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With a growing interest in securing user data within the internet-of-things (IoT), embedded en-
cryption has become of paramount importance, requiring light-weight high-quality Random Num-
ber Generators (RNGs). Emerging stochastic device technologies produce random numbers from
stochastic physical processes at high quality, however, their generated random number streams are
adversely affected by process and supply voltage variations, which can lead to bias in the generated
streams. In this work, we present an adaptive variation-resilient RNG capable of extracting unbi-
ased encryption-grade random number streams from physically driven entropy sources, for embedded
cryptography applications. As a proof of concept, we employ a stochastic magnetic tunnel junction
(sMTJ) device as an entropy source. The impact of variations in the sMTJ is mitigated by employ-
ing an adaptive digitizer with an adaptive voltage reference that dynamically tracks any stochastic
signal drift or deviation, leading to unbiased random bit stream generation. The generated unbiased
bit streams, due to their higher entropy, then only need to undergo simplified post-processing. Sta-
tistical randomness tests based on the National Institute of Standards and Technology (NIST) test
suite are conducted on bit streams obtained using simulations and FPGA entropy source emulation
experiments, validating encryption-grade randomness at a significantly reduced hardware cost, and
across a wide range of process-induced device variations and supply voltage fluctuations.

I. INTRODUCTION

Demand for hardware security is growing rapidly due
to the unprecedented growth of the Internet of Things
(IoT) [1]. Data encryption is becoming more impor-
tant, with a drive to move it towards the device side and
away from the cloud. This move provides higher levels
of security; however, it imposes stringent size and en-
ergy constraints on the hardware. These constraints are
also coupled with stringent requirements for encryption
quality, imposing a challenging design trade-off between
hardware compactness and encryption quality [2].

For cryptographic applications, the encryption key is
the main secret necessary for data decryption, since it
is assumed that adversaries are aware of the encryption
algorithm used [3–5]. Therefore, it is crucial to gener-
ate keys through random processes that make them un-
likely to be guessed. Such procedures are implemented
using subsystems known as Random Number Generators
(RNGs), and are of two categories: True-RNGs (TRNGs)
and Pseudo-RNGs (PRNGs). The latter include cir-
cuits that implement mathematical or computational al-
gorithms that are typically used to generate random se-
quences; however, such sequences are deterministic and
can be regenerated if the initial ‘seed’ is known, mak-
ing them susceptible to prediction penetration. On the
other hand, TRNGs are circuits that produce random
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FIG. 1. Block Diagram of the adaptive RNG comprising (a)
an entropy source (sMTJ here), (b) an adaptive digitizer with
a low-pass-filter generated moving reference voltage, and (c)
compact post processing.

bits based on physically random phenomena in emerging
device technologies, making them more reliable for appli-
cations where security is of great concern [6, 7], such as
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wireless communication [8, 9] and remote sensing [10–13].
Hardware TRNG implementations are based on the

utilization of devices with unique properties or the ex-
ploitation of intrinsic noise present in classical electronic
devices. TRNGs have become essential for cryptography-
related IoT applications, as well as for probabilistic com-
puting [14–17]. The challenge in using TRNGs is that
they are adversely affected by variations in the fabrica-
tion process of the device technology used [18], leading to
bias in generated bit streams. Moreover, in IoT devices,
which are mainly battery powered, fluctuations in the
supply voltage can also adversely affect TRNGs [19, 20].

In this work, we present an adaptive RNG that ex-
tracts high-quality unbiased random bit streams from a
time-varying stochastic signal obtained from an entropy
source. The system is primarily designed for bit steam
extraction from a true-random entropy source, such as a
stochastic Magnetic Tunnel Junction (sMTJ), shown in
Fig. 1 (a), but we will also show that it can still perform
satisfactorily well with a pseudo-random source, such a
Linear Feedback Shift Register (LFSR). The complete
block diagram of the proposed system is shown in Fig. 1.
In our proposed adaptive RNG, an adaptive digitizer is
employed to eliminate any bias, enhancing the resilience
of the system to process-induced and supply-voltage vari-
ations in true-random entropy sources, and enhancing the
randomness qualities of pseudo-random entropy sources.

Due to the enhanced randomness qualities of the
generated bitstreams, we show that light-weight post-
processing is sufficient for acceptable encryption-grade
randomness, allowing further savings in hardware. This
is demonstrated using both a conventional Trivium ci-
pher [21–23], shown in Fig. 2 (b), and a simplified more
compact version of it, the Mini-Trivium, shown in Fig.
2 (d). Schematic illustrations of a conventional and the
proposed adaptive RNG are depicted in Fig. 2.

Section II discusses entropy sources, Sec. III presents
an adaptive TRNG with a true-random sMTJ entropy
source and Sec. IV presents an adaptive RNG with a
pseudo-random LFSR entropy source with experimental
implementation. Finally, Sec. V concludes the paper.

II. THE ENTROPY SOURCE

Entropy sources are a core component in RNGs, as
they provide the source of randomness. Determinis-
tic PRNGs employ pseudo-random digital sources in
the form of shift registers and are regarded as RNGs
with low-quality randomness. On the other hand,
TRNGs based on conventional complementary-metal-
oxide-semiconductor (CMOS) technology commonly em-
ploy noise in devices, such as thermal noise [24] or ran-
dom telegraph noise (RTN) [25], as their physical entropy
source and generally require oscillator circuits. Moreover,
CMOS-based TRNGs need intricate extraction and com-
plex post-processing circuits to mitigate output correla-
tion and bias. Additionally, they are also highly affected

by variations in process, voltage, and temperature (PVT)
[26], necessitating entropy-tracking feedback loops [27].
Emerging devices utilizing stochastic switching mech-

anisms, like magnetic switching [28], resistive switch-
ing [29], and phase change [30], have been proposed as
promising entropy sources for TRNGs due to their in-
herent stochastic nature. Notably, devices with stochas-
tic temporal dynamics driven by fluctuations in ther-
mal energy, such as stochastic magnetic tunnel junc-
tions (sMTJs) [31, 32], do not require voltage pulsing
or forced switching mechanisms to trigger their stochas-
tic response, making them excellent entropy sources for
TRNGs. However, as stated earlier, a major challenge
in these device technologies is their limited resilience to
process-induced and supply voltage variations.
In order to demonstrate the utility of our adaptive

RNG, we test it with an sMTJ as a true-random source
and an LFSR as a pseudo-random source. The first is in-
vestigated in Sec. III and the latter is implemented and
validated experimentally in Sec. IV.

A. Stochastic MTJ Model

Prior to presenting our design for an sMTJ-based adap-
tive TRNG, in order to be able to study the system’s be-
havior when employing an sMTJ entropy source, a model
for the sMTJ is needed. This is achieved by a two-fold
process. First, the sMTJ resistance fluctuations are sim-
ulated using MATLAB, and the resulting sMTJ behavior
is fed into SPICE as a variable resistor with time-varying
conductance.
The dynamics of the stochastic switching of the sMTJ

are controlled by the fluctuations of the magnetization
state (mz(t)) of the free magnet layer, that fluctuates
from 1 to -1 continuously, where 1 refers to a parallel
state in reference to the fixed magnet layer, while -1 is
an antiparallel state, as shown in Fig. 2 (a). These fluc-
tuations give rise to an sMTJ whose time-varying con-
ductance (G(t)) is defined as:

G(t) = G0

[
1 +mz(t)

TMR

2 + TMR

]
(1)

where G0 is the average conductance, and TMR is the
tunneling magnetoresistance ratio. The TMR depends
on the ratio between the parallel (RP ) and the anti-
parallel (RAP ) resistance states of the sMTJ and is de-
fined as:

TMR =
RAP −RP

RP
(2)

MATLAB is used to emulate the sMTJ’s dynamic mag-
netization state mz(t) and its probability distribution.
The resultant mz(t) vector is then used in solving eq.
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FIG. 2. Comparison between conventional TRNGs and the proposed adaptive TRNG. Illustration of magnetization dynamics
in stochastic MTJs for (a) low-barrier magnets and (c) isotropic magnets. The uniform probability distribution of the magne-
tization in the vertical z-direction (mz(t)) depicts characteristics of isotropic sMTJs (inset of (c)). Schematic block diagram
Illustration of (b) a conventional TRNG system and (d) the proposed adaptive TRNG system with the adaptive digitizer and
the Mini Trivium compact post-processing blocks.

(1) to obtain the time-varying vector G(t), which is re-
ceived by SPICE software as a time-varying resistance
according to G(t).

Fig. 2 (a) illustrates the switching mechanism of the
sMTJ device employing a low barrier free magnet layer,
having two stable magnetic configurations: parallel (P)
and antiparallel (AP) states. In our analysis, we have
employed an isotropic magnet for the free layer, owing
to its uniform mz(t) distribution as depicted in Fig. 2
(c), which makes it a favorable entropy source due to the
higher degrees of freedom offered by the isotropic free
layer magnet [33].

III. ADAPTIVE TRNG WITH A
TRUE-RANDOM ENTROPY SOURCE

This section presents an example TRNG design based
on the adaptive RNG concept, by employing the s-MTJ
true-random entropy source discussed in Sec. II. After
the entropy source, the two remaining components of the
adaptive TRNG system are: (1) the adaptive digitizer
and (2) the post-processing circuit. These are presented
in subsections A and B, respectively, followed by simu-
lation results and variation-resilience analysis in subsec-
tions C and D, respectively.

A. Adaptive Digitizer

Once a stochastic signal is generated by the entropy
source, the signal needs to be converted from analog to
digital, and this is the role of the digitizer. This is usually
done by comparing the analog stochastic voltage signal
with a reference analog voltage (VREF ) using a compara-
tor that converts voltages above VREF to high output
voltages (ideally VDD: a digital 1) and voltages below
VREF to low output voltages (ideally GND: a digital 0).
Ideally, the desired output of the digitizer would be a
random bit stream that is 50 % ones (1’s) and 50 % ze-
ros (0’s) on average. Based on this, VREF is a critical
design parameter. In our design, instead of applying a
fixed VREF to the comparator, we design a low-pass filter
(LPF) circuit that generates an adaptive moving VREF

from the stochastic signal (Vstochastic) corresponding to
its short-term average, as shown in Fig. 3 (d). This VREF

adapts to changes in the stochastic signal, such as volt-
age drift or mismatch from the designed-for voltage levels
due to process-induced or supply voltage variations.
The LPF is typically implemented using a resistor (R)

and a capacitor (C) in a simple RC LPF configuration,
as shown in Fig. 2 (d). The time constant τLPF of the
RC circuit determines how quickly the reference voltage
adapts to changes in Vstochastic, and is expressed as fol-
lows:

τLPF = RC (3)

where R and C are the resistance and capacitance of the
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resistor and capacitor in the RC circuit respectively. The
cutoff frequency fLPF of the LPF is given by:

fLPF =
1

2πRC
(4)

The selection of R and C depends on how fast the
system needs to adapt to fluctuations in Vstochastic. In a
system employing an sMTJ entropy source, fLPF needs
to be much lower than the average fluctuation frequency
fc of the sMTJ, which can be characterized using the
correlation time of magnetization in the sMTJ (τc) [33].
This requires the following inequality to be satisfied:

τLPF > τc (5)

Careful design of the sMTJ can allow τc to be across a
wide range of timescales from nano-seconds [34] to milli-
seconds [31], accommodating the needs of different appli-
cations, as τc has an impact on the final throughput of
the RNG.

B. Post-Processing Circuit: The Trivium Cipher

After the adaptive digitizer, post-processing is needed
to ensure statistical randomness properties of the bit-
stream are encryption-grade. For conventional TRNG
designs, a commonly employed post-processing circuit is
the Trivium Cipher [21]. The Trivium cipher is a syn-
chronous stream cipher with an internal state of 288-bits
represented by (s1, . . . , s288) and is intended to produce
up to 264 key stream bits from an 80-bit secret key and an
80-bit initial value (IV)[23]. A circuit-level implementa-
tion of the Trivium cipher can be seen in the inset of Fig.
2 (b). The internal state of the cipher is decomposed
into three feedback shift registers (FSRs) and coupled
with non-linear feedback combinational logic employing
only AND and XOR gates.

In Trivium, two out of three FSRs are loaded with the
key and IV, while the remaining bits of the internal state
are filled in with a constant value. The cipher state is
then executed for 4 × 288 = 1152 clock cycles to produce
the final bit stream.

C. Simulation Results

Simulation results for the conventional and adaptive
TRNG designs are presented in Figs. 3 (a)-(c) and Figs.
3 (d)-(f), respectively. Fig. 3 (a) shows the behavior
of the stochastic voltage (Vstochastic) in the conventional
TRNG, while Figs. 3 (b) and (c) show the response of the
digitizer voltage (VDigitizer) and the random key stream
generated after post-processing (with the conventional
Trivium cipher implemented using Cryptool 2.1 (Stable
Build) [35]), respectively. Fig. 3 (d) shows the behavior
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FIG. 3. Simulation results for an sMTJ-based adaptive
TRNG. Plots of (a) VStochastic vs. time, (b) VDigitizer vs.
time, and (c) the generated random key stream vs. time, for
the conventional TRNG. Plots of (d) VStochastic vs. time, (e)
VDigitizer vs. time and (f) the generated random key stream
vs. time, for the adaptive TRNG.

of Vstochastic and the adaptive VREF at the output of the
low-pass filter in the adaptive TRNG, while Figs. 3 (e)
and (f) show the response of VDigitizer and the generated
random key stream, respectively. When compared to the
conventional TRNG, the proposed adaptive TRNG dy-
namically tracks Vstochastic and tunes itself to adapt to
entropy source variations.

Fig. 4 (d) depicts a 2D image of a random key stream
generated using the proposed adaptive digitizer after
post-processing using a Trivium. The random distri-
bution of white and black pixels indicates an unbiased
generation of a random “0/1” bit-stream. The 2D pat-
tern qualitatively demonstrates the uniform distribution
of random bits and validates the design’s ability to pro-
duce an unbiased bit stream with high-quality random-
ness.

To quantitatively evaluate the randomness qualities of
the generated bit stream, statistical randomness tests are
conducted. One commonly employed method is using the
NIST test suite (NIST SP 800-22), which is a statistical
test suite for random and pseudo-random number gener-
ators for cryptographic applications [36], and which will
be used in the remainder of the presented study. The
suite includes 16 tests, the P-value for each test is used
as a measure of randomness and is assessed to determine
the test’s success. A P-value of 1 indicates perfect ran-
domness, while a P-value of 0 indicates no randomness.
If the P-value exceeds 0.01, it indicates that the NIST
test has been passed successfully.
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to the resilience range of the conventional design. (d) 2D pattern of a sample generated random bit stream using the presented
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D. Adaptive TRNG Variation-Resilience Analysis

In order to investigate the resilience of the adap-
tive TRNG to variations, simulations of both the con-
ventional and the adaptive TRNG are repeated for a
range of process-induced and supply-voltage variations.
In addition to supply-voltage variations, the process-
induced variations investigated are those that are re-
flected through variation in two key device parameters:
(1) G0 and (2) TMR. For each case, the simulation was
started from a nominal value of the parameter under in-
vestigation, then the resulting generated bit stream was
tested for randomness using the NIST test suite. For
each simulation run a total of 2,398,733 random bits were
generated within a period of 0.99 seconds. The adaptive
TRNG would be regarded as passing only if the generated
bit stream passed all 16 tests. In that case, the obtained
p-values were recorded, and then the parameter under
test would be incremented with positive increments until
it fails by failing at least one test. At that point, the last
value where the adaptive TRNG passed all tests would be
regarded as the upper limit of the resilience range in that
direction. The same procedure would then be repeated
in the opposite direction, but with decrements instead of
increments, to find the lower limit of the resilience range.

The results of this variation analysis for both the con-
ventional and the proposed adaptive TRNGs are depicted
in Fig. 4 (a) through the visually illustrated variation-
resilient ranges, where all tests are passed. The detailed
results are also shown in Table I. For VDD variation anal-
ysis, the starting nominal value was 5 V and then the
voltage was incremented in 0.5 V increments until the
adaptive TRNG failed at 7.0 V, making 6.5 V as the up-
per limit of the VDD resilience range. The procedure was
repeated again with 0.5 V decrements, leading to a 3.0 V
lower limit of the VDD resilience range. The same proce-

dure was also conducted for both G0 and TMR, and the
results are summarized in the visual illustration of Fig. 4
(a). Moreover, the detailed results are also summarized
in Table I, with the average P-value for each test, across
all scenarios where all the tests were passed, is recorded.
The results of Fig. 4 and Table I demonstrate the en-

hanced resilience of the adaptive TRNG to variations in
VDD, G0 and TMR compared to a conventional TRNG,
reaching up to an enhancement in the variation-resilience
range of 40 %, 75 % and 17 %, respectively, as illustrated
in Fig. 4 (c). Fig. 4 (b), illustrates the percentage of 1s
and 0s for six different cases of varying VDD, G0, and
TMR, respectively. As is evident in all test cases, the
percentage of 1s and 0s is close to an ideal 50 % each,
thus confirming that the bit patterns are unbiased. Fig.
5 shows a visual illustrative scatter plot of the obtained
average P-values from the NIST test suite in the presence
of variations, demonstrating that they all fall well within
the acceptable range, further highlighting the resilient
nature of the adaptive TRNG.

IV. ADAPTIVE RNG WITH A
PSEUDO-RANDOM ENTROPY SOURCE

While TRNGs with physically driven naturally ran-
dom entropy sources provide very high quality true-
randomness desired for encryption, the advanced device
technologies needed for these TRNGs are not accessible
to all IoT device designers, nor are they always applicable
in IoT applications that do not justify the high cost of
custom designing chips with these technologies. In this
section, we show how our adaptive RNG can address this
issue by providing a low-cost highly accessible route to
embedded encryption in IoT devices. To achieve this,
we employ a low-quality pseudo-random entropy source,
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TABLE I. Statistical Randomness Test Results Under Process-Induced and Supply Voltage Variations (NIST SP 800-22)

Variation Analysis Parameter VDD Variation G0 Variation TMR Variation

Test Result P-Value Pass Rate Result P-Value Pass Rate Result P-Value Pass Rate

Frequency (Monobits) Pass 0.1721 8/8 Pass 0.6424 8/8 Pass 0.8238 8/8

Frequency within a Block Pass 0.4658 8/8 Pass 0.1161 8/8 Pass 0.2892 8/8

Runs Pass 0.4369 8/8 Pass 0.7284 8/8 Pass 0.6554 8/8

Longest Run of Ones in a Block Pass 0.5977 8/8 Pass 0.3048 8/8 Pass 0.3646 8/8

Binary Matrix Rank Pass 0.4143 8/8 Pass 0.3638 8/8 Pass 0.3338 8/8

Discrete Fourier Transform (Spectral) Pass 0.2287 8/8 Pass 0.4369 8/8 Pass 0.7255 8/8

Non-Overlapping Template Matching Pass 0.6114 8/8 Pass 0.1671 8/8 Pass 0.2771 8/8

Overlapping Template Matching Pass 0.7457 8/8 Pass 0.3901 8/8 Pass 0.3601 8/8

Maurer’s ”Universal Statistical” Pass 0.6514 8/8 Pass 0.5845 8/8 Pass 0.4523 8/8

Linear Complexity Pass 0.5402 8/8 Pass 0.7001 8/8 Pass 0.1062 8/8

Serial Pass 0.7153 8/8 Pass 0.0745 8/8 Pass 0.7624 8/8

Approximate Entropy Pass 0.2519 8/8 Pass 0.3214 8/8 Pass 0.5214 8/8

Cumulative Sums (Forward) Pass 0.3192 8/8 Pass 0.6984 8/8 Pass 0.6109 8/8

Cumulative Sums (Reverse) Pass 0.1762 8/8 Pass 0.3647 8/8 Pass 0.5274 8/8

Random Excursions Pass 0.8595 8/8 Pass 0.7491 8/8 Pass 0.5942 8/8

Random Excursions Variant Pass 0.5971 8/8 Pass 0.4941 8/8 Pass 0.6424 8/8

an LFSR, which can be viewed as an emulation of the
sMTJ but with pseudo randomness. An LFSR is read-
ily implementable on entry-level FPGA prototyping kits,
and its design is a well-known text-book design. How-
ever, an LFSR on its own does not meet the random-
ness requirements of encryption, applications. Using our
adaptive RNG system, we show how the use of the adap-
tive digitizer with simplified post-processing can increase
the entropy of the LFSR, making it encryption-grade.

A. Enhancing LFSR Randomness with The
Adaptive Digitizer

In order to enhance the entropy of the pseudo-random
source, the digital output from the LFSR is converted to
an analog signal serving as VStochastic, and is then fed
into the adaptive digitizer that converts it back to digi-
tal. However, here the comparison is against the adaptive
moving average - VREF - of this stochastic signal, and
hence the generated output bit stream is different than
the original bit stream obtained from the LFSR. This
output of the adaptive digitizer, will not be the same
as the inputted digital bit stream from the LFSR, but
will have higher entropy due to the conversion and sub-
sequent adaptive digitization processes that infuses more
noise (randomness) into the signal. This output will then
undergo post-processing to produce a digital random bit
stream with randomness qualities that fulfil the basic re-
quirements of embedded cryptography applications.

B. Compact Post-Processing: The Mini Trivium

Although the Trivium Cipher is regarded as a relatively
low area hardware cipher, it still requires thousands of
logic gates for implementation and can impose relatively
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for the adaptive TRNG.

heavy power consumption levels for energy-constrained
IoT devices, especially when conducting continuous real-
time data encryption; essential in remote sensing. In
order to further reduce the required hardware resources
for embedded encryption in resource-constrained IoT de-
vices, we also present a modified lower-hardware-cost ver-
sion of the Trivium cipher used for post-processing, and
name it here as a Mini Trivium.
Due to the enhanced randomness qualities of the gener-

ated bit stream from the adaptive digitizer, it is possible
to achieve adequate post-processing using a circuit with
reduced complexity. Accordingly, we employ the simpli-
fied Mini Trivium cipher, whose circuit implementation
is shown in Fig. 2 (d).
The Mini Trivium circuit simplifies the original Triv-

ium Cipher design by reducing its three Nonlinear Feed-
back Shift Registers (NFSRs) into a single 19-bit shift
register, thus reducing complexity, without compromis-
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FIG. 6. (a) Schematic diagram of system blocks and intercon-
nections. (b) Experimental implementation of the adaptive
RNG system.

ing core cryptographic properties. By strategically select-
ing taps t1 to t10 and reducing core logic gates down to 10
gates only, it achieves faster state updates and key stream
generation through streamlined XOR and AND opera-
tions. The shorter register length and reduced feedback
paths enable quicker initialization cycles compared to
Trivium’s 288-bit state. Despite fewer bits, non-linearity
is preserved via carefully placed gates, balancing security
and efficiency.

C. Experimental Implementation and Results

To test the overall proposed adaptive RNG system
with the LFSR and the Mini-Trivium, the design was
experimentally implemented using an FPGA board (NI
myRIO-1900), as depicted in Fig. 6 (b). The schematic of
Fig. 6 (a) depicts the complete system implementation,
showing the connections between various components of
the system. The combination of the linear feedback shift
register (LFSR) along with the digital-to-analog con-
verter (DAC) is employed as the entropy source that gen-
erates an analog stochastic signal (VStochastic), similar to
the signal produced by the sMTJ and its associated cir-
cuitry presented in the previous section. Once generated,
VStochastic is then fed into both the LPF and and the com-
parator analog circuits within the adaptive digitizer. The
LPF and the comparator of the adaptive digitizer were
implemented using off-the-shelf discrete components on
a breadboard, nonetheless, they can also be implemented
using integrated components.

A sample output from the adaptive digitizer is shown
in Fig. 7 (a). As shown in the figure, the output looks
like a non-ideal digital signal with finite slopes, and this
is due to the limited slew rate (SR) of the used op-
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erational amplifier (OpAmp) for the comparator [37].
To obtain more ideal digital waveforms, a comparator
with a higher SR can be employed or designed. This
output from the adaptive digitizer - obtained using the
breadboard-implemented analog circuit shown in Fig. 6
(b) - is then passed through the Mini Trivium cipher
for post-processing. Fig. 7 (b) shows the generated ran-
dom bit stream from the adaptive digitizer output of Fig.
7 (a) after post-processing. The compact Mini Trivium
post-processing circuit was implemented using the FPGA
unit. The FPGA unit was programmed and tested using
a LABVIEW environment.
In order to investigate the enhancement that the adap-

tive RNG system provides to the raw LFSR entropy
source, when running any experiment both: (1) the raw
bit stream generated by the LFSR only, and (2) the final
generated random bit stream after the adaptive digitizer
and post-processing were recorded. The system was op-
erated to generate a random bit stream of 1,670,000 bits
in each experiment. This run was repeated 10 indepen-
dent times providing 10 independent experiments. Each
time the experiment was conducted, the generated raw
random bit stream from the LFSR only and the final
random bit stream generated by the adaptive RNG were
each tested individually using the NIST test suite for
randomness. A similar set of simulation runs were also
conducted on the sMTJ-based adaptive TRNG system
for comparison purposes. The results for all three sys-
tems: (1) LFSR only, (2) LFSR-based adapative RNG,
and (3) sMTJ-based adaptive TRNG are summarized in
Table II. Moreover, the results for the average P-values
for each individual NIST test for all the three systems,
are presented visually through the scatter plot of Fig. 8.
As the results of Table II show, the LFSR on its own

fails 12 out 16 tests consistently in all 10 experiments,
confirming that the LFSR on its own is a low-quality
PRNG. On the other hand, when the same random bit
stream generated by the LFSR goes through the adap-
tive RNG system, namely the DAC, adaptive digitizer
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TABLE II. Comparison Between Different RNG Types (NIST SP 800-22 Test Suite)

System Under Test LFSR ONLY* Adaptive RNG (LFSR)** Adaptive TRNG (sMTJ)***

Test Result P-Value Pass Rate Result P-Value Pass Rate Result P-Value Pass Rate

Frequency (Monobits) Fail 0.000 0/10 Pass 0.414 10/10 Pass 0.799 10/10

Frequency within a Block Fail 0.000 0/10 Pass 0.479 10/10 Pass 0.851 10/10

Runs Fail 0.000 0/10 Pass 0.728 10/10 Pass 0.961 10/10

Longest Run of Ones in a Block Fail 0.000 0/10 Pass 0.946 10/10 Pass 0.727 10/10

Binary Matrix Rank Fail 0.000 0/10 Pass 0.881 10/10 Pass 0.333 10/10

Discrete Fourier Transform (Spectral) Fail 0.000 0/10 Pass 0.223 10/10 Pass 0.569 10/10

Non-Overlapping Template Matching Fail 0.000 0/10 Pass 0.274 10/10 Pass 0.619 10/10

Overlapping Template Matching Fail 0.000 0/10 Pass 0.219 10/10 Pass 0.662 10/10

Maurer’s ”Universal Statistical” Fail 0.000 0/10 Pass 0.434 10/10 Pass 0.551 10/10

Linear Complexity Fail 0.000 0/10 Pass 0.754 10/10 Pass 0.314 10/10

Serial Fail 0.000 0/10 Pass 0.831 10/10 Pass 0.381 10/10

Approximate Entropy Fail 0.000 0/10 Pass 0.556 10/10 Pass 0.445 10/10

Cumulative Sums (Forward) Pass 1.000 10/10 Pass 0.782 10/10 Pass 0.652 10/10

Cumulative Sums (Reverse) Pass 1.000 10/10 Pass 0.309 10/10 Pass 0.625 10/10

Random Excursions Pass 0.849 10/10 Pass 0.521 10/10 Pass 0.885 10/10

Random Excursions Variant Pass 0.617 10/10 Pass 0.778 10/10 Pass 0.629 10/10

*Experiment: entropy source: LFSR.

**Experiment: entropy source: LFSR + DAC, post-processing: Mini Trivium.

***Simulation: entropy source: sMTJ and associated circuitry, post-processing: Trivium.
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FIG. 8. NIST Test Suite results comparing a conventional
LFSR with both an LFSR-based adaptive RNG and an sMTJ-
based adaptive TRNG

and the Mini Trivium cipher, then the resulting random
bit stream shows excellent statistical randomness proper-
ties, consistently passing all 16 tests during all conducted
experiments. Not only do the random bit streams from
the LFSR-based adaptive RNG pass the tests, but they
do so with excellent p-values consistently above 0.2. The
obtained P-values are indeed comparable to the results
obtained for the sMTJ-based adaptive TRNG system
at nominal conditions, as shown quantitatively through
both Table II and the visual illustration of Fig. 8. The
experimental results confirm that the LFSR-based adap-
tive RNG implementation using off-the-shelf components
results in the generation of high quality random numbers
with properties suitable for embedded encryption.

V. CONCLUSION

In this work, we demonstrated an adaptive RNG for
variation-resilient extraction of random numbers from
entropy sources based on emerging device technologies.
Two demonstrations were presented, one employing an
sMTJ-based entropy source, which was comprehensively
evaluated using MATLAB + SPICE simulations, and the
other employing an LFSR-based pseudo random entropy
source that emulates the true-random source, which was
experimentally implemented using an FPGA.
A key component of the adaptive RNG system was

its adaptive digitizer, which employed a low-pass filter to
generate an adaptive reference voltage that tracks any de-
viation or drift in the generated stochastic signal from the
entropy source, enabling variation-resilience and allow-
ing extraction of unbiased random bit streams with high
entropy. Statistical properties of generated bit streams
by the adaptive RNGs were tested using the NIST test
suite, demonstrating encryption-grade randomness con-
sistently. The presented adaptive RNG has great poten-
tial for use in embedded encryption within IoT devices,
making data encryption accessible locally.
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of Things Journal 10, 6182 (2022).

[21] C. De Canniere and B. Preneel, in New Stream Cipher
Designs: The eSTREAM Finalists (Springer, 2008) pp.
244–266.

[22] Y. Tian, G. Chen, and J. Li, Cryptology ePrint Archive
(2009).

[23] M. Montoya, T. Hiscock, S. Bacles-Min, A. Molnos, and
J. J. Fournier, in 25th IEEE Int. Conf. on Electronics,
Circuits and Syst. (ICECS), 2018, pp. 393–396 (2018)
pp. 393–396.

[24] C. Tokunaga, D. Blaauw, and T. Mudge, IEEE Journal
of Solid-State Circuits 43, 78 (2008).

[25] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes, in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, 2006, pp. 1666–1675 (2006) pp. 1666–1675.

[26] S. Srinivasan, S. Mathew, R. Ramanarayanan, F. Sheikh,
M. Anders, H. Kaul, V. Erraguntla, R. Krishnamurthy,
and G. Taylor, in Proc. IEEE Symp. VLSI Circ., 2010,
pp.3–4 (2010) pp. 3–4.

[27] L. Gong, J. Zhang, H. Liu, L. Sang, and Y. Wang, IEEE
Access 7, 125796 (2019).

[28] A. Dubovskiy, T. Criss, A. S. El Valli, L. Rehm, A. D.
Kent, and A. Haas, IEEE Magnetics Letters 15, 1 (2024).

[29] M. Akbari, S. Mirzakuchaki, D. Arumı́, S. Manich,
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