2507.05093v1 [cs.CR] 7 Jul 2025

arXiv

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

Alberto Castagnaro
University of Padua
Padova, Italy
alberto.castagnaro@unipd.it

Luca Pajola

Spritz Matter

Padova, Italy
luca.pajola@spritzmatter.com

Abstract

Large Language Models (LLMs) have transformed human-machine
interaction since ChatGPT’s 2022 debut, with Retrieval-Augmented
Generation (RAG) emerging as a key framework that enhances
LLM outputs by integrating external knowledge. However, RAG’s
reliance on ingesting external documents introduces new vulnera-
bilities. This paper exposes a critical security gap at the data loading
stage, where malicious actors can stealthily corrupt RAG pipelines
by exploiting document ingestion.

We propose a taxonomy of 9 knowledge-based poisoning attacks
and introduce two novel threat vectors—Content Obfuscation and
Content Injection—targeting common formats (DOCX, HTML, PDF).
Using an automated toolkit implementing 19 stealthy injection
techniques, we test five popular data loaders, finding a 74.4% attack
success rate across 357 scenarios. We further validate these threats
on six end-to-end RAG systems—including white-box pipelines
and black-box services like NotebookLM and OpenAlI Assistants—
demonstrating high success rates and critical vulnerabilities that
bypass filters and silently compromise output integrity. Our re-
sults emphasize the urgent need to secure the document ingestion
process in RAG systems against covert content manipulations.

CCS Concepts

« Computing methodologies — Artificial intelligence; Natu-
ral language generation; - Information systems — Language
models; Question answering; « Security and privacy — Data
anonymization and sanitization; Penetration testing.

Keywords

Retrieval Augmented Generation, RAG, Large Language Models,
LLM, Al security, LLM security, Document Poisoning, Knowledge
Base Poisoning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym *XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

Umberto Salviati
University of Padua
Padova, Italy
umberto.salviati@studenti.unipd.it

Mauro Conti
University of Padua
Padova, Italy
mauro.conti@unipd.it

Simeone Pizzi
sime.pizzi@gmail.com

ACM Reference Format:

Alberto Castagnaro, Umberto Salviati, Mauro Conti, Luca Pajola, and Sime-
one Pizzi. 2018. The Hidden Threat in Plain Text: Attacking RAG Data
Loaders. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation email (Conference acronym *XX). ACM, New York,
NY, USA, 12 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Large Language Models (LLMs), despite their capabilities [4], suffer
from limitations such as hallucinations, outdated knowledge, and
the inability to access real-time or proprietary information [20],
which Retrieval-Augmented Generation (RAG) addresses by inte-
grating external knowledge sources [14]. By retrieving relevant
documents from structured or unstructured data and integrating
them into the generation, RAG improves the reliability and appli-
cability of answers, making it particularly valuable for enterprise
documentation, legal research, and cybersecurity operations.

While LLMs exhibit remarkable capabilities in various domains,
they also pose significant and novel security challenges. Their re-
liance on massive datasets and complex architectures makes them
vulnerable to a variety of attacks that can compromise their relia-
bility and security. Prompt injection attacks can override system
instructions and manipulate model behavior, resulting in unin-
tended outcomes [19]. In addition, LLMs can generate biased or
harmful content from training data [23] and are vulnerable to at-
tacks like model inversion and adversarial examples that extract
or manipulate sensitive information [5]. More recently, a Common
Vulnerabilities and Exposures (CVE) has been disclosed in Meta’s
Llama framework exposed Al applications to remote execution
attacks (CVE-2024-50050).

Contributions. Since RAG systems are becoming more and more
popular, it is very important to understand how well they are pro-
tected against cyberattacks. For this reason, in this paper we pro-
pose a study of such systems from a cybersecurity perspective, with
the three key contributions: (1) we propose a taxonomy of knowl-
edge-based poisoning attacks against RAG; (2) we introduce a set of
practical techniques for poisoning the knowledge base during data
loading; (3) we evaluate both popular open-source data loading
libraries and black-box RAG systems from popular providers, find-
ing that most of them are vulnerable to simple techniques. In this

!https://nvd.nist.gov/vuln/detail/CVE-2024-50050

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://nvd.nist.gov/vuln/detail/CVE-2024-50050
https://arxiv.org/abs/2507.05093v1

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

regard, we develop and release PhantomText toolkit, a framework
for the automatic generation of poisoned documents.

2 Background

2.1 Retrieval-Augmented Generation

2.1.1 Overview. Retrieval-Augmented Generation (RAG) is a frame-
work that enhances large language models (LLMs) by integrating
external knowledge retrieval, improving the relevance and accuracy
of outputs [14]. Unlike traditional models, RAG accesses real-time
information, making it effective in dynamic contexts.

A RAG pipeline integrates information retrieval with generative
Al to improve response accuracy and relevance. It begins with
database generation, where structured or unstructured data (e.g.,
documents, PDFs, web pages) are embedded and stored in a vector
database?. Upon receiving a user query, relevant documents are
retrieved and the results are passed to a language model, which
incorporates this context to produce accurate, informed responses.

2.1.2 Building a vector database. As our research focuses on the
security of the parsing stage in RAG pipelines, it is cucial to examine
how the vector database is built. The reliability of retrieval depends
on how data is preprocessed, tokenized, embedded, and stored, as
flaws in these steps may enable poisoning attacks, adversarial in-
puts, or inconsistent retrieval. A RAG pipeline is constructed by
(1) gathering relevant data; (2) loading the data, segmenting it into
chunks; (3) converting the data into vector embeddings; (4) storing
the data in a vector database for efficient retrieval; (5) retrieving
the relevant chunks at query time and inserting them into the LLM
context, to enhance its responses

2.2 LLM Jailbreaking

LLM jailbreaking [21] refers to the act of bypassing or manipulat-
ing the safeguards built into a language model, which can lead to
unauthorized data access and the generation of harmful content.
RAG systems can be vectors for such attacks [8].

3 Taxonomy of Knowledge Base Poisoning
Attacks in RAG Systems

With the growing adoption of Al systems, security researchers have
started studying the security risks of RAG pipelines. To fully under-
stand these risks, we highlight and categorize the goals of potential
attackers. We define four main attack families: system integrity
attacks, output manipulation attacks, knowledge poisoning attacks,
and security and privacy attacks, based on the adversary’s objective.
To ensure a systematic analysis, we map each attack to the CIA
triad which has the advantage of being a familiar framework for
most security researchers.

3.1 RAG and the CIA triad

RAG integrates information retrieval with generative models to
improve content accuracy and relevance, yet its often-overlooked
vulnerability to cyberattacks can be systematically analyzed using
the CIA triad (Confidentiality, Integrity, and Availability).

2A vector database stores high-dimensional embeddings to enable fast semantic simi-
larity searches.

Anonymous et al.

Integrity concerns stem from the risk of retrieving or generating
inaccurate, tampered with, or adversarial content. Compromised
or unreliable sources can lead to misinformation or biased outputs.
Availability is equally critical, as RAG systems depend on external
databases and APIs, making them vulnerable to denial-of-service
attacks or retrieval failures. Securing RAG applications within the
CIA framework requires robust access control, data validation, and
resilience against adversarial input. Table 1 shows the mapping
between the proposed attacks and the CIA triad.

Table 1: CIA Mapping for RAG Knowledge Base Poisoning
Attacks

| Attack [© | O @ |

| System Integrity Attacks

\
| Pipeline Failure | | | v |
| Reasoning Overload | | v

\

‘ Response Manipulation Attacks

Unreadable Output v
Empty Statement Response v
Vague Output vV | Vv

‘ Knowledge Manipulation Attacks ‘
Bias Injection v
Factual Distortion v
Outdated Knowledge v

‘ Security and Privacy Attacks ‘

Sensitive Data Disclosure ‘ v ‘ ‘ ‘

3.2 System Integrity Attacks
Attacks that disrupt RAG stability, performance, or efficiency.

3.2.1 Pipeline Failure (A). Injected adversarial data causes unex-
pected software failures, including crashes, infinite loops, or un-
handled exceptions. It affects system availability, as the system may
crash or enter an unstable state, making it inaccessible to users. We
did not find references to RAG pipeline failures in the literature,
however, Xiao et al. [24] have already discussed DoS attacks in
traditional machine learning libraries.

@ Al: Pipeline Failure. Crashes or destabilizes the RAG system
through adversarial inputs that trigger software failures, leading
to a denial-of-service.

3.2.2 Reasoning Overload (A, I). A recent trend in Large Language
Models is reasoning models, which consists in models that are explic-
itly trained to describe how they got to the result before producing
a final answer to the user query, thus improving their performance
across a number of tasks [11, 22].

An LLM Denial-of-Service (DoS) attack can leverage this “reason-
ing” by poisoning the vector database to inject malicious content
that forces the LLM to spend excessive computational resources,
thereby slowing down inference and making the system less respon-
sive, or even unresponsive, under certain conditions. The attack
could impact multiple aspects:

o Performance Slowdown (A): The attack can result in a signifi-
cant increase in processing time, severely degrading the user

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

experience. It impacts the Availability as the system remains
functional but becomes inefficient, reducing usability.

e Excessive Token Production (A, I): The inclusion of decoy
reasoning problems increases the token count, leading to a
higher computational load. This amplifies the cost of oper-
ating the system, as each inference requires more tokens to
be processed, which can negatively impact the financial sus-
tainability of third-party applications that rely on reasoning
LLMs. It affects availability, as an increased computational
burden can slow down the system or cause request failures.
It affects the integrity, as the attack manipulates the system’s
expected behavior by forcing unnecessary reasoning steps,
altering the intended flow of information processing.

® Resource Strain and Service Denial (A): Over time, if multiple
users are subjected to similar poisoned queries, the system
could become unresponsive, or the service could fail to return
a timely response, essentially causing a DoS effect.

This attack aligns with the “OVERTHINK” attack [12], where
adversaries inject decoy reasoning problems to increase token pro-
cessing during inference, causing the model to “overthink” while
generating responses.

@ A2: Reasoning Overload. Injecting adversarial content de-
signed to expand excessively upon retrieval, causing increased
inference time and resource exhaustion.

3.3 Output Manipulation Attacks
Attacks that reduce response quality, clarity, or usability.

3.3.1 Unreadable Output (A). The system may produce nonsensi-
cal, illegible, or unusable outputs due to tokenization errors, cor-
rupted embeddings, or external tampering. In some cases, adver-
sarial perturbations can subtly modify inputs to exploit these vul-
nerabilities. For instance, attackers may inject misleading Unicode
characters or embed Base64-encoded segments, formats that are
technically valid but not interpretable by the model, causing gar-
bled text, random character sequences, misinterpreted tokens, or
otherwise irrelevant output. These manipulations degrade output
interpretability without crashing the system, leaving it operational
yet functionally unusable.

@ A3: Unreadable Output. Injecting adversarial text contain-
ing excessive special characters or encoding artifacts, leading to
responses filled with unreadable symbols.

3.3.2 Empty Statement Response (A). The attack targets output
generation, causing the system to produce grammatically correct
but meaningless responses that lack actionable context, often due
to prompt filters, training-data biases, or safety constraints. For
example, adversarial input might manipulate an RAG system to
output generic fallback statements like “I'm sorry, I cannot provide
that information,” even when the query is legitimate and should
have resulted in a specific response. Attackers can exploit this vul-
nerability by feeding misleading or irrelevant data into the vector
database and forcing the system into evasive or empty responses,

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

undermining its utility in critical contexts. This attack affects avail-
ability, as the system responds but provides no meaningful value,
disrupting usability.

& A4: Empty Statement Response. Causing the system to re-
spond with generic statements such as ‘T cannot answer this
question.”

3.3.3 Vague Output (A, I). The system generates vague or mislead-
ing responses that lack clear factual grounding. These responses
often lack the necessary specificity, context, or detail needed to
effectively address the user’s query. For example, a RAG-powered
assistant might respond with “There are many factors to consider,”
when asked for a recommendation or solution, leaving the user un-
sure of what factors are involved or how they should proceed. Such
responses often result from adversarial interference that forces the
model to retrieve or generate generalized, context-agnostic text,
which could be interpreted in numerous ways. This ambiguity un-
dermines the system’s reliability and hinders users from making
informed decisions, especially in environments where precision
is key. This attack effect is twofold: (i) availability, as the model
responds but does not deliver actionable insights, making the re-
sponse functionally useless; (ii) integrity, as the system’s correctness
is affected, as it no longer provides clear and accurate information.

@& A5: Vague Output. Poisoning the knowledge base with subtly
inconsistent data results in outputs like “There is no definitive
answer to this question.”

3.4 Knowledge Manipulation Attacks

Attacks altering knowledge, affecting accuracy, bias or timeliness.

3.4.1 Bias Injection (I). The knowledge base is poisoned with bi-
ased content, which reinforces existing perspectives while reducing
access to diverse viewpoints. This causes the RAG system to present
skewed, unfair, or ideologically extreme narratives, affecting sys-
tem integrity, as the responses become unreliable due to systemic
bias in the retrieved information.

@ A6: Bias Injection. Poisoning the RAG system with misleading
information leading to biased responses favoring one perspective.

3.4.2 Factual Distortion (I). The attack occurs when the system
generates or retrieves information that is factually incorrect, mis-
leading, or unverifiable, thus compromising the system’s credibility
and reliability. The attacks affect system integrity, as factual cor-
rectness is no longer guaranteed, corrupting the system’s reliability.
Factual distortion can be linked to the more general phenomenon
of misinformation campaigns (fake news) [13].

@& A7: Factual Distortion. Modifying the knowledge base with
factually incorrect information, leading the RAG system to prop-
agate misinformation.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

3.4.3 Outdated Knowledge (1). This attack obfuscates recent data,
causing the RAG system to retrieve outdated information like ob-
solete studies, rulings, or product specs. Since the system still re-
sponds, outdated info may go unnoticed, leading to faulty recom-
mendations or decisions.

@ A8: Outdated Knowledge. Causing the model to base its
answers on obsolete knowledge, leading to responses containing
inaccurate or outdated information.

3.5 Security and Privacy Violations

Attacks that breach confidentiality or expose sensitive data.

3.5.1 Sensitive Data Disclosure (C). Sensitive data disclosure oc-
curs when the system inadvertently reveals confidential informa-
tion breaching privacy and confidentiality. This can happen when
the system retrieves or generates real data that should not be acces-
sible or exposed to users. The disclosed data could include person-
ally identifiable information (PII), such as phone numbers, medical
records, financial information, or even sensitive corporate data.
The attack impacts system confidentiality by improperly disclosing
sensitive data, causing privacy and security violations.

@ A9: Sensitive Data Disclosure. Making the RAG system dis-
close sensitive information, such as PII or corporate data, to
unauthorized users.

4 Threat Model

Target. The Target of the attack is a RAG system (Section 2)
operated by a business. We assume that before documents are
added to the knowledge base of the RAG, they are inspected by
one or more employees, using tools such as PDF readers and web
browsers to check for abuses. We assume that these employees are
not IT experts, but they are experts in the topics covered by the
documents, i.e., they are able to recognize documents that contain
inaccurate or false information. We call these employees Inspectors.

Attacker. The Attacker is a malicious actor that does not have
direct access to the Target, but is able to inject poisoned documents
into the RAG knowledge base by different means. These include,
but are not limited to:

e Supply Chain Attacks: The attacker could be a service
provider, and poison all the documents it provides as docu-
mentation to its clients. In this case, any of the clients that
imports the documents in a RAG system would become a
victim.

e Web-Based Poisoning: Attackers manipulate public sources
(e.g., wikis, research databases) by injecting false or biased
information. A RAG-powered cybersecurity assistant, for
example, could retrieve and suggest insecure cryptographic
practices, exposing developers to security risks.

o Insider Threats in Organization: A malicious employee
in a company modifies internal documents used by a RAG
system, injecting false compliance guidelines. Employees
relying on the system may unknowingly follow misleading
legal or financial advice, leading to regulatory violations.

Anonymous et al.

Goal. The attacker seeks to undermine the integrity, reliability,
or security of RAG systems by embedding imperceptible manipula-
tions in retrieved knowledge. Their objectives include misleading
responses that introduce factual distortions or biases, stealthy in-
formation manipulation via obfuscated content, evading detection
mechanisms through adversarial encoding, targeted prompt ma-
nipulation to exploit hidden triggers, and poisoning the knowledge
base to degrade system performance. A detailed breakdown of these
goals and their mapping to CIA principles is provided in Section 3.

To achieve these objectives, the attacker leverages vulnerabilities
in the Data Loading stage of the RAG pipeline, performing attacks
that fall under two broad categories:

e Content Obfuscation: Disrupts or distorts existing infor-
mation in the document using invisible characters, making
it harder for models to correctly extract or interpret the
original content.

e Content Injection: Inserts new, invisible concepts into the
document, effectively introducing misleading or fabricated
knowledge into the knowledge base.

5 Data Loading Deception Techniques

In this section, we describe the techniques we studied to attack the
data loading stage of a RAG pipeline.

5.0.1 Technique Organization. The attack strategy is organized
into two major deception technique families:

e Content Obfuscation: This family of attacks aims to dis-
rupt or distort existing information in the document, reduc-
ing its readability or interpretability for the AI model. We
use techniques such as zero-width characters (e.g., ZWSP,
ZWN]), homoglyph substitutions (e.g., replacing letters with
visually similar Unicode characters), and bidirectional (Bidi)
reordering to subtly alter the structure of words or sentences
without changing their appearance to the human eye.

o Content Injection: These attacks introduce new, invisible
or hidden concepts into the document, effectively poison-
ing the knowledge base with misleading or fabricated facts.
Techniques include using font size zero to make text visually
disappear, positioning text out of the visible margin, and
injecting data into document metadata fields (e.g., PDF/XMP
metadata), which may be parsed and indexed by Al systems
but remain invisible to end users.

In our analysis — as RAG can be set up to handle input documents
of different formats — we examine the structure and formatting
capabilities of widely used document types— PDF (B), HTML (8),
and DOCX (Bi)—to identify potential threat vectors that enable
both content obfuscation and content injection attacks. The rich
styling and metadata features of these formats create ideal surfaces
for content obfuscation or injection - using invisible characters,
style tweaks, embedded objects, and hidden fields - and analyzing
their text rendering, metadata handling, and layout exposes unique
stealth attack vectors in RAG pipelines.

5.1 Content Obfuscation

5.1.1 Diacritical Marks B8 8. Diacritical marks are small signs or
symbols added to letters to alter their pronunciation, meaning, or

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

distinguish between words in different languages. They include
accent marks (e.g., é, i), tildes, umlauts, and cedillas, and are com-
monly used in languages like French, Spanish, and German. This
attack involves combining diacritical marks—Unicode characters
that modify a base character—to create visually complex represen-
tations of text. In our attakcs, we add ten diacritical character to a
random letter on the target word.

5.1.2 Homoglyph Characters B§ Bi B. This attack replaces char-
acters with visually identical but semantically different Unicode
homoglyphs, such as substituting Latin “A” (U+0041) with Cyrillic
one (U+0410). Homoglyph substitution attacks have been shown
to be effective in attacking traditional ML-based and information-
retrieval systems deployed in real-world applications [2, 3, 9].

5.1.3 OCR-Poisoning B§ 8. This attack involves introducing subtle
perturbations into text parsed by Optical Character Recognition
(OCR) systems, particularly in images and complex PDFs. By manip-
ulating visual features that OCR relies on for text extraction, these
perturbations can confuse the recognition process, leading to incor-
rect or misleading interpretations of the original text. This attack
has been demonstrated successful in modern OCR systems [7].

5.14 Reordering Characters [<]w]S AN reordering attack, or bidirec-
tional (Bidi) attack, leverages the Unicode Bidirectional algorithm
to reorder characters visually while preserving a different logi-
cal encoding order. By strategically embedding right-to-left (RTL)
characters within left-to-right (LTR) text, it creates discrepancies
between human and machine interpretation. Bidi attacks have been
demonstrated successful in attacking traditional ML-based and
information-retrieval systems deployed in real applications [2, 3].

515 Zero-Width Characters IS 8. This attack leverages zero-
width (ZeW) characters—Unicode symbols that take no visible
space but alter text representation. Common examples include
Zero-Width Space (U+200B), Zero-Width Non-Joiner (U+200C),
and Zero-Width Joiner (U+200D). These characters are typically
used for text formatting, preventing ligatures, or controlling word
breaks in multilingual settings. By inserting them strategically,
the attack disrupts tokenization and downstream NLP processing
without altering human-readable text. Zero-width space attacks
have been demonstrated successful in attacking traditional machine
learning-based and information-retrieval systems deployed in real
applications [2, 3, 18]. We implemented three distinct variants, con-
ducting tests over the 19 distinct ZeW characters: (1) Mask1 -] w]SE
Insertion of one ZeW character in the middle of the target word.
(2) Mask2 B8 B B: Insertion of three ZeéW characters in the mid-
dle of the target word. (3) Mask3 B§ B &: Insertion of many ZeW
characters between every character of a target word.

5.2 Content Injection

5.2.1 Camouflage ElementB§8. The technique embeds text behind
other elements within a document, effectively rendering it invisible
to the user while preserving its presence within the document’s
structure. In this work, we inject malicious text behind images.

5.2.2 Metadata B§ ©. This attack involves adding or altering a
document’s metadata with malicious or poisoned data that may be

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

inadvertently parsed and processed by document loaders or AI mod-
els. We inject random or adversarial elements into the document’s
metadata (i.e. PDF metadata or HTML <head>).

523 Out-of-Bound Text 8 B B. This attack involves injecting
text outside the visible area of the document, such as beyond the
margins or in hidden portions of the webpage or document. While
the text becomes invisible to the user because it is rendered outside
the viewport, it is still processed by machines. We designed two
variants: (1) Random position I8 Bl: The text is placed at random
coordinates outside the visible area of the document or webpage,
such as the top-left or bottom-right corners. (2) Right margin B The
text is aligned to the far right, partially pushed off-screen, leaving
only a fragment visible.

5.24 Transparent Text S B ©. This attack makes adversarial text
the same color as the background, making it invisible to humans
while still being processed by AI models. It exploits formatting
features in different file types (e.g., HTML, DOCX, PDF).

(1) Font color matching the background B8 8, with background
set to white in the Word format case.

(2) Opacity 0 l§ B: In HTML, setting ‘opacity: @;’ in CSS

~

(‘hidden text’) makes

text invisible to users while still readable by screen readers
and Al models. In PDFs, this effect is replicated using trans-
parent text layers or annotations with zero opacity.
Opacity 0.01 8.
Visibility®: InHTML, using ‘visibility: hidden;’ (‘hidden text’)
makes the text invisible, but unlike ‘opacity: 0;°, it also
prevents the element from taking up space in the layout.
However, the text remains in the HTML source and can still
be processed by Al models, crawlers, or screen readers, mak-
ing it another potential technique for adversarial attacks.
(5) Vanish B: In DOCX, the “Vanish” property hides text from
being displayed in the document while keeping it in the file
structure, allowing it to be processed by text parsers and Al
models. This can be applied using Word’s formatting options
(‘<w:vanish/>’ in XML) or by selecting “Hidden” in the font
settings, making it a potential method for adversarial attacks.

—_~
W
-~ =

5.2.5 Zero-Size Font l§ B ©. This method reduces the font size
of adversarial text to zero or near-zero, making it imperceptible
to users but still interpretable by machine learning models. It ex-
ploits text rendering differences to introduce hidden prompts or
evade detection in Al-driven systems. We implement the following
variants of the attack: (1) Size0 l§ &: font size set to 0, making it
invisible. (2) Size0.01 B B: font size set to 0.01, making it nearly
invisible. (3) Size1 B: font size set to 1, making it very small. This is
the minimum size accepted by Word documents.

5.3 Two-fold Effect

We now present techniques that can be used both for content ob-
fuscation and content injection.

5.3.1 Font Poisoning B B. This attack utilizes a custom font to
map displayed characters to different underlying characters parsed
by document loaders. For example, in a specially designed font, the

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

glyph for the character “A” could be associated with the ASCII code
for “B” (U+0042). This manipulation creates a visual representation
that appears as “A” to human readers, while the underlying text is
actually parsed as “B” by automated systems, compromising the
integrity of text processing. The attack effect can be two-fold:

(1) Semantic disruption, as the attacker might substitute the
ASCII representation of glyphs to random characters. For
instance, the world “apple” could be represented by the ASCII
representation “qwert”,

(2) Invisible text injection, as the attacker might substitute the
ASCII representation of glyphs to target characters. For in-
stance, the world “apple” could be represented by the ASCII
representation “drugs” (note that multiple fonts can be used
to map the same glyph to multiple ASCII representations).

Font poisoning has been introduced in [16], where authors demon-
strated the feasibility of PDF content masking against real-world
systems, including Turnitin, Bing, Yahoo!, and DuckDuckGo.

6 Evaluation

As part of our contribution, we introduce the PhantomText Toolkit,
a modular framework for crafting invisible manipulations in doc-
uments (DOCX, HTML, PDF). PhantomText supports the attack
strategies introduced in Section 5. The toolkit is open-source and
available at: https://github.com/pajola/PhantomText-Paper .

This repository contains all material necessary to reproduce our
experiments. To evaluate the effectiveness of PhantomText, we
designed three experiments targeting the end-to-end pipeline of
RAG systems.

e Experiment 1: Poisoning Dataloaders. We apply all Phan-
tomText techniques to HTML, DOCX, and PDF documents
using popular document loader implementations, assessing
whether invisible artifacts can survive ingestion and be em-
bedded into the knowledge base. This demostrates that Phan-
tomText techniques can poison the knowledge base by ma-
nipulating the content of documents at the data loader stage.

¢ Experiment 2: End-to-End RAG Manipulation. Poison-
ing the knowledge base does not necessarily guarantee that
the RAG system will be impacted in the same way, since the
LLM model that generates the output may be resilient to
such attacks. For this reason, we study the full end-to-end
RAG pipeline, to determine if the invisible manipulations
in the poisoned documents influence the retriever and the
generative model.

e Experiment 3: CIA triad-oriented RAG attacks. Finally,
we demonstrate how the techniques we described can be
used by malicious actors to perform the attacks described
in Section 3. We composed targeted attacks using the most
effective techniques from the toolkit, showing that Phantom-
Text enables subtle, high-impact attacks.

In the following sections, we first present the research question
that motivates our experiments, then detail the methodology we
followed to perform the experiments, and finally report the results
we obtained, with an answer for the research question.

Anonymous et al.

6.1 Exp1l: Poisoning Data Loaders

6.1.1 Overview. Here, we assess the efficacy of PhantomText in
poisoning the RAG systems’ knowledge base by targeting the doc-
ument parsing frameworks’ Data Loader components. It tests if
invisible manipulations, such as obfuscation and injection, can com-
promise ingestion of HTML, DOCX, and PDF documents; results
show PhantomText effectively embeds malicious artifacts to poison
RAG knowledge bases.

© Research Question: Are popular Document Loaders vulner-
able to PhantomText toolkit content obfuscation and injection
techniques?

6.1.2 Experimental Settings.

Document Loaders. We tested the following frameworks: Do-
cling [1, 15], Haystack, LangChain, Llamalndex, and LLMSherpa.3
These frameworks were selected based on their popularity, trending
status on GitHub, and widespread adoption in RAG development.
For each framework, we focused on the document parsers responsi-
ble for handling different file formats, i.e. PDF, HTML, and DOCX.
In total, 21 different parsers across the selected frameworks were
evaluated. Specifically, for Docling we used the Default parser, the
PyPDFium parser, the HTML parser, the DOCX parser, and the OCR
parser; for Haystack, the PyPDF parser, the PDFMiner parser, the
HTML parser, and the DOCX parser were evaluated; for Llamalndex,
we assessed the LlamaParse, SimpleDirectoryReader, and HTML-
TagReader; for LangChain, the PyPDF (with and without OCR),
PDFPlumber, PyPDFium2, PyMUPDF (with and without OCR), Un-
structuredHTML, BSHtml, and Docx2txt parsers were employed;
finally, the LLMSherpa Default parser was evaluated.*

Dataset. We created a custom dataset to test PhantomText’s
ability to obfuscate and inject content into DOCX, HTML, and
PDF files. The dataset is created by utilizing 100 random samples
from Amazon Reviews’23 [10]. Then, starting from each sample, we
generate a poisoned document as follows: for content obfuscation
techniques, a random word is selected within the document text and
replaced with the injection counterpart; in the content injection, we
insert a random word not present in the document.> This procedure
is repeated for all the various techniques we presented in Section 5,
generating a dataset of 4200 documents. In other words, our dataset
now contains those 100 original samples repeated with different
injection techniques (e.g., 100 documents are obfuscated with zero-
width character mask1, 100 with zero-width character mask2, and
so on). We test each document loader configuration with such a
dataset, resulting in a total of 35,900 evaluations.

It is important to clarify that our evaluation focuses on the ro-
bustness of document ingestion pipelines—software components
responsible for parsing and encoding input documents prior to lan-
guage model inference—rather than on the performance or general-
ization of ML models themselves. These preprocessing algorithms
are domain-agnostic, operating at a syntactic and structural level re-
gardless of semantic content or text domain. Thus, Amazon Reviews

3We provide the list of software in the Appendix A.2

4The OCR we used was tesseract for all the loaders.

5The random word is picked from this list: https://www.kaggle.com/datasets/rtatman/
english-word-frequency.

https://github.com/pajola/PhantomText-Paper
https://www.kaggle.com/datasets/rtatman/english-word-frequency
https://www.kaggle.com/datasets/rtatman/english-word-frequency

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

provide a controlled yet realistic dataset, suitable for systematically
evaluating injection attacks on software vulnerabilities.

Evaluation. A single evaluation is considered successful if, in
the Content Obfuscation scenario, the target word was completely
absent from the parsed text, and in the Content Injection scenario,
the synthetic word was correctly present in the parsed output. The
Attack Success Rate (ASR) is defined as the ratio between the
number of successful tests and the total number of attempts, i.e.,

ASR = Succes
"~ Succes + Failed”

6.1.3 Results. Due to space limitations, a detailed table presenting
the attack success rate for each configuration is provided exclusively
in the public repository. Below, we present an overview of these
findings.

Overall Trends. PhantomText Toolkit demonstrated an overall
success rate of 74.4%, indicating a significant degree of effectiveness
in compromising the integrity of RAG’s document loaders. Further-
more, out of 375 tests conducted, 238 yield a success rate over 95%.
When analyzed by attack family, the performance shows notable
distinctions between the two primary strategies. The content ob-
fuscation and injection families achieved, respectively, a success
rate of 76.7% and 72.4%.

Document Loaders Level. Figure 1a visualizes the varying effec-
tiveness of the attacks across different data loaders. With an ASR
above 0.6 for all loaders, the attack proves effective in manipulating
document processing pipelines. Langchain shows the highest ASR,
indicating significant vulnerability, while Llamalndex exhibits the
lowest ASR, demonstrating more resistance. Docling, LLMSherpa,
and Haystack fall in the mid-range, showing moderate susceptibil-
ity. Overall, the results highlight that the attack is effective across
all tested loaders, underscoring the need for improved defenses
against such adversarial manipulations.

File Format. Figure 1b illustrates the effectiveness of the Text
Injection attack across different file formats. All formats exhibit
ASRs above 0.6, indicating that the attack is effective in each case.
DOCX shows the highest ASR at 0.89, suggesting a high level of
vulnerability. Overall, the results highlight that while the attack is
effective across all file formats, DOCX is the most vulnerable, and
PDF offers the best defense among the tested formats.

Success Rate of each Attack Technique. We conclude by analyzing
the impact of each poisoning technique on document loaders, as
shown in Figure 2. The results reveal that not all techniques are
equally effective. For example, font poisoning and homoglyph char-
acters consistently disrupt all data loaders tested, achieving a 100%
attack success rate (ASR = 1.0). In contrast, diacritical injection
shows limited effectiveness, with an average ASR of approximately
0.4. Metadata injection proves to be largely ineffective across the
board, except for Langchain, where it reaches a moderate ASR
of 0.5. The analysis also highlights significant variability in how
different data loaders respond to specific attacks. For example, out-
of-bound text is particularly effective against Docling (ASR = 0.83)
but less so against Llamalndex (ASR = 0.5). In contrast, Llamalndex
is more vulnerable to zero-size font (ASR = 0.81), while Docling
demonstrates greater resistance to the same technique (ASR = 0.39).

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

c -1.0
kel
g Sl o079 0.8
=)
S8 0.6
X
S5 0.4
<3 0.2
IS
0.0
e>°¢\\°
Document Loader
(a) Document Loaders
-1.0
c
o
8 -0.8
> § 0.8
§8 06
w
S
8c 0.4
<
.i 0.89 0.63 02
IS
0.0
DOCX HTML PDF
File Format
(b) File Format

Figure 1: Attack Success Rate at varying poisoning families
- from both Semantic Corruption via Obfuscation (in blue)
and Invisible Content Injection (in orange) families — across
different data loaders (left) and file format (right).

These findings indicate that attack effectiveness is highly technique-
dependent and that document loaders exhibit varying levels of re-
silience. Therefore, the choice of technique must be tailored to the
specific target in order to maximize adversarial impact.

= Yes, Popular Document Loaders are severely vulnerable.
We observed that both injection and obfuscation techniques per-
sist through preprocessing and are embedded into the vector
store, enabling successful poisoning across multiple formats.

6.2 Exp2: End-to-End RAG Manipulation

6.2.1 Overview. Building on the results from Experiment 1, we
explore whether a poisoned knowledge base affects the behavior
of RAG systems. Specifically, we focus on determining whether
the invisible manipulations introduced into the documents during
ingestion can propagate through the retriever and generative model
components of popular RAG frameworks. While the knowledge
base is successfully poisoned in Experiment 1, the impact on sys-
tem behavior is more nuanced, with some systems showing greater
resilience than others. For simplicity, we focus only on PDF docu-
ments; however, the results can be generalized to other document
formats, such as DOCX and HTML. This experiment demonstrates
that document poisoning does not always guarantee that the entire
RAG pipeline will be affected, and shows which techniques are the
most effective in attacking different RAG pipelines.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

-1.0
1 1 1 1 1 08

Font Poisoning

o
=]
g
% Homoglyph 1 1 1 1 1 0.6
e .-
_‘E OCR-Poisoning 1 1 0.4
< Reordering 0.95 0.83 0.48 0.94 02
Zero-Width 0.79 0.86 0.51 1
0.0
2 % g 5 g
S 3 5 = g
S S > T i
< S g g

Document Loader

(a) Content Obfuscation

-1.0
Camouflage Element 0.87 1 0.99 -
-0.8
g
% 0.6
o Out-of-Bound | 0.83 1 1
é 0.4
g Transparent Text 1 0.88
0.2
Zero-Size (MK} 0.
0.0
g 3 5 & B
2 3 g £

Document Loader

(b) Content Injection

Figure 2: Attack Success Rate at varying poisoning families
(Content Obfuscation and Injection).

© Research Question: Can PhantomText toolkit content obfus-
cation and injection techniques affect end-to-end RAG pipelines?
Which techniques are the most effective?

6.2.2 Experimental Settings.

RAG Configuration. In this work we tested different end-to-end
RAG frameworks, with a total of 6 different setups (M = 6):

e White-box setting. Open-source frameworks that give us
the capability to fully access the internal components, includ-
ing the retriever and the language model. We utilized three
distinct LLMs: Llama 3.2 (3B), Gemma 3 (27B), and Deep Seek
R1. The RAG utilizes a local retriever. We locally implement 3
distinct RAG utilizing the official LangChain documentation
and a Chroma retriever®. A detailed description of our setup
is reported in Appendix A.3.

e Black-box setting. It involves using pre-built RAG systems
via APIs or web interfaces. We tested two black-box RAGs:
OpenAl assistants (gpt-4o and 03-mini) and NotebookLM,
based on Google’s Gemini 2.0 Flash.

Two LLMs — Deep Seek R1 and OpenAlI 03-mini — were trained for
reasoning responses.

Shttps://python.langchain.com/docs/tutorials/rag/

Anonymous et al.

In order to maximize fairness and ensure the validity of our
RAG pipeline, for 5 out of 6 RAGs, we integrate a custom system
prompt sourced directly from the OpenAlI Playground interface, as
reported in Appendix A.3. This prompt is notably more rigorous
than Langchain’s default version; we adopted it to better simulate
real-world scenarios and minimize bias in our experiments. The
only exception is NotebookLM, which operates as a fully black-box
system and does not allow users to customize the system prompt.

Dataset. The aim of this experiment is to understand if it is
possible to affect end-to-end RAGs with PhantomText techniques,
and to do so we deploy a straightforward test. We start from a
benign document containing information about a fictional company,
ensuring that RAG responses are not conditioned by the prior
knowledge of the LLMs. Then, we produce 14 poisoned documents
(D = 14) - one for each PDF PhantomText technique - in two
fashions: for content obfuscation families, we use the techniques to
hide specific information, while for the content injection, we add a
new concept related a fictional competitor company.

Evaluation. We first evaluate the base quality of the RAG sys-
tems to ensure the validity of the experiment. We utilize a benign
document and we generate queries to ask about the fictional com-
pany and its competitor (Q = 4). We test the 6 RAG systems against
these queries, and verify that they are able to correctly answer. We
repeat each query 10 times, to reduce randomness (R = 10). In total,
we conduct Q X R X M = 240 tests. Then, we analyze the effective-
ness of PhantomText toolkit, and its ability to obfuscate and inject
information, by repeating the queries with poisoned documents. In
this case, our total tests are D X R X M = 840 tests. All responses are
manually evaluated to check whether the attack was successful.

6.2.3 Results. The quality assurance test resulted in 100% of accu-
racy, meaning that the RAG systems were able to correctly answer
the queries based on the contents of the provided documents. As
for the attack techniques, we report our results in Figure 3. We note
that distinct patterns emerge across the various techniques. Most
attacks implemented in PhantomText — such as camouflage element
and font poisoning — consistently lead to effective RAG manipula-
tion (ASR = 1.0) across all tested RAG systems, in both white-box
and black-box settings. However, a small number of techniques
such as metadata show no effect (ASR = 0). Finally, reordering
and homoglyphs generate a range of outcomes, with some models
achieving close to full success, while others, exhibiting reduced or
null susceptibility. These findings highlight the varying degrees of
vulnerability of different Al models to specific attacks. Due to space
limitations, a detailed table breaking down the attack evaluation is
provided only in the public repository.

12 Yes, RAG systems can be affected by PhantomText tech-
niques. Not all PhantomText techniques are equally effective
for RAG end-to-end systems; most are always effective (e.g., font
poisoning), others consistently fail (e.g., metadata), and some are
effective only on specific RAG systems (e.g., homoglyphs).

6.3 Exp3: CIA triad-oriented RAG attacks

6.3.1 Overview. We finally apply the most effective PhantomText
techniques to craft targeted attacks that exploit vulnerabilities in

https://python.langchain.com/docs/tutorials/rag/

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

Camouflage Element_default 1 1 1 1 1 1 10
Diacritical_mask1 n n 1 n
Font Poisoning _default 1 1 1 1 1 1 ~0.8
Homoglyph_default 0.8 mn
Metadata_default ““““““
Out-of-Bound_default 1 1 1 1 1 1 - 0.6
Reordering_default 0.9 1 1 1 IEH 09
Transparent Text_background-color 1 1 1 1 1 1
Transparent Text_opacity00 1 1 1 1 1 1 - 0.4
Transparent Text_opacity01 1 1 1 1 1 1
Zero-Size_font00 1 1 1 1 1 09
Zero-Size_font01 1 1 1 1 1 1 - 0.2
Zero-Size_scaling 1 1 1 1 1 0.9
zero-width_mask3 ISl ' HEH ' ¢ oo
-~ [52] o [se) c
: E10E g ¢
o} £ > ° o [52)
2 2

Figure 3: Experiment 2 — End-to-End RAG Manipulation.

RAG systems presented in Section 3, with a focus on the Confiden-
tiality, Integrity, and Availability (CIA) triad. Using popular RAG
frameworks, we demonstrate how invisible manipulations can lead
to attacks such as leaking sensitive information, altering retrieved
facts, and degrading system functionality. While we focus on PDF
documents for simplicity, these techniques can be transferred to
other document formats like DOCX and HTML. These attacks show
that the combination of invisible content and subtle manipulations
can be leveraged to bypass typical detection mechanisms, posing
significant risks to both the integrity and availability of the system.

© Research Question: Can PhantomText toolkit techniques be
leveraged to perform the attacks described in Section 3, affecting
the confidentiality, integrity, and availability of state-of-the-art
RAG systems?

6.3.2 Experimental Settings.

Datasets. We conduct attacks on the same RAG systems pre-
sented in Section 6.2. For each of the nine attack scenarios listed in
Section 3, we crafted a series of datasets with different scenarios. For
instance, when performing sensitive data disclosure, we designed a
dataset containing sensitive information. As a representative case
from the public repository (Appendix A.4), we detail one example to
illustrate the attack’s mechanics and impact. In general, we defined
4 distinct dataset per scenario, with a varying number of documents
(N ={1,100}) and type of content (i.e., poisoned and unpoisoned).
Unpoisoned datasets are utilized as a control group to verify the
correct execution of RAGs (i.e., if the RAG is able to answer the
query without any tampering), while poisoned datasets are utilized
to assess PhantomText attacks. In particular, for poisoned dataset,
we are interested in two cases:

¢ Single Poisoned Document. The knowledge base contains
only a single poisoned document. This scenario is designed to
assess the maximum effectiveness of a specific attack when
the adversary has complete control over the information
source available to the RAG system.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

e 100 Poisoned Documents. The knowledge base contains
all 100 documents (i.e. 99 legitimate and 1 poisoned). This
scenario aimed to evaluate the attack performance in a more
realistic setting where the attacker’s ability to manipulate
the knowledge base is limited.

For each dataset and attack scenario, we designed ad-hoc queries.

Evaluation. We evaluate each attack scenario across the 6 RAG
systems, using an LLM-as-a-judge to label the answers given by the
RAG systems as either successful attacks or failures. The only excep-
tions are attacks a3, which was manually analyzed, and a9, where
we used a simple substring match to look for leaked information
in the responses. More details about our judging approach for the
rest of attacks are reported in Appendix A.1. Each experiment is re-
peated 10 times to reduce randomness due to the non-deterministic
nature of LLMs (with the exception of pipeline failure where we
execute the test one time since we need to understand if the end-
to-end RAG “crashes” and does not involve LLMs). For each attack,
we report the number of successful executions out of 10, except
for pipeline failure (single test) and reasoning overload, where we
report the average increase factor in tokens used during reasoning.

6.3.3 Results. The results of the attacks are presented in Table 2,
and highlight distinct vulnerabilities of RAG systems when targeted
by PhantomText attacks in both white-box and black-box settings.
A consistent pattern of high attack success rate is observed in sev-
eral failure modes, especially in white-box scenarios. This indicates
a critical lack of robustness in these systems against semantic dis-
ruption techniques that can affect confidentiality, integrity, and
availability. Interestingly, even advanced models like deepseek-r1
are very susceptible to all executed attacks.

Black-box models display a more heterogeneous vulnerability
profile. For instance, NotebookLM demonstrated strong resilience
to several attack vectors, with a 0% success rate in attacks like
factual distortion, empty statement response. On the other hand,
commercial models such as gpt-40 and 03-mini were significantly
more vulnerable, with high success rates (up to 10/10) in many
categories. Specifically, attacks targeting 03-mini were always suc-
cessful for 9 out of 16 scenarios. The results suggest that while some
black-box models may benefit from stronger internal filtering or
post-processing mechanisms for some attacks, they remain in gen-
eral as vulnerable as their white-box counterparts. Importantly, the
reasoning-overload attack, which measures token inflation, showed
a very noticeable increase in response length for certain models
(e.g., 4.9% in 03-mini), indicating that resource abuse or inefficiency
can also be induced adversarially.

A separate discussion can be made about the pipeline failure at-
tack, since the results show that only our white-box RAG pipelines
where vulnerable to this attack. First of all, we need to point out
that we only tested a very simple attack vector, i.e. a very big PDF
document, which is very easy to detect. More sophisticated attacks
may bypass the detection of even the black-box RAG systems. Addi-
tionally, the results may be interpreted as if the problem lies in our
implementation of the RAG pipeline. However, we want to high-
light the fact that we followed the implementation suggested in the
official Langchain documentation. It is likely that unexperienced

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Anonymous et al.

White-box Black-box
deepseek-r1 gemma3 llama NotebookLM gpt-4o 03-mini

1 100 | 1 100 | 1 100 1 100 | 1 100 | 1 100
al-pipeline-failure 1/1 1/1 1/1 11 11 1/1 0/1 0/1 0/1 0/1 0/1 0/1
a2-reasoning-overload 1.25 2.04 ‘ / / / / / / / / 4.90 3.48
a3-unreadable-output 5/10 4/10 0/10 0/10 0/10 0/10 0/10 8/10 9/10 1/10 9/10 5/10
ad-empty-statement-response | 10/10 10/10 10/10 10/10 | 10/10 10/10 | 0/10 0/10 8/10 8/10 | 10/10 8/10
a5-ambiguous-output 10/10 10/10 10/10 10/10 | 10/10 10/10 | 10/10 10/10 | 10/10 10/10 | 10/10 10/10
a6-bias-injection 10/10 10/10 10/10 10/10 9/10 10/10 0/10 9/10 7/10 9/10 10/10 10/10
a7-factual-distortion 10/10 10/10 10/10 10/10 | 10/10 10/10 0/10 0/10 10/10 10/10 | 10/10 10/10
a8-outdated-knowledge 10/10 10/10 10/10 10/10 | 10/10 10/10 | 10/10 10/10 9/10 8/10 10/10 10/10
a9-sensitive-data-disclosure 10/10 10/10 10/10 10/10 | 0/10 0/10 / / 0/10 0/10 8/10 9/10

Table 2: Experiment 3 — Real-World Exploitation Across RAG Attack Scenarios. PhantomText attack success in executing different
attacks to different RAG end-to-end systems, with 1 and 100 documents. Note that we report the attack success rate for each
row, while for the attack “reasoning overload” we report the average factor of increase in the number of tokens.

developers follow that same documentation, resulting in a faulty
RAG pipeline that crashes with such a simple attack.

= Yes, Invisible injection can affect confidentiality, in-
tegrity, and availability of state-of-the-art RAG systems.
Our demonstration highlights the need to carefully design these
systems with cyber-secure principles.

7 Defenses

Although the presented injection strategies are diverse, many share
syntactic or formatting patterns that can be detected using sim-
ple heuristics. Several attacks introduce structural or visual anom-
alies—imperceptible to humans but detectable via shallow pattern
analysis or normalization. For example, diacritical mark stacking
produces abnormal Unicode sequences that deviate from language
norms. Statistical checks on combining marks or character frequen-
cies can flag these. Homoglyph substitutions—though visually de-
ceptive—leave traces in the form of anomalous Unicode blocks (e.g.,
Cyrillic in Latin text), which can be neutralized through character
set filtering or canonical Unicode normalization (e.g., NFC).

Zero-width characters are rare in natural text and can be de-
tected by scanning for a fixed set of Unicode code points. A blanket
removal of such characters is often safe and effective. Bidirectional
control characters (used in reordering attacks) introduce RTL/LTR
switches that can be flagged by inspecting Unicode identifiers, espe-
cially when occurring mid-word or mid-token. Invisible injections
using formatting tricks—e.g., transparent text, vanished styles, or
zero-size fonts—can be detected via document parsing, targeting
attributes like color, opacity, or tags (e.g., <w:vanish/>). Similarly,
out-of-bound injections can be flagged through bounding-box anal-
ysis of rendered layout or structural metadata.

While these defenses are not foolproof, lightweight sanitization
can mitigate many attacks at low cost. For more robust protection,
advanced techniques like OCR-based pipelines [3] offer resilience
against invisible perturbations but incur computational overhead
and potential transcription errors. We also explored this OCR-based
ingestion module (we tried two popular open-source OCR, i.e. Easy-
OCR and Tesseract), which extracts text from rendered document
images, effectively bypassing many parser-level exploits. This ap-
proach blocks more 90% invisibility-based attacks, such as transpar-
ent or out-of-bound text, substantially reducing the attack success

rate. However, OCR incurs significant computational overhead and
may introduce transcription errors, limiting its practicality in high-
throughput environments. Importantly, OCR is not a silver bullet:
certain attacks, including diacritical manipulations and zero-size
font injections, can still evade OCR-based defenses. Therefore, OCR
should be considered a strong first layer in a multi-layered defense
strategy rather than a standalone solution. These defensive insights
and empirical results will be integrated into the revised manuscript
to provide a balanced and actionable security perspective.

8 Related Works

Imperceptible Characters against NLP. Imperceptible perturba-
tions to text have emerged as a powerful attack vector against
NLP systems. Pajola et al. [18] introduced Zero-Width (ZeW) at-
tacks, injecting invisible Unicode characters to bypass classifiers by
major platforms like Google and Amazon. This was expanded [3]
to include wide class of black-box attacks using encoding-level
manipulations—zero-width, homoglyphs, and reordering— to break
commercial NLP systems. Such attacks are also effective in sub-
verting search engines and LLMs by stealthily altering queries and
content, impacting retrieval, summarization, and ranking. [2] Our
work took inspiration by these techniques, applying invisible injec-
tions to poison the document corpus of RAG systems.

Security of LLMs and RAG Systems. LLMs have shown impres-
sive capabilities but also raise significant security concerns. Yao et
al. [26] categorize the dual nature of LLMs as “The Good” (e.g., code
analysis, privacy protection), “The Bad” (e.g., offensive misuse),
and “The Ugly” (e.g., inherent vulnerabilities). LLMs have been
shown to be vulnerable to black-box jailbreak prompts that can
bypass state-of-the-art safety measures [17]. RAG systems have
also been studied, with attacks that can be used to create retrieval
backdoors in RAG sytems(TrojRAG [25]). Other attacks include
prompt injections through documents [6] and knowledge corrup-
tion with specific question/answer pairs [28]. These works highlight
the urgent need for robust defenses across both LLMs and their
augmented systems.

9 Conclusion

Our analysis reveals significant vulnerabilities in RAG systems’
data loading phase, stemming from widespread neglect of input

The Hidden Threat in Plain Text:
Attacking RAG Data Loaders

sanitization. These weaknesses allow stealthy injection attacks
that compromise the integrity of downstream language model out-
puts. Addressing these issues requires the disciplined application
of established security practices to document ingestion pipelines.
Furthermore, as Al systems increasingly rely on retrieved content
for complex, multi-step reasoning, similar vulnerabilities may prop-
agate and amplify across workflows. Future defenses must therefore
advance beyond static sanitization to include context-aware filter-
ing, provenance verification, and runtime anomaly detection to
secure next-generation Al applications.

References

(1]

&2

=

(4]

(5

=

=

[10

[11]

[12

[13]

[14]

=
)

[16]

[17]

Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Nikolaos Livathi-
nos, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Fabian Lindlbauer,
Kasper Dinkla, Lokesh Mishra, Yusik Kim, Shubham Gupta, Rafael Teixeira
de Lima, Valery Weber, Lucas Morin, Ingmar Meijer, Viktor Kuropiatnyk, and
Peter W. J. Staar. 2024. Docling Technical Report. arXiv:2408.09869 [cs.CL]
https://arxiv.org/abs/2408.09869

Nicholas Boucher, Luca Pajola, Ilia Shumailov, Ross Anderson, and Mauro Conti.
2023. Boosting big brother: Attacking search engines with encodings. In Proceed-
ings of the 26th International Symposium on Research in Attacks, Intrusions and
Defenses. 700-713.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. 2022.
Bad characters: Imperceptible nlp attacks. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 1987-2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. 2021. Extracting training data from large language models. In 30th USENIX
security symposium (USENIX Security 21). 2633-2650.

Harsh Chaudhari, Giorgio Severi, John Abascal, Matthew Jagielski, Christopher A
Choquette-Choo, Milad Nasr, Cristina Nita-Rotaru, and Alina Oprea. 2024. Phan-
tom: General trigger attacks on retrieval augmented language generation. arXiv
preprint arXiv:2405.20485 (2024).

Mauro Conti, Luca Pajola, and Pier Paolo Tricomi. 2023. Turning captchas against
humanity: Captcha-based attacks in online social media. Online Social Networks
and Media 36 (2023), 100252.

Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tianwei Zhang, and Yang Liu.
2024. Pandora: Jailbreak gpts by retrieval augmented generation poisoning. arXiv
preprint arXiv:2402.08416 (2024).

Tommi Gréndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N Asokan. 2018. All
you need is" love" evading hate speech detection. In Proceedings of the 11th ACM
workshop on artificial intelligence and security. 2-12.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley.
2024. Bridging Language and Items for Retrieval and Recommendation. arXiv
preprint arXiv:2403.03952 (2024).

Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large
language models: A survey. arXiv preprint arXiv:2212.10403 (2022).

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir
Houmansadr, and Eugene Bagdasarian. 2025. OverThink: Slowdown Attacks on
Reasoning LLMs. arXiv e-prints (2025), arXiv-2502.

David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M
Greenhill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Penny-
cook, David Rothschild, et al. 2018. The science of fake news. Science 359, 6380
(2018), 1094-1096.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktdschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459-9474.
Nikolaos Livathinos, Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele
Dolfi, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Kasper Din-
kla, Yusik Kim, Shubham Gupta, Rafael Teixeira de Lima, Valery Weber, Lucas
Morin, Ingmar Meijer, Viktor Kuropiatnyk, and Peter W. J. Staar. 2025. Do-
cling: An Efficient Open-Source Toolkit for Al-driven Document Conversion.
arXiv:2501.17887 [cs.CL] https://arxiv.org/abs/2501.17887

Tan Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. 2017. Mirage: Content
masking attack against {Information-Based} online services. In 26th USENIX
Security Symposium (USENIX Security 17). 833-847.

Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum
Anderson, Yaron Singer, and Amin Karbasi. 2024. Tree of attacks: Jailbreaking

[18

[19

[20

[22

[23

[24

[26

[27

[28

]

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

black-box llms automatically. Advances in Neural Information Processing Systems
37 (2024), 61065-61105.

Luca Pajola and Mauro Conti. 2021. Fall of Giants: How popular text-based
MLaasS fall against a simple evasion attack. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 198-211.

Fabio Perez and Ian Ribeiro. 2022. Ignore previous prompt: Attack techniques
for language models. arXiv preprint arXiv:2211.09527 (2022).

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu,
Jing Xu, Myle Ott, Kurt Shuster, Eric M Smith, et al. 2021. Recipes for building an
open-domain chatbot. Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume (2021).

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: How
does llm safety training fail? Advances in Neural Information Processing Systems
36 (2023), 80079-80110.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824-24837.

Laura Weidinger, Jonathan Uesato, Maribeth Rauh, Conor Griffin, Po-Sen Huang,
John Mellor, Amelia Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh, et al.
2022. Taxonomy of risks posed by language models. In Proceedings of the 2022
ACM conference on fairness, accountability, and transparency. 214-229.

Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu. 2018. Security risks in deep
learning implementations. In 2018 IEEE Security and privacy workshops (SPW).
IEEE, 123-128.

Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun Chen, and Qian Lou. 2024.
Badrag: Identifying vulnerabilities in retrieval augmented generation of large
language models. arXiv preprint arXiv:2406.00083 (2024).

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024.
A survey on large language model (llm) security and privacy: The good, the bad,
and the ugly. High-Confidence Computing (2024), 100211.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems 36 (2023), 46595-46623.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. 2024. Poisonedrag;:
Knowledge corruption attacks to retrieval-augmented generation of large lan-
guage models. arXiv preprint arXiv:2402.07867 (2024).

https://arxiv.org/abs/2408.09869
https://arxiv.org/abs/2408.09869
https://arxiv.org/abs/2501.17887
https://arxiv.org/abs/2501.17887

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

A Appendix
The full appendix is in the public repository due to space limits.

Ethical Statement

All experiments were conducted in accordance with ethical research
guidelines. No proprietary or production systems were harmed or
targeted during this study. The vulnerabilities identified in third-
party open-source and commercial tools and libraries were responsi-
bly disclosed to the respective parties prior to publication, following
coordinated disclosure practices. Our goal is to raise awareness of
these attack surfaces and promote the development of more secure
and resilient RAG pipelines.

A.1 LLM-as-a-judge

For the experiment in Section 6.3, due to the large number of tests,
we used an LLM-as-a-Judge approach, where one LLM evaluates
another’s output. This enables automated annotation of vast data
and is increasingly popular [27].

We used GPT-40-mini as the judge model to evaluate answers
from various RAG systems, determining if they contained specific
characteristics indicative of successful attacks. The full definition of
the prompts for all attacks can be found at https://drive.google.com/
drive/folders/1Ee4HFIMQOO1jQt_8uuwDrj79qrPb2iX8?usp=drive_
link (due to responsible disclosure, right now it is a google drive
folder, and it will be replaced with a public repositoryu upon pa-
per publication). To evaluate this approach, we randomly sampled
100 RAG outputs for manual analysis and compared them to the
LLM judge’s evaluation. Only 3 samples were mislabeled. The 99%
confidence Wilson Score Interval for accuracy is [0.8891, 0.9923].

To evaluate the performance of this approach, we randomly sam-
pled 100 RAG outputs, which we manually analyzed. We compared
our evaluation to the evaluation given by the LLM judge, and out
of 100 samples only 3 samples were mislabeled. We computed the
Wilson Score Interval for the accuracy of the model, which gives
an interval of [0.8891, 0.9923] with confidence of 99%.

A.2 List of Software
Document Loaders:

e IBM’s Docling toolkit: https://github.com/docling-project/
docling

Haystack by Deepset: https://haystack.deepset.ai/
LangChain: https://www.langchain.com/

Llamalndex by Llamalndex Inc.: https://docs.]lamaindex.ai/
en/stable/

NotebookLM: https://notebooklm.google/.

A.3 RAG Implementation Details

White-box RAG Pipelines: These pipelines provided full access to
internal components, including the retriever and language model.
We tested three white-box configurations: Llama 3.2 (3.21B pa-
rameters, Q4 K_M quantization—a 4-bit integer quantization with
mixed-precision weight compression) with a local retriever; Gemma
3 (27.2B parameters, Q4_0 quantization—standard 4-bit) with a local
retriever (both at temperature 1.00); and DeepSeek R1 accessed

LLMSherpa by NLMatics: https://github.com/nlmatics/llmsherpa

Anonymous et al.

via API, also using a local retriever. For our local (white-box) RAG
pipeline implementations, we followed the guidelines in the official
LangChain documentation and used a Chroma retriever with a
default top k = 4 setting. In the public repository, we report the
full system prompt used with the RAG pipelines that supported
user-defined prompts.

Black-box RAG Pipelines: These pipelines involved using existing
platforms or APIs where the internal workings of the retriever
and language model were not directly accessible. We tested three
black-box configurations: OpenAl GPT-4o0 (gpt-40-2024-08-06),
utilizing the assistant functionality on the OpenAl platform with
default parameters (including a temperature of 1.00 and a default
retrieval of 20); OpenAlI 03-mini (03-mini-2025-01-31), utilizing
its built-in assistant functionality on the OpenAl platform with
default parameters (including a temperature of 1.00 and a default
retrieval of 20); and NotebookLM, a fully deployed RAG system
with an online interface, based on Google’s Gemini 2.0 model.

A.4 Experiment 3: Scenarios

A.4.1 Attack Scenarios. We evaluate nine attacks targeting RAG
pipelines using a dataset of political biographies. Each scenario tests
vulnerabilities via prompt injection, obfuscation, or document-level
manipulation.

al-Pipeline Failure. A 169 MB PDF embeds 97M characters out-
of-bounds, causing infinite parsing or system crashes. Obfuscation:
/ Injection: out-of-bound text

a2-Reasoning Overload. A Sudoku puzzle is injected with font
poisoning; success = excessive reasoning tokens. Obfuscation: font
poisoning Injection: zero-size font, font poisoning

a3-Unreadable Output. Font poisoning and transparent text cause
base64 gibberish replies about Draghi. Obfuscation: font poisoning
Injection: transparent text, font poisoning

a4-Empty Statement Response. Obfuscation hides von der Leyen’s
birth info, leading to “unavailable” replies. Obfuscation: reordering
characters, zero-width characters Injection: out-of-bound text

a5-Vague Output. Von der Leyen’s bio altered with vague lan-
guage via font poisoning. Obfuscation: font poisoning, transparent
text Injection: font poisoning

a6-Bias Injection. Hidden praise in Draghi’s bio biases responses.
Obfuscation: camouflage, font poisoning, metadata, zero-size font
Injection: font poisoning

a7-Factual Distortion. Fake event (cooking show) replaces real
info in Evo Morales’ bio. Obfuscation: font poisoning Injection:
font poisoning

a8-Outdated Knowledge. Sassoli’s death removed using homo-
glyphs, making the model say he is alive. Obfuscation: homoglyph
characters, zero-width characters Injection: out-of-bound text

a9-Sensitive Data Disclosure. Prompt injection leaks another user’s
PII when querying for Elena Bianchi. Obfuscation: out-of-bound
text Injection: /

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://drive.google.com/drive/folders/1Ee4HF1MQOO1jQt_8uuwDrj79qrPb2iX8?usp=drive_link
https://drive.google.com/drive/folders/1Ee4HF1MQOO1jQt_8uuwDrj79qrPb2iX8?usp=drive_link
https://drive.google.com/drive/folders/1Ee4HF1MQOO1jQt_8uuwDrj79qrPb2iX8?usp=drive_link
https://github.com/docling-project/docling
https://github.com/docling-project/docling
https://haystack.deepset.ai/
https://www.langchain.com/
https://docs.llamaindex.ai/en/stable/
https://docs.llamaindex.ai/en/stable/
https://github.com/nlmatics/llmsherpa
https://notebooklm.google/

	Abstract
	1 Introduction
	2 Background
	2.1 Retrieval-Augmented Generation
	2.2 LLM Jailbreaking

	3 Taxonomy of Knowledge Base Poisoning Attacks in RAG Systems
	3.1 RAG and the CIA triad
	3.2 System Integrity Attacks
	3.3 Output Manipulation Attacks
	3.4 Knowledge Manipulation Attacks
	3.5 Security and Privacy Violations

	4 Threat Model
	5 Data Loading Deception Techniques
	5.1 Content Obfuscation
	5.2 Content Injection
	5.3 Two-fold Effect

	6 Evaluation
	6.1 Exp1: Poisoning Data Loaders
	6.2 Exp2: End-to-End RAG Manipulation
	6.3 Exp3: CIA triad-oriented RAG attacks

	7 Defenses
	8 Related Works
	9 Conclusion
	References
	A Appendix
	A.1 LLM-as-a-judge
	A.2 List of Software
	A.3 RAG Implementation Details
	A.4 Experiment 3: Scenarios

