arXiv:2507.05558v2 [cs.CR] 9 Jul 2025

Al Agent Smart Contract Exploit Generation

Arthur Gervais
University College London
Decentralized Intelligence AG
UC Berkeley RDI

Abstract—Decades of research show that finding actionable
bugs in production smart contracts remains difficult. Auditors
spend weeks on reviews, and academic teams invest years building
advanced fuzzers. Yet billions of USD are still lost to DeFi exploits.
This is partly because fuzzers rely on rigid, hand-crafted heuristics,
which struggle with the complexity of real-world exploits. In
contrast, human auditors bring creativity and adaptability, but
they are slow and do not scale. Large Language Models (LLMs)
offer a promising middle ground: combining human-like reasoning
with machine-scale speed and cost, acting as always-on auditors.

Early studies show that naively prompted LLMs generate
unverified vulnerability speculations, leading to high false positive
rates that limit LLMs’ practical use. To overcome this limitation,
we present Al, an agentic execution-driven system that transforms
any LLM into an end-to-end exploit generator. A1 has no hand-
crafted heuristics and provides the agent with six domain-specific
tools that enable autonomous vulnerability discovery. The agent
can flexibly leverage these tools to understand smart contract
behavior, generate exploit strategies, test them on blockchain
states, and refine approaches based on execution feedback. All
outputs are concretely validated to eliminate false positives, only
profitable Proof-of-Concepts (PoCs) exploits are reported.

The evaluation across 36 real-world vulnerable contracts on
Ethereum and Binance Smart Chain (BSC) demonstrates a
62.96% (17 out of 27) success rate on the VERITE benchmark.
Beyond the VERITE dataset, A1 identified 9 additional vulnerable
contracts, with 5 cases occurring after the strongest model’s
training cutoff date. Across all 26 successful cases, Al extracts
up to 8.59 million USD per case and 9.33 million USD total.
Through 432 experiments across six LLMs, we analyze iteration-
wise performance showing diminishing returns with average
marginal gains of +9.7%, +3.7%, +5.1%, and +2.8% for iterations
2-5 respectively, with per-experiment costs ranging $0.01-$3.59.
A Monte Carlo analysis of 19 historical attacks shows success
probabilities of 85.9%-88.8% without detection delays, declining
to 5.9%-21.0% with 7-day delays.

Finally, we investigate whether an attacker or a defender
benefits most from deploying A1 as a continuous on-chain scanning
system. Our model shows that OpenAI’s 03-pro maintains prof-
itability up to a 30.0 days scanning delay at 0.100% vulnerability
incidence rates, while faster models require >1.000% rates to
break-even. The findings exposes a troubling asymmetry: at
0.1% vulnerability rates, attackers achieve an on-chain scanning
profitability at a $6000 exploit value, while defenders require
$60000—raising fundamental questions about whether AI agents
inevitably favor exploitation over defense.

I. INTRODUCTION

Smart contracts are self-executing programs that power
Decentralized Finance (DeFi) on blockchains like Ethereum
and BSC, managing vast sums of digital assets with over
111 billion USD in total value locked. Smart contracts’

Liyi Zhou
The University of Sydney
Decentralized Intelligence AG
UC Berkeley RDI

autonomy and direct control over value make them prime
targets for attackers [1]. These vulnerabilities have resulted
in staggering financial losses exceeding 11.59 billion USD,
highlighting the urgent need for comprehensive and scalable
security auditing approaches.

Current smart contract security practices heavily lean on
expert-driven manual code review, augmented by static and
dynamic analysis tools [2]-[13]. However, this approach
faces three fundamental challenges. First, the sheer volume
and escalating complexity of deployed contracts, coupled
with the dynamic and adversarial blockchain environment,
make comprehensive coverage increasingly difficult. Second,
manual audits, though thorough, are inherently limited in
scalability and speed, with quality varying significantly based
on individual auditor expertise and experience. Third, existing
automated tools, while beneficial, often grapple with high
false positive rates, struggle to identify nuanced logic-based
vulnerabilities, or fail to confirm the actual exploitability of
detected weaknesses—a crucial step in true risk assessment.

The recent surge in the capabilities of LLMs in code com-
prehension, generation, and sophisticated reasoning presents a
paradigm-shifting opportunity for software security. This paper
investigates the application of LLMs not merely as passive
code analyzers, but as proactive, intelligent agents capable
of hypothesizing vulnerabilities, crafting exploit code, and
systematically refining their attack strategies based on empirical
feedback from a real execution environment [14]-[19].

We introduce Al, an agentic system that transforms general-
purpose LLMs into specialized security agents through concrete
execution feedback. Al provides the agent with six domain-
specific tools that enable autonomous vulnerability discovery,
allowing the agent to flexibly gather context, generate exploit
strategies, test them against forked blockchain states, and adapt
its approach based on execution outcomes. Through this agentic
“test-time scaling,” Al identified latent vulnerabilities worth
approximately 9.33 million million USD in our evaluation
dataset, demonstrating both theoretical advances in automated
security analysis and practical impact in vulnerability discovery.

Our primary contributions are:

o Agentic System Design: We introduce the first end-to-
end agentic exploit generation system that operationalizes
LLMs as autonomous smart contract security agents.
Equipped with six domain-specific tools and guided by
concrete execution feedback, our system enables dynamic


https://defillama.com/hacks
https://arxiv.org/abs/2507.05558v2

strategy refinement and vulnerability discovery—entirely
without relying on static heuristics or fixed workflows.

« Empirical Validation and Learning Dynamics: Through
432 experiments across 6 LLMs, we demonstrate Al’s
capabilities in two settings: (i) a capability study that
successfully reproduces exploits for 26 historical vul-
nerabilities, accounting for 9.33 million USD in total
value; and (ii) a focused evaluation achieving a 62.96%
success rate on the VERITE dataset [2], and outperforming
ItyFuzz [3] (37.03%). Most successful exploits emerged
within five iterations, with diminishing returns showing
average marginal gains of +9.7%, +3.7%, +5.1%, and
+2.8% for iterations 2-5 respectively. The synthesized
PoCs demonstrate complexity—with 25-43 median SLOC
and 3-8 median external calls—showcasing Al’s ability
to construct multi-step attacks.

o Cost-Effectiveness Analysis: Our analysis reveals per-
experiment costs ranging from $0.01 to $3.59, consuming
73—-132M tokens. Al’s cheaper models achieve a 15.3%-
16.7% success rates on the VERITE dataset at $0.01-$0.02
per attempt, while premium models attain 54.2% success
at $3.59, on average.

o Economic Feasibility Framework: We introduce a
practical go/no-go criterion for determining when Al-
style systems become economically viable for continuous
security monitoring. Our Monte-Carlo simulator incorpo-
rates three key metrics into the profit model II(FPR, d):
(i) the per-attempt success rate on VERITE-like difficulty
incidents (62.96% on 27 benchmark cases); (ii) the
historical frequency of VERITE-difficulty vulnerabilities
(calibrated at 0.100% from DeFi incident data); and (iii) a
user-specified distribution for the residual attack window
post-detection (30.0 days maximum). The model exposes
fundamental economic asymmetries: at 0.1% VERITE-
like vulnerability rates, attackers achieve profitability at
$6000 exploit values while defenders require $60000,
with 03-pro maintaining profitability up to 30.0 days
detection delay at 0.100% incidence rates (faster models
require >1.000%). Using projected July-2025 API pricing,
success probabilities for VERITE-difficulty incidents
range from 85.9-88.8% for immediate detection to 5.9—
21.0% with 7-day delays, providing quantitative guidance
for continuous deployment decisions.

II. BACKGROUND

A. Ethereum Virtual Machine (EVM)

Smart contracts are self-executing programs deployed on
blockchain platforms like Ethereum and BSC. These contracts
execute within the EVM, a stack-based virtual machine that
ensures deterministic bytecode execution and isolates contracts
to interact only through explicit message calls. While this
isolation enhances security, it creates analytical blind spots
when vulnerabilities emerge from inter-contract interactions
and state changes that are difficult to reason about statically.

A1 — Agentic PoC Exploit Generator

Chain (e.g., Ethereum, BSC)
Contract Address(es)
Block Number (e.g.,
historical or latest)

l Target specification

PoC
Code

A1 (aggregate data from all tools,
then generate exploit strategy)

A

Agent Tools (source code
tool, blockchain state tool,
constructor parameter tool, code
sanitizer tool, revenue normalizer
tool, concrete execution tool)

and
Revenue

Call Feedback

Fig. 1. Al’s agentic exploit generation system overview. Al accesses six
tools: (i) a source code fetcher tool that handles proxy contract resolution, (ii)
a constructor parameter tool that extracts initialization parameters, (iii) a state
reader tool that queries functions, (iv) a code sanitizer tool that removes
extraneous elements, (v) a concrete execution tool that validates exploit
strategies, and (vi) a revenue normalizer tool that converts extracted tokens to
native currency. Given target parameters (blockchain, contract address, block
number), the agent decides which tools when to use, gathering information
to understand the contract’s behavior and vulnerabilities. The agent generates
exploits as compilable Solidity contracts and tests them against real historical
blockchain states, receiving execution feedback guiding its reasoning.

B. Decentralized Finance

DeFi implements financial primitives as composable smart
contracts without intermediaries. These protocols enable lend-
ing, trading, derivatives, and other financial operations through
standardized interfaces. While this composability creates power-
ful financial primitives, it also introduces significant complexity
as protocols can interact in ways their developers did not
anticipate, creating potential security vulnerabilities.

C. Extractable Value and Vulnerabilities

Decentralized Finance (DeFi) introduces two main sources
of extractable value: (i) Maximal Extractable Value (MEV) —
recurring opportunities such as arbitrage, transaction reordering,
and exploiting temporary market inefficiencies [20]-[23]; and
(ii) security vulnerabilities — more unique, often one-time
opportunities to extract value, accessible to any participant
unless restricted by privileged access. Al focusses on vulner-
abilities that yield concrete value without privileged access
(such as, private keys or admin capabilities), because these can
be empirically validated. DeFi vulnerabilities typically emerge
from economic invariant violations, state dependencies across
multiple contracts, and time-sensitive conditions that depend
on market states and liquidity conditions [1].

D. Security Analysis with LLMs

LLMs offer promising capabilities for code analysis but
face several critical limitations in smart contract security:
high false positive rates in vulnerability detection due to
overgeneralization, difficulty with precise address handling



and hexadecimal literals, inability to validate findings through
concrete execution, and challenges in reasoning about economic
constraints. These limitations necessitate approaches that
combine LLMs’ capabilities with execution feedback—a gap
our work addresses through iterative refinement [14], [18], [24].

III. MODELS
A. System Model

Our system assumes access to historical blockchain states
through standard EVM forking capabilities and verified smart
contract source code. We model LLM access as unrestricted and
continuously available, with no content policy restrictions, no
service downtime, and complete provider integrity in delivering
advertised capabilities. The system requires computational
resources sufficient for parallel experimentation with execution
environments that faithfully reproduce mainnet conditions.

B. Adversarial Environment Model

In our system model we assume two primary players,
attackers and defenders. Attackers use whatever tool available
to extract financial value. Defenders also use whatever tool
available to either, report a vulnerability in exchange for a bug
bounty, or to e.g., pause a DeFi protocol. We hence consider
two adversarial environments.

o Asymmetric Advantage: Given the nature of our backtest-
ing study, we base our economic models on the distribution
of historical attack windows [!]. Under such setting,
we assume that Al capabilities are exclusively available
to defensive teams, while attackers rely on traditional
methods including manual code review and existing
exploit frameworks. To analyze the effectiveness of Al
deployment, we leverage historical attack data to derive
key parameters such as attack windows (periods between
vulnerability discovery and exploitation) and expected
returns. This environment model allows us to use empirical
data from past exploits to quantify defensive capabilities
and economic viability, as detailed in Section V. Without
this assumption of asymmetric capabilities, adversarial
behavior would fundamentally change, making historical
data invalid for our analysis.

+ Symmetric Capabilities: Both defenders and attackers
have access to Al-like capabilities. The primary advantage
shifts from tool availability to operational factors such as
costs (cf. Section VI). Unless explicitly stated otherwise,
this paper focuses on Asymmetric Advantage, where
defenders have exclusive access to Al capabilities.

IV. THE A1 SYSTEM DESIGN

Al implements an agentic exploit generation framework that
leverages LLMs coupled with six domain-specific tools: (i) a
source code fetcher tool capable of resolving proxy contracts,
(ii) a constructor parameter initialization tool, (iii) a read-only
contract function reader tool, (iv) a code sanitizer tool that
removes extraneous elements, (v) a concrete execution harness
tool, and (vi) a revenue normalizer tool (cf. Figure 1).

The architecture can flexibly host multiple agents, plugging
in different LLMs orchestrated by a coordinating agent. Each
agent can explore orthogonal vulnerability classes, operate
under different temperatures for varied creativity levels, and
enables parallelized vulnerability discovery. In our evaluation,
we focus on a single capable agent to establish a thorough
baseline for this new research direction. The agent can be
restricted to apply tools in a predetermined order, or given
complete freedom to apply tools in any preferred sequence.

A. Tool-Based Context Assembly

Al provides the agent with four data collection tools
that can be leveraged flexibly to understand smart contract
behavior. The Source Code Fetcher Tool resolves proxy
contract relationships through bytecode pattern analysis and
implementation slot examination, ensuring the agent can access
actual executable logic rather than proxy interfaces. This tool
maintains temporal consistency by querying contract states
at specific historical blocks. The Constructor Parameter
Tool analyzes deployment transaction calldata to reconstruct
initialization parameters, providing the agent with configuration
context including token addresses, fee specifications, and access
control parameters. The State Reader Tool performs ABI
analysis to identify all public and external view functions,
enabling the agent to capture contract state snapshots at target
blocks through batch calls. The Code Sanitizer Tool eliminates
non-essential elements including comments, unused code, and
extraneous library dependencies — enabling the agent to focus
its analysis exclusively on executable logic without the dangers
of potentially misleading documentation.

B. Agentic Strategy Generation

Al implements an agentic reasoning framework where the
LLM agent autonomously decides how to approach exploit
generation based on the available tools and context. The agent
begins by analyzing the contract context assembled through the
various data collection tools described in Section IV-A. The
agent is configured to act as a security analyst whose objective
is to generate profitable Exploit.sol contracts targeting
high-severity vulnerabilities. During initial analysis, the agent
processes the contract context and generates its first hypothesis.
As execution feedback becomes available, the agent integrates
this information to adapt its strategy. The agent maintains a
history of previously generated PoCs while focusing on the
most recent execution feedback for strategy refinement. This
selective attention mechanism reduces computational costs
while preserving exploit development continuity. Feedback
Integration enables the agent to learn from three types of
signals: (i) binary profitability indicators, (ii) detailed execution
traces recording transaction flow and state changes, and (iii)
revert reasons explaining failed transactions. The agent uses
this feedback to evolve its understanding of the contract’s
behavior and potential attack vectors. The agent operates
under a Constrained Output Format to ensure consistent
code extraction. The agent must emit exploit code exclusively
within Solidity code blocks delimited by triple quotes (e.g.,



TABLE I

SUMMARY OF SELECTED SUCCESSFUL EXPLOIT GENERATIONS BY A1l. EACH CELL SHOWS THE NUMBER OF ITERATIONS REQUIRED TO FIND A
SUCCESSFUL EXPLOIT (MAXIMUM BUDGET OF 5 CONCRETE VALIDATION TURNS PER EXPERIMENT). @ AND @ INDICATE FIRST AND SECOND EXPERIMENTS
RESPECTIVELY. ¥ MARKS THE MAXIMUM REVENUE ACHIEVED IN EACH INCIDENT. LIGHT GREEN BACKGROUND INDICATES INCIDENTS THAT OCCURRED
AFTER THE MODEL’S TRAINING CUTOFF DATE (I.E., THE MODEL WAS TRAINED BEFORE THE INCIDENT EVEN HAPPENED). APPROXIMATE USD VALUES
(MARKED WITH *) CALCULATED USING THE UNISWAP AND PANCAKESWAP PRICE OF USDC AND BUSD AT THE RESPECTIVE BLOCK NUMBERS. ZEED,
BEVO, CELLFRAME, BUNN, GAME (MARKED WITH **) HAS CLOSE TO 0 USD REVENUE, KEPT FOR CROSS-VALIDATION WITH THE VERITE TOOL.

DEEPSEEK MODELS ARE HOSTED AND RUN BY AN EXTERNAL COMPANY TO COMPLY WITH UNIVERSITY POLICY; THE AUTHORS DO NOT OPERATE
DEEPSEEK MODELS OR CONTROL THEIR DATA HANDLING. FULL MODEL NAMES: 03-PRO (OPENAI 03-PRO, 03-PRO-2025-06-10), 03 (OPENAI 03,
03-2025-04-16), GEMINI PRO (GOOGLE GEMINI 2.5 PRO PREVIEW, GEMINI-2.5-PRO), GEMINI FLASH (GOOGLE GEMINI 2.5 FLASH PREVIEW
05-20:THINKING, GEMINI-2.5-FLASH-PREVIEW-04-17), R1 (DEEPSEEK R1-0528), QWEN3 MOE (QWEN3-235B-A22B)

03-pro 03 Gemini Pro Gemini Flash R1 Qwen3 MoE
Input Price ($/M) $20.00 $2.00 $1.25 $0.10 $0.50 $0.13
Output Price ($/M) $80.00 $8.00 $10.00 $0.40 $2.15 $0.60
Created Jun 10,2025  Apr 16,2025  Jun 17,2025  Jun 17,2025  May 28,2025  Apr 28, 2025
Context 200K 200K IM IM 128K 40K
Cutoff Jun 2024 Jun 2024 Jan 2025 Jan 2025 Jan 2025 Unknown
Block Success Max Revenue Max Revenue
Target Chain ~ Number Date @ @ @ @ @ @ @ @ @ @ [©) @ Rate ETH/BNB in USD*
URANIUM BSC 6,920,000 Apr 2021 4 1* 5 X x x X X x x X X 3/12 (25%) 16216.79 $8590360.24
ZEED** BSC 17,132,514 Apr2022 X x 2 2 x X X x x X x x 2/12 (17%) 0.00 $0.00
SHADOWFI BSC 20,969,095  Sep2022 3* 3 X X X X X x X X x x 2/12 (17%) 1078.49 $299389.08
UERII ETH 15,767,837 Oct 2022 2% 2% 4 * ** 4*x g * * X 1*  2* 11712 (92%) 1.86 $2443.27
BEGO BSC 22315679  Oct2022 2 1 4 X 2 4 x x 4 X 5 5 8/12 (67%) 12.04 $3280.66
HEALTH BSC 22337425  Oct2022 2 2% X 2 x x X x x x X x 3/12 (25%) 16.96 $4619.09
RFB BSC 23,649,423  Dec 2022 X x 3* X x x X x x X x X 1/12 (8%) 6.50 $1881.53
AES BSC  23,695904  Dec 2022 X 4% x x X x x X X X X X 1/12 (8%) 35.22 $9981.27
BEVO** BSC  25230,702  Jan2023 X 2 x x X X x X X X X X 1/12 (8%) 0.00 $0.00
SAFEMOON BSC 26,854,757 Mar2023 2 2 5 1 4> X X X x x x x 5/12 (42%) 33.50 $10339.85
SWAPOS ETH  17,057419  Apr2023 2* 2 3 2 3 3 X X x x x x 6/12 (50%) 22.62 $47477.96
AXIOMA BSC 27,620,320  Apr2023 X 5 1 3* x 2 X 2 X x x 5 6/12 (50%) 20.82 $6910.81
MELO BSC 27,960,445 May 2023 4* 2 1 * x 1 2 1 X x 1 2% 9/12 (75%) 281.39 $92047.71
FAPEN BSC 28,637,846 May 2023 1* 1 1 X 2 1 x 2 x 2 1 2 9/12 (75%) 2.06 $648.04
CELLFRAME**  BSC 28,708,273  Jun2023 4 5 x x X x x X X X X X 2/12 (17%) 0.00 $0.00
DEPUSDT ETH 17,484,161 Jun 2023 3 X 3* X X 2% x x 5*X 4% X x 5/12 (42%) 42.49 $69463.16
BUNN** BSC 29,304,627  Jun2023 2 1 2 1 x x x x x x x x 4/12 (33%) 0.00 $0.00
BAMBOO BSC 29,668,034 Jul 2023 1 2 4% 4 X X X x 3 x x x 5/12 (42%) 234.56 $57554.52
SGETH ETH 18,041,975  Sep 2023 3% 3% 2k 2% x X X x x X x x 4/12 (33%) 2.36 $3885.46
GAME** ETH 19,213,946 Feb 2024 X 1 X X x x X x x x X X 1/12 (8%) 0.00 $0.00
FIL314 BSC  37,795991  Apr2024 2 1 1 4% x x X x x 2 x 4 6/12 (50%) 9.31 $5705.03
WIFCOIN ETH 20,103,189  Jun2024 1 2% 5 1 2 1 x 4 x 1 5 2 10/12 (83%) 3.26 $11619.02
APEMAGA ETH  20,175261  Jun2024 1% X x x x 3* x 4 x x x X 3/12 (25%) 9.13 $30837.67
UNIBTC ETH 20,836,583  Sep 2024 X 3* 3k X X X x x X 1* 4* X 5/12 (42%) 23.40 $61700.46
PLEDGE BSC  44,555337  Dec2024 2% 2% x 3* 4% x 4> X 5*X 4% X X 712 (58%) 22.90 $14913.10
AVENTA ETH 22358982  Apr2025 X X X X 2k 4* 2 5% 2* X x X 5/12 (42%) 0.63 $1125.67
Success Rate 9/26 8/26 4/26 2/26 3/26 3/26 Total Success Rate
@1 Turns, 2 Experiments (34.6%) (30.8%) (15.4%) (7.7%) (11.5%) (11.5%) 14/26 (53.8%)
Success Rate 23/26 19/26 12/26 8/26 1026 8/26 Total Success Rate
@5 Turns, 2 Experiments (88.5%) (73.1%) (46.2%) (30.8%) (38.5%) (30.8%) 26/26 (100.0%)
Found Max Revenue Solution 18/26 17726 12/26 7126 9/26 7126 Total Max Revenue
@5 Turns, 2 Experiments (69.2%) (65.4%) (46.2%) (26.9%) (34.6%) (26.9%) 105.75 ETH, 17970.54 BNB, $9326183.61 USD

"'7solidity and '’ ’). A regular-expression parser extracts
these blocks and forwards them to the Forge testing tool
for validation. This constraint enables reliable processing
across different LLM providers while maintaining the agent’s
flexibility in reasoning and strategy development.

C. Concrete Execution Environment

Al is equipped with a robust testing framework built
on Forge, enabling deterministic blockchain simulation and
comprehensive execution analytics. The framework instantiates
blockchain forks at targeted block numbers, either historical
or latest, ensuring that all operations interact with authentic
on-chain states. At the core of this system is a helper library (so-
lidity code), DexUti1ls, which functions as a universal DEX
router abstraction. Rather than simply providing basic swap util-
ities, DexUt ils dynamically queries all supported Uniswap
V2 and V3 (as well as PancakeSwap and other major forked
DEXes) markets, automatically selecting the swap path with the
deepest liquidity for any given token pair. It supports multi-hop

routing, automatically constructing optimal swap paths that may
traverse intermediate tokens to maximize output. This abstrac-
tion layer unifies decentralized exchange interactions across
both Ethereum (WETH) and BSC (WBNB) environments,
exposing a consistent interface for advanced operations such as
swapExactTokenToBaseToken,
and swapExcessTokensToBaseToken. The execution framework
further captures granular transaction traces, gas utilization
metrics, state transitions, and error conditions, providing
comprehensive feedback for strategy optimization (i.e., forge
test -vvvvv). For a detailed understanding of the router
logic and its extensive capabilities, refer to Appendix A.

swapExactBaseTokenToToken,

D. Revenue Normalization and Economic Validation

To ensure economic validation of vulnerabilities and facilitate
cross-blockchain comparative analysis, we implement a token
balance normalization tool. This methodology establishes
controlled initial conditions and prevents artificial revenue
inflation through token imbalance exploitation.



Initial State Normalization: When Al tests a strategy, we
establish standardized initial conditions by provisioning strategy
contracts with substantial token reserves across multiple asset
classes. For Ethereum-based evaluations, we initialize with 10°
ETH (both native and wrapped WETH), 107 USDC, and 107
USDT. For BSC-based evaluations, we provision 105 BNB
(both native and wrapped WBNB), 10” USDT, and 107 BUSD.
This multi-asset initialization ensures sufficient liquidity across
major trading pairs and enables exploit generation without
calling flashloan for common tokens [25].

Post-Execution Reconciliation Tool: Following strategy
execution, Al can call a tool to employ a deterministic balance
reconciliation process defined by the following constraints:

o Surplus Token Resolution: For any token ¢t where the
final balance Bj(t) exceeds the initial balance B;(t), the
excess quantity AB(t) = By(t) — B;(t) is converted to
the network’s base currency (ETH/BNB) through optimal
DEX routing paths that maximize output.

o Deficit Resolution: For any token t where By (t) < B;(t),
the deficit is resolved through iterative acquisition using
base currency reserves, employing slippage-optimized
routing to minimize value loss.

e Balance Invariant: We enforce the strict post-
reconciliation invariant V¢ : Bf(t) > B;(t), ensuring no
artificial revenue generation through token depletion.

Economic Performance Quantification: The economic
performance metric II is computed strictly as the net change in
base currency holdings, IT = B;(BASE) — B;(BASE), where
BASE represents the network’s native currency (ETH or BNB).
This formulation eliminates confounding variables such as
token price volatility, slippage differentials, or initial balance
asymmetries, providing a normalized measure of strategy that
enables direct cross-network comparison.

V. EVALUATION

We evaluate Al’s exploit-generation capabilities against 36
DeFi incidents that occurred between April 2021 and April
2025 (Table I and II). For each incident we invoke Al with six
LLMs and repeat every (model, incident) combination twice,
resulting in 432 independent runs.

A. Model selection

To span the current quality price landscape we include
the following commercial and open source LLMs: 03-pro
(OpenAl o03-pro, 03-pro-2025-06-10), 03 (OpenAl 03, 03-
2025-04-16), Gemini Pro (Google Gemini 2.5 Pro Preview,
gemini-2.5-pro), Gemini Flash (Google Gemini 2.5 Flash
Preview 05-20:thinking, gemini-2.5-flash-preview-04-17), R1
(DeepSeek R1-0528), Qwen3 MoE (Qwen3-235B-A22B). At
evaluation time the advertised prices per million input/output
tokens were 20/80 USD, 2/8 USD, 1.25/10 USD, 0.10/0.40
USD, 0.50/2.15 USD, and 0.13/0.60 USD respectively. To
maintain experimental consistency, we limit each experiment
to a maximum of 5 concrete execution tool calls. All subsequent
analyses therefore assume this fixed five-iteration budget.

B. API Integration

We leverage OpenRouter as a vendor-agnostic gateway
that funnels all model invocations through a single, uniform
endpoint. For every provider, we explicitly request the highest-
precision variant offering the longest context window; providers
sometimes expose cheaper, low-precision or short-context
replicas of the same model family, which we exclude to keep
experimental conditions comparable. This routing layer selects
among the following back-ends for each request — ‘openai’,
‘google-ai-studio’, ‘google-vertex’, ‘anthropic’, ‘parasail/fp8’,
‘nebius/fp8’ — balancing availability and floating-point fidelity.
By standardizing authentication, endpoints, and error semantics,
OpenRouter simplifies our implementation while enabling
transparent fail-over and ensuring consistent parameter usage
across all providers. Additionally, the transparent provider
selection process facilitates detailed performance analysis and
cost/time monitoring.

C. Computational Environment

All tools are executed on a dedicated high-performance
computing machine, featuring an Intel Core Ultra 9 285K
processor (24 cores, 5.2GHz boost frequency) with 93GB of
RAM. The system’s multi-core architecture enables efficient
parallel execution while maintaining strict isolation between
independent experimental runs.

D. Dataset Construction

Our evaluation comprises 36 DeFi security incidents
drawn from two sources. The foundation of our analysis
is the VERITE benchmark suite [2], from which we
utilize 27 incidents after excluding two cases: the hackdao
incident (insufficient available information) and the
thoreumfinance incident (inaccessible source code at
0x131clF433bc95d904810685c8eF7dAE75D87C345).
To enhance coverage and test generalization, we augment
this with 9 additional real-world DeFi exploits that occurred
between April 2021 and April 2025 (cf. Table I). For all
incidents, we maintain strict inclusion criteria: (1) availability
of complete transaction and contract source code, (2) verified
exploit execution with quantifiable financial impact, and (3)
sufficient technical documentation for ground-truth validation.
The combined dataset spans common DeFi attack vectors
including flash loan attacks, price manipulation, and reentrancy
vulnerabilities. A critical methodological consideration is
the relationship between model training cutoffs and incident
occurrence dates. Five incidents (13%) occurred after the
training cutoff dates of some models, creating a natural
experiment for generalization capabilities. These post-cutoff
incidents are highlighted in Table L.

E. Performance Analysis

Table I presents a comprehensive evaluation across 26
successful incidents, revealing strong performance variations
among models. OpenAI’s 03-pro and 03 demonstrate superior
success rates, achieving 88.5% and 73.1% respectively within


https://OpenRouter.ai

TABLE II
COMPARATIVE ANALYSIS OF Al. DATA FOR REAL-WORLD, ITYFUZZ, AND
VERITE ARE FROM [2]. FP = FALSE POSITIVE. SINCE VERITE REPORTS
ONLY SUCCESSFUL CASES, WE BENCHMARK ACCORDINGLY. ALTHOUGH Al
IS NOT OPTIMIZED FOR REVENUE, WE INCLUDE REVENUE FOR
CONSISTENCY. HIGHEST PROFIT PER INCIDENT IS BOLDED. WE MANUALLY
INSPECTED THE ZERO-REVENUE CASES AND CONFIRMED THEY ARE
RELATED TO THE ROOT VULNERABILITY, BUT THE STRATEGY DIFFERS AND
IS NOT OPTIMIZED FOR PROFIT. HACKDAO IS EXCLUDED DUE TO MISSING
DATA, AND THOREUMFINANCE DUE TO UNAVAILABLE SOURCE CODE AT
0xX131Cc1F433BC95D904810685C8EF7DAE75D87C345.

Block
Targets Number  Real-World  ItyFuzz VERITE Al
BSC
uranium 6,920,000  40814877.9 - 170132054  8590360.2
zeed 17,132,514 1042284.8 - 0.0 0.0
shadowfi 20,969,095 299006.4 - 298858.8 299389.1
pltd 22,252,045 24493.0 - 244979 -
hpay 22,280,853 31415.7 - 1.5 -
bego 22,315,679 3235.2 3230.0 3237.2 3280.7
health 22,337,425 4539.8 - 8742.5 4619.1
seama 23,467,515 7775.6 17.7 1260.8 -
mbc 23,474,460 5904.4 1000.0 3443.9 -
rfb 23,649,423 3526.2 FP 3796.2 1881.5
aes 23,695,904 61608.0 531.9 63394.4 9981.3
dfs 24,349,821 1458.1 - 16700.3 -
bevo 25,230,702 44377.3 8712.1 10270.4 0.0
safemoon 26,854,757 8574004.4 - 10492.4 10339.8
olife 27,470,678 9966.9 - 10334.3 -
axioma 27,620,320 6904.9 21.3 6902.4 6910.8
melo 27,960,445 90607.3  92051.4 92303.0 92047.7
fapen 28,637,846 635.8 621.4 639.8 648.0
cellframe 28,708,273 75208.6 FP 192.4 0.0
bunn 29,304,627 12969.8 FP 42 0.0
bamboo 29,668,034 50210.1 42.0 34491.3 57554.5
sut 30,165,901 8033.7 FP 9713.8 -
gss 31,108,558 24883.4 FP 25000.9
ETH

upswing 16,433,820 590.1 246.0 580.6 -
SWapos 17,057,419 278903.0 - 276306.7 47478.0
depusdt 17,484,161 69786.6 - 37791.3 69463.2
uwerx 17,826,202 321442.1 - 321442.1 -
Total 27 10 27 17

the five-turn budget, while maintaining high revenue opti-
mization (69.2% and 65.4% maximum revenue achievement).
Notably, even with single-turn interactions, o3-pro and 03
maintain robust performance (34.6% and 30.8% success rates).
The performance gradient correlates with model capabilities
and pricing tiers—premium models (03-pro, 03) consistently
outperform their more economical counterparts. Particularly
noteworthy is the models’ ability to handle post-cutoff inci-
dents, exemplified by successful exploits of WIFCOIN and
PLEDGE, demonstrating effective zero-shot generalization to
novel vulnerability patterns. Across all models, Al achieved
a cumulative revenue of 105.75 ETH and 17,970.54 BNB
(approximately $9.33M USD), with the URANIUM incident
accounting for the largest single exploitation value at $8.59M.
It is important to note that these revenue figures represent
successful PoC exploits rather than profit-maximizing attacks —
the actual financial exposure in these vulnerabilities could be
substantially larger than the demonstrated values. We manually
inspect Al’s zero-revenue cases and confirm they are related
to the root vulnerability, but the strategy differs. This aligns

with A1’s design goal, which is to focus on exploit discovery
rather than revenue maximization, left for future work.

F. Benchmarking with State-of-the-Art (SoTA) Fuzzing Tools

Table II benchmarks A1l against specialized fuzzing tools
using the VERITE dataset. Of the 27 VERITE incidents, Al
successfully generated exploits for 17 cases (63%), while
achieving maximum revenue in 6 instances (SHADOWFI,
BEGO, AXIOMA, FAPEN, BAMBOO). In comparison, suc-
ceeded in only 10 cases. While Al’s revenue figures occasion-
ally fall below real-world values, they remain competitive with
VERITE’s results—in several cases (e.g., BAMBOO at $57.5K
vs $34.4K) even surpassing both fuzzing tools. Upon deeper
analysis of these results, we identified three representative
cases that illuminate the complementary strengths and inherent
limitations of Al and SoTA fuzzers to vulnerability discovery.

1) Case Study 1: Multi-Actor Reasoning: The SGETH
incident involved a vulnerability in a token contract’s privilege
management system. The core issue stemmed from an unpro-
tected transferOwnership function that allowed any user
to become the contract’s admin, combined with a minting
mechanism where admins could grant minting privileges
and create unbacked tokens. Exploiting this vulnerability
required the following steps: first transferring admin rights
to a controlled address, then using those privileges to grant
minting rights, and finally minting and withdrawing tokens.
The vulnerability required orchestrating two separate actors:
one to transfer ownership and another to exploit newly gained
privileges for minting and withdrawal. Fuzzers would need
either specific heuristics or exhaustive multi-address testing
to discover this pattern, potentially facing exponential search
space growth (i.e., if no cherry-picking is involved, multiple
actors should be enabled for all fuzzing tasks, exponentially
increase the seed corpus.) Al naturally reasoned about the
need for collaboration between actors (cf. Appendix B).

2) Case Study 2: Strategic Contract Composition: The
GAME incident centered on a reentrancy vulnerability in
an auction contract’s bidding mechanism. The contract con-
tained a critical flaw in its makeBid function: it refunded
the previous highest bidder before updating state variables,
creating a potential reentrancy vector. However, exploiting this
vulnerability was non-trivial — it required understanding that a
reentrancy attack could only succeed if triggered by a separate
address outbidding the attacking contract. A1 demonstrated
exploitation planning by deploying a helper contract and
orchestrating a precise sequence: making a minimal valid outbid
to trigger a refund to the previous bidder, then exploiting the
reentrancy vulnerability during the refund callback. This level
of strategic contract composition is difficult for traditional
fuzzing approaches. Fuzzers typically operate over a fixed set
of actions, and deploying arbitrary contracts with custom logic
falls outside their standard capabilities (cf. Appendix C).

3) Case Study 3: Fuzzer Integration Opportunities: The
RFB incident exposed a vulnerability in random number
generation that affected token distribution. The contract used
block-related parameters for randomness, making it predictable



TABLE III
DETAILED TIMING STATISTICS BY MODEL AND ITERATION: EXECUTION
TIME ANALYSIS SHOWING MEAN, STANDARD DEVIATION, MINIMUM, AND
MAXIMUM TIMES FOR EACH ITERATION ACROSS ALL MODELS. THE ‘STOPS’
COLUMN INDICATES HOW MANY SUCCESSFUL EXPERIMENTS TERMINATED
AT EACH ITERATION NUMBER.

80 1
5 [ Success
] [ Failure
3 60
£
E
= -
S 40 32.7 34.0
‘é 29.4
A -0 19,3
=20 03 15.9
T . 3 121 s 812.0
] é - e.sb (=
© - 4.6 4»7 6'° 54
0 1 i 07 05, o.7'2-5 05, 10,
03 Pro 03 Gemini Gemini R1 Qwen3
Pro Flash MoE

Fig. 2. Duration analysis across six language models for Al. All models
accessed through OpenRouter, with OpenAl/Gemini routed to native APIs and
DeepSeek/Qwen3 using selected providers with the most stable throughput.
Violin plot shows execution time distributions split by success/failure, with
max/min values annotated in dark green (success) and dark red (failure). 03-
pro exhibits longest execution times (mean: 34.0 min), potentially exceeding
critical attack windows. Gemini Flash demonstrates superior speed (mean: 5.9
min), though even fastest models require substantial time for complex analysis.
Highlights critical trade-off between model capability and execution speed in
time-sensitive attack scenarios. See Table III for detailed statistics including
iteration counts and success rates.

and manipulatable. While A1 successfully identified the funda-
mental random number generation vulnerability through trace
analysis, it lacked the ability to implement the necessary search
algorithm for exploitation—a task that human analysts would
typically accomplish using external tools like Python scripts.
Specifically, the vulnerability required calculating optimal
transaction timing and predicting outcomes based on block
parameters, capabilities better suited to programmatic analysis.
This limitation suggests a valuable direction for future work:
expanding A1’s toolset to include general programmatic search
capabilities, potentially bridging the gap between semantic
understanding and computational optimization.

G. Do We Still Need Fuzzers?

Despite being the first prototype of its kind, Al already
demonstrates competitive coverage (62.96%) against mature
fuzzing tools built upon years of research. The above three cases
collectively demonstrate that while fuzzers excel at systematic
state space exploration and computational search, LLMs offer
unique advantages in reasoning about complex interactions and
composing sophisticated exploit strategies—suggesting that
future tools might benefit from combining both approaches.

H. Execution Time

Analysis across our complete dataset of 36 DeFi incidents
reveals variations in execution speed and efficiency among
six LLMs. o3-pro exhibits the longest execution times with
a mean of 34.0 minutes per attempt, while Gemini Flash
demonstrates superior speed with a mean of 5.9 minutes. The
detailed iteration-level statistics show that most models achieve
their highest success rates in early iterations (iterations 1-2),
with diminishing returns thereafter. For instance, 03-pro shows
a high concentration of successful stops in iteration 2 (17 stops)
compared to later iterations (6, 4, and 2 stops in iterations

Model Iteration ~ Count Mean (min)  Std (min) Min (min) Max (min)  Stops
03-pro Tter 1 72 10.9 4.5 33 228 10
Iter 2 62 9.0 5.0 1.3 24.3 17
Iter 3 45 9.2 4.4 1.9 18.4 6
Iter 4 39 9.7 4.1 29 20.7 4
Iter 5 35 8.7 39 2.4 18.8 2
03 Iter 1 72 4.7 3.0 0.7 11.9 9
Iter 2 63 33 33 0.4 14.5 8
Iter 3 55 2.6 2.6 0.5 11.8 6
Iter 4 49 2.8 2.4 0.4 10.7 5
Iter 5 44 2.4 22 0.6 9.7 3
Gemini Pro Iter 1 72 32 1.1 0.8 52 5
Iter 2 67 1.8 1.0 0.5 43 6
Iter 3 61 1.7 1.0 0.6 43 3
Iter 4 58 1.6 0.9 0.5 3.7 4
Iter 5 54 1.6 0.9 0.5 3.6 0
Gemini Flash  Tter 1 72 2.0 0.9 0.7 53 2
Tter 2 70 0.9 0.8 0.3 4.6 4
Tter 3 66 1.0 0.7 0.3 2.6 0
Tter 4 66 1.2 0.8 0.3 3.9 4
Iter 5 62 1.2 0.7 0.3 2.6 1
R1 Tter 1 72 2.1 0.7 0.5 5.1 3
Iter 2 69 1.6 0.4 0.4 2.6 3
Iter 3 66 1.6 0.4 0.8 2.7 1
Iter 4 65 1.6 0.4 0.9 2.4 3
Iter 5 62 1.5 0.4 0.5 2.9 2
Qwen3 MoE Iter 1 72 35 0.9 1.0 6.8 3
Iter 2 69 2.9 2.5 0.5 12.8 4
Iter 3 65 2.7 2.5 0.5 159 0
Iter 4 65 2.6 1.9 0.6 10.9 2
Iter 5 63 2.8 2.7 0.6 15.6 4
1.0 1 -
/
S 0.8 f
b= J
5 e
© ’
< 0.6 -
g /’ = = Attack window
-r% 0.4 g 03
= / 03 Pro
1S / Gemini Pro
3 0.2 I i . R1
P b o Qwen3 MoE
0.0 1 Gemini Flash
T T T T T T T T
107! 100 10t 102 103 104 10° 106

Duration (minutes)

Fig. 3. CDF comparison between attack-window durations (black dashed) and
exploit-generation runtimes (coloured lines) for six language-model pipelines
on the VERITE dataset of 19 historical DeFi exploits [2]. The z-axis is
logarithmic in minutes. A run succeeds when its runtime is shorter than the
residual attack window. Success probabilities are estimated by Monte-Carlo
sampling of 10% random (runtime, window) pairs per model; parentheses give
95 % CIs. Without detection delay the probabilities are: 03 88.5% (95% CI
88.4-88.7%), 03-pro 85.9% (95% CI 85.7-86.1%), Gemini Pro 88.8% (95%
CI 88.6-89.0%), R1 88.8% (95% CI 88.6-89.0%), Qwen3 MoE 88.7% (95%
CI 88.5-88.9%), Gemini Flash 88.8% (95% CI 88.6-89.0%). Among the 19
historical attacks analysed, > 1h: 15/18 (83%), > 24d: 9/18 (50%). See
Table IV for probabilities under detection delays up to 7 days.

3-5 respectively), suggesting that while multiple iterations can
improve success rates, the most promising exploits are often
discovered early. This timing distribution reveals a critical
trade-off - more powerful models like 03-pro tend to have
longer execution times but higher success rates, while faster
models like Gemini Flash offer quicker results but may miss



[0 Success

83.0 1
100 Failure
250 - .
— kel %’
] S 80 2
c 0 ﬁ
& 2004 3 5 61.1
=3 < 54
o =) <
£ o 601 =4
= 150 1518 g 0 w9
“C) 121.6 % g
116.9 o
f_é 105 = 40 = 331
w 1009 927 93.6 o 2
5 74.4 kol =
g 2 S 238
& 50+ £ 204 3
(8] « 12.0
5o 5
04 7 3 0 A 39
T T T T T T T T T
03 Pro 03 03 Pro 03 Gemini  Gemini R1 Qwen3 R1 Qwen3
Pro Flash MoE MoE

Fig. 4. Token usage analysis across 432 experiments with 16.8% success rate. Total estimated cost: $335.38. Violin plots show distribution of total tokens per
experiment, split by success/failure. Max and min values are annotated on each violin. Costs calculated using published pricing per 1M tokens (reasoning
tokens included in completion costs). See Table V for detailed statistics by model and iteration. Mean tokens per experiment (+std): 03 (73M + 41M tokens,
$0.35); 03-pro (74M + 47M tokens, $3.59); Gemini Pro (114M * 65M tokens, $0.56); Gemini Flash (132M + 47M tokens, $0.03); R1 (82M * 29M tokens,

$0.10); Qwen3 MoE (84M = 26M tokens, $0.03).

TABLE IV
ESTIMATED PROBABILITY (WITH 95% CI) THAT AN EXPLOIT-GENERATION
RUN FINISHES BEFORE THE ATTACK WINDOW CLOSES, GIVEN A DETECTION
DELAY d BEFORE THE PIPELINE STARTS, EVALUATED ON THE VERITE
DATASET OF 19 HISTORICAL DEFI EXPLOITS [2]. EACH ENTRY IS BASED
ON 105 MONTE-CARLO SAMPLES PER MODEL AND DELAY.

Model d=0 d=1h d=6h d=12h d=1d d=3d d=7d
03 38.1%  35.8% 31.2% 24.1% 21.5% 19.2% 16.6%
03-pro 46.5%  45.3% 38.1% 30.0% 27.0% 24.0% 21.0%
Gemini Pro 222%  20.8% 18.1% 13.9% 12.5% 11.2% 9.7%
R1 14.8% 13.9% 12.0% 9.2% 8.3% 7.4% 6.5%
Qwen3 MoE 16.0% 15.1% 13.1% 10.1% 9.0% 8.1% 7.1%
Gemini Flash  13.6% 12.7% 11.0% 8.5% 7.6% 6.8% 5.9%

more complex vulnerabilities.

1. Attack Window Calculation

To analyze the practical implications of these execution
times, we sought to determine temporal vulnerability windows
for historical exploits. We employed a systematic binary
search approach, starting with each successful exploit PoC
and performing iterative testing across the range from genesis
block to the known attack block. This methodology allowed
us to efficiently identify the precise block at which each
vulnerability was introduced, thereby establishing the full
duration of the attack window. While we attempted this analysis
across our entire dataset, the approach successfully determined
vulnerability windows for 19 incidents where the PoC could
be reliably executed across historical states. Some exploits
could not be analyzed this way due to complex dependencies
on external state or protocol interactions that prevented clean
historical reproduction.

J. Monte Carlo Simulation for Attack Window Coverage

To evaluate Al’s effectiveness against real attack windows,
we employed Monte Carlo simulation with 10° samples per
model-delay combination. For each simulation, we randomly
sampled pairs of (runtime,attackwindow) values, where
runtimes were drawn from our empirical distribution of model

TABLE V
DETAILED TOKEN USAGE AND COST STATISTICS BY MODEL AND
ITERATION: TOKEN CONSUMPTION ANALYSIS SHOWING MEAN, STANDARD
DEVIATION, AND ESTIMATED COSTS FOR PROMPT, COMPLETION, AND
REASONING TOKENS ACROSS ALL MODELS. COSTS ARE CALCULATED
USING PUBLISHED PRICING PER 1M TOKENS (REASONING TOKENS
INCLUDED IN COMPLETION COSTS). THE ‘STOPS’ COLUMN INDICATES HOW
MANY SUCCESSFUL EXPERIMENTS TERMINATED AT EACH ITERATION
NUMBER. SEE FIGURE 4 FOR VIOLIN PLOT DISTRIBUTIONS.

Model Iteration  Count  Prompt Std  Comp Std  Reason Std  Cost ($)  Stops
03-pro Iter 1 72 5407 2611 12161 7208 11012 7113 1.08 10
Tter 2 62 10369 5968 8184 5772 7290 6034 0.86 17
Tter 3 45 12908 7442 9324 7029 7994 6941 1.00 6
Tter 4 39 16704 8450 9981 6388 8548 6318 1.13 4
Tter 5 35 15811 8542 9610 6438 8230 6358 1.09 2
03 Iter 1 72 5942 4471 12023 7691 11343 7673 0.11 9
Tter 2 63 8626 4411 7870 7397 6746 7272 0.08 8
Tter 3 55 11363 6228 6942 6371 5617 6318 0.08 6
Iter 4 49 12801 6278 7551 6553 6636 6713 0.09 5
Tter 5 44 14181 6134 6684 6151 5385 6193 0.08 3
Gemini Pro Tter 1 72 6258 2683 17726 6281 15768 6126 0.19 5
Tter 2 67 13206 14310 9664 5868 7601 5792 0.11 6
Tter 3 61 16724 14887 8977 5629 6937 5619 0.11 3
Iter 4 58 19351 11941 8603 5056 6558 4932 0.11 4
Tter 5 54 23536 13693 8392 4859 6170 4934 0.11 0
Gemini Flash  Iter 1 72 6258 2683 20968 8060 18160 7703 0.01 2
Tter 2 70 10922 5722 9329 7811 6107 7373 0.00 4
Tter 3 66 15138 5884 10320 7514 7075 7398 0.01 0
Iter 4 66 20115 7992 13135 8706 9470 8424 0.01 4
Tter 5 62 24038 8973 12488 7690 8770 7487 0.01 1
R1 Tter 1 72 5498 2374 9677 2550 9366 2486 0.02 3
Iter 2 69 8569 4001 7727 2118 7212 2154 0.02 3
Tter 3 66 10873 6423 7491 2100 6833 2033 0.02 1
Tter 4 65 12200 6903 7432 1785 6646 1822 0.02 3
Tter 5 62 12415 5297 6763 1964 5837 1941 0.02 2
Qwen3 MoE  Iter 1 72 5778 2421 11580 2161 11920 2321 0.01 3
Iter 2 69 8720 3628 7647 3274 7365 3551 0.01 4
Tter 3 65 10146 3575 7146 3744 6759 4236 0.01 0
Iter 4 65 11255 3463 7134 3281 6628 3648 0.01 2
Tter 5 63 14503 5087 6931 3154 6475 3378 0.01 4

execution times across all experiments, and attack windows
were sampled from our set of 19 historically measured
vulnerability lifetimes. A run is considered successful if the
sampled runtime is shorter than the remaining attack window
(attackwindow — detectiondelay). This sampling approach
accounts for the natural variability in both A1’s performance
and vulnerability lifetimes. We computed success probabilities
as the fraction of successful samples, with 95% confidence
intervals calculated using normal approximation (justified by
our large sample size). For delay analysis, we evaluated
seven scenarios (0, 1h, 6h, 12h, 1d, 3d, 7d), adjusting each



TABLE VI

PER-MODEL EXPLOIT-GENERATION SUCCESS RATE AS A FUNCTION OF THE MAXIMUM ALLOWED ITERATION BUDGET k (TURNS IN THE AGENT LOOP).

EACH PROPORTION IS COMPUTED OVER THE SAME SET OF EXPERIMENTS AS TABLE I (TWO RUNS PER INCIDENT AND MODEL). BRACKETS SHOW 95 %

WILSON CONFIDENCE INTERVALS (CI) FOR THE UNDERLYING SUCCESS PROBABILITY; A WILSON CI IS THE EQUAL-TAILED INTERVAL THAT WOULD

CONTAIN THE TRUE PROPORTION IN 95 % OF REPEATED SAMPLES. COLUMNS LABELLED +k GIVE THE INCREMENTAL PERCENTAGE-POINT (PP) GAIN

OBTAINED WHEN RAISING THE BUDGET FROM k — 1 TO k, THEREBY QUANTIFYING DIMINISHING RETURNS. FOR INSTANCE,
DEEPSEEK-DEEPSEEK-R1-0528 SUCCEEDS IN 9.7% OF RUNS WITHIN k = 3 ITERATIONS (95% WILSON CI 5-19%); INCREASING THE BUDGET TO k = 4
ADDS 4.2 PP. THE FINAL COLUMN k < 5 MATCHES THE Success Rate @5 Turns, 2 Experiments ROW IN TABLE I. AVERAGE MARGINAL GAINS ACROSS ALL
MODELS: k = 2:49.7PP, k = 3:43.7PP, k = 4:45.1 PP, k = 5:+2.8 PP.

Model

k<1 k<2 k<3 k<4 k<5 +2 +3 +4 +5 lexp 2exp  +exp
deepseek-deepseek-r1-0528 4.2%11. 121 8.3%14. 17 9.7%15. 191 13.9%is.240 16.7%m0.2n  4.2% 1.4% 42% 28%  6/36  10/36 +4
google-gemini-2.5-flash-preview-05-20:thinking ~ 2.8%i1, 10) 8.3%14. 17 8.3%4, 171 13.9%:s, 241 15.3%19. 251 56% 00% 56% 14%  4/36 8/36 +4
google-gemini-2.5-pro-preview 6.9%]3. 15) 15.3%9. 25) 19.4%12.300  25.0%116.361  25.0%116. 36) 8.3% 42% 5.6% 0.0% 8/36 12/36 +4
openai-o3 12.5%17.221  23.6%015.351 31.9%i22, 431 38.9%2s8.500  43.1%i32. 551 11.1% 83% 69% 42% 17/36 19/36 +2
openai-03-pro 13.9%is.241  37.5%27.491  45.8%i35.51  51.4%40.631  54.2%i43.651  23.6% 83% 5.6% 2.8% 18/36  23/36 +5
qwen-qwen3-235b-a22b 4.2%!1, 121 9.7%1s.19) 9.7%15.19) 12.5%7.227  18.1%u1.251  5.6%  00% 28% 5.6%  6/36 8/36 +2
03 Pro Gemini Pro

Vulnerability incidence rate
o
w
xR

0.1% 4 0.1%

0 5 10 15

Gemini Flash

0.1%
20 25 30

Qwen3 MoE

Vulnerability incidence rate
o
w
xR

0.1% 0.1%
0 5 10 15 20 25 30 0 5 10 15

Detection delay (days)

Detection delay (days)

T
o
Expected profit per analyzed contract (USD)

0.1%
20 25 30 0 5 10 15 20 25 30
Detection delay (days)

Fig. 5. Economic viability analysis across six language models showing expected USD profit per analyzed contract as a function of detection delay (x-axis,
days) and vulnerability incidence rate (y-axis, log scale). The incidence rate represents how frequently we encounter exploitable vulnerabilities similar to
those in Table I (e.g., 0.1% means 1 in 1000 contracts contains such vulnerabilities). Colors show expected profit (USD) with diverging scale centered at
break-even (white); black contours mark break-even boundaries. Analysis assumes $20,000 maximum revenue per exploit, 95.0th percentile operational costs
plus $3 infrastructure cost per analysis. Key findings: 03-pro maintains profitability up to 30.0 days delay at 0.100% incidence rate; faster models like Gemini
Flash require higher vulnerability rates (> 1.000%) for break-even operation. Results suggest economic viability heavily depends on both rapid detection and

accurate vulnerability targeting.

sampled attack window by subtracting the delay duration
and truncating negative windows to zero. This methodology
provides a statistical framework for estimating A1’s real-world
effectiveness while accounting for both the inherent variability
in model performance and the impact of detection latency. The
narrow confidence intervals (typically 0.2 percentage points)
suggest high reliability in our probability estimates, enabling
meaningful comparisons between models and delay scenarios.

For these 19 incidents with determinable attack windows,
we evaluated Al’s practical utility in preventing attacks. The
cumulative distribution function comparison in Figure 3 reveals

that without detection delays, all models achieve remarkably
similar success probabilities (85.2%—-89.1%) in completing
their analysis within the available attack windows. This high
success rate is supported by our historical analysis showing
that 83% of analyzed attacks had windows exceeding one hour,
and 50% extended beyond 24 days, providing ample time for
Al’s analysis. Monte Carlo simulation with 10° samples per
model provides robust estimates of these probabilities, with
narrow confidence intervals suggesting reliable performance
predictions across different scenarios.



TABLE VII
COMPLEXITY METRICS OF SUCCESSFUL, AUTOMATICALLY GENERATED PROOF-OF-CONCEPT CONTRACTS. FOR EACH LANGUAGE-MODEL PIPELINE WE
REPORT THE NUMBER OF SUCCESSFUL RUNS, THE MOST FREQUENTLY USED EXTERNAL CONTRACT CALL (Top ext. calls), AND THE MEDIAN~ WITH SAMPLE
STANDARD DEVIATION o OF THREE STATIC METRICS: SLOC (SOURCE LINES OF CODE), EXTERNAL CONTRACT CALLS, AND LOOP STATEMENTS. BOLD
NUMBERS INDICATE THE HIGHEST MEDIAN PER METRIC ACROSS MODELS. FUNCTION NAMES HIGHLIGHTED IN BLUE DENOTE SWAP HELPER UTILITIES
SUPPLIED TO THE AGENT FOR ROUTING TRADES THROUGH UNISWAP-LIKE EXCHANGES.

Model Top ext. calls (count) Successes ESLOC +to Cexto éloop +o
03-pro balanceOf(58, 18%), approve(43, 13%), swapExactTokenToBaseToken(19, 6%), swapExcessTokensToBaseToken(18, 6%), transfer(17, 39 43 + 17.2 8+ 28 5+20
5%), swap(16, 5%), mint(10, 3%), getPair(9, 3%), sync(9, 3%), withdraw(8, 2%)
03 balanceOf(37, 15%), approve(35, 14%), swapExactTokenToBaseToken(18, 7%), swapExcessTokensToBaseToken(14, 6%), transfer(12, 31 41 + 129 7+35 4413
5%), skim(12, 5%), mint(9, 4%), withdraw(8, 3%), swapExactBaseTokenToToken(5, 2%), WETH(S, 2%)
Gemini Pro swapExcessTokensToBaseToken(25, 16%), balanceOf(25, 16%), approve(9, 6%), if(7, 4%), receive(7, 4%), swapExactBaseTokenTo- 18 29 + 14.0 8 + 4.0 10 £+ 3.6
Token(7, 4%), mint(5, 3%), transfer(5, 3%), token0(5, 3%), require(4, 3%)
Gemini Flash  balanceOf(33, 29%), swapExcessTokensToBaseToken(18, 16%), receive(S, 4%), swapExactBaseTokenToToken(5, 4%), Aventa(5, 11 29 4+ 23.0 8+75 14 + 5.7
4%), mint(4, 4%), approve(3, 3%), claim(3, 3%), IDexUtils(2, 2%), deposit(2, 2%)
R1 balanceOf(12, 19%), swapExcessTokensToBaseToken(11, 17%), mint(5, 8%), swapExactBaseTokenToToken(3, 5%), transfer(3, 5%), 12 25 £ 155 4+25 1+£15
swapExactTokenToBaseToken(3, 5%), approve(2, 3%), decimals(2, 3%), stake(1, 2%), claimEarned(1, 2%)
Qwen3 MoE balanceOf(16, 24%), swapExcessTokensToBaseToken(13, 19%), approve(9, 13%), mint(7, 10%), swapExactBaseTokenToToken(4, 13 29 + 12.7 3436 3+£19
6%), encodeWithSignature(3, 4%), swapExactTokenToBaseToken(2, 3%), stake(2, 3%), claimEarned(2, 3%), transfer(2, 3%)
g - p——— Gemini Flash consuming the most tokens per experiment (132M
200 1 ° .- ..
. =1 Comments + 47M) but at the lowest cost ($0.03) due to competitive pricing,
150 4 a while 03-pro used fewer tokens (74M * 47M) but incurred
£ 128 higher costs ($3.59) due to premium pricing. The violin plots
o . 114 .. .. . .
01004 = \[\ o A , " demonstrate distinct distributions between successful and failed
o . 9 Bre . . ..
5 o " HE - attempts, with successful exploits generally requiring more
- < . . . N
50 /- 3 56 . tokens, suggesting that thorough analysis contributes to higher
. 27 .
» ks success rates. The total cost across all experiments amounted
0 . , , , - — to $335.38, with a 16.8% overall success rate.
O3 Pro 03 Gemini Gemini R1 Qwen3
Pro Flash MoE

Fig. 6. Split violin plot comparing the distribution of source lines of code (left
half) and comment lines (right half) in automatically generated exploit PoCs
for the VERITE benchmark. Only successful runs are shown (one point per
incident). Median line—counts per model: 03-pro: L¢oge = 147, Leomment =
80, 03: Leoge = 130, Leomment, = 75, Gemini Pro: L.oqe = 108,
Lcomment = 73, Gemini Flash: Leoge = 141, Lcomment = 80, R1:

Leode = 37, Leomment = 7, Qwen3 MoE: Leoge = 61, Leomment = 21.
Min/max values are annotated above and below each half-violin.

K. Impact of Detection Delays

Al’s effectiveness depends on how quickly potential vul-
nerabilities are detected and analysis begins, as shown in
Table IV. While one-hour detection delays only marginally
impact performance (1-2 percentage point decrease), longer
delays substantially reduce success rates - with a one-day
delay, probabilities decline to 7.6%—-27.0%, and by seven
days, fall to 5.9%-21.0%. o3-pro maintains the highest success
rates across all delay scenarios, achieving 21.0% even with a
seven-day delay, while faster models like Gemini Flash see
their effectiveness drop more sharply to 5.9%. These results
emphasize that Al’s utility is maximized when integrated into
continuous monitoring systems that can initiate analysis with
minimal delay, suggesting a potential pathway for practical
deployment in real-world systems.

L. Token Usage Analysis

Across 432 experiments, we conducted detailed token con-
sumption analysis for each model, as visualized in Figure 4. The
total token usage patterns reveal variations among models, with

10

M. Token Consumption Patterns

Table V breaks down token usage by iteration and type
(prompt, completion, and reasoning). A consistent pattern
emerges across all models: the first iteration typically con-
sumes the most completion and reasoning tokens as models
build initial understanding, while subsequent iterations show
reduced token usage but increased prompt lengths as context
accumulates. For instance, 03-pro’s completion tokens drop
from 12,161 (£7,208) in iteration 1 to 8,184 (£5,772) in
iteration 2, while prompt tokens increase from 5,407 to
10,369, reflecting the growing conversation history. This pattern
suggests that models become more efficient in their reasoning
after establishing initial context, though they must process
larger prompts containing previous attempts.

N. Iteration Effectiveness

The success rate analysis in Table VI reveals diminishing
returns across iterations, but with notable variations between
models. 03-pro demonstrates the highest overall success rate,
reaching 54.2% (95% CI. 43-65%) by iteration 5, with
substantial early gains (+23.6 percentage points in iteration
2). In contrast, models like Qwen3 MoE and R1 show more
modest improvements across iterations, reaching 18.1% and
16.7% respectively. The Wilson confidence intervals provide
statistical rigor to these comparisons, while the incremental
gains (+k columns) quantify the marginal utility of additional
iterations. The average marginal gains across all models show
diminishing returns: iteration 2 adds 9.7 percentage points,
iteration 3 adds 3.7 percentage points, iteration 4 adds 5.1
percentage points, and iteration 5 adds 2.8 percentage points,
suggesting that while early iterations are most productive, later



iterations continue to contribute meaningful improvements,
albeit with diminishing returns.

O. Economic Feasibility Framework

To evaluate the practical deployment viability of Al as
a continuous security monitoring system, we developed a
comprehensive economic model that incorporates vulnerability
discovery rates, operational costs, and timing constraints. The
expected profit per analyzed contract is defined as:

O(p,d)=p-P(r<W—-d)-S-R-C e))

where p represents the vulnerability incidence rate (fraction
of analyzed contracts containing exploitable vulnerabilities
similar to our dataset), P(7 < W — d) is the Monte Carlo-
estimated probability of completing analysis within time 7
before the attack window W closes given detection delay d,
S is the model’s intrinsic exploit-generation success rate, R
is the capped mean revenue from successful exploits, and
C represents the total operational cost per analysis. We set
R min(revenue, $20,000) to cap extreme outliers, and
C = Cys + $3 where Cy is the 95th percentile of observed
costs plus $3 infrastructure overhead. This framework enables
systematic evaluation of deployment scenarios by varying
detection delay d € [0,30] days and vulnerability incidence
rate p € [0.1%, 1.0%)].

P. Economic Viability Results

Figure 5 reveals stark differences in economic viability across
models and operating conditions. 03-pro demonstrates the
most robust economic performance, maintaining profitability
(IT > 0) up to 30-day detection delays even at the lowest
vulnerability incidence rates (p = 0.1%), making it suitable for
scenarios with infrequent but high-value discoveries. In contrast,
faster models like Gemini Flash require higher vulnerability
encounter rates (p > 0.3%) to achieve break-even operation, but
offer advantages in cost-constrained environments. The break-
even contours (black lines) clearly delineate viable operating
regions, showing that economic success heavily depends
on both rapid vulnerability detection and accurate targeting
systems that can identify contracts likely to contain exploitable
vulnerabilities. These results suggest that A1 deployment is
most economically justified in high-stakes environments where
vulnerability discovery rates exceed 0.1% and detection delays
remain under one week, with premium models like 03-pro
offering greater operational flexibility at the cost of higher
per-analysis expenses.

Q. Proof-of-Concept Complexity Analysis

The automatically generated exploit contracts show a high
level of complexity across all models (cf. Table VII). 03-pro
produces the most complex exploits with a median of 43 source
lines of code (SLOC), reflecting its ability to construct elaborate
multi-step attacks, while maintaining consistent external call
patterns (8 median calls) and moderate loop complexity (5
loops). The frequency analysis of external calls reveals common
patterns across models: balanceOf and approve dominate

11

across all systems, appearing in 13-29% of successful exploits,
indicating the fundamental role of token balance checking
and approval mechanisms in DeFi vulnerabilities. Notably,
the blue-highlighted swap helper utilities (swapExactTokenTo-
BaseToken, swapExcessTokensToBaseToken) appear frequently
across models, demonstrating Al’s systematic approach to
profit extraction through DEX interactions.

R. Model-Specific Complexity Patterns

Different models exhibit distinct complexity signatures that
reflect their reasoning approaches. Gemini Flash generates
exploits with the highest loop complexity (14 + 5.7 loops),
suggesting a preference for iterative attack strategies, while
R1 produces more streamlined code with fewer external calls
(4 +2.5) and minimal loop usage (1 & 1.5), indicating a direct
exploitation approach. Gemini Pro achieves the highest external
call complexity (8 &= 4.0 calls) while maintaining moderate
SLOC counts, suggesting efficient but interaction-heavy strate-
gies. The success rates correlate with complexity patterns:
03-pro’s 39 successful runs demonstrate that sophisticated,
longer exploits often yield higher success rates, while more
constrained models like R1 (12 successes) rely on simpler but
effective approaches. These complexity metrics validate that A1l
generates genuinely sophisticated attack strategies rather than
simple template-based exploits, with each model developing
distinct but effective approaches to vulnerability exploitation.

S. Code Generation Quality Analysis

The split violin plot in Figure 6 reveals differences in
code generation patterns across models, particularly in the
balance between executable code and explanatory comments.
03-pro and 03 demonstrate the most comprehensive code
generation, producing exploits with median code lengths of
147 and 130 lines respectively, accompanied by commentary
(80 and 75 comment lines). This high comment-to-code ratio
suggests these models not only generate functional exploits
but also provide detailed explanations of their attack strategies,
facilitating understanding and verification. Gemini Pro and
Gemini Flash maintain similar code complexity (108 and 141
lines) with substantial commentary (73 and 80 lines), indicating
consistent documentation practices across the Gemini family.
The violin distributions reveal distinct documentation philoso-
phies among models. R1 produces notably concise exploits (37
median code lines, 7 comment lines), suggesting a minimalist
approach that prioritizes execution efficiency over explanation.
Qwen3 MOoE falls between these extremes (61 code lines, 21
comment lines), producing moderately documented exploits.
The consistent presence of extensive comments across premium
models (03-pro, 03, Gemini variants) indicates that language
models naturally generate self-documenting code, which proves
invaluable for security analysis where understanding the attack
vector is as important as demonstrating its feasibility. The
wide distributions shown in the violin plots demonstrate that
all models adapt their verbosity to exploit complexity, with
simpler attacks requiring fewer explanations and complex multi-



step strategies necessitating detailed commentary to ensure
reproducibility and comprehension.

VI. ANALYTICAL MODEL OF SYMMETRIC CAPABILITIES

When Al-style vulnerability scanning becomes widely avail-
able, attackers and defenders engage in a race to analyze each
newly deployed contract. Building on our previous analysis
of scanning costs and vulnerability detection rates, we now
examine a scenario of symmetric technical capabilities. We
assume the empirical cost and effectiveness metrics established
earlier remain applicable when both parties have access to
the same scanning technology. Under this model, both parties
employ identical scanning technology and pay equal costs
c = $3 per scan (03-pro’s 95" percentile cost). This symmetry
results in equal win probabilities of 1/2 for discovering
vulnerabilities. However, a fundamental economic asymmetry
exists in the payoff structure: defenders receive a bug bounty
worth fraction b of the potential exploit value (where b = 10%
represents a typical industry rate), while successful attackers
capture the full value V.

A. Expected Payoff Analysis

Given a vulnerability incidence rate p (where p = 0.1%
indicates 1 in 1,000 contracts is exploitable), the expected
payoff per scan is:

E[ly] = p% —c, E[ger] = p % —c.
Despite identical technical capabilities, the break-even exploit
values differ by factor 1/b (10x when b = 0.1). This creates
a fundamental asymmetry: for any given vulnerability rate p,
attackers achieve profitability at exploit values 10 times smaller
than what defenders require. Equivalently, to break even on the
same exploit value V', defenders must achieve a vulnerability
detection rate 10 times higher than attackers.

(@)

B. The “Fishing Game” Effect

Given the extremely low vulnerability rates (p < 1), suc-
cessful exploitation requires scanning many contracts upfront.
At p = 0.1%, finding one vulnerability requires approximately
1,000 scans, costing $3,000. A $100k exploit would fund
33k future scans for an attacker, while a defender’s $10k
bounty only covers 3.3k. This order of magnitude difference in
reinvestment capability leads to diverging scanning capacities.

C. Economic Implications

Our analysis demonstrates that even under conditions of
perfect technological symmetry, the fundamental economics
of bug bounties versus direct exploitation creates a severe
imbalance. This analysis conservatively assumes 03-pro’s
costs remain unchanged when attackers gain access, though
joint-access scenarios may further alter the cost structure.
The model suggests that to achieve equilibrium in scanning
incentives, either bug bounty payouts must approach the full
exploit value, or defensive scanning costs must decrease by
an order of magnitude relative to offensive costs. Absent such

adjustments, widespread A1 adoption risks creating an attacker-
dominated security landscape where defensive scanning remains
economically unfeasible despite technological parity.

VII. LIMITATIONS

We highlight key caveats so readers can gauge the scope of
our findings:

Data scope. Our study covers only 36 real incidents (432
runs) and uses the VERITE benchmark for comparison. This is
large by prior LLM work yet still a sliver of the > 10000 DeFi
hacks logged by communities such as DeFiHackLabs. Scaling
to that corpus would require roughly $4.8M extra API calls
and six-figure fees. Results further hinge on proprietary models
(OpenAl 03/03-pro, Google Gemini); all 432 experiments ran
between 27 June-2 July 2025 and assume vendor—reported
cut-offs, contexts, and prices are accurate.

Simplified assumptions. A1 supports only EVM-compatible
contracts with verified source code. Complex proxies, custom
opcodes, or non-EVM rollups are out of scope. Precise attack
windows could be measured for 19/36 incidents, so timing
probabilities rely on that subset. Our economic model ignores
infra costs (electricity, archival nodes, human triage) and fixes
exploit caps ($20k) and 10% bounty rates; real attackers
coordinate, chain partial leaks, and face heterogeneous bounties.

Reproducibility. We evaluated a single agent, five concrete
execution tool calls, and two experimental configurations.
Exploring potential gains from multi-agent, more than five turns
strategies remains future work. All runs depend on blockchain
archive RPC endpoints, OpenRouter routing, and third-party
price feeds—rate-limits or deprecations could change outcomes.

Model exposure. Al achieves a 62.96% success rate on the
VERITE dataset [2], though some cases may have appeared in
the underlying models’ pretraining data. This raises the chance
that prior exposure helped performance. Still, most exploits
took several iterations—gaining +9.7%, +3.7%, +5.1%, and
+2.8% in iterations 2—5—suggesting refinement rather than
recall. Al also succeeded on five post-cutoff incidents outside
VERITE, showing it can generalize to new cases.

VIII. RELATED WORKS

Research on smart contract security has progressed along
three converging tracks: traditional program-analysis tooling,
fuzzing and dynamic testing, and LLM based approaches.

Static and symbolic analyses. Early work applied classic
software-verification techniques to Ethereum, ranging from
byte-code pattern matching [7], [8] and control-flow analysis
[9] to SMT-based safety proofs [6], [10]. Tools such as OYENTE
[4] and SECURIFY [5] demonstrated that soundness must
be balanced against scalability: exhaustive analyses struggle
with the ever-growing code base of DeFi. Follow-up systems
extended this line of work: Mythril [26], Slither [27], MadMax
[28], and Osiris [29] broadened coverage through symbolic
execution, data-flow analysis, and integer-overflow detection.

Snapshot-based fuzzing. To boost coverage, a second line
of work explores random or heuristic input generation coupled
with concrete execution. Snapshot-based fuzzers (ITYFuUzz [3],

12


http://defihacklabs.io

Attacker payoff

Defender payoff

Expected exploit value V (USD)

3 7

2 4 Incidence / ,l
c = 0=0.1% / /
§ | == p=0.01% L /
5 600k p=0.001% 60ki 7 600k: ¢

% 4 i/

- Incidence -7 -7

o - - -

- —_—p=01% | [ —_— ==

i p=0.01%

D -4 — 0=0.001% | A

% T T T T T T
w 1k 10k 100k 1M 1k 10k 100k 1M

Expected exploit value V (USD)

Fig. 7. Expected per-scan payoff for attackers (solid) and defenders (dashed) who each spend $3 per Al run (03-pro 95 percentile cost). Defenders
receive a bug bounty worth b=10% of the exploit value V, while attackers capture the full value. Curves shown for three vulnerability incidence rates
p € {0.1%, 0.01%, 0.001%}. Break-even points occur at V¥ = 2¢/p (attackers) and V7 = 2¢/(bp) (defenders), marked by circles and dotted vertical lines.
Due to the 10x difference in payoff, for each incidence rate, defenders require 10x higher exploit values to break even: at p = 0.1%, attackers break even at
$6k vs. defenders at $60k; at p = 0.01%, $60k vs. $600k; and at p = 0.001%, $600k vs. $6M. Both axes use intuitive labels (k = thousand, M = million).

EF/CF [30]) and coverage-guided test generators [31] can
automatically discover profit-seeking bugs, while VERITE [2]
introduces an evaluation suite that focuses explicitly on eco-
nomically exploitable vulnerabilities. Earlier efforts—including
ContractFuzzer [32], Echidna [33], Harvey [34], and EthPloit
[35] — pioneered grammar-based, property-based, and grey-
box fuzzing approaches that laid important groundwork. More
advanced hybrid techniques have since emerged: ILF [11]
uses imitation learning to learn an effective fuzzing policy
from symbolic execution, and Smartian [12] integrates static
and dynamic data-flow analyses to guide fuzzing. Similarly,
ConFuzzius [13] combines symbolic execution with taint
analysis to drive fuzzers through hard-to-solve paths. Despite
impressive progress, fuzzers still rely on hand-tuned heuristics
and often produce high false-positive rates.

LLM-assisted security. Recent work investigates whether
LLMs can reason about contract logic. Studies show promise
in vulnerability detection [14], [16], transaction-sequence
generation [15], and patching [17]. [18] question whether
manual audits remain necessary, while [19] combine symbolic
reasoning with LLMs for invariant checking. Our system ex-
tends this line by coupling LLMs with execution feedback and
economic validation to creating end-to-end exploit generators.

Economic lens. DeFi attacks extract value either through
protocol flaws or MEV. Foundational analyses quantify MEV
[20], [21] and catalogue real-world exploits [!]. Flash-loan
based manipulations [25] and high-frequency trading strategies
[22] further emphasise the need to reason about economic
context — an aspect we incorporate via revenue normalisation.

IX. DISCUSSION

Our results suggest that agentic LLMs open a qualitatively
new design space between static analysis, fuzzing and human
auditing. Below we discuss the broader implications.
Complementarity with classical tools. Al recovers many of
the profit-generating exploits found by state-of-the-art fuzzers,

13

but also uncovers vulnerabilities that require additional tools for
reasoning and validation. We therefore see Al not as a drop-in
replacement for existing pipelines yet, but as a complementary
module that can triage high-value contracts before expensive
symbolic analyses are launched.

Adversarial dynamics. Attackers break even at exploit values
as low as $6000 when the vulnerability rate is 0.1 % (Fig. 7),
whereas defenders need $60000. Bridging this x10 gap
demands either larger bounties or cheaper scanning. Another
path is to improve the precision of vulnerability detection
to reduce wasted effort. Alternatively, A1 could be offered
as a tool directly to project owners, empowering them to
independently assess and address their own risks.

Model dependence and generalization limits. Our results
reveal a stark performance hierarchy: o3-pro achieves 88.5%
success rates while economical models like Gemini Flash reach
only 30.8%. This creates a technical dependency risk—if Ope-
nAl restricts access or changes pricing, defensive capabilities
could degrade by 3x.

X. CONCLUSION

We presented Al, the first end-to-end agentic system that
turns off-the-shelf LLMs into concrete smart contract exploit
generators. By equipping the model with six specialised
tools and a feedback-driven loop, Al autonomously discovers,
validates and monetises real-world DeFi vulnerabilities. On
a dataset of 36 historical incidents Al achieves a 62.96 %
success rate and recovers $9.33 million in value—competitive
with, and often complementary to, state-of-the-art fuzzers.
Economic analysis shows that profitable defensive deployment
is already feasible under realistic assumptions, but also uncovers
an unsettling asymmetry that favours attackers. We hope our
prototype and extensive measurements will inspire follow-up
work at the intersection of machine reasoning, program analysis
and blockchain security.



[1]

[2

—

[3

=

[4

=

[5]

[6

=

[7

—

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2444-2461.

Z. Kong, C. Zhang, M. Xie, M. Hu, Y. Xue, Y. Liu, H. Wang, and Y. Liu,
“Smart contract fuzzing towards profitable vulnerabilities,” in The ACM
International Conference on the Foundations of Software Engineering
(FSE), 2025.

C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 322-333.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 67-82.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: analyzing safety
of smart contracts.” in Ndss, 2018, pp. 1-12.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th annual computer security applications conference, 2018, pp.
653-663.

J. Krupp and C. Rossow, “{teEther}: Gnawing at ethereum to auto-
matically exploit smart contracts,” in 27th USENIX security symposium
(USENIX Security 18), 2018, pp. 1317-1333.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 I[EEE
symposium on security and privacy (SP). 1EEE, 2020, pp. 1661-1677.
J. He, M. Balunovié¢, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, 2019, pp. 531-548.

J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 1EEE, 2021, pp. 227-239.
C. E. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE, 2021,
pp. 103-119.

P. Ince, J. Yu, J. K. Liu, and X. Du, “Generative large language
model usage in smart contract vulnerability detection,” arXiv preprint
arXiv:2504.04685, 2025.

S. So, S. Hong, and H. Oh, “{SmarTest}: Effectively hunting vulnerable
transaction sequences in smart contracts through language {Model-
Guided} symbolic execution,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1361-1378.

P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng, S. Ji,
and W. Wang, “Exploring {ChatGPT’s} capabilities on vulnerability
management,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 811-828.

L. Zhang, K. Li, K. Sun, D. Wu, Y. Liu, H. Tian, and Y. Liu, “Acfix:
Guiding 1lms with mined common rbac practices for context-aware
repair of access control vulnerabilities in smart contracts,” arXiv preprint
arXiv:2403.06838, 2024.

I. David, L. Zhou, K. Qin, D. Song, L. Cavallaro, and A. Gervais,
“Do you still need a manual smart contract audit?” arXiv preprint
arXiv:2306.12338, 2023.

R. Gan, L. Zhou, L. Wang, K. Qin, and X. Lin, “Defialigner: Leveraging
symbolic analysis and large language models for inconsistency detection
in decentralized finance,” in 6th Conference on Advances in Financial
Technologies (AFT 2024).  Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2024, pp. 7-1.

P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning in decentralized exchanges,
miner extractable value, and consensus instability,” in 2020 IEEE
symposium on security and privacy (SP). 1EEE, 2020, pp. 910-927.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain extractable
value: How dark is the forest?” in 2022 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2022, pp. 198-214.

L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” in 202/ IEEE Symposium
on Security and Privacy (SP). 1EEE, 2021, pp. 428-445.

L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-
in-time discovery of profit-generating transactions in defi protocols,” in
2021 IEEE Symposium on Security and Privacy (SP). 1EEE, 2021, pp.
919-936.

Y. Gai, L. Zhou, K. Qin, D. Song, and A. Gervais, “Blockchain large
language models,” arXiv preprint arXiv:2304.12749, 2023.

K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi
ecosystem with flash loans for fun and profit,” in International conference
on financial cryptography and data security. Springer, 2021, pp. 3-32.
C. Diligence, “Mythril classic: Security analysis tool for evm bytecode,”
https://github.com/ConsenSysDiligence/mythril, 2024, accessed: 2025-
07-05.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8-15.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,
“Madmax: Surviving out-of-gas conditions in ethereum smart contracts,”
Proceedings of the ACM on Programming Languages, vol. 2, no.
OOPSLA, pp. 1-27, 2018.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th annual computer
security applications conference, 2018, pp. 664—-676.

M. Rodler, D. PaaBen, W. Li, L. Bernhard, T. Holz, G. Karame, and
L. Davi, “Efcf: High performance smart contract fuzzing for exploit
generation,” in 2023 IEEE 8th European Symposium on Security and
Privacy (EuroS&P). 1EEE, 2023, pp. 449-471.

S. Wu, Z. Li, L. Yan, W. Chen, M. Jiang, C. Wang, X. Luo, and H. Zhou,
“Are we there yet? unraveling the state-of-the-art smart contract fuzzers,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1-13.

B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACMY/IEEE international conference on automated software engineering,
2018, pp. 259-269.

G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective,
usable, and fast fuzzing for smart contracts,” in Proceedings of the 29th
ACM SIGSOFT international symposium on software testing and analysis,
2020, pp. 557-560.

V. Wiistholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 1398-1409.

Q. Zhang, Y. Wang, J. Li, and S. Ma, “Ethploit: From fuzzing to
efficient exploit generation against smart contracts,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2020, pp. 116-126.

APPENDIX A
BEST-LIQUIDITY PATH SELECTION ALGORITHM

We present an algorithm for determining the optimal swap
path with maximum liquidity across decentralized exchanges
(DEXes). Given a set of DEXes D, a set of intermediate tokens

Ms

a base token B (e.g., WETH or WBNB), and a target

token T', our algorithm systematically evaluates both direct
and indirect paths to identify the route offering the highest
available liquidity for a specified transaction amount.

The algorithm explores all possible paths between the base
token and target token across supported DEXes. For each DEX
d € D, it evaluates direct swaps between the token pair (B, T)
as well as indirect routes through intermediate tokens M € M.
When considering DEXes with multiple fee tiers (e.g., Uniswap
V3), the algorithm examines each supported fee tier f € Fy

14


https://github.com/ConsenSysDiligence/mythril

Algorithm 1 Best-Liquidity Path Selection
1: Initialize Lpax < 0, Ppest < 0
2: for d € D do
3 for f € F; do

4 L + computeLiquidity(d, B, T, f)

5: if L > L. then

6

7

8

9

> Direct path

Lpax < L
Pbest < (d7 [Ba T]a [f])
end if

for M € M do > Indirect paths

10: Ly < computeLiquidity(d, B, M, f1)
11 Loy + computeLiquidity(d, M, T, f2)
12: Ler IIliIl{:l;l, Lo }

13: if Lo > Liyax then

14: Liax < Legt

15: pbest<_(dv[BvaT]a[flvf2])
16: end if

17: end for

18: end for

19: end for

20: return pPpeg

to find the optimal combination of path and fees. The optimal
path (d*, p*) is selected by maximizing the available liquidity:
(d*,p") =

max

Lq
deDpep P

where P represents the set of all possible paths (direct and
indirect). The liquidity calculation methodology varies based
on the DEX architecture:

o V2-style DEXes: Liquidity is determined by the base
token pool balance:

L girect = balance(B, pair(B,T))

o V3-style DEXes: Liquidity is obtained through direct pool
queries using the tuple (B, T, f)

o Multi-hop Paths: For paths through intermediate token
M, the effective liquidity is computed as the minimum
liquidity across both hops:

Ly p = min{liquidity(B, M), liquidity(M, T)}

Algorithm 1 provides a concrete implementation of our path
selection strategy. Note that while this presentation focuses
on the core path selection logic, production implementations
may incorporate additional factors such as price impact and
slippage in the liquidity calculation.

APPENDIX B
SGETH INCIDENT

Figure 8 shows the solidity code of the SGETH exploit
generated by Al. The exploit requires the exploiter to control
two separate actors: one to transfer ownership and another to
exploit newly gained privileges for minting and withdrawal.

15

interface IERC20 {
function balanceOf(address owner) external view returns (uint256);
function mint(address to, uint256 amount) external;
function addMinter(address m) external;
function transferOwnership(address newOwner) external;

}
interface ISgETH is IERC20 {

interface ISharedDepositMinterV2 {
function withdrawTo(uint256 amount, address dest) external;
function curValidatorShares() external view returns (uint256);
function adminFeeTotal() external view returns (uint256);

}

interface IWETH {
function withdraw(uint256) external;

JAdm
ISgETH immutable sg;

constructor(address sgAddr){ sg = ISgETH(sgAddr); }

function addMinter(address who) external { sg.addMinter(who); }

contract Strategy {

address constant sgETH
address constant minter

address constant WETH

function _i (uint256 a, uint256 b) internal pure returns (uint256)
return a <b ? a : b;

}

function run() public {

g.transferOwnership(address(helper));

inter(address(this));
inter(minter);

uint256 availableShares = sdm.curValidatorShares();

uint256 a\ ableETH = address(minter).balance

- sdm.adminFeeTotal();

uint256 grab = _min(availableShares,
grab = _min(grab, ether);

availableETH);

require(grab > 0,

"nothing

sg.mint(address(this), grab);

sdm.withdr

wTo(grab, address(this));

.balanceOf(address(this));
wethBal);

allback() external payable {}

Fig. 8. Solidity code of the SGETH exploit generated by Al



APPENDIX C
GAME INCIDENT

Figure 9 shows the solidity code of the GAME exploit
generated by Al. The exploit code deploys a helper contract
and orchestrate a precise sequence: making a minimal valid
outbid to trigger a refund to the previous bidder, then exploiting
the reentrancy vulnerability during the refund callback.

APPENDIX D
DATASET

The VERITE dataset [2] provides a valuable starting point
for evaluating and benchmarking LLM-based exploit gener-
ation, but as of July 6, 2025, it lacks full incident metadata
such as chain id, block number and contract addresses, see
wtdcode/verite and veritefuzz/verite. To enable reproducibility,
we reconstructed a refined dataset of 36 DeFi incidents by
filtering and augmenting VERITE with 9 additional real-world
cases and adding complete technical annotations for each.
We validated these against DeFiHacklabs. Details for all
36 incidents, including chain id, block number and contract
address(es), are provided in Table VIIL.

TABLE VIII
DEFI INCIDENTS INCLUDED IN THIS WORK.

name chain  block contract(s)
aes 56 23695904  0xdDcOCFF76bcCOee14c3e73aF630C029fe020F907
apemaga 1 20175261  0x56FF4AfD909AA66al1530fe69BF94c74e6D44500C
aventa 1 22358982  0x33B860FC7787¢9e4813181b227EAfFa0Cada4C73
axioma 56 27620320  0x2C25aEe99ED08A61¢7407A5674BC2d1A72B5D8E3
bamboo 56 29668034  0xED56784bC8F2C036f6b0DSE04Cb83C253e4a6A94
bego 56 22315679  0xc342774492b54ce5F8ac662113ED702Fc1b34972
bevo 56 25230702  0xc6Cb12df4520B7Bf83f64C79c585b8462¢18B6Aa
bunn 56 29304627  0xc54AAecF5fA1b6c007d019a9d14dFb4a77CC3039
cellframe 56 28708273 0xf3E1449DDB6b218dA2C9463D4594CEccC8934346
0xd98438889Ae7364c7TE2A3540547Fad042FB24642
depusdt 1 17484161  0x7b190a928 Aa76EeCE5Cb3E0f6b3BdB24fcDd9b4f
dfs 56 24349821  0x2B806e6D78D8111dd09C58943B9855910baDe005
fapen 56 28637846  0xf3FlaBae8BfeCA054B330C379794A7bf84988228
fil314 56 37795991  0XxE8A290c6Fc6Fa6COb79C9cfaE1878d195aeb59aF
game 1 19213946  0x52d69c67536f55EfEfe02941868e5¢762538dBD6
gss 56 31108558  0x37e42B961AE37883BAc2fC29207A5F88eFa5db66
health 56 22337425  0x32B166¢082993Af65982a89397E82¢e123ca44e74E
hpay 56 22280853  0xC75aalFal99EaC5adaBC832eA4522CfodFd521A
mbce 56 23474460  0x4E87880A72f6896E7e0a635A5838fFc89b13bd17
melo 56 27960445  0x9A1aEF8C9ADA4224aD774aFdaC07C24955C92a54
olife 56 27470678  0xb5a0Ce3Acd6eC557d39aFDcbC93B07alela%e3fa
pledge 56 44555337 0x061944c0f3c2d7DABafB50813Efb05c4e0c952e1
pltd 56 22252045  0x29b2525¢11BCOBOE9ES9f705F318601eA6756645
rfb 56 23649423 0x26f1457f067bF26881F311833391b52cA871a4b5
safemoon 56 26854757  0x42981d0bfbAf196529376EE702F2a9Eb9092fcB5
seama 56 23467515  0x6bc9b4976ba6f8C9574326375204eE469993D038
sgeth 1 18041975 0x9e¢52dB44d62A8c9762FA847Bd2eBa9d0585782d1
7 0x85Bc06{4e3439d41f610a440Ba0FbE333736B310
shadowfi 56 20969095  0x10bc28d2810dD462E16facfF18f78783e859351b
sut 56 30165901  0x70E1bc7E53EAa96B74Fad1696C29459829509bE2
swapos 1 17057419 0xf40593A22398¢277237266A81212f7D41023b630
uerii 1 15767837  0x418C24191aE947A78C99fDc0e45a1f96Afb254BE
unibtc 1 20836583  0x047D41F2544B7F63A8e991aF2068a363d210d6Da
upswing 1 16433820  0x35a254223960c18B69C0526c46B013D022E93902
uranium 56 6920000  0x9B9baD4c6513E0fF3fB77¢739359D59601c7cAfF
uwerx 1 17826202  0x4306B12F8e824cE1fa9604BbD88f2AD4f0FE3c54
wifcoin 1 20103189  0xA1cE40702E15d0417a6c¢74D0bAB96772F36F4E99
zeed 56 17132514 0xe7748FCelD1e2f2Fd2dDdB5074bD074745dDa8Ea

16

LN J
interface IGameMinimal {

function makeBid() external payable;

function newBidEtherMin() external view returns (uint256);

}

contract AttackHelper {

IGameMinimal public immutable game;

constructor(IGameMinimal _game) {
game 8

¥

function makeBid() external payable {

d{value:

alue}();

contract Strategy

address constant gameAddress =

bool private reentered;

function run() public {
IGameMinimal game = IGameMinimal(gameAddre

ldEtherMin() +

uint256 firstBi

uint256
hel

ve() external payable {
handleRefund();
+

fallback() external payable {
_handleRefund();

}

function _handleRefund() private {
if (r tered) return;
reenter

uint256 thirdB

eBid{val thirdBid}();

Fig. 9. Solidity code of the GAME exploit generated by Al

"=



https://github.com/wtdcode/verite
https://github.com/veritefuzz/verite
http://defihacklabs.io

	Introduction
	Background
	EVM
	Decentralized Finance
	Extractable Value and Vulnerabilities
	Security Analysis with LLMs

	Models
	System Model
	Adversarial Environment Model

	The A1 System Design
	Tool-Based Context Assembly
	Agentic Strategy Generation
	Concrete Execution Environment
	Revenue Normalization and Economic Validation

	Evaluation
	Model selection
	API Integration
	Computational Environment
	Dataset Construction
	Performance Analysis
	Benchmarking with SoTA Fuzzing Tools
	Case Study 1: Multi-Actor Reasoning
	Case Study 2: Strategic Contract Composition
	Case Study 3: Fuzzer Integration Opportunities

	Do We Still Need Fuzzers?
	Execution Time
	Attack Window Calculation
	Monte Carlo Simulation for Attack Window Coverage
	Impact of Detection Delays
	Token Usage Analysis
	Token Consumption Patterns
	Iteration Effectiveness
	Economic Feasibility Framework
	Economic Viability Results
	Proof-of-Concept Complexity Analysis
	Model-Specific Complexity Patterns
	Code Generation Quality Analysis

	Analytical Model of Symmetric Capabilities
	Expected Payoff Analysis
	The ``Fishing Game'' Effect
	Economic Implications

	Limitations
	Related Works
	Discussion
	Conclusion
	References
	Appendix A: Best-Liquidity Path Selection Algorithm
	Appendix B: SGETH Incident
	Appendix C: GAME Incident
	Appendix D: Dataset

