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Abstract
Large language models (LLMs) are increasingly integrated into code

generation workflows. As a result, distinguishing AI-generated

code from human-written code is becoming crucial for tasks such

as authorship attribution, content tracking, and misuse detection.

Based on this purpose, N-gram-based watermarking schemes have

emerged as prominent, which inject secret watermarks to be de-

tected during the generation.

However, their robustness in code content remains insufficiently

evaluated. Most claims rely solely on defenses against simple code

transformations or code optimizations as a simulation of attack, cre-

ating a questionable sense of robustness. In contrast, more sophisti-

cated schemes already exist in the software engineering world, e.g.,

code obfuscation, which significantly alters code while preserving

functionality. Although obfuscation is commonly used to protect

intellectual property or evade software scanners, the robustness

of code watermarking techniques against such transformations

remains largely unexplored.

In this work, we focus on the robustness of N-gram-based water-

marking approaches on code. We formally model the code obfusca-

tion as a Markov random walk process to attack the watermarking

scheme, and prove the impossibility of N-gram-based watermark-

ing’s robustness with only one intuitive and experimentally verified

assumption, distribution consistency, satisfied. Given the original

false positive rate 𝜖pos of the watermarking detection, the ratio that

the detector failed on the watermarked code after obfuscation will

increase to 1 − 𝜖pos.
The experiments have been performed on three state-of-the-

art watermarking schemes, two large language models, two pro-

gramming languages, four code benchmarks, and four obfuscators.

Among them, all watermarking detectors show coin-flipping de-

tection abilities on obfuscated codes (AUROC tightly surrounds

0.5). Among all models, watermarking schemes, and datasets, both

programming languages own obfuscators that can achieve attack

effects with no detection AUROC higher than 0.6 after the attack.

Based on the theoretical and practical observations, we also pro-

posed a potential path of robust code watermarking.

1 Introduction
With the rapid rise of applying large language models (LLMs) to

various software engineering tasks, code generation has emerged as

one of the most prominent areas of interest [6, 22, 35, 56]. However,
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Figure 1: The performance of Green-Red watermarks [25, 32]
onDeepSeek-Coder-33B-basemodel [17] andMBPP-JS bench-
mark [4], before (upper) and after (lower) applying our attack
using the off-the-shelf obfuscator named JS Obfuscator. The
y-axis denotes the detection’s AUROC score (↑), and the x-axis
is the Pass@1 score (↑), representing code generation abil-
ity after the distortionary watermarking. Different border
colors, filling colors, and shapes of points denote different
values of hyperparameters (𝛿 , 𝛾 , 𝜏). The blue vertical line il-
lustrates 80% of non-watermarked performance under the
same setting. See Figure 4 for more experiment results and
information.

this trend also brings significant legal, ethical, and security concerns,

including issues related to code licensing, potential plagiarism,

software vulnerabilities, and the risk of generating malicious code
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Watermarked Code Obfuscated Code

def find_adverb_position(text):
    adv_pattern = r'\w+ly'

adv_matches = re.finditer(adv_pattern, text)

    for match in adv_matches:
return (match.start(), match.end(), match.group(0))

def find_adverb_position(text):

    B='\\w+ly';C=re.finditer(B,text)
    for A in C:return A.start(),A.end(),A.group(0)

Python-Minifier

const unique = (l) => {

l.sort((a, b) => a - b);
return l.filter((v,k) => l.indexOf(v) == k).map((v) => 

v);
}

let unique = t => (t.sort((e, i) => e - i), t.filter((e, i) 
=> t.indexOf(e) == i).map(e => e));

UglifyJS

const findZero = (xs) => {

  const threshold = 0.1; // for accuracy
  const xMax = xs.length / 2 - 1;

return getZeroPoint(xs, xMax, getStart(xs, xMax, 0), 
getStart(xs, xMax, xMax), threshold);
}

function a0c(h,c){const Q=a0h();return 

a0c=function(k,F){k=k-0x75;let t=Q[k];return
t;},a0c(h,c);}function a0h(){const
i=['pow','length','9394730ODqVUM','2SYsPTT','1512207oJHcSU
','16vGHMiM','2054439KSgoxS','21OYVnYB','2699382BgOBNX','2
2DcbvBZ','3553395HvaZHd……

JS Obfuscator

def remove_Occ(s,ch): 
newString = ''
firstOccurrence = s.find(ch) 
lastOccurrence = len(s)-(s[::-1].find(ch))-1

    for c in range(0,len(s)):
        if s[c]!= s[firstOccurrence] and s[c]!=
s[lastOccurrence]:

newString+=s[c]
return newString

def remove_Occ(s,ch):
 newString=''
 firstOccurrence=s.find(ch)
 lastOccurrence=len(s)-(s[::-1].find(ch))-1
 for c in range(0,len(s)):

if s[c]!=s[firstOccurrence]and s[c]!=s[lastOccurrence]:
   newString+=s[c]
 return newString

PyMinifier
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Figure 2: Left: An outline of our attack schema. We consider the set of all high-quality outputs (High-quality Space). Our attack
randomlymodifies codes while preserving semantics by a set of equivalent transformation rules. (i.e., perform code obfuscation).
We prove that starting from a high-quality watermarked code sample, the obfuscated code can be independently distributed
within a subset of the high-quality space (Theorem 4.1). Furthermore, this subset partitioning is generally independent of
N-gram features, resulting in a coin-flipping detection performance (Theorem 5.1; Figure 4). Middle and Right: Our attack on
watermarked code [25]. The middle table consists of codes generated from the watermarked model. The watermarking scheme
adds hidden strategies to generate more " green tokens " that the detector counts to judge whether the text was watermarked.
The rightmost table includes the corresponding code after obfuscation. The ratio of " green tokens " is decreased. The names
of the obfuscators are shown in red on the far right. All code pairs are ensured by the obfuscators to have the same semantics.

Paraphrasing 
(DIPPER)

They do this so the person
who commits the offense d
oes not just get probation
when the case is over. Th
ey can't lose their job, t
heir livelihood, their hou
sing. They have no control
over their employment. Th

ey're …

They do it so that the per
son who commits a crime do
esn't just get a warning w
hen the case is over. They
can't lose their job, the
ir livelihood, their housi
ng. They have no control o

ver their job. They …

Obfuscation 
(UglifyJS)

const findMax = (words) =>
{
let i = 0;
let maxKey = "";
let wordsObj = {};
for (let i in words) {
wordsObj[words[i]]? wo

rdsObj[words[i]].repeat++
: (wordsObj[words[i]]={val
ue: words[i], repeat: 1});

let findMax = e => {
let a = {};
for (var r in e) a[e[r]

] ? a[e[r]].repeat++ : a[e[
r]] = {

value: e[r], 
        repeat: 1 …

Figure 3: Comparison between Natural Language and Pro-
gramming Language obfuscations. The blue color indicates
the 2-grams that were preserved after the modification.

[16, 44, 48]. As such, the development of practical tools for detecting

machine-generated code has become both timely and critically

important to ensure the fair, secure, and responsible deployment of

LLMs in programming-related applications.

To this end, several efforts have been made toward LLMs wa-

termarking, which aims to embed hidden signals within LLM-

generated content for later identification. Notably, Google recently

introduced SynthID [10], a non-distortionarywatermarkingmethod

that preserves the natural distribution of generated outputs. In con-

trast, WLLM [25] represents a distortionary approach (improving

watermark detectability at the cost of text quality), as it alters the to-

ken distribution during the sampling process. Building uponWLLM,

SWEET [32] introduces a low-entropy token skipping mechanism

specifically tailored for watermarking code generation tasks. These

state-of-the-art watermarking schemes take both quality preserva-

tion and detectability into account, and some have been large-scale

applied in industrial scenarios [10].

Although watermarking strategies vary in their specific imple-

mentations, a canonical pipeline can be observed: the previous

(N-1)-gram is hashed into a pseudo-random seed, which is then

used during the watermarking process to influence the selection

of the next token. As a result, the detection procedure depends on

intact N-grams to recover the corresponding pseudo-random seeds.

Each seed, along with the following token, is evaluated to determine

whether it aligns with the watermarking strategies. For instance,

SynthID [10] uses a 5-gram approach, where the preceding four

tokens are hashed into a pseudo-random seed. This seed is used to

generate random 𝑔-scores across the vocabulary, and the 𝑔-score of

the selected token is then used as a metric in the detection process.

Similar to SynthID, considerable modern LLM watermarking

approaches [10, 14, 25, 26, 32, 36, 57, 65] adopt this standard frame-

work and rely on complete N-gram sequences for accurate detection

(called N-gram-based in this work).

On the opposite, in the natural language processing field, some

works [30, 47] try to nullify watermarks by paraphrasing to explore

the robustness of existing watermarking approaches. With the
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ability to modify the original text to a large extent but keep the

same semantics, these paraphrasers can break the N-grams in the

original watermarked text.

Extending the notion of paraphrasing natural languages, pro-

gramming languages would be more modify-feasible due to formal

language features. Compared with natural language paraphrasers,

which rely on LLMs (e.g., fine-tuned T5-XXL model in DIPPER [30])

and semantics equivalence unproven, programming languages have

a large space of retaining semantics equivalence even after drastic

modifications. E.g., variable name changing, removing/adding un-

reachable code, andmodifying among different types of loop/branch

grammars. Further, in software engineering, many code obfuscators
have existed for the needs of semantics-preserving code transfor-

mation [2, 3, 45, 49]. Obfuscators have been employed as a means to

protect intellectual property and prevent reverse engineering while

also being widely used by malware developers to evade software

scanners [60]. As a well-known field with numerous existing works,

code obfuscators should be the top choice for malicious users to

evade code watermarking detection and for researchers to evaluate

the robustness of watermarking approaches.

Two pairs of examples are shown in Figure 3 compare the mod-

ifications made by the paraphraser for natural language and the

obfuscator for code. We can observe that after paraphrasing, not

only is the semantics equivalence not guaranteed (e.g., probation

→ warning), but also many 2-grams remain, which still have the

possibility to be detected as watermarked. In contrast, after code

obfuscation, the resulting code is both equivalency-proven and

more disturbed.

Based on the factors above, although there were several existing

works specifically focused on watermarking LLM-generated code

content, their claims of robustness are questionable. SWEET [32]

and ACW [34] use code optimizers and refactoring to simulate the

attack. MCGMark [43] claims robustness by defending eight types

of simple modifications defined by themselves, and CodeIP [16]

only considers the cropping of code but no further modifications.

As far as we know, code obfuscators were never used to evaluate

the robustness of LLM watermarking, as they were supposed to.

The robustness of existing watermarking approaches on code is

still uncertain and tends to be overestimated.

Theoretical Result: We illustrate an outline of our attack model

in Figure 2. In this work, inspired by the common equivalent trans-
formations in the software engineering field, we formally model the

code obfuscation with our rule-based transformation setting. We

prove that for each N-gram-based watermarking scheme, its robust-

ness will be nullified with an intuitive and experiment-supported

assumption, distribution consistency, satisfied (Theorem 5.1).

Specifically, given the original false positive rate 𝜖pos of the

watermarking detection, the ratio that the detector failed on the

watermarked code after obfuscation will increase to 1− 𝜖pos, which
means that the detection algorithm entirely loses the ability to

distinguish watermarked code from benign code. (See Theorem 5.1

and Theorem 5.2)

Experimental Result: We leverage our attack algorithm by

using off-the-shelf obfuscators, performing a low-cost but effective

attack on three state-of-the-art N-gram-based watermarking works.

Specifically, we obfuscate watermarked codes and evaluate the

afterward detectabilities. Real watermarked code examples before

and after our attack are exhibited in Figure 2.

Extensive experiments have been done among three watermark-

ing schemes, two LLMs, two programming languages (Python and

JavaScript), four code benchmarks, and four obfuscators. Among

our experiments, all watermarking detectors show coin-flipping

detection abilities (AUROC tightly surrounds 0.5) on obfuscated

codes. Among all models, programming languages, watermarking

schemes, and datasets, there exist obfuscators to make no AUROC
score higher than 0.6.

A group of code quality and detectability can be found in Fig-

ure 1. We can observe that after our attack, without affecting code

quality, the detection AUROC scores tightly surround 0.5, showing

random guessing detection abilities. The same effect can be found

among different models, watermarking schemes, and programming

languages (Subsection 6.2).

We further assess our main assumption distribution consistency.
The assumption is satisfied in 98.10% cases in the experiment, sup-

porting our theory.

Our code is available at https://anonymous.4open.science/r/Code

WM-E440/

Comparisonwith PreviousWork: Recently, an inspiring work
[61] has proposed an assumption and theoretical proof of water-

marking robustness impossibility under the assumption. Compared

with previous work, our differences are: 1)We prove and discuss

that, on code generation tasks, their assumption is theoretically

impossible and low efficiency in practice. (See appendix A) 2) Both
based on the random walk on the directed graph, they construct an

ideal graph and force set its ergodicity, while our model is imple-

mentable and has been proven ergodic. (See Theorem 4.1)

2 Related Works
Large Language Model Watermarking. In the era of large lan-

guage models (LLMs), increasing attention has been directed to-

ward advanced watermarking techniques that embed watermarks

directly into the text generation process [64]. Among them, the

Green-Red Watermark [20, 25, 26, 32, 36, 39, 63, 68] embeds wa-

termark messages into the logits produced by LLMs without al-

tering the model parameters. In the context of code generation,

SWEET [32] presents a Green-Red watermarking scheme tailored to

mitigate the quality degradation caused by the low-entropy nature

of programming tasks. The GumbelWatermark [1, 14, 19, 31, 57, 65]

introduces a bias in the sampling choice that yields a computation-

ally distortion-free watermark. Additionally, SynthID [10] proposes

tournament sampling, which increases the expected detection score

on watermarked text while maintaining the same output distribu-

tion as standard sampling.

Despite the differences among Green-Red, Gumbel, and SynthID,

considerable current watermarking techniques rely heavily on N-

gram-based mechanisms [10, 14, 25, 26, 32, 36, 57, 65].

Paraphrasing Attack. Paraphrase attacks commit to construct-

ing semantics equivalent or similar adversarial inputs, leverag-

ing the natural language processing applications’ weakness of be-

ing vulnerable to adversarial perturbations, where a small change

to the input produces an undesirable change in system behav-

ior [40]. E.g., lower-quality translations from machine translation

https://anonymous.4open.science/r/CodeWM-E440/
https://anonymous.4open.science/r/CodeWM-E440/
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systems or false/improper statements from intelligent chatbots

[7, 8, 12, 53, 62, 66]. Some paraphrasing approaches are also pro-

posed to attack LLM watermarking. DIPPER [30] is fine-tuned from

the T5 11B model. On DIPPER paraphrased inputs, performance

degradation is observed on multiple watermarking, outlier detec-

tion, and classifier methods [15, 25, 29, 42]. Moreover, a recursive

paraphrasing attack [47] that uses neural network-based paraphras-

ing to recursively paraphrase the source LLM’s output text also

reveals the unreliability of state-of-the-art AI text detectors.

Code Obfuscation. The obfuscation is a technique that makes

programs harder to understand. For such a purpose, it converts a

program to a new different version while making them function-

ally equal to each other [60]. Different obfuscators transfer various

levels of code, including source code, Java bytecode, binary code,

leveraging dead-code insertion, register reassignment, subroutine

reordering, instruction substitution, code transposition, code inte-

gration, etc. [28, 55], and are widely used by malware writers to

evade antivirus scanners [60].

3 Notion Formalizations
In this section, partly following previous works’ definitions [61, 64],

we first formalize our threat model (Subsection 3.1). After that,

we create and define the notions about equivalent transformation

to formalize our attack in Subsection 3.2. Finally, we model our

random walk algorithm into a graph setting in Subsection 3.3.

3.1 Threat Model
Given a prompt space X, a code space C, a randomized code gener-

ation modelM : X → C, and a code test suite T : X × C → {0, 1}
checks whether a code meets a prompt’s requests, a secret-key

watermarking scheme ˝ = (Watermark,Detect) consists of two
algorithms:

• Watermark(M): GivenM ∈ M, this randomized watermark-

ing algorithm outputs a secret key k ∈ K and a watermarked

model Mk : X → C, dependent on k.
• Detectk (𝑥, 𝑐): Accepting secret key k ∈ K , 𝑥 ∈ X, and 𝑐 ∈ C,
this deterministic detection algorithm Detectk (𝑥, 𝑐) ∈ {0, 1}
returns a decision bit, where 1 indicates the presence of the

watermark, and 0 indicates its absence.

The watermarked model Mk is supposed to generate secret

watermarks-injected content that can be detected byDetectk, while
a secret key k could be chosen or held by the generative model

provider or the public.

For the detection ability of watermarking schemes, false negative

rate (FNR) 𝜖neg ← E(1[Detectk (𝑥, 𝑐) = 0] | 𝑐 ∈ Ck) and false

positive rate (FPR) 𝜖pos ← E(1[Detectk (𝑥, 𝑐) = 1] | 𝑐 ∈ C) can be

used to assess, in which Ck ⊆ C, denoting the set of all watermarked

responses Mk (𝑥). Typically, both 𝜖pos and 𝜖neg need to be low

enough for a watermarking scheme to work.

Moreover, for prompt 𝑥 , we define F to denote the prompt-

required behavior and ΦF ⊆ C to denote a high-quality space,
which includes all possible code 𝑐 that can make T(𝑥, 𝑐) = 1. The

quality of code could have many aspects. In this work, the prompt-

required behavior F and test suite T notions only include and

evaluate the runtime behavior of code, such as correctness and

functional compliance, since correct execution behavior is often

considered themost essential among the various dimensions of code

quality, as reflected in its central role in popular code generation

benchmarks [4, 6, 37, 67].

Adversary Attacker: An adversary attacker Att : X × C →
C performs as a code modifier (obfuscator) and guarantees ∀𝑐 ∈
ΦF,Att(𝑥, 𝑐) ∈ ΦF (i.e., T(𝑥,Att(𝑥, 𝑐)) = 1), whichmeans that given

the prompt 𝑥 , the corresponding original high-quality code 𝑐 , and

the attacker Att, the modified code 𝑐′ ← Att(𝑥, 𝑐) can be obtained

while maintaining the quality of the code.

We define 𝜖-breaking as the attack goal. An attacker 𝜖-breaks

the watermarking scheme if for everyM ∈ M and every prompt

𝑥 ∈ X, we have:
E(1[Detectk (𝑥,Att(𝑥, 𝑐)) = 0] | 𝑐 ∈ Ck) ≥ 𝜖,

which means that for ˝, after quality-ensured transformation by

Att, the "afterward false negative rate" becomes equal to or greater

than 𝜖 .

In contrast, on the defender side, i.e., the watermarking scheme

side, if all 𝜖-breaking adversary attackers can only achieve 𝜖 ≃
𝜖neg, meaning that the watermarking scheme can maintain a low

false negative rate confronting attackers’ code modifications, the

watermarking scheme ˝ can be qualified as having high robustness.

3.2 Equivalent Transformations
In this section, we introduce the notions of equivalent transforma-

tion rule and rule-based equivalent space since we will leverage

transformation rules to compose attackers in the following sections.

Definition 3.1 (Equivalent Transformation Rule and Execu-
tor). Given original code 𝑐 ∈ C, two algorithms can be applied to

perform equivalent transformations:

• R(𝑐): With a specific equivalent transformation rule en-

dowed, each R, which is an action derivation algorithm (we
may directly call a R algorithm as "rule" sometimes), returns
a set of executable actions (R : C → ⋃∞

𝑖=1A𝑖 ) that the
Transform(, ) algorithm can perform on 𝑐 . Within the rule

space R, different Rs perform different types of transforma-

tion (in which we use 𝑎 ∈ A to denote a specific transfor-

mation action, and the space of transformation actions is

A).

• Transform(𝑐, 𝑎): Being global to different Rs, given code and

action 𝑎 ∈ A (𝑎 should be an element of the set R returned),

Transform : C × A → C performs a quality-ensured code

transformation that guarantee:

∀F ,∀𝑐 ∈ ΦF, Transform(𝑐, 𝑎) ∈ ΦF,
in which the 𝑎 needs to be an action that is allowable to

perform the current rule.

The purpose of this definition is that each R corresponds to one

abstract transformation concept, while Transform takes practical

tuples of code and action as inputs, usually performing concrete

modification actions under this concept.

We can consider two different Rs, in which the first one can be

described as "delete a comment" and returns actions that each action

represents delete a specific comment from a specific location of 𝑐 ,

while the second one is "modify a for-loop to while-loop" and each
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Algorithm 1: RandomStep

Input: Original Code: 𝑐ori ∈ C,
Rule Set: Γ = {R1,R2, . . . ,R𝑛}

Output: Transformed Code: 𝑐trans ∈ C
1 Init Action Set Λ← ∅
2 for each 𝑖 in 1, 2, . . . , 𝑛 do
3 Set Λ← Λ ∪ R𝑖 (𝑐)
4 Init 𝑗 ← RandomChoose({1, 2, . . . , |Λ|}) // Λ is{

𝑎1, 𝑎2, . . . , 𝑎 |Λ|
}
, and Λ ⊆ A

5 Init 𝑐trans ← Transform𝑖 (𝑐ori, 𝑎 𝑗 )
6 Return 𝑐trans

returns 𝑎 represent a modification on a specific existing for-loop.

Note that many of the quality-ensured rules can be implemented in

the real world and are common in the programming analysis field,

e.g., comment removing, variable renaming, dead code insertion,

etc.
1 2 3

Then, we define a randomized algorithm that applies an equiva-

lent transformation rule.

Definition 3.2 (Random Transformation). Leveraging an al-

gorithm RandomChoose :

⋃∞
𝑖=1 N𝑖 → N that can uniformly and

randomly select one integer from an integer set, two randomized al-

gorithms RandomStep(𝑐, Γ) and RandomWalk(𝑐, Γ , 𝑡) are defined
in Algorithm 1 and Algorithm 2.

The algorithm RandomStep (Algorithm 1) performs a quality-

ensured transformation on the original code. It randomly selects an

action from the action set Λ (line 4). The purpose of applying it is

to randomly select one action from all possible actions that can be

performed by the rule set Γ . Based on RandomStep, RandomWalk
takes a finite number 𝑡 and calls RandomStep(𝑐, Γ) 𝑡 times.

We also clarify that, in our modeling, both RandomStep and

RandomWalk do not rely on the prompt or prompt-requested be-

haviors. In the software engineering field, with the understanding

of programming language grammar, with only original code pro-

vided, there are many transformation rules on the shelves that can

apply semantics-equivalent transforms.

At the end of this section, we define the notions ergodicity rule set
and rule-based equivalent space, which we will analyze afterward.

Definition 3.3 (ErgodicityRule Set). A ΓERG = {R1,R2, . . . ,R𝑛}
denotes a set of rules that meet the following properties:

• Empty Rule: Each ΓERG has a transformation rule that per-

forms empty conversions, i.e., for all 𝑥 ∈ X, 𝑐 ∈ C and

𝑎 ∈ R(𝑐), the Transform algorithm of this rule satisfies:

𝑐 = Transform(𝑐, 𝑎) .

• Inverse Rule: Each R ∈ ΓERG has its inverse rule R−1 that
satisfies: Given Λ = R(𝑐) and 𝑐′ = Transform(𝑐, 𝑎), for each
action 𝑎 ∈ Λ, there is at least one 𝑎−1 ∈ R−1 (𝑐′) to satisfy:

𝑐 = Transform(𝑐′, 𝑎−1) .

1
https://github.com/mishoo/UglifyJS

2
https://github.com/javascript-obfuscator/javascript-obfuscator

3
https://pyobfuscate.com/pyd

Algorithm 2: RandomWalk

Input: Original Code: 𝑐ori ∈ C,
Rule Set: Γ = {R1,R2, . . . ,R𝑛},
Number of Steps: 𝑡 ∈ N

Output: Transformed Code: 𝑐trans ∈ C
1 Init 𝑐 ← 𝑐ori
2 for each 𝑖 in 1, 2, . . . , 𝑡 do
3 Set 𝑐 ← RandomStep(𝑐, Γ)
4 Init 𝑐trans ← 𝑐

5 Return 𝑐trans

Since each step is reversible, we can deduce that for all

𝑐+, 𝑐− ∈ C, and all possible 𝑡 ∈ N, a ΓERG satisfies:

Pr[𝑐+ = RandomWalk(𝑐−, ΓERG, 𝑡)] > 0

⇐⇒
Pr[𝑐− = RandomWalk(𝑐+, ΓERG, 𝑡)] > 0.

It should be highlighted that the ergodicity rule set is imple-

mentable but not just a theoretical concept. An example is provided

in Table 1, each rule of which has an inverse rule. We can notice

that some rules might be inverse rules of themselves. Specifically,

for rules iv and its inverse rule iii, although there may be a low

probability to reverse the comment deletion by randomly adding

a comment, it is still nonzero and meets the constraint in Defini-

tion 3.3.

Definition 3.4 (Rule-based Equivalent Space). Given a prompt

𝑥 , a corresponding initial code 𝑐 ∈ ΦF , a rule set Γ = {R1, . . . ,R𝑛},
and a all possible finite step number 𝑡 ∈ N, a rule-based equivalent

space ΦΓ
𝑐 (in which ΦΓ

𝑐 ⊆ ΦF ⊆ C) consists of the initial code 𝑐 and
all possible RandomWalk(𝑐, Γ , 𝑡).

About Definition 3.4, in other words, when we perform quality-

ensured transformations using the abilities Γ given, and stop after

no matter how many steps, the result will be included in ΦΓ
𝑐 .

3.3 Chain Modeling
In this section, we will model our rule-based code transformation

as a graph, since we will disturb the watermarked context by its

in-graph random walk defined in Definition 3.2.

Given initial code 𝑐 ∈ C and rule set Γ , leading to a rule-based
equivalent space ΦΓ

𝑐 , the code transformation graph is a weighted

and directed graph GΓ
𝑐 = (V , E,W ) that reflects the transformation

relations inside ΦΓ
𝑐 . Each vertex 𝑣𝑖 ∈ V denotes its corresponding

Table 1: Ergodicity Rule Set Example. R’s indexes constitute
the leftmost row, and R−1 for the middle row.

R R−1 Description

i i Do nothing.

ii ii Randomly rename variables.

iii iv Add a random comment.

iv iii Delete a comment.

v vi Add a random dead code snippet.

vi v Delete a dead code snippet.

https://github.com/mishoo/UglifyJS
https://github.com/javascript-obfuscator/javascript-obfuscator
https://pyobfuscate.com/pyd
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code 𝑐𝑖 whenΦ
Γ
𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝑖 , . . . , 𝑐𝑛} given, and an edge 𝑒𝑖 𝑗 ∈ E

exists if Pr[𝑐 𝑗 = RandomStep(𝑐𝑖 , Γ)] > 0, which means 𝑐𝑖 can be

directly transformed to 𝑐 𝑗 within one step by rules in Γ . Inweight set
W , each weight𝑤𝑖 𝑗 ∈ (0, 1] corresponds to an existing edge 𝑒𝑖 𝑗 ∈ E,
and𝑤𝑖 𝑗 = Pr[𝑐 𝑗 = RandomStep(𝑐𝑖 , Γ)]. Based on the Definition 3.2
and Algorithm 1 that the next visited vertex is selected uniformly

and randomly, we always have:

∀𝑤𝑖+,𝑤𝑖− ∈
{
𝑤𝑖 𝑗 | 𝑒𝑖 𝑗 ∈ E,∀𝑗

}
,

𝑤𝑖+ = 𝑤𝑖− .

On the basis of GΓ
𝑐 definition, we define the transition matrix

®P ∈ R |V |× |V | of the graph:

®P𝑖 𝑗 =
{
𝑤𝑖 𝑗 , 𝑒𝑖 𝑗 ∈ E,
0, otherwise.

Further, a probability distribution vector p(𝑐𝑖 , 𝑡) ∈ R |V | satisfies
that: p(𝑐𝑖 , 𝑡) 𝑗 = Pr[𝑐 𝑗 = RandomWalk(𝑐𝑖 , Γ , 𝑡)]. In other words,

p(𝑐𝑖 , 𝑡) 𝑗 ∈ [0, 1] denotes that starting from 𝑐𝑖 after the 𝑡-th call of

RandomStep (line 3), the probabilities that our random-walking

code is now transformed into 𝑐 𝑗 . E.g., p(𝑐1, 0) = [1, 0, 0, . . . , 0] de-
notes that 𝑐1 is our starting point in the initial state. With the defini-

tion of the transition matrix given, we can notice that: p(𝑐, 𝑡 + 1) =
®P⊤ · p(𝑐, 𝑡).

For a matrix ®P that satisfies the stationary distribution condition

(i.e. irreducibility and aperiodicity satisfied on the corresponding

Markov chain)[33], a stationary distribution 𝜋 ∈ R |V | exists and
satisfies constraints that:

∃𝜋,∀𝑐 ∈ ΦΓ
𝑐 , lim
𝑡→∞

p(𝑐, 𝑡) = 𝜋.

Following classical Markov chain theory, we also define the

mixing time 𝑡𝑐 (𝜖) = min {𝑡 | ∥p(𝑐, 𝑡) − 𝜋 ∥TV ≤ 𝜖}, denoting that

starting from the initial code 𝑐 , the distribution of the Markov chain

is within total variation distance 𝜖 of the stationary distribution 𝜋

after 𝑡 steps.

4 Model Analysis
In this section, we prove that the stationary distribution condition

exists for all ergodicity rule sets corresponding code transformation

graphs (Subsection 4.1). In Subsection 4.2, we further prove that

each ergodicity rule set can define a partition on the high-quality

code space.

4.1 The Stationary Distribution Exists
In this section, inside the rule-based equivalent space for an er-

godicity rule set, we will prove the existence of RandomWalk’s
stationary state, which is independent of the walk’s starting point.

Specifically, based on the Markov theory [33], the stationary state

exists when the irreducibility and aperiodicity of the corresponding

Markov chain are satisfied.

Theorem 4.1 (Inside-Space Independence). For any rule-

based equivalent space ΦΓERG
𝑐 whose corresponding rule set is satis-

fied as an ergodicity rule set (Definition 3.3), it satisfies:

∃𝜋,∀𝑐 ∈ ΦΓERG
𝑐 , lim

𝑡→∞
p(𝑐, 𝑡) = 𝜋,

in which the definition of the rule-based equivalent space is Defini-

tion 3.4, and the vector p(, ) is defined in Subsection 3.3.

In other words, ΦΓERG
𝑐 ’s related code transformation graph GΓERG

𝑐

is both irreducible and aperiodic.

Proof of Theorem 4.1’s Irreducibility. First, we can focus on

the "original code" concept in Algorithm 2, and based on Defini-

tion 3.4, we define that rule-based equivalent space consists of

all RandomWalk-achievable codes from the original code 𝑐 ∈ C.
Therefore:

∀𝑐′ ∈ ΦΓERG
𝑐 , ∃𝑡, Pr[𝑐 → 𝑐′ | 𝑡] > 0,

in which we use an abbreviation Pr[𝑐 → 𝑐′ | 𝑡] to denote Pr[𝑐′ =
RandomWalk(𝑐, ΓERG, 𝑡)]. Then, based on Definition 3.3 that for all

𝑐+, 𝑐− ∈ C, a ΓERG satisfies:

Pr[𝑐+ → 𝑐− | 𝑡] > 0 ⇐⇒ Pr[𝑐− → 𝑐+ | 𝑡] > 0,

from which we can deduce that for all 𝑐+, 𝑐− ∈ ΦΓERG
𝑐 we have:

∵ Pr[𝑐 → 𝑐+ | 𝑡+] > 0⇒ Pr[𝑐+ → 𝑐 | 𝑡+] > 0;

∵ Pr[𝑐 → 𝑐− | 𝑡−] > 0;

∴ Pr[𝑐+ → 𝑐− | 𝑡+ + 𝑡−] ≥ Pr[𝑐+ → 𝑐 | 𝑡+] · Pr[𝑐 → 𝑐− | 𝑡−] > 0.

Thus, all vertices in the code transformation graph are mutually

reachable via finite-length paths that pass through the original code

𝑐 , implying that it is irreducible under ΓERG setting. □

Proof of Theorem 4.1’s Aperiodicity. FromDefinition 3.3, due

to the existence of the empty conversion (self-loop), for all ΦΓERG
𝑐

which corresponded with an ergodicity rule set ΓERG, for all 𝑡 ∈ N,

we have:

∵ Pr[𝑐 = RandomStep(𝑐, ΓERG)] > 0

∴ Pr[𝑐 = RandomWalk(𝑐, ΓERG, 𝑡)] ≥
(Pr[𝑐 = RandomStep(𝑐, ΓERG)])𝑡 > 0.

Therefore,

{𝑡 | 𝑐 = RandomWalk(𝑐, Γ , 𝑡)} = N

gcd({𝑡 | 𝑐 = RandomWalk(𝑐, Γ , 𝑡)}) = 1.

□

Note that in the Theorem 4.1, the definition of the space ΦΓERG
𝑐

relies on both the rule set ΓERG and code 𝑐 . With a rule set and any

initial code 𝑐 ∈ ΦF given, a space ΦΓERG
𝑐 can be sketched out then.

Given the equivalent space, the Theorem 4.1 means that, when

we choose a start point in this given equivalent space and do a

random walk, after long enough 𝑡 steps, the final probability dis-

tribution will always be 𝜋 (i.e., 𝜋 is this space’s intrinsic property),

being independent of the choice of the start point.

4.2 Rule-based Partition
For the needs of subsequent proof, we prove the partitionability of

the code space.

Theorem 4.2 (Ergodicity Rule Set can Partition the High-
-Quality Code Space). Given an ergodicity rule set ΓERG, for all
𝑐+, 𝑐− ∈ ΦF (ΦF ⊆ C) we have:

¬(ΦΓERG
𝑐+ = ΦΓERG

𝑐− ) ⇐⇒ ΦΓERG
𝑐+ ∩ ΦΓERG

𝑐− = ∅
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In other words, if two codes are not in the same rule-based equiv-

alent spaces, their spaces are non-overlapping, which means that

each ΓERG can define a partition of the high-quality code space.

Proof of Theorem 4.2. Follow the settings of Theorem 4.2, we

can deduce that (we reuse the abbreviation Pr[→|] in Theorem 4.1’s

proof, and we abbreviate ΦΓERG
𝑐+ and ΦΓERG

𝑐− as Φ+ and Φ−):

Given: Φ := Φ+ ∩ Φ−,Φ ≠ ∅,
⇒ ∀𝑐+ ∈ Φ+, ∃𝑐 ∈ Φ, 𝑡+ ∈ N, Pr[𝑐+ → 𝑐 | 𝑡+] > 0.

∵ ∀𝑐− ∈ Φ−, ∃𝑡− ∈ N, Pr[𝑐 → 𝑐− | 𝑡−] > 0,

∴ ∀𝑐+ ∈ Φ+, 𝑐− ∈ Φ−,
Pr[𝑐+ → 𝑐− | 𝑡+ + 𝑡−] ≥ Pr[𝑐+ → 𝑐 | 𝑡+] · Pr[𝑐 → 𝑐− | 𝑡−] > 0,

⇒ ∀𝑐− ∈ Φ−, 𝑐− ∈ Φ+,
and by symmetry, ∀𝑐+ ∈ Φ+, 𝑐+ ∈ Φ−,

⇒ Φ+ = Φ−
□

Definition 4.1 (Rule-based Partition). Following Theorem 4.2,

given high-quality code space ΦF and an ergodicity rule set ΓERG,
a rule-based partition PΓERG

is:

PΓERG =

{
ΦΓERG
1

,ΦΓERG
2

, . . . ,ΦΓERG
𝑛

}
, which satisfies (we abbreviate PΓERG

to P):
∀Φ ∈ P,Φ ⊆ ΦF ;⋃

Φ∈P Φ = ΦF ;
∀Φ+,Φ− ∈ P,Φ+ ∩ Φ− = ∅.

This means PΓERG
is the result of partitioning high-quality code

space ΦF by ΓERG.

5 Impossibility Results
5.1 Assumption and Robustness Impossibility
In this section, we will describe our only assumption, which is

intuitive and has been supported by experiments.

First, we define the target of our assumption, distribution con-

sistency.

Definition 5.1 (Distribution Consistency). We define Q(C)
to denote a distribution over the code space C, where Q is inde-

pendent of the watermarking scheme. Given a partition PΓERG
, a

watermarking scheme ˝ = (Watermark,Detect) satisfies the distri-
bution consistency property if, for all Q, 𝑥 ∈ X, 𝑐 ∈ C, and k ∈ K ,
given 𝑐 ∼ Q(C),Detectk (𝑥, 𝑐) ∼ D, we have:

if 𝑐 ∼ Q(Φ), then Detectk (𝑥, 𝑐) ∼ D .
That is, the observed distribution ofDetectk (, )’s results within each
equivalent space in Φ ∈ PΓERG

remains the same as the distribution

observed over the entire code space C.

We remind that the distribution consistency is a necessary and

sufficient condition for the independence between ΓERG andDetect.
Moreover, the Detect(𝑥, 𝑐) among the whole code space C follows

the Bernoulli distribution, Bernoulli(𝜖pos).

Assumption 5.1 (Impossibility Assumption). With imple-

mentable code transformation rules, distribution consistency (Def-

inition 5.1) can be achieved when confronting the N-gram-based

watermarking scheme.

Discussion of Assumption 5.1: First, it is clear that distribution
consistency cannot be satisfied by all rule sets. If a rule set can only

disturb code slightly but many literal features are retained, the

metric of N-gram-based watermarking detection will be biased. We

can consider a rule set with only an empty rule, and no disturbing

effect will be obtained.

However, nowadays, various syntax-based or semantics-based

transformation rules can be implemented to vary the N-gram fea-

tures inside the equivalent space. Many components of a code, e.g.,

variable name, string/numeric constant, local control/data flow, ex-

pression, etc., can all be more or less disturbed independent of the

N-gram-level features that are detectable to N-gram-based water-

marking schemes. In contrast, components that will be retained

after disruption are generally semantics-related, e.g., design pattern,

overall control/data flow, functionality, etc., while N-gram-based

watermarking schemes do not have an awareness of these semantic

features, which is the reason why we assume the N-gram features

are independent of the equivalent space partition.

We can think of distribution consistency as the product of a game

between watermarking schemes and attackers. If the watermarking

scheme can watermark and detect code properties at a higher level,

e.g., syntax or even functional level, while the rule set can only

union codes with low-level equivalence, the distribution inside rule-

based equivalent space will be seriously biased. For example, if the

watermarking scheme can watermark and detect the AST pattern,

while the rule set can only disturb variable names, the Detect will
return the same results inside each equivalent space. On the other

side, if the watermarking scheme can only watermark and detect

code properties at a low level, like the N-gram level, the distribution

consistency can be easily satisfied by existing syntax or semantic

level transformation rules.

Based on the thinking above, we make the Assumption 5.1 and

will check its satisfaction by experiment in Subsection 6.4.

Theorem 5.1 (Impossibility Theorem). With Assumption 5.1

satisfied, given large enough 𝑡 , there exists an ergodicity rule set

ΓERG that for all N-gram-based schemes with false positive rate

𝜖pos, the RandomWalk(𝑐 | 𝑐 ∈ Ck, ΓERG, 𝑡) algorithm can perform

as an attacker and (1 − 𝜖pos)-break the watermarking.

Proof of Theorem 5.1. We remind that:

• The secret key k is sampled randomly and independently of

(𝑥, 𝑐) ∈ X × C, which ensures that we can bound the false

positive rate without needing to make assumptions on the

unknown human-generated data distribution.

• For each ergodicity rule set, given long enough 𝑡 , start from

a watermarked code 𝑐 , after RandomWalk(𝑐, ΓERG, 𝑡) runs,
the results (and the stationary distribution 𝜋 ) only rely on:

1) Which equivalent spaces ΦΓERG
𝑐 the original 𝑐 belong to.

2) The stationary distribution 𝜋 of GΓERG
𝑐 .

• We assume the distribution consistency (Assumption 5.1),

i.e., the independence between ΓERG and Detect.

Therefore, if we set:

• Att(𝑥, 𝑐) := RandomWalk(𝑐, ΓERG, 𝑡) (the prompt 𝑥 is pro-

vided as an input here, but note that the algorithmRandomWalk
does not rely on it),
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• For PΓERG = {Φ1,Φ2, . . . ,Φ𝑚}, the probability distribution

r ∈ R𝑚 has r𝑗 = E[𝑐 ∈ Φ𝑗 | 𝑐 ∈ Ck],
we have:

E(1[Detectk (𝑥,Att(𝑥, 𝑐)) = 0] | 𝑐 ∈ Ck)

=1 −
∑︁

Φ𝑗 ∈PΓERG

(r𝑗 ·E[Detectk (𝑥, 𝑐𝑖 ) | 𝑐𝑖 ∈ Φ𝑗 ])

=1 −
∑︁

Φ𝑗 ∈PΓERG

(r𝑗 ·
∑︁
𝑐𝑖 ∈Φ𝑗

(𝜋𝑖 ·E[Detectk (𝑥, 𝑐𝑖 )]))

=1 −
∑︁

Φ𝑗 ∈PΓERG

(r𝑗 ·
∑︁
𝑐𝑖 ∈Φ𝑗

(𝜋𝑖 · 𝜖pos)) = 1 − 𝜖pos

□

In other words, when distribution consistency is satisfied, the

distribution of the watermarking detectable N-gram feature among

each equivalent space has no differences with the distribution

among the whole code space C. Therefore, after the obfuscation,
the watermark detector cannot distinguish the watermarked code

from benign codes selected from the human-written space, making

the "afterward FNR" increase to a very high level of 1− 𝜖pos, totally
nullifying the watermark detection.

The above impossibility theorem relies on the condition large
enough 𝑡 . To better understand the efficiency of our attack, with the

mixing time 𝑡𝑐 (𝜖) defined in Subsection 3.3, we further prove that:

Theorem 5.2 (Lower Bound of Attacked FNR). With Assump-

tion 5.1 satisfied, given 𝑡 ≥ 𝑡𝑐 (𝜖), in which 𝑐 is the original water-

marked code and also the starting point of the random walk, there

exists an ergodicity rule set ΓERG that for all N-gram-based schemes

with a false positive rate 𝜖pos, the RandomWalk(𝑐 | 𝑐 ∈ Ck, ΓERG, 𝑡)
algorithm can perform as an attacker and (1 − 𝜖 − 𝜖pos)-break the

watermarking.

Proof of Theorem 5.2. Given 𝑡 ≥ 𝑡𝑐 (𝜖) achieved, in the worst

case, the whole probability distribution biases towards Detect(, ) =
1. With setting Δ𝑖 := |p(, )𝑖 − 𝜋𝑖 | and D𝑖 := Detectk (𝑥, 𝑐𝑖 ), we have:∑︁

𝑐𝑖 ∈Φ
(p(𝑐𝑖 , 𝑡)𝑖 · D𝑖 ) =

∑︁
𝑐𝑖 ∈Φ∧
D𝑖=1

p(𝑐𝑖 , 𝑡)𝑖

≤
∑︁
𝑐𝑖 ∈Φ∧
D𝑖=1

[𝜋𝑖 + Δ𝑖 ] =
∑︁
𝑐𝑖 ∈Φ∧
D𝑖=1

Δ𝑖 +
∑︁
𝑐𝑖 ∈Φ
[𝜋𝑖 · D𝑖 ] .

In the worst case, the bias performs on increasing probabilities

at the D𝑖 = 1 cases, symmetrical reduction will be on D𝑖 = 0.

Therefore: ∑︁
𝑐𝑖 ∈Φ∧
D𝑖=1

Δ𝑖 ≤
1

2

∑︁
𝑐𝑖 ∈Φ

Δ𝑖 = ∥p(, ) − 𝜋 ∥TV ≤ 𝜖.

Substituting into the previous calculation, with 𝑡 ≥ 𝑡𝑐 (𝜖), we get:
E(1[Detectk (𝑥,Att(𝑥, 𝑐)) = 0] | 𝑐 ∈ Ck)

=1 −
∑︁

Φ𝑗 ∈PΓERG

(r𝑗 ·E[
∑︁
𝑐𝑖 ∈Φ𝑗

(p(𝑐𝑖 , 𝑡)𝑖 · D𝑖 )])

≥1 −
∑︁

Φ𝑗 ∈PΓERG

(r𝑗 ·E[𝜖 +
∑︁
𝑐𝑖 ∈Φ𝑗

(𝜋𝑖 · D𝑖 )])

=1 − 𝜖 − 𝜖pos

□

Note that as "afterward FNR," the 1−𝜖−𝜖pos is still too high to be
an acceptable value, for the time complexity calculation shows in

Theorem C.4 that 𝑡𝑐 (𝜖) has a linear dependence on ln 𝜖−1, meaning

that 𝜖 can be set to a small enough value with a slight affection on

the 𝑡𝑐 (𝜖).

5.2 Summary and Additional Discussions
In summary, under a mild and experimentally supported assump-

tion of distribution consistency, an obfuscation can effectively defeat

the N-gram-based watermarking scheme. In particular, we prove

that with our assumption satisfied, the attack will make 1 − 𝜖pos
ratio of watermarked codes evade watermarking detection, which

means that the detection algorithm entirely loses the ability to

distinguish watermarked code from benign code.

While the obfuscation attack fundamentally challenges the ro-

bustness of existing watermarking schemes, we also propose the

potential path to defend, i.e., increase the semantic awareness of

code watermarking to break the distribution consistency (see appen-

dix B). Besides, we present the space-/time-complexity calculation

and the mixing-time estimation for our attack (see appendix C).

6 Experimental results
In this section, to support our theory, we implement our attack

scheme confronting three state-of-the-art watermarking schemes.

The code obfuscators generally integrate various equivalent

transformation rules to disturb the input codes. Compared with our

randomized setting in theory analysis, some realistic obfuscators

also apply fixed transformation rules or give a fixed output for each

input. Without losing the independence with N-gram features, they

can be seen as an implementation of our attack algorithm with a

random seed fixed.

We used off-the-shelf code obfuscators to perform a low-cost

attack and provide more practical value. The results show that

with off-the-shelf code obfuscators, the watermarking detection is

nullified among three watermarking schemes, two programming

languages, four obfuscators, and two different large language mod-

els.

6.1 Experiment Setting
Models & Watermarking Approaches: For models, we select

two representative LLMs with noticeable performances on code,

LLaMA-3.1-8B-Instruct [41, 52] and DeepSeek-Coder-33B-Base [17].

For watermarking approaches, we selected SWEET, WLLM, and

SynthID [10, 25, 32]. They are all top-tier approaches with high

representativeness, in which SWEET is specifically designed for

code watermarking.

For each watermarking approach, we traverse a number of rea-

sonable combinations of hyperparameters, following their own

typical settings in the papers. For both WLLM and SWEET, there

are green token rates 𝛾 ∈ {0.1, 0.25, 0.5}, logits adding amounts

𝛿 ∈ {0.5, 1.0, 2.0, 3.0, 4.0}. Besides, SWEET introduces another pa-

rameter 𝜏 ∈ {0.3, 0.6, 0.9, 1.2} represents the entropy thresholds.

For generation parameters, we use default settings, in which the

temperature is 1.0. For SynthID, we use tournament rounds count
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𝑚 = 30 following its default setting and set two competitors in each

match of the tournament. Because tournament sampling will lose

its non-distortionary feature when having more competitors. For

comprehensiveness, we traverse the temperature value from {0.25,
0.5, 0.75, 1.0, 1.25} for SynthID. For all watermarking approaches,

we use a 5-gram setting, i.e., previous four tokens will be hashed to

bias the next-token generation.

Code Benchmarks: For the code generation task, we selected

four benchmarks spanning two programming languages: Python

and JavaScript. Specifically, we utilized HumanEval [6] and MBPP+

(under its base setting) [37] for Python, as well as HumanEval-X-

JS [67] and MBPP-JS (from MultiPL-E) [4] for JavaScript. These

benchmarks consist of programming problems and corresponding

test cases. Language models are prompted with a problem descrip-

tion and are expected to generate code that successfully passes the

provided test cases.

Note that source code obfuscation techniques—such as control

flow obfuscation, identifier renaming, and string or scalar encryp-

tion—can often be transferred across programming languages due

to syntactic similarities. Consequently, comparable levels of ob-

fuscation strength can be achieved at the source level in other

languages as well.

Metrics: We evaluate code generation performance using the

Pass@1 metric [6], which estimates the proportion of generated

code that exhibits correct behavior. For detection capabilities, we

report the Area Under the Receiver Operating Characteristic Curve

(AUROC). Specifically, we compute the AUROC between the 𝑧-score

distribution of the generated samples and the standard normal dis-

tribution to quantify the deviation in the right tail from the null

hypothesis. During AUROC computation, we exclude uncompil-

able code samples, as code transformations are only applicable to

compilable code. Among all watermarked code samples generated,

the compilation success rate is 97.0%, indicating minimal impact

on the statistical validity of our results.

Obfuscators: For Python obfuscators, we use Python-Minifier
4

and PyMinifier
5
. For JavaScript, we use JS obfuscator

6
and UglifyJS

7
.

All selected tools are widely adopted in the community, with GitHub

repositories ranging from 600 to 13.2k stars.

These obfuscators are designed to preserve semantic equivalence,

ensuring that the functionality and correctness of the code remain

intact after obfuscation. In our experiments, Python-Minifier, JS

Obfuscator, and UglifyJS consistently maintained test case passabil-

ity, showing no adverse effects. However, PyMinifier exhibited a

0.21 % failure rate in preserving passability, slightly impacting the

overall Pass@1 results. Upon manual inspection of several failed

cases, all issues stemmed from PyMinifier incorrectly transforming

single-element tuples into standalone elements, thereby altering

the original semantics.

6.2 SOTA Watermarking Schemes Under Attack
In this section, we will analyze the watermarking’s post-attack

performances under our experimental settings. For distortionary

watermarking schemes, i.e., SWEET and WLLM, the results on

4
https://github.com/dflook/python-minifier

5
https://github.com/liftoff/pyminifier

6
https://github.com/javascript-obfuscator/javascript-obfuscator

7
https://github.com/mishoo/UglifyJS

LLaMA against Python-Minifier and JS Obfuscator are shown in

Figure 4. A full version of SWEET and WLLM results among two

models and four obfuscators is Figure 8. The results for SynthID

are shown in Figure 5, as well as Figure 9 in the appendix.

As the preliminary question of the robustness issue we focus

on, we first analyze the pre-attack performance of the watermark-

ing approaches (see appendix D for detailed analysis). All three

watermarking schemes show quality-preserving and detection abil-

ities, as expected. For LLaMA 3.1, all three watermarking schemes

and four code benchmarks have parameter combinations that lead

to AUCROC scores higher than 0.9 while maintaining more than

80 % of the same model’s original non-watermarked performance.

For DeepSeek-Coder, the SynthID achieves AUROC 0.9 under the

temperature 1.25 with less than 2 % of Pass@1 decrease. All water-

marking schemes also achieve AUROC≃ 0.8whilemaintaining 80%

non-watermarked performance. We further analyze the pre-attack

performances at appendix D.

Detection Performances under Attack: For performances

after the attack, following our distribution consistency assump-

tion (Assumption 5.1), the distribution of N-gram features after

the attack would follow the distribution of the whole code space,

i.e., the detection algorithm cannot discriminate between water-

marked code after the attack and benign code, degenerates into

random guess and leads to a 0.5 AUROC score. From Figure 4 and

Figure 5, the AUROC scores afterward tightly surround the 0.5,

which confirms our theory. Among different models and different

watermarking approaches, watermarking detection becomes nearly

impossible after the attack.

The attack can be applied to different obfuscators with different

levels of obfuscation. We also observed slightly different attack

effects on different obfuscators. For obfuscators with more inten-

sive modifications on code, i.e., Python-Minifier on Python and JS

Obfuscator on JavaScript, all AUROC scores among all three water-
marking schemes after attack fall into the range of (0.4, 0.6). Even
for other obfuscators with limited obfuscation strengths, the ratios

that afterward AUROC fall into (0.4, 0.6) are 99.7 % for UglifyJS

and 97.5 % for PyMinifier.

Among all experiments we did, only 9/1280 = 0.7% obfuscated

data points are outside this range, and none of them maintain

more than 80% of the default Pass@1 performance (i.e., the non-

watermarked performance) during the watermarked generation.

This highlighted that after our attack, all watermarked data points

with good quality-preserving failed to be detectable.

We also calculated the mean and standard deviation values for

each obfuscator, in which PyMinifier has the most biased average

AUROC (0.511) and highest standard deviation value (0.035). This

result shows that even naive code transformations can effectively

attack the watermarking detection since the PyMinifier in our ex-

periments only minifies the code but has no further perturbations.

Conclusion: In conclusion, among two models, two program-

ming languages, and four code benchmarks, the detection per-

formances on code segments after obfuscation are tightly sur-

rounded around AUROC 0.5. All three tested SOTA watermarking

approaches show no robustness to confront the attack.



Conference’17, July 2017, Washington, DC, USA Gehao Zhang, Eugene Bagdasarian, Juan Zhai, and Shiqing Ma

0.40 0.45 0.50 0.55 0.60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
H

um
an

E
va

l
AU

R
O

C

Original WM

Pass@1  20%

AUROC = 0.50

0.40 0.45 0.50 0.55 0.60

Python-Minifier Obfuscated

Style
 = 0.10
 = 0.25
 = 0.50

Filling Color
 = 0.50
 = 1.00
 = 2.00
 = 3.00
 = 4.00

Border Color
 = 0.30
 = 0.60
 = 0.90
 = 1.20
 = 0.00

Border Color
 = 0.30
 = 0.60
 = 0.90
 = 1.20
 = 0.00

Pass@1  20%

0.55 0.60 0.65 0.70 0.75
Pass@1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
B

PP
+

 (B
as

e)
AU

R
O

C

Pass@1  20%

AUROC = 0.50

0.55 0.60 0.65 0.70 0.75
Pass@1

Pass@1  20%

(a) Our attack effect on LLaMA 3.1 and Python language.

0.25 0.30 0.35 0.40 0.45 0.50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
um

an
E

va
l-X

-J
S

AU
R

O
C

Original WM

Pass@1  20%

AUROC = 0.50

0.25 0.30 0.35 0.40 0.45 0.50

JS Obfuscator Obfuscated

Style
 = 0.10
 = 0.25
 = 0.50

Filling Color
 = 0.50
 = 1.00
 = 2.00
 = 3.00
 = 4.00

Border Color
 = 0.30
 = 0.60
 = 0.90
 = 1.20
 = 0.00

Border Color
 = 0.30
 = 0.60
 = 0.90
 = 1.20
 = 0.00

Pass@1  20%

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Pass@1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
B

PP
-J

S
AU

R
O

C

Pass@1  20%

AUROC = 0.50

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Pass@1

Pass@1  20%

(b) Our attack effect on LLaMA 3.1 and JavaScript language.

Figure 4: Watermarking performances of WLLM and SWEET [25, 32] on LLaMA-3.1-8B-Instruct [52], before/after attack. Each
sub-figure row corresponds to a code benchmark, and each column is for the original watermarked or obfuscated code. The
y-axis denotes the detection’s AUROC score (↑), and the x-axis is the Pass@1 score (↑), representing code generation ability
after the distortionary watermarking. Different border colors, filling colors, and shapes of points denote different values of
hyperparameters. The blue vertical line illustrates 80% of non-watermarked performance under the same setting. Note that:
1) Obfuscation does not change the code semantics, so the projections of the data points at the x-axis are the same between
sub-figures in the same row. 2) WLLM can be seen as a special case of SWEET when 𝜏 is zero. For full version of all results
among two models and four obfuscators, see Figure 8.
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6.3 Impact on Different N-gram lengths
To explore the generalization ability of our attack among different N-

gram lengths (2-grams to 5-grams), we did an ablation experiment

on WLLM, JS Obfuscator, and LLaMA 3.1, as shown in Figure 6.

From the results before the attack, different N-gram length set-

tings do not impact WLLM’s performance seriously. The average

Pass@1 is (0.419, 0.426, 0.429, 0.420) from 2-grams to 5-grams, and

the average AUROC is (0.812, 0.818, 0.824, 0.819), showing little

fluctuation with N-gram length change. From Figure 6, we can also

observe that the trends of AUROC and Pass@1 trade-offs are similar

under different N-gram lengths.

For results after the attack, our conclusion about the attack ef-

fect on Subsection 6.2 remained the same among different N-gram

lengths, i.e., obfuscation nullifies the watermarking detection. The

AUROC of obfuscated code distributed around 0.5 tightly, from

2-grams to 5-grams. None of the data points show AUROC scores

higher than 0.6.

6.4 Distribution Consistency Test
To further confirm our theory, we test the satisfaction of our core

assumption (Assumption 5.1), i.e., distribution consistency. Starting

from 158 highly watermarked code segments (the results from

appendix E), we construct an approximate rule-based equivalent

space for each of them. The detailed process is in appendix F.

After the construction, we leverage the Anderson-Darling test to

test whether the 𝑧-score distribution inside the equivalent spaces

following N(0, 1), i.e., the distribution in whole code space C. The
results are shown in Figure 7. We can notice that if we take the

classic significance level 5.0, 98.10% of the equivalent spaces take the

null hypothesis and can be seen as following the standard normal

distribution. Even if we take the most lax significance level 15.0 in

traditional [50], still 83.54% of the equivalent spaces followN(0, 1).
Besides the 98.10% of equivalent spaces that take the null hy-

pothesis, there remain three equivalent spaces that refuse. We fur-

ther analyze whether their refusal comes from the impact of the

watermarking scheme. We draw these three 𝑧-score distributions

corresponding to the outlier spaces in Figure 7 with their mean

values marked in vertical lines,

The watermarking scheme here intends to reach higher 𝑧-scores,

like the before distribution in Figure 10. However, in Figure 7, we

notice that one of them biased to lower 𝑧-scores, and remaining

two spaces have mean 𝑧-scores close to zero.

We can conclude that an implementable rule set can easily achieve

our distribution consistency assumption with high satisfaction.

Even though there exist some outlier spaces, the impact of the wa-

termarking scheme still can hardly apply to the equivalent space.

7 Limitations
We identify the limitations of this work. Some of them identify the

possible future exploration.

Attack on Other Watermarking Schemes. The scope of this work
is limited to the N-gram-based watermarking schemes.

Recently, some works have worked on bypassing the N-gram

watermarking routine to increase the robustness [39, 63]. Evalu-

ating their robustness in software engineering tasks would be a

promising future work. However, given that N-gram-based water-

marking is both widely followed [10, 14, 25, 26, 32, 36, 57, 65] and

industrially deployed [10], we still believe that the information we

express in this work is both timely and valuable.

Besides these, some works also contributed to injecting water-

marks using code transformation rules during post-processing

or code LLM training dataset preparation [34, 51, 59]. Together

with the other software watermarking schemes [11], these ap-

proaches heavily rely on language-specific transformation rules.

Although we focus on N-gram-based watermarking schemes, our

attack model naturally has the ability to disturb the watermarks

since the transformation rules can directly be reversed by obfusca-

tors, depending solely on whether the transformation rules have

been identified.
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Figure 6: Watermarking performance under the N-gram length from two to five, on WLLM watermarking [25] and LLaMA 3.1
[52], before and after the attack. The code benchmark is HumenEval-X-JS [67]. Inside each subfigure, the leftmost column
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Different Code Quality Aspects. In this work, the aspect of code

quality we evaluated is limited to the execution behaviors based on

test case passability. Specifically, we use code benchmarks to assess

the Pass@1 metric, following the widely adopted practice [4, 6, 37,

67]. However, as reflected by its prominence in the most widely

used code benchmarks, execution behavior is commonly viewed as

the most critical dimension of code quality. In various scenarios, it

is also often the most — or even the only — aspect of concern, e.g.,

programming competitions, obfuscated binary deployment, and

black-box API consumption. In the future, developing obfuscation

techniques that retain multiple dimensions of code quality could

be a promising direction.

8 Conclusion
In this work, we present both theoretical and empirical evidence

demonstrating the fragility of N-gram-basedwatermarking schemes

in the context of code generation. By modeling code obfuscation

as a Markov random walk and introducing an ergodic rule-based

transformation framework, we prove that under a reasonable and

experimentally validated assumption, distribution consistency, the
robustness of N-gram-based watermarking schemes can be effec-

tively nullified. Our theoretical analysis is further substantiated by

extensive experiments across multiple watermarking techniques,

programming languages, models, and benchmarks, where detec-

tion performance consistently degrades to near-random levels post-

obfuscation. These findings underscore a fundamental limitation

in relying solely on N-gram patterns for code watermarking, es-

pecially in adversarial scenarios involving semantics-preserving

transformations. As LLMs continue to be integrated into software

engineering workflows, our results call for a reevaluation of water-

marking strategies, pointing toward the need for more semantically

aware and transformation-resilient approaches in future research.
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A "Impossibility of Impossibility"
In this section, we demonstrate the unfeasibility of the previous

work’s impossibility proof [61] on program generation tasks, in

which the authors made two critical assumptions:

• Quality oracle: The attacker has access to a quality oracle,
allowing efficient verification of whether a disturbed result

still meets the original prompt’s requirements, i.e., belonging

to the high-quality space.

• Perturbation oracle: The attacker has a perturbation ora-
cle, which can efficiently generate random disturbances to

responses while maintaining their quality. The perturbation

oracle relies on quality oracle to validate whether a random-

ized perturbated answer still belongs to the high-quality

space.

Under these assumptions, the authors proved that no water-

marking scheme could retain its robustness. They argued that these

assumptions are practically reasonable because of the heuristic

notion that "verification is easier than generation." However, we

argue that in programming generation tasks, these assumptions,

especially the existence of a quality oracle, do not hold either theo-

retically or practically.

Theoretical Impossibility. Specifically, unlike natural language
scenarios where verification might indeed be simpler than gener-

ation, verifying correctness in programming generation needs to

observe the running behavior and is fundamentally challenging.

The quality oracle described would need to check whether the gen-

erated code precisely matches a prompt describing the required

program behavior. However, this verification task is theoretically

impossible due to fundamental limitations rooted in computability

theory.

In fact, the task of universally verifying program behavior is

deeply connected to the well-known halting problem [27]. The halt-

ing problem demonstrates that no algorithm can universally deter-

mine whether an arbitrary program halts (terminates) or continues

indefinitely for all possible inputs.

Building upon the halting problem, Rice’s theorem [46] gener-

alizes this concept further, asserting that virtually all meaningful

(non-trivial) behavioral properties of programs, such as correctness,

termination, or compliance with certain specifications, are undecid-

able. In simpler terms, Rice’s theorem informs us that there is no
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universal verifier capable of reliably assessing program behavior

across all possible cases. This limitation is fundamental, not just an

occasional exception.

Therefore, even for a seemingly straightforward prompt such as

"Generate a program that halts," constructing an accurate quality

oracle would involve solving the halting problem itself, which is

known to be impossible. Extending this reasoning, we conclude that

most practical programming prompts inherently involve verifying

non-trivial semantic properties, making a universal quality oracle

fundamentally unattainable.

Generalizing to more practical situations, consider a prompt

such as "generate a Python server demo." Implementing a quality

oracle for this task would require determining whether a perturbed

program is a valid Python server and verifying if its runtime per-

formance (e.g., latency, throughput, correctness under various con-

ditions) remains consistent with the original unperturbed program.

This form of comprehensive runtime and semantic verification is

also theoretically impossible, as it would necessitate solving unde-

cidable problems.

Practical Impossibility. Even if we add many restrictions (e.g.,

timeout, using LLMs to generate test cases, considering only codes

that are runnable in Att’s sandbox, etc.) to make it theoretically

implementable, achieving the quality oracle is still an open question

and tends to consume large amounts of computational resources,

leading to an attack that is too inefficient to be realistic.

Many works highlighted the difficulty of automating generat-

ing test cases from natural language business rules. Even though

state-of-the-art generative models can be leveraged, there are still

overwhelming challenges, including high intellectual demand, un-

controllable and intractable outputs, limited domain knowledge in

pre-training models, test-oracle problems, rigorous evaluations, and

high implementation costs in the real-world applications [9, 54, 58].

We can also estimate the difficulty from past practice. An ac-

ceptable code evaluation is both hard and resource-consuming,

even with ground truth code given. EvalPlus [38] needs a state-

of-the-art model to generate around 30 seed inputs and generate

1000 additional inputs using a one-hour budget, for each task. Live-

CodeBench [23] needs to generate other code segments as input

generators, and there are 2 random and 4 adversarial input gen-

erators needed for each task. Considering the quality oracle, with

only natural language description and reference code inputted, it

can only be harder without ground truth code to guide the test

generation. CodeT [5] needs to generate around 50 other candidate

solutions (1000 for harder tasks) to perform cross-validation, and

they generate 100 test cases for each task. All works above are

required to call state-of-the-art generative models.

Therefore, this is the opposite of the previous work’s assumption

that, even if we add restrictions to get around theoretical impos-

sibilities, the code evaluation would be likely to consume similar

or more computational resources than a generation, leading to a

theoretically impossible and low cost-effectiveness attack. This is

also the motivation of our code transformation rule modeling.

In summary, to build a quality oracle, there needs to be a theoret-
ically impossible evaluator that tests whether codes fulfill require-

ments from the prompt. Even considering multiple restrictions are

added to bypass the theory barrier, it still tends to require higher

computational resources to evaluate the code than code generation.

We do not deny the feasibility of applying more advanced code

disturbor and semantics checker (e.g., use LLMs to re-generate code

and use EvoSuite [13] to ensure equivalence where possible). How-

ever, any try like this can only be seen as performing a random

walk on a larger rule-based equivalent space but not the entire

high-quality space, falling into the modeling in this paper, and an

analysis of distribution consistency is needed.

B Discussion: Semantic Awareness of Code
Watermarking

In this section, we will discuss a possible path to increasing the

robustness of the code watermarking scheme, i.e., semantic aware-

ness.

In Subsection 5.1, we analyze that if the randomized watermark-

ing algorithms apply on the N-gram level without the awareness of

syntax or semantics, the distribution consistency is more achievable

since the transformation rules are generally syntax- or semantics-

based.

On the other hand, in appendix A, we also show that it is im-

possible to random walk or obtain semantic equivalence among

the entire high-quality space ΦF , since they all rely on semantics

comparison or semantics understanding, which breaks Rice’s theo-

rem [46], and leaves space for watermarking robustness. Suppose

we can introduce bias on the semantics of the generated code and

detect the semantic features. In that case, attackers will need similar

or higher computational costs to disturb the watermark than code

generation.

As an example, one semantics-related component would be

third-party API calling. Containing rich semantics, disruption on it

needs an extensive understanding of semantics (e.g., transforming

np.square(matrix) to matrix**2 needs the knowledge of NumPy

API). With obfuscators nowadays, third-party API calls generally

remain even after obfuscation due to their semantics-related nature.

Consider a task that generates long code with multiple third-

party API calls. If we have a watermarking scheme that can 1) apply

hidden strategies on how to select and call third-party APIs and 2)

detect these hidden patterns in the sequence of API callings, the

robustness under attack would be kept to a considerable extent.

The difficulty of attacking this watermarking scheme would be:

• For attackers with a rule set that cannot disturb the API call,

the distribution consistency (Assumption 5.1) assumption

will not be satisfied since codes from each rule-based equiva-

lent space share the same API calling feature, and the whole

space can be considered watermarked.

• For attackers that are dedicated to disturbing the API calling

features, a similar level of third-party API understanding

compared with the code generation model is needed. Either

disturbing the API calling dynamically with a generative

model or mining a comprehensive API transformation rule

set would be high-cost and hard to keep precision. Mean-

while, a post-evaluation scheme (like the quality oracle in

previous work [61]) to bound the quality of transformed code

would also be high-cost, like we analyzed in appendix A.

Therefore, we consider a code watermarking scheme with high

semantics awareness as robust.
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Note that showing the possibility of code watermarking robust-

ness is not within the scope of this paper, and high implementation

costs might accompany the path we discussed.

C Cost Analysis of Attacks
C.1 Overall Analysis
In other sections, we prove that when 𝑡 exceeds the mixing time

and distribution consistency is satisfied, the robustness of the wa-

termarking scheme can be effectively broken.

In this section, we estimate the order of this sufficiently large 𝑡
and demonstrate that an attack tends to incur significantly lower

time and space costs compared to the cost of code generation.

We emphasize that the time- and space- complexity should be

various for different designs of the rule set. Therefore, we add in-

tuitive and implementable additional definitions to simplify the

calculation. The following analysis may not apply universally. In-

stead, our result should be considered an approximate solution

applicable to general scenarios.

Our attack proceeds by first dividing the watermarked code

into segments or code blocks. These segments only need to be

sufficiently long to satisfy distribution consistency. Based on our

experiments, this required length is relatively small. In fact, all

three watermarking schemes lost the detection ability consistently

during our experiment, and the 90-th percentile of segment lengths

was 275.0, which can serve as a reference value for setting 𝑙 . Next,

for each sub-segment, we perform iterative random walks until the

mixing time is reached.

For the following proof, we set several symbols:

• Given Φ ∈ PΓERG
, let the space size N = |Φ|.

• Let the length of the watermarked code be L and the length

of the split code segment be l.
• Let the receptor number of the code segment be ℘. As for the

concept receptor, it represents the code component that is tar-

geted by rules. E.g., code variables for variable modification

rule, comments for comment modification rule, etc.

• Let the out-degree of the vertex in the code transformation

graph is d.

We can follow the general assessment that the complexity of

the action derivation algorithm R is O (l) and Transform is O (1),
for both time complexity and space complexity, since R needs to

iterate the code and find the appliable actions, and each actions

performed by Transform only lead to modifications of constant

order. Moreover, since the new modifications after each call of

Transform is of constant order and the R in the next round only

needs to analyze the updates, we can assess the complexity of R as

O (1) if not the initial call of R.
Therefore,O (l) is the overall space complexity, andO

(
L
l · (l + 𝑡)

)
is the time complexity. The key point is to assess the mixing time 𝑡 .

In the following sections (Theorem C.4), we prove that 𝑡𝑐𝑖 (𝜖) ≤
O

(
l2 ln 𝜖−1 + l3

)
. In the case that L is relatively short and we do

not split the code into segments (L = l), the overall time complex-

ity of our attack will be O
(
L2 ln 𝜖−1 + L3

)
. When we consider the

situation that L ≫ l and we apply the split, the overall complexity

will be O
(
L · (l · ln 𝜖−1 + l2)

)
= O (L), since L ≫ l (as we shown in

experiment, l will be a length in control).

Compared with code generation, nowadays, transformer-based

generative models can be considered as having time and space com-

plexity O
(
L2

)
with a well-known high constant factor. Since our

attack generally only needs light-wise CPU computation and mem-

ory storage, our algorithm with O (l) space and O (L) time needed

will cost much less than code generation. Even if we do not split the

watermarked code during the attack and obtain O
(
L2 ln 𝜖−1 + L3

)
time complexity, the algorithm still tends to be faster than LLM

generation when we have small scale L due to generative model’s

high constant factor.

C.2 Graph Definitions
In this section, we will start the calculation of mixing time. We

define the concept receptor, which means the element that receives

the code transformation, for example, variables for the rule "Ran-

domly rename variables" and dead code block for "Delete a dead

code snippet" in Table 1.

Given the notion that the size of Φ ∈ PΓERG
is N and the out-

degree of transformation graph is d, we stress the following addi-
tional definitions, which are intuitive and implementable, to sim-

plify the calculation.

We clarify that the following mixing time estimation is derived

under these specific assumptions. While it is exact in such con-

strained settings, it can also serve as an approximate solution in

more general scenarios.

Code Length. When random walk on code segments inside the

same transformation graph, all lengths of code are of the order

Θ (l), i.e., the ratios among them are of the constant order. It is less

reasonable if we obtain a result after a randomwalk that is too short

or too long compared with the original watermarked code, and we

also can constrain the range of code length during the random walk

by the implementation of our rule set.

Independent Receptors. All receptors in a code segment are satis-

fied: 1) Non-overlapped. One element of code can only receive one

rule. For example, in the rule set of Table 1, the variable names inside

a dead code snippet can be modified by either the variable renaming

rule or the dead code deletion rule, but not both. 2) Pre-defined. At
the initial stage, the rule algorithms will identify receptors with

fixed positions. For example, the comment-adding rule will identify

positions that can accept a new comment as its receptors, together

with existing comments positions as candidates. At the following

stages, it will only select a position without comments from these

pre-defined positions for adding. 3) State-changable. Each recep-

tor can be modified to have multiple states but will not disappear

during the random walk. For example, after a transformation that

a comment was deleted, the original position turns into a receptor

of the comment addition rule.

Therefore, the receptor number ℘ = Θ (𝛽 · l) = Θ (l), in which

𝛽 ≤ 1 is a constant and denotes the expected number of receptors

distributed per code token.

Out-degree. The ratio between the out-degree values of two ver-

tices in the same transformation graph is of the constant order.

Because for different code segments with similar lengths, with

the same rule set, the number of possible transformation actions

should be of the same order. Therefore, we can denote out-degree
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d = Θ (𝛼 · ℘) = Θ (l), in which 𝛼 ≥ 1 is a constant and denote the

expectation number of actions that rule set ΓERG can perform on

each receptor location.

C.3 Congestion and Canonical Paths
To assess the mixing time, we introduce classic and effective tools

from Markov chain theory, congestion and canonical paths [24].
Given code transformation graph GΓERG

𝑐 = (V , E,W ), vertex indices
𝑖, 𝑗, 𝐼 , 𝐽 ∈ N, we have:

• Canonical Path: for any pair 𝑣𝑖 , 𝑣 𝑗 ∈ V , define a canonical

path 𝜁𝑖 𝑗 = (𝑣𝑖 = . . . = 𝑣 𝑗 ) from 𝑣𝑖 to 𝑣 𝑗 through directed

edges, and let Υ :=
{
𝜁𝑖 𝑗 | 𝑣𝑖 , 𝑣 𝑗 ∈ V

}
be the set of all canoni-

cal paths.

• Congestion: The congestion 𝜚 of the graph is defined by:

𝜚 (Υ) = max

𝑒𝐼 𝐽 ∈V

{∑
𝑖, 𝑗 :𝜁𝑖 𝑗 uses 𝑒𝐼 𝐽 𝜋𝑖𝜋 𝑗 |𝜁𝑖 𝑗 |

𝜋𝐼 ®P𝐼 𝐽

}
• Congestion and Mixing Time: Denoting 𝜚 := 𝜚 (Υ), the mix-

ing time 𝑡𝑖 (𝜖) is bounded by:

𝑡𝑐𝑖 (𝜖) ≤ 2𝜚 (2 ln 𝜖−1 + ln𝜋−1𝑖 ).

The tool canonical paths and congestion provide us with an

elegant approach to bound mixing times, in which we are allowed

to flexibly define the form of our canonical paths.

Definition C.1 (Canonical Path for Code Transformation
Graph). For any pair 𝑣𝑖 , 𝑣 𝑗 ∈ V , a canonical path from 𝑣𝑖 to 𝑣 𝑗
satisfied:

• Shortest Path: The 𝜁𝑖 𝑗 can not be shorter than other paths

from 𝑣𝑖 to 𝑣 𝑗 , formally:

|𝜁𝑖 𝑗 | = min

{
|𝜁 | | 𝜁 = (𝑣𝑖 = . . . = 𝑣 𝑗 )

}
.

Therefore, we have |𝜁𝑖 𝑗 | = Θ (℘) = Θ (l) since each receptor

can be modified into the final stage within one shot.

• In Sequence Modification: For edges in each 𝜁𝑖 𝑗 , the corre-

sponding receptors follow some queuing convention. The

receptor’s rank in the queue is monotonically increasing

along the canonical path.

Note that the in sequencemodification definition is implementable.

For example, the receptors are sorted by their hunk positions from

front to back, and then we can execute the modifications for se-

quenced receptors one by one.

C.4 Mixing Time Calculation
In this section, we will discuss subexpressions separately and con-

duct the mixing time from congestion.

TheoremC.1 (TransitionMatrix Elements are ofΘ
(
1

d

)
). For

all 𝑒𝑖 𝑗 ∈ E, the corresponding ®P𝑖 𝑗 = Θ
(
1

d

)
.

Proof of Theorem C.1. From Definition 3.2, which defines an

uniform and random algorithm to pick the next vertex during ran-

dom walk, given out-degrees are of the order Θ (d), it follows im-

mediately that for all 𝑒𝑖 𝑗 ∈ E, ®P𝑖 𝑗 = Θ
(
1

d

)
. □

TheoremC.2 (StationaryDistribution Elements are ofΘ
(
1

N

)
).

For stationary distribution 𝜋 , it satisfied:

∀𝑖 ∈ {1, 2, . . . ,N } , 𝜋𝑖 = Θ

(
1

N

)
Proof of Theorem C.2. First, from inverse rule property defined

in Definition 3.3, for each vertex in theGΓERG
𝑐 , its out-degree is equal

to in-degree. Then, we assume after 𝑡 steps of random walk:

∀𝑣𝑖 ∈ V , p(𝑐, 𝑡)𝑖 =
d𝑖∑

𝑣𝑘 ∈V d𝑘
,

in which d𝑖 denots the out-degree of 𝑣𝑖 . The denominator in this

equation means the sum of all vertices’s out-degree. Considering

further step 𝑡 + 1, for all 𝑣𝑖 ∈ V , we have:

p(𝑐, 𝑡 + 1)𝑖 =
∑︁
𝑒 𝑗𝑖 ∈E

p(𝑐, 𝑡) 𝑗𝑤 𝑗𝑖

=
∑︁
𝑒 𝑗𝑖 ∈E

d𝑗∑
𝑣𝑘 ∈V d𝑘

· 1
d𝑗

= d𝑖 ·
1∑

𝑣𝑘 ∈V d𝑘

=p(𝑐, 𝑡)𝑖 .

We can notice that after the assumption is satisfied, the random

walk falls into its stationary. Due to the uniqueness of the stationary

distribution, we can confirm that for all 𝑣𝑖 ∈ V :

𝜋𝑖 =
d𝑖∑

𝑣𝑘 ∈V d𝑘
= Θ

(
d
|V | · d

)
= Θ

(
1

N

)
.

□

Theorem C.3 (Canonical Path Number Uses Particular Edge
are of O (N )). Given the 𝜁 definition in Definition C.1, for each

𝑒𝐼 𝐽 ∈ E, we have:

|
{
𝜁𝑖 𝑗 | 𝜁𝑖 𝑗 uses 𝑒𝐼 𝐽

}
| = O (N )

Proof of Theorem C.3. Given definition in Definition C.1, we

further define the degrees of freedom on receptors ranked 1 to ℘

are 𝑑free
1

, . . . , 𝑑free℘ . Therefore, the space size N =
∏℘

𝑘=1
𝑑free
𝑘

.

For each path uses 𝑒𝐼 𝐽 , if the corresponding receptor of 𝑒𝐼 𝐽 is

ranked 𝐾 . We can notify that the sub-path before 𝑒𝐼 𝐽 is limited

to only involve the modifications on receptors ranked 1 to 𝐾 , and

vice versa, the sub-path after 𝑒𝐼 𝐽 can only involve receptors 𝐾-th

to ℘-th.

Therefore, the degree of free of 𝑣𝑖 , i.e., the path’s starting ver-

tex, is not bigger than

∏𝐾
𝑘=1

𝑑free
𝑘

, and for 𝑣 𝑗 is not bigger than∏℘

𝑘=𝐾
𝑑free
𝑘

. We consider all combinations of starting vertices and

ending vertices to get the following:

|
{
𝜁𝑖 𝑗 | 𝜁𝑖 𝑗 uses 𝑒𝐼 𝐽

}
| ≤

𝐾∏
𝑘=1

𝑑free
𝑘
·

℘∏
𝑘=𝐾

𝑑free
𝑘

= O (N ) .

□

Theorem C.4 (Mixing Time Calculation). Given initial code

segment 𝑐 , segment length is of Θ (l), the mixing time 𝑡𝑐𝑖 (𝜖) of
random walk satisified: 𝑡𝑐𝑖 (𝜖) ≤ O

(
l2 ln 𝜖−1 + l3

)
.
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Proof of Theorem C.4. Given Theorem C.3, we have:

lnN ≤ ln

[
max

{
𝑑free
1

, . . . , 𝑑free℘

}℘]
= O (l) .

Together with Definition C.1, Theorem C.1, and Theorem C.2, we

have:

𝑡𝑐𝑖 (𝜖) ≤2𝜚 (2 ln 𝜖−1 + ln𝜋−1𝑖 )

=O

(
N · 1N ·

1

N · 𝜕℘
1

N ·
1

d

· (2 ln 𝜖−1 + lnN )
)

=O
(
l2 · (2 ln 𝜖−1 + lnN )

)
=O

(
l2 ln 𝜖−1 + l3

)
,

which means following our code transformation model, a rapid mix-

ing [18] would be achieved. Together with our analysis in appen-

dix C.1, this time complexity leads to a significantly lower runtime

cost than LLM-based code generation. □

D Original Performances of Watermarking
Schemes

As the preliminary question of the robustness issue we focus on, in

this section, we analyze the original performance of the selected

three watermarking approaches without attack.

For distortionarywatermarking schemes, i.e., SWEET andWLLM,

the results on LLaMA against Python-Minifier and JS Obfuscator

are shown in Figure 4. A full version of SWEET and WLLM re-

sults among two models and four obfuscators is Figure 8. The left

side sub-figures show that for LLaMA, original watermarking can

achieve good detection effects. For LLaMA, all four code bench-

marks have parameter combinations that lead to AUCROC scores

higher than 0.9 while maintaining more than 80 % of the same

model’s original non-watermarked performance. For example, un-

der the WLLM setting (𝛿 = 4.00, 𝛾 = 0.10), AUROC = 0.97 while

maintaining 84 % non-watermarked performance. For DeepSeek-

Coder, all watermarking schemes also achieve AUROC ≃ 0.8 while

maintaining 80 % non-watermarked performance.

The results for SynthID are shown in Figure 5, as well as Figure 9

in the appendix. No obvious code quality gaps after watermarking

are shown in both models’ code generation performances due to the

non-distortionary nature of SynthID [10]. For all experiments on

SynthID, the average Pass@1 decrease is −1.37× 10−3. Considering
the detection performances under different settings, it shows an

uptrend with temperature increase. The same AUROC trend can be

observed from both models. With the temperature increasing from

0.25 to 1.25, among four benchmarks and two models, the average

AUROC score increases from 0.56 to 0.91.

Low-entropy Issue in Code Watermarking: From this result,

we reaffirmed the low-entropy issue in code watermarking, which

was also discussed in previous work [32]. For better code qualities,

when generating code, the generation parameters are usually set

to reduce the randomness, e.g., lower temperature or lower TopK.

DeepSeek even directly applies greedy search when they evaluate

on HumanEval-X [17]. This exacerbates low-entropy characteristics

in code generation and hardens the watermarking detection, for

the mainstream watermarking method requires higher entropy for

better detection [10, 32]. In Figure 5, we can observe this trend: as

Table 2: Ideal watermarking scheme performances be-
fore/after attack. The Pass@1 score after the attack is omitted
because it is ensured to be identical with before.

Pass@1 AUROC

Ideal Watermarking 0.9634 0.9747

Attacked w/ UglifyJS - 0.5085

temperature decreases, the code qualities get better, but detection

of AUROC reduces dramatically. This issue can be side evidence

that N-gram-based watermarking is unsuitable for code content.

E Ideal Watermarking Scheme Under Attack
We construct an ideal watermarking scheme with unrealistically

high detection capability and quality-remaining ability, trying to

answer a question: If we keep developing N-gram-based water-

marking and its detection ability increases dramatically, will high

robustness emerge finally?

The Algorithm 3 shows the generation of our watermarking

scheme. The isMarked is a hash algorithm that will return 1 when

a marked 5-gram is inputted. We randomly selected half of the

5-grams as marked. For each task, it repeatedly generates 𝑡gen times

(See line 3; 𝑡gen = 500 in our experiment) with randomized genera-

tive model M, which is a regular model without any watermarking

related components. For each generation, we use the test suite that

the benchmark given to filter out codes that unsatisfy the prompt

requirements (line 5). Finally, if any of the generations can pass

the test suite, we select the code with the highest ratio of marked

5-gram as the returned code (line 14).

For detection, we use the same isMarked() algorithm to calculate

the ratio of marked 5-gram for each code under detection, then

calculate corresponding 𝑧-score as the detection metric.

We claim that this watermarking algorithm has two properties

that lead to unrealistically high detection capability and quality-

remaining ability, which realistic N-gram-basedwatermarking schemes

can hardly chase even in the future. We aim to exploit the represen-

tational power of N-gram features as much as possible to combat

our attacks.

• Global Awareness: Compared with realistic N-gram-based

watermarking schemes that generally can only perform greedy

algorithm per token, this scheme directly selects response

with highest final global metric.

• Test Oracle Assistance: As we analyzed in appendix A,

high costs are needed for implementation of test suite (theo-

retically impossible for a generalized one). However, in this

ideal scheme, we directly leverage the proprietary test suite

in the benchmark to filter out unpassed generation, leading

to an unrealistically high quality remaining.

Following Subsection 6.1 settings, we use HumanEval-X-JS [67]

and leverage UglifyJS-based attack on this ideal watermarking

scheme. The result is in Table 2, and we gather the 𝑧-scores and

𝑝-values of the tasks, drawing the distributions in Figure 10. We

remind that our null hypothesis is 𝑧-scores followingN(0, 1), mean-

ing that we cannot discriminate the samples under detection is
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Figure 8: Watermarking performance of WLLM and SWEET [25, 32] on two models [17, 52], before and after the attack. The
leftmost column shows the trade-off between AUROC and Pass@1 for the original watermarking schemes. The other two
columns present the results after our attack. For legends and additional information, refer to Figure 4.
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Figure 9: Left: DeepSeek Coder Pass@1 changes with temperature. Comparison between SynthID [10] watermarked and
non-watermarked code generation. Right: SynthID detection AUROC changes with temperature. Comparison between original
SynthID watermarked code and obfuscated code. For results from the LLaMA 3.1, see Figure 5.
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Figure 10: Left: Frequency distribution chart for z-scores of generated code from ideal watermarking scheme, before/after
UglifyJS-based attack. Right: Frequency distribution chart for p-values.

whether directly sampled from the distribution of the whole code

space C or not.

We can notice that this ideal scheme has nearly perfect detection

and quality-remaining ability, i.e., 0.9747 AUROC score and 0.9634

Pass@1 (158/164 passed). It also shows in the left sub-figure of

Figure 10 that the 𝑧-score distribution of the ideal watermarked

samples is significantly biased from the standard normal distri-

bution, whose significance can be confirmed by 𝑝-values (right

sub-figure of Figure 10), in which 72.78% samples have 𝑝-values

lower than 0.02 and 87.97% lower than 0.05.

Although the scheme performed ideally, the excellent detection

ability is not accompanied by better robustness. After the attack,

with a Pass@1 score proven to be maintained at 96.34%, the 0.5085

AUROC score shows that the detection effect after the attack is like

flipping a coin. Meanwhile, we can notice from Figure 10 that the

𝑧-scores distributed around zero, and only 7.59% (87.97% before)

cases have 𝑝-value lower than 0.05 and can be seen as significant.

From the results, we can conclude that even if we exploit the rep-

resentational power of N-gram features far deeper in the future, the

N-gram-based watermarking still has weak robustness confronting

our attack.

F Distribution Consistency Test
To further confirm our theory, we test the satisfaction of our core

assumption Assumption 5.1, distribution consistency. First, for each

watermarked code from our ideal watermarking scheme in appen-

dix E, we construct an approximate rule-based equivalent space,

which is shown in Algorithm 4.

Specifically, we use the UglifyJS to perform code normalizer

(we did not find an effective code normalizer) and gpt-4o [21] as a

randomized de-normalizer. The algorithm repeated de-normalize

the normalized seed code, trying to generate codes that belong to

the same equivalent space as the seed code. If the de-normalized

code has the same normalization result to the seed code (line 5),
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it must belong to the same equivalent space to the seed code, i.e.,

the normalizer has the ability to transform one into another. The

algorithm will repeat until the size of constructed equivalent space

increases to our expectation (line 3), which is set as 30 in practice.

In this way, we use a randomized de-normalizer to select samples

from each equivalent space.

Besides, due to our using UglifyJS to work as a normalizer, while

obfuscators are not designed to do code normalization, our experi-

ment result will show a more conservative distribution consistency

than actually leveraging a normalizer with various implementable

equivalent transformation rules.

Algorithm 3: Ideal Watermarking

// V is the space of tokens (vocabulary)

// isMarked : V5 → {0, 1} is the algorithm that can
distinguish whether a 5-gram is marked, response 1
denotes marked

Input: Generative Model:M : X → C,
Prompt: 𝑥 ∈ X,
Generation Times: 𝑡gen ∈ N,

Benchmark Given Test Suite: Tben
Output: Watermarked Code: 𝑐wm ∈ C

1 Init Highest Watermarked Ratio 𝑟final ← 0

2 Init Watermarked Code 𝑐wm ∈ C
3 for each 𝑖 in 1, 2, . . . , 𝑡gen do
4 Set 𝑐𝑖 ← M(𝑥)
5 if Tben (𝑥, 𝑐𝑖 ) = 1 then
6 Init Watermarked Ratio 𝑟wm ∈ R
7 Set 𝑟wm to the ratio of 𝑐𝑖 ’s 5-grams which let

isMarked() return 1

8 if 𝑟final < 𝑟wm then
9 Set 𝑟final ← 𝑟wm

10 Set 𝑐wm ← 𝑐𝑖

11 if 𝑟final = 0 then
12 Return No Result

13 else
14 Return 𝑐wm

Algorithm 4: Equivalent Space
Input: Seed Code: 𝑐 ∈ C,

Normalizer: norm : C → C,
De-normalizer: deNorm : C → C,
Expected Space Size: 𝑛 ∈ N

Output: Equivalent Space: Φ ⊆ C
1 Init Equivalent Space Φ← ∅
2 Init Normalized Code 𝑐norm ← norm(𝑐)
3 while |Φ| < 𝑛 do
4 Init 𝑐′ ← deNorm(𝑐norm)
5 if 𝑐norm = norm(𝑐′) then
6 Set Φ← Φ ∪ {𝑐′}

7 Return Φ
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