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Abstract

Coverage-guided fuzzers are powerful automated bug-
finding tools. They mutate program inputs, observe cov-
erage, and save any input that hits an unexplored path
for future mutation. Unfortunately, without knowledge of
input formats—for example, the relationship between for-
mats’ data fields and sizes—fuzzers are prone to generate
destructive frameshift mutations. These time-wasting mu-
tations yield malformed inputs that are rejected by the tar-
get program. To avoid such breaking mutations, this paper
proposes a novel, lightweight technique that preserves the
structure of inputs during mutation by detecting and using
relation fields.

Our technique, FRAMESHIFT, is simple, fast, and does not
require additional instrumentation beyond standard cover-
age feedback. We implement our technique in two state-of-
the-art fuzzers, AFL++ and LIBAFL, and perform a 12+
CPU-year fuzzer evaluation, finding that FRAMESHIFT im-
proves the performance of the fuzzer in each configuration,
sometimes increasing coverage by more than 50%. Further-
more, through a series of case studies, we show that our
technique is versatile enough to find important structural
relationships in a variety of formats, even generalizing be-
yond C/C++ targets to both Rust and Python.

1 Introduction

Fuzzing is an effective tool for exploring the state space of
programs and finding bugs. While the earliest fuzzer sim-
ply fed random data into UNIX programs [26] (and, again,
found bugs!), coverage-guided fuzzers like AFL+4+ [I1], and
L1BAFL [12] use mutations and feedback to explore targets
more efficiently. These coverage-guided fuzzers maintain a
growing corpus of inputs. They pick inputs from this corpus,
apply random mutations (bitflips, arithmetic operations, in-
sertions from a dictionary, etc.), and then measure feedback
like edge or block coverage. The fuzzers retain mutated in-
puts that reach new coverage, and discard mutated inputs
that don’t.

These fuzzers are versatile enough to find bugs in a wide
variety of targets, and, as a result, they’ve been widely
adopted in industry. For example, coverage-guided fuzzers
have found more than 13,000 vulnerabilities across 1,000+
open-source projects as part of Google’s OSS—FUZZB

Unfortunately, even the best modern fuzzers struggle to
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successfully mutate certain types of input structures. Many
common fuzz targets operate over serialized binary formats
whose metadata—e.g., size and offset fields—describes
the layout of associated data buffers. Security-critical appli-
cations process such structured inputs: Hardware security
chips, for example, operate on TPM packets, and openssl
(and others) use DER-encoded ASN. 1 messages; both formats
contain multiple nested size fields, which make them noto-
riously hard to mutate [3].

In general, these sorts of fields occur in almost every seri-
alized binary format—in codecs (PNG, JPEG, MP3, 0GG, etc.),
document formats (PDF, XLSX, DOCX, etc.), cryptographic
protocols (TLS, SSH), object formats (ELF, PE, Mach-0), and
many more. Fundamentally, any multi-part, variable-length
binary data format requires metadata to describe its struc-
ture and delineate field boundaries.

These metadata-rich formats pose a challenge to mod-
ern fuzzers. When a fuzzer mutates specific parts of an
input—Ilike a variable sized data buffer—without corre-
spondingly updating related parts of the input—Ilike the
size or offset fields describing that buffer—it renders the
input structurally invalid. We call such destructive muta-
tions frameshifts. As a result of the frameshift, the target
program will mishandle the input data or abort early with
a validation error. Frameshifts cause fuzzers to get stuck
exploring the space of invalid inputs and the space of in-
puts with the same sized structures as appear in the seed
corpus; they are unable to discover new, interesting inputs
that contain resized or shifted data.

Existing approaches to this problem either (1) augment
the fuzzer with an input specification, allowing it to un-
derstand and generate the expected structure [27, O], or
(2) learn important structures automatically during fuzzing
using e.g., static analysis [19, 8], coverage-guided feed-
back [I0, [38], or (recently) a combination of static analysis
and machine learning [31].

Unfortunately, existing techniques in the first cate-
gory require manual effort and, simultaneously, risk over-
constraining the fuzzer. Techniques in the second cat-
egory don’t solve the general frameshift problem either.
Both AIFORE [31] and PROFUZZER [38] are closed source,
which makes widespread adoption impossible. Further,
all of TIFF [19], WEIZZ [10], ProFuzzer [3§], and
ATIFORE [31] try to discern whether bytes are e.g. an
integer, or an enum, or a string, etc. They may identify
relation fields, but do not attempt to identify the relation-
ship between these fields and their target buffers—and thus
cannot perform validity-preserving resizing mutations.
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Further, modern fuzzers include a (rough) generalization
of the techniques prior work uses to e.g., discern valid enum
options, byte ranges, etc. AFL++ and LIBAFL, for ex-
ample, use sophisticated strategies like compare-logging (an
adaptation of REDQUEEN [2]), which attempts to find spe-
cial values and inject them into the input. This type of
technique can, for example, identify alternative enum options
(by instrumenting switch cases), or required magic bytes
(by instrumenting e.g. memcmp), thus subsuming less general
analyses that do (some of) the same thing. Unfortunately,
these features are not always enabled by default, render-
ing them absent from some academic evaluations [8] [31]—
and potentially underselling the actual performance of mod-
ern general-purpose fuzzers. In our work, we use industry-
standard configurations (following FuzzBENCH [25]) and fo-
cus on designing a system that confers an actual, significant
benefit over state-of-the-art baseline fuzzers, even in their
optimal configurations.

This paper presents a new approach to fuzzing structured
input formats by discovering relation fields and using them
for structure-aware resizing mutations that preserve input
validity. Our approach, FRAMESHIFT, is built on two key
insights. First, coverage loss between a seed and a mu-
tated input indicates that the fuzzer may have mutated an
important relation field (e.g., size field) without mutating
the corresponding data. This indicates a potential destruc-
tive frameshift that can be identified dynamically, over the
course of a coverage campaign. There are, however, other
reasons—reasons beyond frameshifts—that a mutation can
lead to coverage loss. For example, mutations to enums
may redirect execution to a different code path, or muta-
tions to checksums may cause the target to abort early.
Thus, our second insight is that, to identify ¢true frameshifts,
FRAMESHIFT can conduct experiments to find points where
resizing a buffer restores coverage with respect to the orig-
inal destructive mutation. We prune the search space of
potential corrective mutations using domain-specific heuris-
tics that let the analysis run in mere seconds per new in-
put. Finally, FRAMESHIFT uses its newly-discovered rela-
tions to inform fuzzing with existing mutators—thus doing
structure-aware fuzzing that avoids destructive frameshifts.

We designed FRAMESHIFT to be fast, easy to integrate,
and compatible with modern fuzzers. It can be applied to
a wide range of existing fuzzers because, inspired by prior
work [10, [38], it doesn’t require instrumentation beyond
coverage feedback. It also does not require manual format
specifications. Finally, FRAMESHIFT is performant: on un-
friendly targets, the analysis almost never tanks fuzzer per-
formance by incurring serious overhead; on friendly targets,
it helps a fuzzer achieve new coverage quickly.

Contributions. We show that FRAMESHIFT is:

e Effective compared to industry-leading, state-of-the-
art fuzzers. It increases coverage by an average of
6%—and more than 50% in certain configurations—
while only suffering a 5.5% coverage loss (on average)
for the worst-case target.

e Versatile. Unlike static analysis-based approaches, it
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Figure 1: An example TPM_PCR_Event packet with annotated
fields.

is not limited to C/C++: we run FRAMESHIFT out-of-
the-box on Rust and Python fuzz harnesses.

e Capable of identifying real, target-specific size and off-
set fields—even nested ones—in a variety of popular bi-
nary formats. It even discovers semantic differences in
input formats across two programs that parse the same
input type.

2 Overview

This section describes the challenges that fuzzers face with
structured inputs (Section , and then outlines the in-
tuition behind our approach (Section . We use the
TPM format as a running example by investigating the
ms-tpm-20-ref targetﬂ a reference TPM 2.0 specification
and simulator developed by Microsoft.

2.1

[Figure 1|shows a TPM_PCR_Event command packet (command
code 0x13c) with the payload “Hello World Event!”. The
parsing and command execution logic (Figure 2| simplified
for presentation) contains a number of interesting edge cases
for a fuzzer to discover. It parses fields from the data buffer
(lines 4-7); validates authorization data, or follows an alter-
native path (CheckAuthNoSession) if there exists no autho-
rization session (lines 9-15); and then invokes the correct
execution handler (lines 17-22). If any of the parser checks
fail, execution terminates with error handling (goto Err).

The best outcome for a fuzzer for this code snippet in-
volves reaching the call to TPM2_PCR_Event (line 21) with
many different inputs. To do so, the fuzzer must navigate
three nested size fields that must stay synchronized with
one another and with the described data: cmdSize must
match the total packet size (check @); authSize must fit
within the remaining data (check @); and payload event
size (drawn from the payload data, interpreted as a variable
size PCR_Event buffer) must equal the size of the remaining
data field (check @)).

It is therefore extremely difficult for a fuzzer to mutate
an existing valid TPM message into another valid message
with a different payload size. Any mutation that changes the
message size must also change cmdSize; insertions or dele-
tions in authData must also update authsize; and attempts
to resize the data buffer must also update size.

To demonstrate the challenge this poses, we ran five state-
of-the-art fuzzers (along with our own 2 FRAMESHIFT vari-

Motivating Example

2https://github.com/microsoft /ms-tpm-20-ref



ExecuteCommand(uint32_t reqSize, char *req)

T1/COMMAND cmd = {
2| .paramSize = reqSize, .paramBuffer = req
3}
4/if (!Parse_U16(&cmd.tag, &cmd)) goto Err;
5/if (!'Parse_U32(&cmd.cmdSize, &cmd)) goto Err;
6|if (!Parse_U32(&cmd.cmdCode, &cmd)) goto Err;
‘. 7|if (cmd.cmdSize !'= reqSize) goto Err;
8
9|if (cmd.tag == TPM_ST_SESSIONS) {
10| if (!'Parse_U32(&cmd.authSize, &cmd)) goto Err;
(9 11| if (cmd.authSize > cmd.paramSize) goto Err;
12| if (!ParseSessionBuffer(&cmd)) goto Err;
13|} else {
14| if (!CheckAuthNoSession(&cmd)) goto Err;
15|}
16
17|switch (cmd.cmdCode) {
18| case TPM_CC_PCR_Event:
19 PCR_Event event;
G} 20 if (!Parse_Event(&event, &cmd)) goto Err;
21 TPM2_PCR_Event(&event);
22 break;
23|}

Figure 2: Example parsing logic for a TPM_PCR_Event com-
mand in ms-tpm-20-ref (rewritten for clarity). Three size
validation checks are highlighted.

ants) on the ms-tpm-20-ref target using the example TPM
packet from as the seed input. Each fuzzer ran for
48 hours for 10 repetitions (see for the full
experimental setup). We then analyzed the resulting cor-
pus to see how frequently each fuzzer was able to find newly
sized (i.e. differing in cmdSize, authSize, or size from the
seed) inputs that passed each of the highlighted validation
checks.

[Table Tlshows results. None of the state-of-the-art fuzzers
were able to find a single newly sized input that got to—
and passed!—check @. All generated inputs that did pass
that check had an authSize of 9 bytes and a data payload
size of exactly 20 bytes, like the seed. These fuzzers were
effectively stuck, unable to successfully perform a resizing
mutation even after 20 CPU-days of fuzzingﬂ

Our FRAMESHIFT variants, under the same configura-
tion, were able to find 14 and 8 newly sized TPM_PCR_Event
commands respectively, unlocking new codepaths in the
TPM2_PCR_Event handler. Furthermore, they were both able
to find an order of magnitude more newly sized inputs reach-
ing the prior checks, discovering many more command types
in the process. As a result, FRAMESHIFT variants found an
average of 15.3% more coverage than the baseline fuzzers on
ms-tpm-20-ref in a 48-hour fuzzing campaign (

The TPM example illustrates a larger issue that affects a
wide range of binary formats (ELF, PNG, ASN.1, etc.) that
are essential in the modern software stack. Our approach,
which we describe next, overcomes this issue by allowing
fuzzers to automatically find relation fields in input formats
and use them to enable structure-aware resizing mutations.

New Variants

Fuzzer CorpusSize @ @ ©
State-of-the-art Fuzzers
AFL++ [11] 17062 41 36 0
LiBAFL [12] 23360 52 53 0
AFL [39] 15694 35 38 0
WEIZZ [10] 24231 16 15 0
NEesTFUzZ [§] 11593 28 32 0
With FRAMESHIFT (our work)
AFL++(FS) 21693 359 399 14
LiBAFL(FS) 37255 194 287 8
Table 1: Newly sized variants passing the highlighted

validation checks in ms-tpm-20-ref with and without
FRAMESHIFT after 48 hours of fuzzing and 10 repetitions.

2.2 FrameShift Intuition

Our technique identifies structural metadata—the position
and target of each size field in the TPM input packet—and
augments a fuzzer to preserve the relationships between that
metadata automatically during mutation. The key idea is
to (1) identify potential relation fields by observing muta-
tions that cause coverage loss, and to (2) validate true rela-
tion fields by experimenting with new mutations that restore
coverage by changing data size. Such “double-mutants” that
preserve coverage while resizing the input indicate a likely
relation field.

illustrates a walkthrough of FRAMESHIFT’s
double-mutation experiments on our example TPM_PCR_Event
packet; we discuss each step of the process next.

@ Disrupting Coverage. The first key observatio
is that it’s possible to indirectly identify validation checks
(without e.g., statically searching for them ahead of time).
At runtime, our tool can use loss-of-coverage as evidence of
a validation check. For example, starting with a valid seed
and mutating the cmdSize field will result in a new input
that fails to reach some of the originally-covered program
bits (those after check @ in .

In TOW @ highlights the bytes for which incre-
menting the byte’s value by 0x20 causes a loss in coverage
(all bytes up to and including size); none of the bytes in
the data field are highlighted, because mutating them does
not change the execution path. The highlighted bytes are
candidate relation fields: it is possible that they correspond
to metadata in the input format that must be synchronized
with data in the input.

Restoring Coverage. Given these candidate rela-
tions, the loss-of-coverage can be explained by either: (1)
a frameshift mutation (what we’re looking for), or (2) some
other validated part of the testcase (uninteresting for our
purposes). For example, mutating cmdCode may cause the

3WEIZZ and NEsTFUzz do identify some structures, but are not
able to identify and preserve these size fields.
4Which ProFuzzeR [38] also relies on.
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Figure 3: Illustration of the double-mutant experiment on a TPM_PCR_Event packet. @: The original input; bytes that

cause a loss-of-coverage when mutated are highlighted red. : Each row shows a mutated byte that caused a loss-of-
coverage (boxed in red) along with every insertion point that was able to restore coverage (highlighted in blue). Some rows
with no coverage restoration are omitted for brevity (indicated by the dotted red line). Rows @), @), and @) correspond
to the discovery of the highlighted validation checks in

program to trigger a different command handler.

To disambiguate these scenarios, FRAMESHIFT aims to
automatically identify points at which bytes can be inserted
into the input to restore (most of) the original coverage.
That is, if the fuzzer mutated a size field by incrementing
its value by IV, there should be a point in the input where
inserting N bytes “re-syncs” the size field with the data
it describes. Critically, this is likely only possible if the
original mutated field actually described a size. It is unlikely,
for example, that a fuzzer can increment the cmdCode field
by N, and then insert N bytes elsewhere that restore the
original execution behavior.

Although there are 29 bytes that can be mutated to dis-
rupt coverage for the TPM_PCR_Event packet, there are only
three for which we can find an associated insertion point
that restores some of the original coverage (Figure 3| rows
0.0 210

Row , shows that inserting right before the
pcrHandle restores a small percentage of coverage (lightly
shaded), but that the most coverage is obtained by insert-
ing near the end of the file. Practically, this is because
inserting near the end of the file preserves the authentica-
tion section, passing checks @ and @. Row corre-
sponds to insertions that correct the authSize field. Some
coverage is restored when inserting inside the authData re-
gion. However, this is likely to corrupt the authentication
data, passing check 9 and failing e Inserting anywhere
after the existing authentication data restores more cover-
age. Finally, part corresponds to the size field of
the PCR_Event, where any insertion inside the data region
restores coverage equally.

This example illustrates the intuition behind
FRAMESHIFT’s approach to dynamically identifying
relation fields. Testing every byte or insertion point (as
in this illustration) is prohibitive in practice; moreover,
discovering certain relation fields is often impossible with-

5Initially, the only identifiable byte is cmdSize; the others are dis-
coverable only after it is identified.

out discovering others (e.g., cmdSize). Our implementation
uses heuristics to prune the search space and makes this
entire process practical (i.e., on the order of seconds or
milliseconds for a single input).

3 FrameShift

In this section, we expand on the intuition from the pre-
vious section and describe our design in detail. We start
by formalizing the concept of a relation field, an abstrac-
tion over different types of size/offset fields (§3.1). We then
describe how to discover these relation fields, using heuris-
tics to prune the search space of possible relations (§3.2)).
Finally, we discuss how FRAMESHIFT uses relations to im-
plement structure-aware mutations (§ .

3.1 Structured Inputs

Disruptive frameshift mutations occur when a fuzzer mod-
ifies input bytes that correspond to metadata (e.g. a size
field), without fixing up the corresponding data.

To avoid these frameshifts, our goal is to discover the
locations of these size fields and their associated data-the
part of the input they describe the size of. For the purposes
of mutation, size and of fset fields can be treated the same.
A size field represents the length of some span of the input
data. An offset field represents the position of some part
of data in relation to the start of the input, or equivalently:
a size field that describes the length of the input before the
data.

We generalize both these forms as a relation field

R = (a7b’p7$7e)

consisting of a field at position p with size s and endianness
e, that represents the length of some span of the input data.
The span is defined by a start position a and an end position
b, where a < b.
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Figure 4: Examples of size/offset fields encoded as relation
fields.

This construction generalizes many types of size/offset
fields, as depicted in For an offset field (A), the
start position a is 0 and the end position b designates where
the data starts (i.e., the offset). For a size field, the actual
data field starts at ¢ and ends at b. However, the size field
itself may be positioned in different ways with respect to the
data it describes, i.e. immediately before it (B), just inside
it (C), some other arbitrary location (D), or the size field
may be the entire input (E).

3.2 Automatic Relation Discovery

The objective of the relation analysis is to discover impor-
tant relation fields in particular inputs. This analysis runs
once on every new corpus input the fuzzer discovers. When
the fuzzer attempts to mutate an input associated with re-
lations, is uses relation data to “fix up” fields whose rela-
tionships were affected by the mutation.

The analysis first identifies destructive mutations to the
input—mutations that lead to coverage loss. Destructive
mutations indicate that the mutated bytes might correspond
to relation fields. The analysis then attempts restorative
mutations to undo the destruction caused by the original
mutation. If such restoration is possible, it indicates that
the first mutation was indeed a frameshift, and that the
mutated bytes correspond to a relation field. It also provides
evidence as to the nature of the relation (i.e., what part of
the input it describes).

Destructive and restorative mutations. A given input
I’s coverage profile F' is represented abstractly as a set of
bits:

F(I) = {flaf%“wfn}
Depending on the instrumentation used, these bits may rep-
resent blocks hit, edges taken, etc.

A destructive mutation loses some of this original cover-
age. We set a threshold Tjoss to indicate the percentage of
coverage loss necessary to signal a destructive mutation, i.e.,
I~ is a destructive mutation iff.:

[F(I) = F(I")| = Tioss - [ F/(1)]

Conversely, a restorative mutation restores some of the lost
coverage, and is defined by the threshold Tiestore- That is,
mutating an input I~ produces a restoring mutant It iff.:

|[F(IT)N(F(I) = F(I"))| > Trestore - |[F(I) — F(I7)]

In our experiments, Tjoss = 0.05 and Tiestore = 0.2. These
values work well, but per-target tuning is an interesting fu-
ture direction.

Candidate Relation Field Identification. The first step
in the analysis is to identify potential relation fields. To this
end, the analysis iterates over every field size s € {8,4,2,1},
endianness e € {big,little} and potential field position
p € {0,...,size(i) — s}. For each configuration, the anal-
ysis deserializes the input bytes at position p to obtain a
value v. To prune the search space, it only considers fields
with a value v < size(i) for some input 4, since sizes or off-
sets must have values that are at most the size of the input.
Given a candidate field, the analysis mutates its value to
test if doing so causes coverage loss that exceeds Tjoss. For
s > 1, the mutation increments by 0xff, forcing a carry
from the least-significant byte (which distinguishes between
little- and big-endian fields); for s = 1, the mutation incre-
ments the value by min(0x20, 0xff-v) such that the increase
is large enough to cause potential frameshifts but does not
overflow the field. If the mutations lead to coverage loss
above Tjoss, the mutated bytes are a candidate relation, and
analysis continues with insertion point discovery.

Insertion Point Discovery. Just because a mutation re-
duces coverage doesn’t mean that the mutated bytes store a
relation field. For example, mutating important constants,
checksums, or changing enum values is likely to invalidate
the input or change execution flow, degrading coverage.
Thus, the second phase of the analysis seeks evidence that a
candidate relation field corresponds to a true relation field;
if so, it also collects evidence about the nature of the rela-
tion.

For each candidate field, the analysis iterates over poten-
tial insertion points—places where we can insert bytes—in
search of restorative mutations. Iterating over every byte in
the input is prohibitively expensive, as it requires invoking
the target program for every byte. Instead, we limit the
search based on a smaller set of anchor points. Specifically,
in practice, most relation fields occur in one of the forms
depicted in Thus, the start of the target span
is often one of 0 (for offset / size-total fields), p (for size-
inclusive fields), or p + s (for size-post fields). In each of
these cases, we test the corresponding end position (start
+ v) as a candidate insertion point. We select the insertion
point that restores the most coverage, as long as it exceeds
the Tiestore threshold.

A slightly harder case is size-indirect form (D), where the
target start position may occur at an arbitrary point in the
input. In practice, since the target program needs to be
able to actually locate this data, there is often some other
metadata (another size or offset field) that indicates where
the start of the data should be.

For example, in ELF files, there are 8-byte size and
offset fields describing the location of program and sec-
tion headers. Therefore, to find these fields efficiently, we
expand the insertion point search to consider start positions
at R.p, R.a, and R.b for every true relation field R that we
have already discovered. During analysis, FRAMESHIFT first
identifies the offset field, and then uses it as an anchor
point to identify the size field insertion point.

FRAMESHIFT is a fundamentally heuristic analysis: can-
didate relation fields with viable insertion points are likely



(but not guaranteed) to be real relation fields. It is
possible—but rarel—that inserting bytes can restore cov-
erage for other reasons (e.g., if the initial mutation actually
modified an enum value, but the inserted bytes coincidentally
reintroduced another input structure which hit the original
codepath).

3.3 Structure-aware Mutation

FRAMESHIFT uses relation fields to augment standard
byte-level mutations, yielding structure-aware mutations.
Next, we describe standard fuzzer mutations, and how
FRAMESHIFT adapts these mutations to account for rela-
tions.

Raw Mutations. Standard fuzzer mutations manipulate a
raw input I through three interfaces: Replace([,i,V) (re-
place the subsequence starting at ¢ with V'), Insert([,i, V)
(insert subsequence V' at position ¢), and Remove(I,i,n) (re-
move n bytes after position i) (Figure 5a)). Fuzzer mutators
typically perform several of these actions at once. For ex-
ample, a splicing mutator may perform some combination
of Replace and Insert.

Structured Mutations. We redefine these mutation op-
erators to act on a structured input S := (I,R) with input I
and set of learned relations R , by first applying
the mutation to the underlying input I and then invoking
OnInsert (Algorithm[l)) or OnRemove (Algorithm[2) to track
which relation fields need to shift or update their value as
a result of the operation. It is important to perform this
bookkeeping as fuzzers may stack these splicing mutations
multiple times in a row. After all mutations, and before
executing the test case, FRAMESHIFT re-serializes relation
fields to apply their new values to the underlying input.

Accommodating Havoc. While FRAMESHIFT is designed
to identify (and preserve the validity of) resizing mutations,
we don’t want to inadvertently restrict the fuzzer from mak-
ing destructive mutations that would unlock new coverage.
Therefore, during a mutation, if the fuzzer tries to per-
form an action that is incompatible with the current set of
relations—e.g., inserting into the middle of a relation field
itselfl—FRAMESHIFT temporarily deletes that relation and
avoids re-serializing it. Thus, FRAMESHIFT updates relation
fields without also over-constraining the fuzzerE]

Algorithm 1: Onlnsert
Data: Relation R, index i, sequence V'
if i < R.p then Rp+ Rp+|V|;
if i < R.a then R.a <~ R.a+ |V];
if i < R.b then R.b+ Rb+|V];
return R

6This is also important in the rare case that FRAMESHIFT incor-
rectly identifies a relation field.

Algorithm 2: OnRemove
Data: Relation R, index i, size n
if i < R.p then R.p < R.p —min(R.p —i,n);
if i < R.a then R.a + R.a —min(R.a —i,n);
if i < R.b then R.b + R.b —min(R.b — i,n);
return R

3.4 Implementation

We implement the FRAMESHIFT algorithm in both AFL+-+
and LIBAFL, two industry-leading fuzzers. Owur imple-
mentations integrate with existing fuzzer mutators and re-
quire no changes to instrumentation. These variants are de-
noted as AFL+4(FS) and LIBAFL(FS) throughout sub-
sequent sections. Both implementations are open-source
under a permissive license, available at https://github.
com/hgarrereyn/AFLplusplus-FrameShift and https://
github.com/hgarrereyn/LibAFL-FrameShift|

FrameShift in AFL+4. Our AFL++ implementation
of FRAMESHIFT consists of 600 lines of C that implement
a new fuzzer stage to run analysis and store relation meta-
data in queue inputs. AFL+44(FS) tracks insertions and
deletions from the havoc and splice mutators, and then re-
serializes relation data before executing test cases.

FrameShift in LibAFL. For LIBAFL we write a modular
fuzzer stage and custom input type in roughly 1600 lines
of Rust. The implementation is functionally identical to
our AFL++ fork but implemented in a canonical LIBAFL
style. As such, it is plug-and-play with many other LIBAFL
modules. This lets us use LIBAFL’s support for other lan-
guages, and apply FRAMESHIFT out of the bozx to both Rust
and Python targets (see Section [4.5).

4 Evaluation
This section answers the following research questions:

e RQ1 (Performance): How does FRAMESHIFT com-

pare to SOTA binary and structure-aware fuzzers at
finding coverage? (Section [4.2))

e RQ2 (Applicability): Where is FRAMESHIFT
most /least effective? What are the failure cases? (Sec-

tion

e RQ3 (Case Study): What types of structures can
FRAMESHIFT identify in real-world targets? (Sec-

tion

e RQ4 (Versatility): How versatile is FRAMESHIFT
with respect to different languages and different forms
of coverage feedback? (Section

Section describes benchmarks and baselines; subse-
quent sections address each research question in turn.


https://github.com/hgarrereyn/AFLplusplus-FrameShift
https://github.com/hgarrereyn/AFLplusplus-FrameShift
https://github.com/hgarrereyn/LibAFL-FrameShift
https://github.com/hgarrereyn/LibAFL-FrameShift
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(a) Unstructured mutation operators

Replace(S,i, V) — (Replace(S.I,4, V), S.R)
Insert(S,4, V) — (Insert(S.1,4,V), {OnInsert(R,s, V)| R€S.R})
Remove(S, i, n) — (Remove(S.I,i,n), {OnRemove(R,i,n) | RES.R})

(b) Structured mutation operators

Figure 5: Side-by-side comparison of unstructured (left) and structured (right) mutation operators. ¢ denotes sequence

concatenation.
Benchmark Format Commit
bloaty ELF /Mach-O/WebAssembly 52948c1
freetype2 TTF/OTF/WOFF cd02d35
harfbuzz TTF/OTF/TTC cb47dca
lems ICC-profile £0d49632
libjpeg-turbo  JPEG 3b19db4
libpcap PCAP 17£f£63e
libpng PNG cdOea2a
ms-tpm-20-ref TPM 6b72d66
openh264 H.264 045aeac
openssl DER b0593c0
openthread IPV6-packet 2550699
qpdf PDF 2cb2412
vorbis OGG 84c0236
woff2 WOFF 8109a2c
jsoncpp JSON (text) 8190e06
libxml2 XML (text) c7260a4

Table 2: Benchmark programs

4.1 Experimental Setup

Benchmarks. For the large-scale experiment (RQ1), we
select 16 benchmarks : all the binary-format tar-
gets in FUzZzBENCH [25], two text-based formats (jsoncpp
and 1ibxml2) from FuzzBENCH, and two more binary for-
mats: ms-tpm-20-ref and gqpdf from OSS-Fuzz [30], in-
spired by discussions about hard-to-fuzz file formats [3]. We
include the text-based formats as a baseline for measuring
FRAMESHIFT’s worst-case overhead (since we don’t expect
our technique to work well on these benchmarks).

Baseline Fuzzers. We select five additional baseline
fuzzers for our evaluation (Table 3). AFL++ [II] and
LiBAFL [12] act as direct baselines for our prototype imple-
mentations. We also include AFL [39], since it is the direct
baseline for NESTFUZZ.

We also evaluate against two fuzzers that do structural
inference. WEIZZ [I0] uses coverage feedback and extra
comparison instrumentation to identify structures in chunk-
based binary formats. NESTFUZZ [8] models the input pro-
cessing logic of a program via dynamic taint analysis to
discover dependencies which are used during mutations.

We do not include AIFORE [31] or PROFUZZER [38] be-
cause both are closed—sourcem We also omit TIFF [19]

7Authors of AIFORE did not respond to our request for source
code. Authors of PROFUZZER provided source code, but did not re-

Type Ref Name Version
Binary [I1] AFL++ vd.21c
Binary [12) LiBAFL £343376
Binary [39) AFL v2.57b
Structured [8] NEsTFuzz d16eb69
Structured [I0] WEIZZ c9cbeef

Table 3: Fuzzers used in our evaluation.

because it requires paid decompiler software and relies on
now-outdated versions of Intel Pin; recent results suggest
it would be outperformed by both NESTFUZZ and WEIZZ,
which we include. These fuzzer baselines represent the state-
of-the-art both in general purpose coverage-guided fuzzing
and automated binary structure-aware fuzzing.

Fuzzer Configurations. For our prototype and all base-
line fuzzers except NESTFUZZ, we use the FUZZBENCH con-
figuration. In both LIBAFL and AFL++, this configura-
tion includes REDQUEEN-style compare-logging [2] and
dictionaries, two features that work well in practice [24].
Our tool variants are configured identically to AFL++ and
LIBAFL, except they include a new FRAMESHIFT fuzzer
stage, and the ability to fixup inputs after resizing. Finally,
since NESTFUZZ does not have a FUZZBENCH configuration,
we use the configuration provided in the project README.

Hardware. We ran the large-scale fuzzing experiment on
Google Cloud C3 instances with Intel Sapphire Rapids pro-
cessors. The case-studies ran on dedicated servers with two
Intel(R) Xeon(R) Gold 6430 @ 3.40GHz and 1 TB of RAM.

Coverage Measurement. We evaluate fuzzer perfor-
mance by running each resulting corpus through a build of
each benchmark instrumented with LLVM coverage, com-
puting the total edge coverage.

4.2 RQ1: Fuzzing Performance

To understand FRAMESHIFT’s performance compared to
state-of-the-art fuzzers, we ran a large-scale fuzzing exper-
iment with 16 benchmarksﬁ and 7 fuzzers/fuzzer configu-
rations. We tested fuzz runs from both an empty corpus
(denoted E in the results tables; here, ability to learn struc-
ture quickly is particularly important) and from a corpus

spond to our request for clarification when we could not run the tool.
8 Applying NESTFUZZ to bloaty and openssl requires non-trivial
build modifications that we were unable to make.



with a single high-quality seed (denoted S in the results
tables; here, ability to find variants of the seed quickly is
important).

We ran each fuzzer/benchmark/corpus configuration 10
times for 48 hours. We report the arithmetic mean edge
coverage after 48 hours in

Additionally, we compute an average score for each fuzzer,
following the conventions of FUzzZBENCH. For each target,
we compute a fuzzer’s score as the percentage of maximum
coverage obtained (where maximum coverage is the highest
coverage obtained by any fuzzer). For example, if a fuzzer
achieved the most coverage on a benchmark, it has a score
of 100 for that benchmark. If the fuzzer achieves only 70%
of the maximum coverage for that benchmark, it receives a
score of 70. The mean scores are reported in (last

row).

Results. shows results. For both both the empty
and seeded corpus configurations, the FRAMESHIFT vari-
ants were the most effective fuzzers, achieving the high-
est coverage in 10/16 of the benchmarks in both cases.
AFL+4+(FS) achieved the highest average score (97.3) in
the empty corpus by a margin of more than 7 points, fol-
lowed by LIBAFL(FS) (89.6). In the seeded corpus setting,
LiBAFL(FS) achieved the highest average score (96.7), fol-
lowed by LIBAFL (95.1) and then AFL4+(FS) (94.1).
This ordering mirrors the baseline fuzzers themselves, where
AFL++ performs (relatively) better from an empty corpus,
while LIBAFL performs better from a seeded corpus.

The other three fuzzers (AFL, WEIZZ, and NESTFUZZ)
were generally not competitive, finding the highest cover-
age on only three benchmarks across both corpus configura-
tions; in fact, these three fuzzers underperform the baseline
fuzzers. This is likely because our evaluation uses state-of-
the-art FuzzBENCH configurations.

4.3 RQ2: Applicability

To understand the specific contribution of FRAMESHIFT
over the baseline fuzzers AFL++ and LIBAFL, we visu-
alize the final coverage values for each of the 10 fuzzer
runs per benchmark/fuzzer in Each graphic shows
the FRAMESHIFT-enabled variant runs (blue lines above the
centerline) along with the baseline fuzzer runs (red lines be-
low the centerline). The lines are plotted on a linear axis
where the left-most side represents the run with the least
coverage, and the right-most side represents the run with the
most coverage. For each configuration, we report the aver-
age change in coverage due to enabling FRAMESHIFT (A%).
Following best practices for fuzzer evaluations [20, 29], we
use the Mann-Whitney U-test to compute the statistical
significance of differences in fuzzer performance. These re-
sults are indicated in the p column, as: * (p < 0.05), **
(p < 0.01), or *** (p < 0.001). Statistically significant re-
sults (using p < 0.05) are shaded green (FRAMESHIFT found
more coverage) or red (FRAMESHIFT found less coverage)
depending on the change in coverage.

Results. The direct baseline comparison is broken down

more granularly in Of the two variants, we

find that the AFL+4+ variant gets more utility from the
FRAMESHIFT integration, with a statistically significant in-
crease in coverage in 15/32 configurations, and a decrease
in only 6 configurations. For LIBAFL, the effect is more
muted: a statistically significant increase in 6 configurations
and a decrease in 4. In both cases, the magnitudes of the
coverage increase are generally larger than the decrease.

Aggregating the data, there are 7 benchmarks where
FRAMESHIFT obtains a statistically significant increase
in coverage of at least 3% (libjpeg, lcms, bloaty,
ms-tpm-20-ref, woff2, libpcap, openssl), 6 benchmarks
where it is roughly neutral (vorbis, libpng, jsoncpp,
openh264, openthread, harfbuzz), and 3 benchmarks
where it has a negative effect (1ibxml2, qpdf, and
freetype2).

All of the 7 positive benchmarks contain serialized size
and/or offset fields that FRAMESHIFT is able to iden-
tify, thus enabling the baseline fuzzer to find differently-
sized variants more quickly, contributing to finding cov-
erage more quickly. Generally, there are two cases. 1.
FRAMESHIFT enables rapid discovery of core coverage:
all of the FRAMESHIFT runs end up near the highest
found coverage, while baseline fuzzer results are more dis-
tributed (for example, woff2/LIBAFL/Empty). Or 2.
FRAMESHIFT enables breakout coverage discovery: one or
more of the FRAMESHIFT runs is able to find significantly
more coverage due to unlocking a certain codepath (e.g.
bloaty/AFL++/Seeded).

Of the neutral benchmarks, several include serialized
size/offset fields, yet obtain minimal changes in coverage. In
libpng and openthread for example, it appears as though
FRAMESHIFT is useful in the first few hours of fuzzing, but
the baseline variants catch up after 48 hours.

We find an interesting case of frameshift-resistant file
formats, where FRAMESHIFT is not able to identify any
fields, and thus fails to be productive. In both vorbis and
openh264, the expected file format contains sync markers,
explicitly intended to prevent frameshift issues when the
file is streamed across an unreliable medium. Thus, the
parsers can recover when data is improperly resized (for
example due to packet loss), and continue parsing mostly
unharmed. As a result, FRAMESHIFT does not directly ob-
serve frameshifts in the first part of the double-mutant ex-
periment, thus does not identify relation fields.

The case most adversarial to FRAMESHIFT is when the
target generates an extremely large corpus and/or large files.
In harfbuzz, 1ibxml2, qpdf, and freetype?2, the generated
corpora are an order of magnitude larger than other bench-
marks (tens of thousands of files), thus FRAMESHIFT spends
more time analyzing the corpus and less time fuzzing. Even
though FRAMESHIFT can identify relations in harfbuzz and
freetype2, it is burdened by the analysis overhead. For
text formats, the inability to find relation fields does not
directly confer a negative performance (as demonstrated by
jsoncpp), however coupled with the analysis overhead of a
large corpus, it may reduce the amount of time available to
fuzz (as in 1ibxml2).

Takeaways. Given these results, a fuzzing practitioner



| AFL++(FS) LibAFL(FS) | AFL++ LibAFL | AFL WEIZZ  NestFuzz
Benchmark | E S E S E E S E S E S E S
bloaty 2095 2468 2330 4551 | 1858 1904 2005 3825 643 3157 732 959 f t
freetype2 8242 10142 8456 10491 | 9441 10715 8985 10317 | 3796 7572 4301 5093 3719 7284
harfbuzz 6835 7124 6661 6810 | 7034 7046 6688 6992 | 4020 5309 3243 3878 3950 5156
lems 1940 2093 1852 2070 | 1184 1810 1753 2084 | 1250 1203 1601 1571 36 551
libjpeg 1739 2344 587 2288 950 2367 510 2318 656 2299 451 1948 478 2316
libpcap 3041 3010 2623 2846 | 2835 2678 2468 2689 36 2497 2094 2095 35 2068
libpng 1943 1991 1798 1965 | 1860 1963 1804 1962 | 1549 1936 1270 1690 7 1191
ms-tpm-20-ref | 2845 3180 2889 3253 | 2209 2696 2685 3047 | 2409 2868 2072 2281 2029 2223
openh?264 8498 8491 8386 8305 | 8469 8485 8414 8457 | 8502 8521 6976 7178 8509 8496
openssl 4670 5178 4506 4906 | 4007 4879 4644 4690 | 4593 4773 3654 4299 f f
openthread 2424 2505 2614 3000 | 2495 2521 2654 2962 | 2287 2380 2444 2655 2239 2373
qpdf 1181 1999 1157 1851 | 1203 2228 1169 1886 | 1165 1574 947 969 440 1045
vorbis 954 1253 509 1239 945 1264 397 1253 205 1257 206 1246 205 1267
woff2 939 1060 934 1043 769 1043 814 1043 7 1003 713 1011 7990
jsoncpp (text) 510 510 507 508 509 510 507 507 508 508 508 508 508 157
libxml2 (text) | 12551 12392 13130 13265 | 12838 14069 13251 13200 | 12366 10934 7442 7460 7107 7289
Average Score | 97.3 941  89.6 96.7 | 88.6 921 86.6 951 | 61.7 844 639 719 424 68.8

Table 4: Arithmetic mean edge coverage after 48h (10 runs) for each fuzzer—-benchmark pair. Highest average coverage
for each benchmark is in bold (for both empty and seeded corpus). E: empty corpus, S: seeded corpus. 1: target failed to

build.

could likely benefit from enabling FRAMESHIFT in most bi-
nary formats, especially when there is no available seed cor-
pus. Incompatible formats, where FRAMESHIFT does not
find relation fields will likely not directly confer a negative
effect, unless the size of the corpus also grows too quickly.
However, for industry-length fuzz campaigns (on the order
of weeks), the effect of analysis overhead would be reduced
as the corpus begins to saturate. For shorter fuzz cam-
paigns, an interesting future direction could be to detect
quick corpus growth and selectively apply FRAMESHIFT,
balancing the fuzz time vs. analysis time.

4.4 RQ3: Structure Recovery

In this section we qualitatively demonstrate case study ex-
amples that demonstrate FRAMESHIFT’s ability to identify
relation fields in real-world formats.

4.4.1 PNG

In we show the fields FRAMESHIFT finds in a PNG
file using 1libpng. FRAMESHIFT took only 313 milliseconds
to analyze this file and invoked the target 4705 times during
the search.

The PNG file consists of an 8-byte PNG header followed
by chunks of data. Each chunk has a 4-byte size, 4-byte
header (pink), N-byte data (blue), and 4-byte checksum
(gray). FRAMESHIFT correctly identifies 9 relation fields
in the input (solid black outline). Each of the relation fields
it identifies has the correct target span (the subsequent data
portion of the file).

FRAMESHIFT did not identify three potentially-expected
relation fields, namely the sizes for the initial THDR @), cHRM

®. and final 1END @) chunks. While these locations are

identified as plausible candidates (and may be labeled a size
field by other approaches, such as those relying on manual
grammars), FRAMESHIFT eliminates them during the inser-
tion point discovery phase because it is unable to generate a
restorative mutant after changing their size. Analyzing the
code, we find that these chunks are validated to be a fixed
size during processing. Any size other than 13 (0xd) for the
IHDR chunk will cause 1libpng to abort early. In practice,
IHDR is not resizable, and therefore FRAMESHIFT does not
learn a relation for it. The same holds for the cHRM and IEND
chunks. That is, although superficially similar to the other
size fields in this input, these fields do not actually describe
parts of the input which can be resized.

4.4.2 ASN.1

shows the relation fields FRAMESHIFT finds in a
DER-encoded ASN.1 file when run against the asni tool in
openssl. This input took 59 milliseconds to analyze and
required 63 invocations of the target.

The file represents a nested SEQUENCE object containing
three entries: an octet string with values [9,9,9], a bitstring
with values [1,2,3,4], and a printable string with the value
"fuzzer". Objects in the file are encoded in a TLV (type-
length-value) format. Each object contains a single byte
type, followed by a multi-byte length, and then an N-sized
value.

FRAMESHIFT identifies the outer sequence length (at 0x01
) and all three of the inner object lengths (at 0x03, 0x10, and
0x21). In this format, length fields are variable-size: values
smaller than 127 are encoded in short form, as a single byte.
However, larger values use a prefix byte 0x80 + x where x
indicates how many additional bytes are in the encoding for



\ AFL+4+(FS) vs. AFL++ \ LibAFL(FS) vs. LibAFL

Benchmark Empty A% P Seeded A% D Empty A% D Seeded A% D
libjpeg B—™ 4830 = L s -0.9 FH—— +151 —m -1.3
lems — 4639 &~ | WY 1156+ ity 457 —hi -0.7
bloaty ™™ 127 e | pl——— 4296 * — +16.2 " +190
ms-tpm-20-ref | mwrd—t 4288 s+ | ptrmr ™ 1180 e | fft— 768 = 'L L +6.7  F*x
woff2 221 e | et 4160 o | b +14.8 0 < | Ny 40
libpcap e 173 e | et p1240 e | WYL 463 riftt— 458
openssl mmr ™ 4165 e | Yy 461 o | bl 3.0 o+ | mr 446
vorbis H—™M +10 ol 209 == | ——4 4282 MLy A1 e
libpng U 44 o 414 o | H— 03 % 401
jsoncpp ———1 400 — 400 H— 400 M 402 =
openh264 ! 403 Y 401 ! -0.3 LALLL U -1.8  **
openthread y— -2.8 — -0.6 T—i -1.5 —iHHi +1.3
harfbuzz L 2.8 * ittt 1 it— 04 s 22,6 *x
libxmI2 et 22 WAy 119 == | bR 09 /"% o5
qpdf S -1 DYt <103 = | e -10 P! -1.8
freetype2 Lty o127 o | WUy 530 e | MY, 59 1m0 1o e TS B ¢

Table 5: FRAMESHIFT coverage compared to baseline fuzzers. Each graphic shows the final coverage of 10 FRAMESHIFT
runs compared to 10 baseline fuzzer runs after 48 hours. FRAMESHIFT runs are represented by blue bars on top of the
centerline, baseline fuzzer runs are red bars beneath the centerline. The left side of the scale represents the lowest coverage
obtained by any run, the right side represents the most, scaled linearly. The average coverage change with FRAMESHIFT
is shown in the A% column. p contains the Mann-Whitney U test p-value for statistical significance: *: p < 0.05, **:
p < 0.01, ¥**: p < 0.001
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least coverage most coverage
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Figure 7: Relation fields identified by FRAMESHIFT in a
DER-encoded ASN.1 file file using openssl.

the length field.

FRAMESHIFT does not naturally support this variable-size
length field construction, yet is still able to approximate the
relation field by identifying only the low-order bytes. Specif-
ically, for single-byte values, the field appears to be a single-
byte value until the size boundary is crossed. Similarly,
in larger cases, FRAMESHIFT interprets the encoded field
[82 03 12] (value: 0x123) as a 2-byte big endian integer—
not 3!—covering only [03 12]. As long as mutations don’t
cause this size to require one more or fewer byte to repre-
sent, it serves as an accurate representation of the real field,
thus most fuzzer mutations result in an accurate adjust-
ment. In practice, even though FRAMESHIFT is imprecise,
it still enables a statistically significant increase in coverage
on openssl by more than 6%.

4.4.3 ELF
In [Figure 8 we visualize the relation fields FRAMESHIFT
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Figure 6: Relation fields identified by FRAMESHIFT in a
PNG file using libpng.
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identified in an ELF file with the bloaty target, which
parses several types of object files. This file took 458 mil-
liseconds to analyze and FRAMESHIFT invoked the target
1571 times during the search.

The file consists of an ELF header (grey, 0-0x40), a pro-
gram table header with one entry (orange, 0x40-0x78), a
section table header with three entries (pink, 0x78-0x138),
and some data that is mapped into the .text (green, 0x138
-0x16E) and the .shstrtab (blue, 0x16E-0x17F) sections.

In the ELF header, FRAMESHIFT correctly identifies the
offset fields @ for both the program header table (at 0
x20) and the section header table (at 0x28). Note that
FRAMESHIFT must actually discover the section header ta-
ble first because insertions before the program header re-
quire shifting both offsets.

The program header table contains a single entry, which
in turn contains fields @ representing the size on disk (at
0x60) and in memory (at 0x68) of a segment to map, along
with the file offset (at 0x48). FRAMESHIFT identifies the file
size but not the offset (because the ELF header is required
to start at the beginning) or the size in memory, because
bloaty only parses the file and does not attempt to execute
it.

The first section @ is a necessary null section, and thus
while there are size/offset fields according to the spec, they
are not used and FRAMESHIFT does not identify them. The
next section is the .text section @. This section describes
both the offset (at 0xD0) and length (at 0xD8) of code data to
map. Here the section actually maps the entire file starting
from the beginning through the green region, which contains



machine code. FRAMESHIFT does not identify the offset
field because moving the ELF header caused corruption, but
it did identify the size field with the correct parameters.

The third section @ describes the .shstrtab section
which points to a list of strings that are used to identify
the section names. It also contains both an offset (at 0x110)
and size (at 0x118). Here FRAMESHIFT identifies both the
offset and the indirect size field.

Bonus: Automatic Rebase. While analyzing this
ELF example, we were pleasantly surprised to find that
FRAMESHIFT identified fields accurately enough able to per-
form a non-trivial rebase operation. In general, resizing
parts of an ELF file is difficult, as it requires changing con-
siderable metadata, and typically is only accomplished by
dedicated tools, such as lief [35].

However, FRAMESHIFT is able to discover enough infor-
mation (in less than half a second) to accurately fix up the
metadata for mutations that splice the contents of the code
region (green). Normally, splicing here would corrupt the
binary considerably (as several fields are out of sync); with
FRAMESHIFT, however, we performed a splice mutation to
insert new machine code into this region, shrinking its size.
FRAMESHIFT automatically updated one offset field (at 0
x110) and two size fields (at 0xD0 and 0x60), preserving the
validity of the file. The resulting file correctly ran as an
executable without any additional modifications!

While this is a small example, it serves to demonstrate
that FRAMESHIFT is capable of automatically identify-
ing the important relations in structures and performing
potentially-complex size-changing mutations while preserv-
ing validity. Thus, in practice, FRAMESHIFT is quite effec-
tive on the bloaty target, achieving a statistically signifi-
cant increase in coverage of more than 20% over the baseline
fuzzers.

4.5 RQ4: Versatility

FRAMESHIFT makes few assumptions about the underly-
ing framework or type of coverage feedback (unlike systems
like NEsTFUZZ which depend on specific toolchains). Ad-
ditionally, its modular integration into existing fuzzers al-
lows it to naturally extend baseline capabilities, such as
L1BAFL’s support for targets besides C/C++. We there-
fore demonstrate FRAMESHIFT’s versatility by applying it
to two case study target programs in other languages: Rust
(Section [4.5.1]) and Python (Section[4.5.2). For these exper-
iments we utilize our LIBAFL prototype of FRAMESHIFT.

We chose to apply FRAMESHIFT to two programs which
parse similar file formats to some of our C/C++ benchmark
programs (PNG in Rust, and ASN.1 in Python) to compare
the similarity between the types of structures FRAMESHIFT
can identify and illustrate how even programs which parse
the same format can have semantic differences.
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Figure 8: Relation fields identified by FRAMESHIFT in an
ELF file using bloaty.



4.5.1 FrameShift in Rust: PNG

Our first target was the Rust crate image—pngﬂ a pure Rust
library for image decoding and encoding. The project has
several cargo-fuzz harnesses, including a decode harness
that decodes arbitrary bytes as a PNG file. We compile the
target with sanitizer coverage (as we do for C/C++), since
the Rust build system uses LLVM internally.

We ran the test PNG to determine which struc-
tures FRAMESHIFT could learn in this Rust program. It
took 1.7 seconds to run and required invoking the target
9933 times. Note that a structure-inference tool performing
any amount of static analysis would likely incur overhead
from moving to Rust, since the compiler produces boiler-
plate that can obfuscate program logic. Since FRAMESHIFT
is fully dynamic, any additional overhead comes from run-
time performance, which is often negligible if the target is
compiled with optimizations.

FRAMESHIFT found several different fields when fuzzing
the Rust (image-png) and C (1libpng) image libraries. In-
terestingly, these differences are associated with true be-
havioral differences in the target programs. In the Rust
program, FRAMESHIFT ignores the IHDR chunk size (as in
libpng), since this is parsed as a fixed-size chunk. It finds
the next two length fields (at 0x21 and 0x31), but then it
also identifies the cHRM size field @, unlike with 1ibpng.
This is because the semantics of PNG actually differ be-
tween libpng and image-png: while 1ibpng immediately
validates the size of cHRM to be 32 bytes, image-png has
no such check. Thus, in image-png it is resizable, and
FRAMESHIFT correctly identifies this.

FRAMESHIFT identifies the next two size fields (at 0x6A
and 0x78), but not the size field of the big IDAT chunk at 0
x8D, nor any of the following chunk sizes. Although initially
confused, we discovered that image-png’s decode harness
does not actually parse the whole PNG file. The fuzz harness
instead keeps iterating over chunks until it has found all
the actual image data (stored in IDAT chunks). In this case,
the file contains just a single IDAT chunk. Thus, image-png
scans through the file until reading this chunk and then exits
early (ignoring the remaining comment chunks).

From a PNG grammar perspective, these comment chunks
have size fields. Yet in the context of this harness, they are
ignored and can be freely mutated without inducing a loss
in coverage (in fact they do not contribute coverage to begin
with); thus FRAMESHIFT (rightly) does not consider them
to be relation fields.

4.5.2 FrameShift in Python: ASN.1

We also evaluated FRAMESHIFT on a Python case study,
which uses a different compiler toolchain and alternative
coverage feedback. Such an adaptation would be fundamen-
tally quite difficult for a static analysis-based approach with-
out significant effort. FRAMESHIFT supports this out-of-the-
box, using LIBAFL’S existing support for ATHERIS [14], a
coverage-guided Python fuzzer. Python represents a higher
abstraction level than C/C++, e.g., list concatenation in

9https://github.com/image-rs/image-png
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a C++ program may hit many basic blocks (i.e. invoking
stdlib functions), while the same operation corresponds a
single Python opcode in Python. This changes the nature
of coverage instrumentation.

Our target program was pyasnlﬂ a Python-based frame-
work for encoding and decoding ASN.1 files. We used the
same ASN.1 file from[Figure 7|as a seed. Running the analy-
sis took only 25 milliseconds and 125 invocations of the tar-
get program. FRAMESHIFT found the same fields as it did
on the openssl benchmark. In this case, however, it incor-
rectly identified the byte at position 0x20 as a size field. This
is because, when FRAMESHIFT corrupted this field and per-
formed a nearby insertion, it ended up coincidentally achiev-
ing enough of the same coverage features (through some
other mechanism); therefore, FRAMESHIFT categorized the
field as a relation. Increasing the t;,5s threshold was suf-
ficient to remove this false positive, which suggests that
FRAMESHIFT’s parameters may benefit from tuning when
applying it to frameworks with different types of coverage
feedback.

5 Discussion

Our evaluation demonstrates that relation-field structure
inference is both possible to perform using only standard
greybox coverage and practical enough that it can be incor-
porated into state-of-the-art fuzzers for a net improvement
in coverage. FRAMESHIFT is capable of identifying relation
structures in many real world formats and its relaxed as-
sumptions about the type of coverage and lack of additional
instrumentation allow it to be integrated easily into other
applications, such as fuzzing Rust and Python programs.

FRAMESHIFT serves an example of a potentially more
general class of techniques which use coverage feedback in
conjunction with heuristics to search the space of possible
input structures and augment fuzzers. This approach need
not be limited just to size and offset fields. For example,
a similar double-mutant experiment may be able to iden-
tify compressed/encoded regions of the input (e.g. zlib,
base64, etc.) or repeatable parts of the input (i.e. chunks).
A key challenge, as we have seen first-hand in prototyping
these kinds of ideas, is keeping the time required for anal-
ysis sufficiently tractable to produce wins in the resulting
structure-aware fuzzing.

Another interesting future direction, however, could aug-
ment this type of coverage-guided inference with a more
powerful heuristic, such as a large language model, which
could be used to propose high-quality candidate structures.
It is possible that such a technique could discover much more
complex (and more useful) structures, that could be vali-
dated with dynamic experimentation; the additional com-
plexity might effectively counterbalance additional required
analysis time.

Additionally, it may be possible to automatically tune cer-
tain parameters of FRAMESHIFT based on the target pro-
gram. For example, limiting analysis time if the corpus

Ohttps://github.com/etingof/pyasnl



grows too quickly, or tuning the t;,5s threshold for different
types of coverage feedback.

6 Related Work

Structure inference for binary fuzzing. Most similar to
FRAMESHIFT are tools which performs automatic structure-
inference to aid fuzzers. NESTFUZZ [§] performs a dynamic
taint analysis (DTA) to learn the input processing logic for a
program. TIFF [19] uses DTA to infer the types of various
input fields. Most recently, AIFORE [31] fused byte-level
taint analysis with machine learning for byte-level cluster-
ing.

WEIZZ [10] and PrROFUZZER [38] take a more greybox
approach (like us) using just instrumentation to guide infer-
ence. While PROFUZZER uses existing coverage feedback,
WEIZZ requires not just the final coverage, but the order
of hitting certain bits. While PROFUZZER performs a simi-
lar type of coverage-destroying analysis (like the first step in
our double-mutant experiment), it does not attempt to re-
store coverage through a second mutation, labeling the byte
a “size field” without understanding the relation to other
fields. Neither is capable of learning both size/offset fields
and understanding what parts of the input they describe.

Structure inference for reverse-engineering. A par-
allel body of work recovers internal structures to aid de-
compilation or static analysis [21] [7] [6, 22 32], 23]. While
conceptually similar, these approaches target the structures
used internally to the program not the serialized structure
of the input. Thus, their results are not immediately useful
for fuzzer mutations.

Specification-based fuzzing. An alternative approach to
fuzzing binary formats provides the fuzzer with a specifica-
tion beforehand. AFLSMART [27] can perform smart chunk-
based mutations when provided with the virtual structure of
a file format. These mutations are similar in essence to the
types of mutations FRAMESHIFT can enable (in that they
set size fields accurately), relying on the existence of a man-
ual specification. FORMATFUZZER [J] repurposes structure
format files used by a file structure explorer utility, con-
verting them into C++ programs which can generate and
mutate instances of the format. Similarly, the ISLA [34]
project aims to create an input specification language that
can be sampled using a constraint solver. These approaches
are interesting and useful when such a format is available.
However, they can be onerous to provide. Beyond the initial
complexity of the task, programs may parse multiple for-
mats at once (i.e. bloaty), or implement the semantics of
a given format differently than another program that nom-
inally does the same thing: while FRAMESHIFT can learn
program-specific formats (as it did with PNG in libpng vs.
image-png), these specification-driven fuzzers cannot.

Grammar-based fuzzing. Structure-aware fuzzing has
been more heavily utilized in the context of fuzzing text-
based formats such as scripting language interpreters [28| [17]
30l [16] 1, [40, 13]. In contrast to structured binary formats,
these text-based formats are usually representable with (or
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can be approximated by) a context-free grammar (CFG).
These formats typically do not contain serialized size or off-
set fields, and thus do not suffer from the same frameshift
problem as binary formats.

Tools like GLADE [4], PyGMALION [15], SKYFIRE [37],
and AUTOGRAM [I8] try to automatically learn such in-
put grammars. Given existing grammars, fuzzers like NAU-
TILUS [I] and GRAMATRON [33] can perform coverage-guided
semantic-preserving mutations. Perhaps the most related
work in this other domain is GRIMOIRE [5] which upon re-
ceiving a new input tries to understand how to generalize
the input by observing how different mutations change the
coverage bitmap.

7 Conclusion

Destructive frameshift mutations remain a central obstacle
to effective coverage-guided fuzzing of binary formats, in-
hibiting fuzzers from exploring the space of valid inputs.
FRAMESHIFT mitigates this problem by learning size- and
offset-relations directly from standard coverage feedback
and by preserving those relations during mutation. The
approach requires no manual specification and integrates
transparently with AFL++ and LIBAFL.

In a 12 CPU-year evaluation, across 16 real-world bench-
marks, we show that FRAMESHIFT raises edge coverage
by an average of 6 percent—-and sometimes more than 50
percent—outperforming five other state-of-the-art fuzzers.
Further, the approach is language-agnostic and we success-
fully applied it (with no modifications!) to both Rust and
Python.

FRAMESHIFT thus offers a practical solution to combat
the frameshift problem—complementing the existing perfor-
mance of modern fuzzers while allowing them to learn to
resize inputs without breaking them.
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