectiveness of
UEVs may be decreased across different vision tasks. A
possible solution is that adopt the foundation model as our
surrogate model to calculate the event error-minimizing
noise, which is trained with a large amount of data that
has strong generalization capabilities. It can be applied to
a variety of tasks without training independent models for
each specific task.

• Generation efficiency: According to our experiments, we
find that the efficiency of the sample-wise noise genera-
tion depends on the scale of the event dataset. The larger
the scale of the event dataset, the lower the efficiency of
the sample-wise noise generation. We propose address-
ing this issue via a noise generator. We train this genera-
tor with the surrogate model jointly, which aims to enable
the generated noise to minimize the cost of the surrogate
model. This training pipeline avoids storing the gener-
ated medium noise, which saves efficiency significantly.
Once the optimization has been finished, we can employ
this generator to generate sample-wise noise for each in-
put sample with high efficiency.

• Defense mechanism: It’s crucial to investigate poten-
tial defense mechanisms against the generation of mali-
cious unlearnable event streams. If we release our un-
learnable dataset online, hackers could manipulate these
samples to force their models to learn the information.
By understanding possible defense mechanisms, we can
develop more reliable methods for creating unlearnable
event datasets, thereby preventing unauthorized usage.
Furthermore, elucidating these defense mechanisms can
help users improve the dataset quality, ultimately saving
training time and computing resources.
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