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Abstract

Threat hunting is an operational security process where
an expert analyzes traffic, applying knowledge and
lightweight tools on unlabeled data in order to identify
and classify previously unknown phenomena. In this pa-
per, we examine threat hunting metrics and practice by
studying the detection of Crackonosh, a cryptojacking
malware package, has on various metrics for identify-
ing its behavior. Using a metric for discoverability, we
model the ability of defenders to measure Crackonosh
traffic as the malware population decreases, evaluate the
strength of various detection methods, and demonstrate
how different darkspace sizes affect both the ability to
track the malware, but enable emergent behaviors by
exploiting attacker mistakes.

1 Introduction

Threat hunting is a proactive and situational security
analysis process [3, 9] in which analysts apply exper-
tise and lightweight tools to discover malicious content.
In this paper, we examine tools used to hunt for the
Crackonosh botnet, and evaluate them in terms of their
discoverability over time. Threat hunting is a situational
and adversarial process; over time, the target of the
hunt changes behavior which, in turn, affects the useful-
ness of any particular tool. For example, the population
of any particular malware is the end result of a conflict
between malware authors and multiple uncoordinated
system defenders, causing the population to grow or
shrink based on their actions. These changes in popula-
tion and behavior affect the efficacy of different hunting
techniques, requiring that an effective hunter switch be-
tween different lightweight exploratory techniques such
as clustering and stacking [2, 9, 11,16,18,28,29,33].

Discoverability is the probability that, when a threat
hunter applies a particular metric to a dataset contain-
ing suspicious data, the cause of the suspicious data will
be readily discernible. Discoverability follows from the

intuition that analysts have limited time to examine
any phenomenon and must choose the most pressing
problems they face – an analyst may be able to inves-
tigate five options in a shift, but not a hundred. In
this paper, we evaluate and compare multiple metrics
using a model of discoverability and further investigate
how outside events impact detection. Then, by com-
paring data against two darkspaces, one considerably
larger than the other, we show how different data col-
lection systems introduce secondary properties that can
improve hunting.

We test our metrics using data from the Crack-
onosh [6] cryptojacking malware; Crackonosh targets
gaming PCs by spreading through torrents containing
pirated games. Crackonosh uses a distinct UDP-based
communication scheme to update itself: every day at
midnight, hosts pseudo-randomly generate a target port
using a shared secret, then slowly (10 packets a sec-
ond) scans the Internet on this daily port for other
botnet members. Crackonosh is intentionally stealthy,
in addition to disabling antivirus and other common
host-based evasive techniques, its scanning is low, slow
and originates from a small pool of sources. This low
and slow traffic is (by design) lost in the noise at the
point of origin, and will be too small to be of note
for any individual honeypot. However, Crackonosh is
highly visible in darkspaces, which observe coordinated
traffic to the daily port. Crackonosh’s distinct behav-
ior means that by identifying the daily port, it is easy
to extract a retrospective dataset and use it to model
threat hunting.

Within this framework, we examine the ability to
monitor Crackonosh at different points in its lifetime
using darkspaces. Since the original work on DDoS
attacks by Moore et al. [22, 23], darkspaces (also called
network telescopes) have been used to examine various
attacks. Crackonosh’s scanning mechanism, relying as
it does on a uniformly distributed scan of IPv4 space,
is visible to darkspaces, and the larger the darkspace,
the faster Crackonosh can be identified, which enables
a slew of other detection and analysis techniques.
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By examining discoverability as a function of time
and the concomitant change in Crackonosh’s population
which that entails, we show the strength of darkspace-
based detection for this phenomenon. We further show
that a /16 darkspace is likely to see the entire Crack-
onosh botnet within the course of a day by generalizing
from Moore’s DDoS work to include for random internet
scanning.

Our paper provides the following technical contribu-
tions: we develop the concept of discoverability to de-
scribe the situational suitability of a metric, we analyze
situational factors affecting Crackonosh discoverability
(darkspace size and population change due to remedia-
tion), and we compare Crackonosh to random scanning
based on Moore’s [22] original darkspace model to esti-
mate how much darkspace is needed to track similarly
behaving malware.

We structure the rest of this paper as follows: §2
describes previous work on malware and traffic detec-
tion, in particular darkspace analysis and threat hunt-
ing. §3 describes our methodology, and §4 examines
Crackonosh’s discoverability through various lightweight
metrics. §5 examines the limits of detection using dark-
spaces of different sizes. §6 considers implications of the
work, in particular how traffic measurement and analy-
sis techniques can facilitate operational threat hunting
needs.

2 Related Work

Threat hunting is the process of proactively searching for
threats within a network. Collins [9] defines threat hunt-
ing as an iterative research process conducted by expert
analysts within a constrained time frame, Zimmerman et
al. [18] describe threat hunting as a process different
from detection and response as it is focused on identify-
ing new or previously undiscovered adversaries. Details
of threat hunting as an operational practice are pub-
lished by operators [2, 28–30,33], notable is the SANS
2019 [11] survey which lists common threat hunting tech-
niques. Several threat-hunting papers in the academic
community assess machine learning capabilties, without
particular reference to operations [12, 13, 24]. Our work
focuses on the utility of threat hunting techniques based
on traffic measurement and analysis, addressing issues
raised by recent surveys of threat hunters [3, 15].

We examine our subject using darkspace traffic,
which researchers have used to characterize a variety
of Internet-wide security events [4, 27, 32, 34]. These
empirical insights have enabled researchers to derive
models of specific phenomena, such as the DoS models
developed by Moore et al. [22, 23] on which we base
Crackonosh’s basic models.

Additional work has examined metrics for identifying

and characterizing darkspace traffic. Zseby et al. [35]
examined entropy-based metrics for identifying aber-
rant darkspace traffic, focusing on IP addresses and
ports. Other work [14,19,25] also examined entropy for
anomaly detection. The idea of packet size comparisons
(and entropy measures) is derived from work on appli-
cation identification, notably by Collins et al. [10] and
Karagiannis et al. [17].

Of note is a collection of darkspace traffic classification
approaches, such as the NICTER project, which has
developed techniques [5] for identifying coordination
among individual hosts in a botnet.
Bots and other malware incorporate Internet-wide

scanning with other propagation techniques, such as
corrupted torrents or pirated files. Examples include
the UnixPIMINE, identified by Trend Micro [20, 21], as
well as botnets, notably Mirai [1, 26] whose Internet-
wide scanning was studied across multiple darkspaces.
Bou-Harb et al. [7] developed a darkspace traffic anal-
ysis capability for characterizing malware by scanning
behaviors.

3 Methodology

Recall from §1 that threat hunters need flexible tools to
adapt to changing behavior. To measure the effective-
ness of a tool, we use a quality we call discoverability.
Discoverability is motivated by the need to optimize
the workflow of a threat hunter examining an unknown
phenomenon. The hunter applies a metric to the data
describing the phenomenon and creates a top-n list,
then investigates the elements of that list in order. An-
alysts have limited attention: if n is too high, they will
not identify the phenomenon. Using Crackonosh as a
subject, we evaluate how discoverability changes over
time for multiple traffic analysis metrics.
This section is structured as follows: §3.1 describes

the data sets we use for analysis, while §3.2 discusses
Crackonosh, its Internet-observable features, the strate-
gies the authors took to hide its presence, and how
those strategies failed. In §3.3, we discuss remediation
and how it impacts the Crackonosh population over
time, the risk it imposes on further discoveries, and the
value of larger darkspaces in tracking its activity. §3.4
discusses how to leverage larger darkspaces to identify
and exploit consistent behavior. §3.5 is a catalog of the
metrics we assess for identifying Crackonosh, which we
evaluate in §4.

3.1 Data Inventory

We used seven data sets collected from two different
darkspaces, run by the two different groups contributing
to this paper. Group 1’s darkspace, G1, consists of a
single /22. Group 2’s darkspace, G2, consists of 41636
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/24’s. From each darkspace, we collected data over
three periods: October 13-31, 2022, January 1-15, 2024,
and February 15-28, 2025. In addition, we used a data
set from G1 collected on September 13-26, 2022 for
preliminary analysis (Table 1 and Figure 1).
We labeled the data sets using a port prediction

script developed by the original threat analyst who
disassembled Crackonosh (see §3.2); any UDP traffic
matching the daily port is labeled as Crackonosh. This
raises a small risk of false positives where a daily port
might collide with a service, however in practice this
did not happen due to the high port range Crackonosh
uses – the daily port varies between 49108/UDP and
65535/UDP, while attackers focus mostly on services
with much lower port numbers.

3.2 Crackonosh and Its Observable Net-
work Behaviors

Crackonosh is cryptojacking malware that spreads
through torrents of pirated games and mines Monero us-
ing the XMRig1 cross-platform miner. Crackonosh was
initially reported in June 2021 by Avast [6], a Czech an-
tivirus developer. Crackonosh uses multiple techniques
to evade detection, including hiding control messages
in encrypted DNS TXT records, disabling antivirus
software, and cleaning system logs upon installation.
Crackonosh checks for updates by slowly scanning the
Internet on a pseudo-randomly generated port number
calculated by applying a secure hash to the date and a
shared secret.

According to Avast, each infected host sends approx-
imately 10 packets per second to random IP addresses
over, while simultaneously listening on, this daily port.
A single Crackonosh host would take approximately 14
years to scan the IPv4 address space, while a network
of 5,000 hosts can expect each host to contact at least
one other live host per day. In addition to the changing
daily port and slow scanning, Crackonosh encrypts and
pads the scan packet’s payload, evading payload-based
or size-based blocking.
Crackonosh is effectively a distributed daily IPv4

scan on a single port that operates stealthily enough
to evade conventional scan detection – a /22 will see
any particular Crackonosh host send at most one packet
a week. However, these same evasive behaviors distin-
guish Crackonosh because while most scanners focus
on specific vulnerabilities, an analyst familiar with net-
work traffic can use per-port aggregation to identify
Crackonosh’s unusual coordination, targets, and packet
sizes.

Figure 1 shows Crackonosh’s unusual coordination as
observed in G1 traffic from September 13 to September
26, 2022. Based on hourly packet counts directed to

1https://xmrig.com

Crackonosh’s daily ports, we observe two key character-
istics: 1) a coordinated increase in traffic to daily ports
during their active days; and 2) the relative absence of
activity on inactive days.

At 0000Z, Crackonosh will change to a new daily port,
and the process repeats.

Crackonosh distinguishes itself from both opportunis-
tic scanners and noise by its pseudo-randomly chosen
daily ports which rarely intersect with ports associated
with known exploits that hostile scanners commonly
target. Table I shows the top-5 busiest UDP ports
by unique sender and packet counts for days between
September 17 and 23, 2022. Crackonosh’s daily ports
dominate the traffic, while the other ports belong to
eight services with known vulnerabilities or which are
used as DDoS reflectors. We initially identified Crack-
onosh by noting that every day we would see a new and
busy port that had no associated service.
Crackonosh packets evade detection via encrypted

payloads padded with a randomly determined number
of bytes. The padding is uniformly distributed, which
distinguishes it from other scan packets, which have
highly modal distributions (Figure 2).
Group 1 and 2 initially identified Crackonosh as an

oddity based on the daily port outranking other ports –
under normal circumstances, a busy UDP port has an
easily searched explanation such as a vulnerability or
potential as a DDoS reflector. When ports consistently
appear without associated services, this is suspicious.
Based on these behaviors, we developed multiple metrics
for discovering Crackonosh traffic, without knowing
at the time what it was. Applying these metrics to
Group 2’s darkspace, both teams quickly (within three
hours) located daily ports and thus hosts that were
potentially infected. Infection was confirmed by a Group
2 site security team who determined individual hosts
were mining Monero, which enabled both teams to
definitively identify the malware and find the Avast
write-up. Daniel Benes, the author of the write-up,
aided us with a script to predict Crackonosh’s daily
port numbers. We use a variation of this script to
provide ground truth ports in the G1 data set.

3.3 Remediation’s Impact on Crack-
onosh’s Population

Once Avast identified Crackonosh, its population
steadily decreased due to remediation; Figure 3 shows
the observed Crackonosh population in three 2-week
periods across 3.5 years (October 2022, January 2024,
and February 2025) captured by G2. This figure shows
the number of addresses observed per day, which de-
clined from ∼90k in 2022 to ∼40k in 2024, and further
decreased to ∼26k in 2025. Given the size of G2, it
is reasonable to assume that these population counts

3/12



Sep. 17 Sep. 18 Sep. 19 Sep. 20
Rank Svc IPs Pkts Svc IPs Pkts Svc IPs Pkts Svc IPs Pkts

1 C-nosh 1951 2014 C-nosh 1848 1911 WS-D 4205 50466 C-Nosh 2314 2377
2 SIP 913 33084 WS-D 1186 123058 C-nosh 2166 2249 SIP 933 27313
3 mDNS 816 7254 SIP 824 30027 SNMP 945 9094 mDNS 891 7669
4 BT 666 5503 mDNS 749 7130 SIP 888 26925 MSSQL 717 7444
5 MSSQL 653 7781 BT 681 6220 mDNS 782 7428 BT 708 5784

Sep. 21 Sep. 22 Sep. 23
Rank Svc IPs Pkts Svc IPs Pkts Svc IPs Pkts

1 C-nosh 2213 2279 C-nosh 2280 2365 C-nosh 2093 2168
2 SIP 880 25051 SIP 857 25581 WS-D 1378 45466
3 mDNS 840 5815 mDNS 840 8574 SIP 859 21250
4 BT 703 6068 UPNP 776 6634 mDNS 824 6332
5 MSSQL 652 7977 BT 701 5589 BT 700 6219

Table 1. Busiest ports ranked by count of unique source IP addresses per day; Crackonosh’s packet count is
small relative to other ports, but regularly tops out the count of unique source IP’s.
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Figure 1. Activity for Crackonosh ports over
2022/09/13-2022/09/26 demonstrating the coordinated
rise in traffic.

represent the extant Crackonosh network.

This population decrease makes Crackonosh pro-
gressively less discoverable using address-based met-
rics. Table 1 shows the busiest UDP ports, by
IP address count, for September 17-23, 2022 in the
G1 data set. Note that in Table 1, on September
19th, 2022, Crackonosh is the second highest port
by source IP address count, while ws-discovery is
the highest for that day. The ports most commonly
scanned, outside of Crackonosh, are Session Initiation
Protocol (SIP, UDP/5060), Multicast DNS (mDNS,
UDP/5353), BitTorrent (BT, UDP/6881), Microsoft
SQL Server (MSSQL, UDP/1433), WS-Discovery (WS-
D, UDP/3702), SNMP (SNMP, UDP/123), Universal
Plug and Play (UPNP, UDP/1900). All of these ports
have known vulnerabilities or are used as DDoS reflec-
tors [8]. As the Crackonosh population decreases, the
probability of another unrelated Internet Background
Radiation (IBR) phenomenon dominating any particu-
lar metric increases.

3.4 Exploiting Emergent Behaviors

Using a large darkspace enables us to identify emergent
phenomena, such as tracking the behavior of specific

Figure 2. Crackonosh’s distinctive, uniform packet
size distribution (red) in contrast to distributions (blue)
of those targeting 8 services listed in Tab. 1.

Crackonosh hosts to infer specific behaviors. For ex-
ample, we can estimate the number of packets each
host sends and compare it to the results from Avast’s
disassembly. To do so, we define always-on IPs as the
ones that the network telescope captured at least one
probe packet from all 144 five-minute intervals within
the same day. The number of always-on IPs followed
a similar declining trend: (approximately 6k in 2022,
3k in 2024, and 1.6k in 2025). G1 does not observe
always-on addresses, due to its smaller size.
Using always-on addresses, we can infer the prob-

ing rate of individual Crackonosh hosts. Crackonosh
randomly selects targets from the entire IPv4 address
space, generating packets similar to backscatter result-
ing from randomly spoofed denial-of-service attacks
(RSDoS). Therefore, we can apply the same model pro-
posed in [22] to estimate Crackonosh’s scanning speed.
Given r probe packets captured by the network tele-
scope with k IP addresses in a time interval t, we can
estimate Crackonosh’s scanning speed, s, with Eqn (1).

s =
(r/t)× 232

k
. (1)
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Figure 3. Number of unique IPs and always-on IPs in
our data set. We removed the days that G2 did not have
complete data. (Vertical black lines represent months
of missing data.)

The main challenge in adopting this model is the
availability of Crackonosh-infected hosts. Unlike RS-
DoS victims, which are often highly available servers,
end-users may power off their machines at any time,
preventing Crackonosh from sending probe packets. To
obtain a more accurate estimate of r, we only consider
the total packet counts in a day from always-on IPs.

We employ the kernel density to infer the distribution
of the total number of probe packets send by the always-
on IPs in a day. In the G2 data sets, 65,833 unique
IPs were always-on for at least one day. The kernel
density of the daily probe packets captured by G2 from
these always-on hosts reveals a bimodal distribution
with similar peaks across 3.5 years (Fig. 4). Applying
Eqn (1), the two peaks map to 12.4 and 22.7 packets per
second (pps). The lower rate aligns with the observation
in [6], i.e., 10pps. The higher rate is probably due to two
infected hosts behind home routers, sharing the same
public IP. Furthermore, the probing rate was stable
over time, showing that Cracknosh did not update this
mechanism over the last few years.

3.5 Classifying and Comparing Detec-
tion Metrics

To evaluate metrics, we estimate their discoverability
defined as Dn(P), the probability that a Crackonosh
(in this case) daily port scored, under a specific metric,
rank n or less. To compute a metric’s discoverability, we
first partition a day’s traffic by destination port number.
We then apply each of our metrics over all ports and
rank the metric values, resulting in a list of (rank, port,
value) tuples for each port and each day of traffic. From
there, we compare each day’s list against Crackonosh’s
daily port to record the daily port’s corresponding rank
within the list.

Figure 4. Kernel density function of the number of
probe packets from always-on victims captured by G2.
Bimodal distribution with peaks at 1370.31 and 2508.14
packets per day. The sending rate distribution was
stable across time, and close to the expected probing
rate of Crackonosh.

We limit our evaluations to the daily top-100 ports
as ranked by a metric; a heuristic that assumes an
operational analyst can process approximately 12 alerts
per hour in 8 hours. We average probabilities across all
days of an analysis timeframe to determine a metric’s
aggregate discoverability.

3.5.1 Address Based Metrics: Address Count,
Block Count, Spread

These three metrics reflect the population of IP ad-
dresses observed per port and are most effective when
Crackonosh’s scanner population dominates interactions
with a particular port. Since non-Crackonosh scanners
who scan from entire blocks of addresses (such as /24s)
can confound individual source address counts, we com-
pensate by counting source address blocks. This proves
effective as Crackonosh tends to scan from at most two
addresses in a /24 network.

We calculate A, the address count, from a sequence of
IP addresses, a0 . . . an, where each IP address contacts
a port p at least once during an observation period. We
denote the n-bit address count An(P, p) as the number
of unique IP address prefixes of n bits that contact port
p. We refer to A32 as the address count and A24 as the
block count.

Source address spread, Dsrc(P, p), is, for a given port
p, the ratio of source (external) addresses to destination
(internal) addresses. The intuition behind this metric
is that clients, servers, scanners and other behaviors
have different and distinct ratios. For example, most
scanners scan complete netblocks from a single address,
resulting in a low source address spread. Crackonosh
has a high source spread relative to typical scanning
due to the low scan rate of individual hosts.

5/12



Name Symbol Description

Source Address Count A Count of unique source addresses
Source Block Count A24 Count of unique /24 CIDR Blocks of source IP ad-

dresses
Source/Dest Address Spread Dsrc Ratio of source and destination addresses
Size Entropy S Shannon entropy of individual packet sizes

Table 2. Summary of Metrics Used for Analysis

3.5.2 Packet Size Metrics: Entropy

The intuition behind packet size entropy as a detector is
that Crackonosh’s packet sizes are padded to a uniform
distribution whereas the packet sizes for other probes are
highly modal (Figure 2). Entropy is a common anomaly
detection tool [14,19,25,35], although packet size itself
is rarely used compared to values such as addresses.
Crackonosh’s uniformly distributed packet size results in
a high entropy of between 6.8 and 7 bits. This entropy is
considerably higher than the other protocols (Figure 2).
We note that entropy exploits what we assume to be a
mistake made by the Crackonosh authors; if they had
not padded their payload, the resulting entropy would
be smaller.

4 Results: Comparing Discover-
ability Over Time

We now compare the discoverability of Crackonosh using
these metrics. To do so, we calculate the rank and
score of each metric using the G1 data set across the
three sample periods of October 2022, January 2024
and February 2025. The remainder of this section is
structured as follows: §4.1 compares the three address-
based metrics and §4.2 examines packet size entropy.
Finally, §4.3 describes the effect that different dark
space sizes have on the detection time.

4.1 Results Across Address-Bassed Met-
rics

Figure 5 shows the rank and score for the address-
based metrics: address count, block count and source IP
spread. Each metric is plotted across the duration of the
G1 datasets, with lines demarcating the three periods
and the corresponding date at the bottom of the plot.
Each plot in Figure 5 consists of two trellised subplots –
the top is the score for each day, the bottom plot is the
rank. First, note that the three attributes are highly
correlated, the Pearson Coefficient is 0.944 between
address count and block count, 1 between address count
and source IP spread, and 0.944 between block count
and source IP address spread. Second, despite the
correlation, the rank of the daily port metric increases
as the population decreases across all three metrics.

The address count and spread are invisible by 2025: at
this point, the ranks regularly exceed twenty for both
metrics. In comparison, the block count is still a viable
metric, in particular because as indicated by Table 1,
the ports with lower rank than Crackonosh’s will be
common and repeatedly seen scan targets.

The false positives in these address-based metrics are
scanners, in particular scanning for UDP-based DDoS
reflector ports such as SIP or mDNS (Table 1). As
Crackonosh’s population dropped over the course of
remediation, the probability that another scan would
dominate the metric increases.

4.2 Results For Entropy

Figure 6 summarizes the rank and score for the entropy
metric. These results are particularly notable for their
consistency and high score, which we attribute to an
oversight (mistake) by the attacker. As noted in §3.2,
this uniform distribution is different from the modal
packet size distributions observed for other UDP-based
scanning. Entropy is consequently a consistently strong
detector, although this metric could be easily thwarted
if the attacker did not pad the packets.

4.3 Detection Speed

Figures 5 and 6 show that an analyst can reliably iden-
tify Crackonosh, even on a small darknet, within 24
hours, although by that point activity will move onto a
new daily port. The more relevant question for threat
hunters is how long operators need to collect data be-
fore identifying Crackonosh or an equivalent unknown
phenomenon.

To evaluate detection speed, we consider the impact
that darkspace size has on collection and response time
by applying block count (Figure 7a, 7b) and entropy
(Figure 7c, 7d) metrics to G1 and G2 darkspaces. Fig-
ures 7b, 7d plot resulting scores and ranks using 15-
minute individual samples from Group2 data while Fig-
ures 7a, 7c use 3-hour samples from the Group1 data.
As these figures show, the /16 used by Group2 pro-
duces top-ranked values within 15-minutes of collection,
while the 3-hour sampling used by the smaller Group1
space requires several hours to reach the same level of
confidence.
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Figure 5. Rank and scores of address-based metrics applied to G1’s dataset across three periods. While scores
are correlated, the increasing ranks show the impact of other IBR obfuscating Crackonosh’s behavior as the
population decreases.

This difference raises the question of how to estimate
the minimum time required to estimate the daily port.
As an initial estimate, we consider the requirements
to calculate entropy. Calculating a 7-bit value for en-
tropy of the packet size distribution requires at least 128
packets not accounting for repeated packet size. Fig-
ure 8 plots the accumulation of Crackonosh packets from
0000Z in G1-2 during January 2024. The horizontal line
in this plot indicates the 128-packet minimum needed
to calculate the entropy value observed in this work. As
this figure shows, by January 2024, the time to collect
the required packets is over 3 hours – a value which is
further supported by the observed score in Figure 7c,
where a 3-hour sample still results in a score below the
observed values over time.

5 Discussion: Opportunity and
Detection Limits

The results from §4 show how situational qualities such
as remediation and darkspace size affect threat hunting.
Now, we consider the limits of detection: due to IPv4
exhaustion, large darkspaces are now rare, and we must
ask at which point a darkspace becomes too small to

effectively detect a phenomenon such as Crackonosh.
To do so, we will modify the original DDoS backscatter
models developed by Moore et al. [22, 23] to determine
when a darkspace will see too few packets to detect
Crackonosh.

Moore developed models for DDoS attacks which
assume that the attackers contact their target using
source IP addresses uniformly spoofed across IPv4 space.
When these packets are rejected by the target, the re-
sponses are sent to the spoofed addresses, and a dark-
space has a probability—as a function of the size of
the darkspace and the volume of packets sent in the
attack—to receive some number of these packets. This
type of attack results in the observing darkspace seeing
a sequence of TCP packets, with a single source IP ad-
dress (the target), randomly distributed IP addresses, a
single source port (the targeted server), and an unknown
number of destination ports (depending on whether the
attacker opted to spoof their source port or not). In
comparison to a DDoS attack, Crackonosh scanning is
distributed across many sources who do not spoof their
addresses, but choose a common destination port. This
behavior results in the observing darkspace seeing a
sequence of UDP packets, with multiple source IP ad-
dresses, randomly distributed destination IP addresses,
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Figure 6. Compared to address-based metrics (Fig. 5), packet size entropy consistently discovers Crackonosh
across each observation period. Note that the entropy does decrease due to less activity and fewer observed
packet sizes.

Size Pc Po E(P )
/32 2.33E-10 2.01E-04 2.01E-04
/24 5.96E-08 5.02E-02 5.15E-02
/22 2.38E-07 0.19 0.21
/16 1.53e-05 1.00 13.2

Table 3. Expected Crackonosh parameters as a func-
tion of darkspace size.

randomly selected source ports (ephemeral UDP ports),
and a single destination port.
We modify the original model by keeping in mind

that Crackonosh source IP addresses are not spoofed
while assuming a Crackonosh host scans IPv4 address
space at random with a scanning speed s, targeting the
same destination port for some period d. For a single
packet, the probability of collision (Pc) is the ratio of
the collecting network size (k) to IPv4: Pc ≡ k/232.
We can then define the probability of observation, Po,
as the probability that at least one packet, out of a set
of sd packets, collides with the observed network, as
follows:

Po ≡ 1− (1− Pc)
sd (2)

For a single Crackonosh host, the expected number of
packets sent to a single darkspace in a 24 hour period
(and therefore with the same port number) is:

E(P ) = Pc · sd (3)

Given a Crackonosh network of size k, the expected
number of hosts observed by a darkspace is kPo, and
the expected number of packets sent is kE(P ). Table 3
shows the estimated values for a /32, a /24, a /22
(Group1’s network space), and a /16, these values are
calculated with k = 1, s = 10 and d = 86400.

The darkspace size, as shown by Table 3 demonstrates
the strong impact that collector size has on the number
of packets collected. Note, in particular, that Po for
a /16 is 1.0 while the Po for G1’s projected network is
0.19; by way of comparison Po for a /18 is 0.96, and
a /19 is 0.81. These probabilities indicate that a /16

can expect to observe at least one packet from each
Crackonosh host daily, while a /22 will require 13 days
to reach 95

The difference in darkspace size, and the consequent
time to detect Crackonosh activity within the hard
limit imposed by the port change, means that larger
darkspaces introduce emergent effects. In particular,
there are issues of maturation and attrition [31], the
impact that the change in population has on detec-
tion. Crackonosh’s population changes over time due
to external (to the observer) remediation. Attempts to
estimate the population over extended periods, such as
capture-recapture techniques, must account for these
population changes. By the time enough samples are
gathered to make an estimate on G1, the population
will have shrunk due to attrition, while one can sample
Group2 data for a much shorter time with less need to
account for such changes.

6 Conclusion

In this paper we summarized our investigation of a col-
lection of lightweight traffic measurement and analysis
metrics to identify traffic generated by the Crackonosh
botnet. Our motivation for doing so was to formal-
ize how operational security personnel begin with an
anomaly in traffic data and perform analysis to posi-
tively identify a threat. We have done so by creating a
new gauge, discoverability, to evaluate how well a set of
metrics facilitate discovery of malicious behavior over
time.

Network traffic measurement to support security op-
erations often involves multiple organizations with com-
peting goals. In addition to the initial attacker and
defender, there are other remediators, other attackers,
and gray hat organizations that all simultaneously affect
traffic. Identifying novel malicious behavior often re-
quires exploiting specific situations. We have formalized
discoverability to account for these dynamics. For exam-
ple, Crackonosh hosts are thinly spread across networks

8/12



(a) Group 1 (b) Group 2

(c) Group 1 (d) Group 2

Figure 7. Comparative scores and ranks for block count (a, b) and entropy (c, d) metrics applied to Group1
and Group2 datasets show higher confidence and faster detection for larger darkspaces.
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Figure 8. Crackonosh packet accumulation over Jan-
uary 2024 in the G1 dataset. The horizontal line in-
dicates the minimum number of packets required to
calculate entropy, equal to a time of 3 hours for a smaller-
sized /22 darkspace.

while scanners are more tightly concentrated, mean-
ing that Crackonosh is more discoverable using a block
count rather than a simple address count. Crackonosh
is highly discoverable using entropy of the packet size
distribution, but the attacker could have eliminated that
problem by using modal padding or no padding. This
opportunism means that defenders must cultivate op-
tions, including a variety of metrics, collection systems,
and datasets.

Ethics. The data used for this experiment consists of
unsolicited traffic sent to IPv4 darkspaces from across
the Internet. While this traffic was directed to dark-
spaces, it originated from hosts infected by malware.
To protect the privacy of these hosts, the data set is
available on request and subject an acceptable use pol-
icy.
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