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ABSTRACT
Dynamic Symbolic Execution (DSE) is a key technique in
program analysis, widely used in software testing, vulnera-
bility discovery, and formal verification. In distributed AI sys-
tems, DSE plays a crucial role in identifying hard-to-detect
bugs, especially those arising from complex network com-
munication patterns. However, traditional approaches to
symbolic execution are often hindered by scalability issues
and inefficiencies, particularly in large-scale systems. This
paper introduces LIFT (Large-language-model Integrated
Functional-equivalent-IR Transformation), a novel frame-
work that leverages Large Language Models (LLMs) to auto-
mate the optimization of Intermediate Representations (IRs)
in symbolic execution. LIFT addresses the challenges of sym-
bolic execution by providing a scalable, context-sensitive
solution for IR transformation. The framework consists of
two phases: IR Analysis and Optimization, where LLMs op-
timize time-intensive IR blocks, and Symbolic Execution
and Validation, which includes benchmarking and semantic
verification to ensure correctness and generalizability. Ex-
periments on real-world binaries demonstrated significant
performance improvements, including a 53.5% reduction in
execution time for bigtest and a 10.24% reduction for random,
along with reductions in IR statements, PUT instructions,
and temporary variables. These results demonstrate that
LLMs simplify IRs while maintaining functional correctness,
enhancing symbolic execution in distributed AI systems.

* Corresponding authors.
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1 INTRODUCTION
Dynamic symbolic execution (DSE) has emerged as a foun-
dational technique in modern program analysis, now widely
adopted in software testing, vulnerability discovery, and
formal verification [1, 13]. In the context of large-scale dis-
tributed systems, such as those used in AI and machine learn-
ing, DSE plays a crucial role in uncovering hard-to-detect
bugs in networked systems [14, 15]. By alternating concrete
and symbolic execution, DSE systematically explores paths
to ensure correctness in distributed AI systems, especially
those with complex communication patterns.

Although there are many ways to implement DSE, a pop-
ular approach is to leverage intermediate representations
(IRs) to enable platform-independent binary analysis. In dis-
tributed network environments, particularly those support-
ing large-scale AI training, DSE tools such as angr [13] and
newer hybrid fuzzing frameworks like SymFusion[9] utilize
IRs to analyze binaries in a uniform and structured manner.
These representations abstract low-level machine code into
a normalized form, capturing essential semantics such as
control flow, memory access, and arithmetic operations [10].

One of the central challenges in this domain is the complex-
ity introduced by traditional compiler optimizations, which
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primarily focus on improving runtime performance with-
out considering symbolic tractability [11, 21]. Prior work
has explored symbolic-aware IR rewriting to alleviate the
challenges associated with symbolic execution in modern
program analysis [4]. Most rely onmanual rule-based conver-
sion, which requires applying predefined transformations to
improve symbolic reasoning. While such manual conversion
techniques can yield promising results for specific cases, they
face significant scalability issues. As the complexity of the
target programs increases, these methods become increas-
ingly difficult to manage, as they require extensive expert
knowledge to tailor the rules for various types of code and
execution paths [4, 16].

Recognizing these limitations, we introduce an approach
leveraging large language models (LLMs) [2, 3, 6, 18–20],
which have shown strong capabilities in manipulating struc-
tured code [7, 17]. LLMs automatically can produce context-
sensitive IR transformations, offering a scalable solution for
symbolic execution and introducing NLP into program anal-
ysis. Build upon this idea, we present an IR optimization
framework named LIFT (Large-language-model Integrated
Functional-equivalent-IR Transformation). LIFT consists of
two phases: IR Analysis and Optimization, and Symbolic
Execution and Validation. In the first phase, we symbolically
execute the program to extract IR blocks (IRSBs) andmeasure
their performance using context-aware instrumentation. The
most time-intensive blocks are prioritized for optimization
and transformed using an automated LLM-powered pipeline.
In the second phase, execution benchmarking evaluates opti-
mization effectiveness by comparing runtime, path coverage,
and solver invocation statistics, while also collecting static
metrics such as IR statement count and instruction types.
This step ensures that optimizations are not only effective
but also generalizable for future reference. Semantic verifi-
cation follows to confirm that the transformed IR remains
functionally equivalent to the original, with LLMs facilitating
this process for scalability and generalizability.

To demonstrate the power of our approach, we evaluated
LIFT on real-world binaries. The experiments demonstrated
consistent performance improvements and structural sim-
plifications across the benchmark programs. For example,
bigtest saw a 53.5% reduction in execution time, with 217
fewer IR statements and 106 fewer PUT operations. Random
experienced a 10.24% reduction in execution time, along with
35 fewer IR statements and 15 fewer temporary variables.
Other programs like matrix and methcall showed more mod-
erate improvements, with execution time reductions of 1.02%
and 1.72%, respectively. Even bigprog had a 0.75% improve-
ment in execution time, alongside 175 fewer IR statements
and 85 fewer PUT instructions. Across the board, IR state-
ments were reduced by 90 to 222, PUT instructions dropped

by up to 109, and over 300 temporary variables were elimi-
nated in certain cases. All optimizations maintained semantic
correctness, confirming the effectiveness of LLMs in simplify-
ing IRs while preserving the programs’ original functionality.

Our contributions are summarized as follows:
• Methodological Innovation: The paper utilizes
LLMs to automate the optimization of Intermediate
Representations in symbolic execution, addressing
the scalability and complexity issues of traditional
manual methods.

• Framework Implementation: We design and im-
plement LIFT. LIFT operates in two phases: IR Analy-
sis and Optimization, where LLMs are used to opti-
mize time-intensive IR blocks, and Symbolic Execu-
tion and Validation, which includes benchmarking
and semantic verification to ensure the correctness
and generalizability of the optimizations.

• Empirical Validation: Experiments on real-world
binaries demonstrated significant performance gains,
with bigtest showing a 53.5% reduction in execution
time and random a 10.24% reduction. Across all pro-
grams, IR statements were reduced by 90 to 222, PUT
instructions by up to 109, and over 300 temporary
variables were eliminated, confirming the effective-
ness of LLMs in optimizing symbolic execution.

Code Availability: The source code for LIFT is openly ac-
cessible through the Anonymous GitHub platform, which
facilitates double-blind peer review by anonymizing reposi-
tory details. The anonymized repository can be accessed at
the following URL: https://anonymous.4open.science/r/IR-
Optimization-E336

2 BACKGROUND AND RELATEDWORKS
2.1 DSE for Networked Systems
DSE is a program analysis technique used to explore exe-
cution paths, especially in complex network environments
such as AI-driven distributed systems. It integrates concrete
execution (running the program with actual inputs) with
symbolic execution (running the program with symbolic in-
puts representing a range of values) to systematically explore
different execution paths and uncover hidden vulnerabilities.
In the context of modern AI workloads, DSE is crucial for
analyzing the networked components of distributed systems,
where complex communication patterns and protocols need
to be verified for correctness and security.

Over recent years, DSE has advanced significantly in scal-
ability and precision, making it effective for large-scale sys-
tems like AI and machine learning infrastructures. For in-
stance, ParaDySE[1] has introduced automated execution
heuristics that improve path selection, significantly increas-
ing branch coverage and uncovering critical bugs. Similarly,
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Figure 1: The architecture of LIFT

recent work by Luo et al.[8] leveraged SMT solver time pre-
diction to reduce the overhead associated with expensive
constraints, thereby improving the symbolic execution pro-
cess under strict time budgets. While these approaches op-
timize the symbolic execution workflow in terms of search
and constraint-solving, they do not directly address the cost
and efficiency of the IR used for analyzing complex network
protocols and AI training workloads. Zhang et al. [21] con-
ducted a comprehensive study showing that conventional
compiler optimizations often degrade symbolic execution
performance, highlighting the need for DSE-aware IR trans-
formations. Tu et al. [16] addressed this gap with FastKLEE,
eliminating unnecessary memory-bound checks in LLVM IR
using type safety inference, reducing instruction overhead
and improving path throughput.

Other research has explored optimizing DSE at the execu-
tion layer for networked environments. Poeplau and Francil-
lon [12] proposed SymCC, a compiler-based symbolic execu-
tor that injects symbolic logic during compile-time to bypass
the inefficiencies of interpreting IRs like LLVM or VEX. This
yielded major speedups, underscoring IR’s importance in
DSE. In distributed AI systems, where network protocols
and communication patterns play a significant role.

2.2 LLM for Network Optimization
LLM have significantly impacted the field of intelligent pro-
gram analysis and code transformation, offering novel so-
lutions for optimizing network protocols and distributed
systems. One notable example is IRIS [7], a static analysis
framework that leverages GPT-4 to automatically infer taint
propagation specifications, enhancing vulnerability detec-
tion beyond traditional rule-based methods. This capability
is particularly beneficial in the context of networked systems,
where the complexity of communication patterns and the
need for precise data flow analysis are crucial for identifying
vulnerabilities that can compromise network security.

In a similar vein, Fuzz4All [17] employs LLMs to generate
high-coverage inputs across multiple languages through au-
toprompted strategies, discovering a wide range of new bugs
in various systems. This approach holds significant promise
for enhancing the security and performance of networked
applications, where fuzz testing can uncover unexpected
vulnerabilities in distributed systems that rely on complex
communication protocols and data exchange mechanisms.
Huang et al. [5] demonstrated that LLMs outperform tra-
ditional patch-generation tools by producing semantically
accurate bug fixes across multiple languages, including those
commonly used in networked environments. These advance-
ments highlight the potential for LLMs to automate low-level
transformations in network protocols, such as IR rewriting
and symbolic cost reduction, which are essential for optimiz-
ing performance and security in distributed AI systems and
networked applications.

3 LIFT DESIGN
The complexity inherent in IRs such as VEX poses significant
challenges to the efficiency of symbolic execution. Tradi-
tional symbolic execution frameworks, including angr, typ-
ically focus on the basic task of translating IR without ac-
tively optimizing it. This approach can lead to suboptimal
performance, especially in the context of analyzing large and
complex binaries with intricate control flows and memory
access patterns. To address these inefficiencies, we propose
a smart, hybrid two-stage optimization framework that inte-
grates the power of LLMs into the IR optimization process.
We name our system LIFT (Large-language-model Integrated
Functional-equivalent-IR Transformation).

As illustrated in Figure 1, LIFT consists of twomain phases:
IR Analysis and Optimization, and Symbolic Execution and
Validation. In the first phase, we symbolically execute the
program to extract platform-independent IRSBs and measure
their performance costs using context-aware instrumenta-
tion. The most time-intensive blocks are identified and prior-
itized for optimization. These blocks are transformed using
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an LLM-powered pipeline that simplifies statements while
preserving program logic. In the second phase, execution
benchmarking is performed to evaluate the effectiveness of
the optimizations and ensure their long-term applicability.
This involves comparing runtime, path coverage, and solver
invocation statistics before and after optimization. Static
metrics, such as the number of IR statements, instruction
types, and temporary variables, are also collected to assess
the broader impact of the optimizations. Afterward, semantic
verification ensures that the transformed IR is functionally
equivalent to the original by comparing components at a
granular level. LLMs assist in this process, enhancing scal-
ability and generalizability, particularly for larger binaries,
though with a slight trade-off in precision compared to man-
ual methods.

3.1 IR Analysis and Optimization

(I) IR Extraction and Profiling. We begin by symbolically
executing the program under test, which involves convert-
ing the binary into platform-independent IR blocks, known
as IRSBs. These blocks serve as normalized representations
of the program’s behavior. During symbolic execution, we
apply context-aware instrumentation that dynamically mea-
sures the performance cost of each IRSB. This allows us
to capture the execution time of individual IR blocks over
multiple runs, ensuring that we obtain stable and reliable av-
erage measurements. Once we have gathered sufficient data,
we analyze the performance costs across the IRSBs to iden-
tify the most time-intensive blocks. These identified blocks,
which have the greatest impact on overall performance, are
then prioritized for optimization, with modifications made
based on their contextual significance within the program’s
flow. This approach ensures that optimization efforts are fo-
cused on the parts of the program that will yield the greatest
improvement in execution efficiency.

(II) IR Optimization. After identifying critical blocks, we
plan to modify the corresponding IR statements. Our ap-
proach involves replacing time-consuming statements with
simpler, semantically equivalent ones. For instance, we can
eliminate no-op assignments and merge adjacent memory
operations that do not alter the program’s state or affect
symbolic reasoning.
While manual IR rewriting offers precision and control,

it becomes less scalable for larger programs or extensive
codebases. To overcome this challenge, we introduce an au-
tomated optimization pipeline powered by a LLM, which
is responsible for rewriting individual IR statements. Speci-
ficially, each selected statement is processed individually
by the language model. The prompt explicitly instructs the
model to generate a functionally equivalent, shorter, or more

efficient version of the IR statement while preserving its
semantic meaning. To prevent errors such as hallucinated
commentary or syntactic mistakes, the model’s output is
filtered and cleaned.
Once the optimized versions of the statements are pro-

duced, they are placed back in their respective blocks in lieu
of the original expensive statements. Every altered IR block
is output into a new file. These transformed blocks preserve
the program’s original control structure and maintain the or-
der of execution, enabling us to compare behavior before and
after optimization. It is important to note that these transfor-
mations are applied at the statement level, without altering
control flow. This ensures that the IR is optimized while
maintaining the integrity of the original program’s logic.

3.2 Symbolic Execution and Validation

(I) Execution Benchmarking. We collect all IR statements
across all basic blocks and simulate their symbolic execution
cost using a model. The goal of this step is not limited to op-
timizing the current analysis but rather to leverage a broader
insight: for semantically similar blocks, if we can identify
the simplest equivalent, we can reuse that simplified version
across multiple instances. This allows for greater efficiency
and consistency across different analyses.
In practice, statements that involve complex arithmetic

operations, memory stores, or symbolic variable assignments
are assigned higher weights, reflecting their higher cost in
symbolic execution. Based on this cost model, we select the
top-ranking statements for transformation. Specifically, by
comparing runtime, path coverage, and solver invocation sta-
tistics, we determine if the optimization has met its intended
performance improvements. Additionally, we collect static
metrics, including the total number of IR statements before
and after transformation, the frequency of specific instruc-
tion types, and the count of unique temporary variables. This
comprehensive evaluation allows for a systematic analysis
of IR complexity and its influence on execution efficiency,
ensuring that the transformations not only improve run-
time but also reduce the overall complexity of the symbolic
execution process.

By focusing on reusing the simplest, semantically equiva-
lent IR statements, we can optimize across a wider range of
scenarios, improving both efficiency and scalability.

(II) Semantic Verification. Once a block has been rewrit-
ten, we verify that the modified IR is functionally identical
to its original form. To achieve this, both the original and
transformed IR are converted into structured formats and
compared at the component level. This verification process
inspects variables, memory addresses, constants, and overall
structure to ensure semantic consistency. If any mismatch
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is detected, the block is flagged for further inspection or
discarded from the optimization pool.

Particularly, this step is also achieved by using LLMs. The
use of LLMs significantly reduces human effort while en-
abling broader coverage across IR programs. Although this
approach trades off some level of precision compared to
manual rewriting, it offers strong gains in scalability and
generalizability, especially for larger or unfamiliar binaries.

4 EVALUATION
4.1 Experiment Setup
Dataset. We tested 10 binaries, each highlighting perfor-
mance challenges closely tied to the network communication
patterns in large-scale AI systems. For instance, binaries like
counter and matrix represent lightweight tasks that, while
simple, still require efficient data transfers and synchroniza-
tion in distributed systems to avoid network congestion. In
contrast, more complex binaries such as bigtest and random
simulate resource-intensive computations, underscoring the
need for advanced topologies and routing protocols to han-
dle large datasets and mitigate communication bottlenecks.
Additionally, binaries like heapsort and complexprog involve
dynamic memory management and multi-step data process-
ing. These insights reflect the growing needs of modern AI
infrastructure, where optimized network communication,
innovative topologies, and sophisticated synchronization
techniques are essential to support large-scale distributed
training clusters for generative AI models.

Environment. Each binary was analyzed using a pipeline
that extracted and transformed high-cost VEX IR statements
via GPT-4o, followed by reintegration and evaluation within
a symbolic execution engine.

Methodology. We extracted and parsed the VEX IR from
each binary, followed by the application of a symbolic cost
model to identify high-cost IR statements based on their com-
plexity and instruction type. These statements were then
optimized using ChatGPT-4o, with the generated outputs
sanitized and validated for syntactic correctness. The opti-
mized statements were reintegrated into the corresponding
IR blocks, and the updated IR files were saved. Finally, sym-
bolic execution was re-run using angr to measure the execu-
tion time and evaluate the structural changes introduced by
the optimizations.

Criteria. The following metrics were used to compare the
original and optimized binaries:

• Execution Time: Average runtime across 100 sym-
bolic runs per binary.

• IR Statement Count: Total number of VEX state-
ments.

• Memory Instructions: Count the number of opera-
tions.

• Temporary Variable Count: Number of unique
temporaries used in the IR.

The goal of the experiment was to assess whether LLM-
generated transformations lead to structural simplification
and symbolic execution performance improvements while
preserving correctness.

4.2 Experiment Results
We observed consistent structural improvements and perfor-
mance gains across all ten benchmark programs following
automated IR optimization using LLMs. Figure 2 provides an
example where a multi-line VEX IR sequence is simplified
into a single statement without altering its semantics. Ta-
ble 1 summarizes the reductions in execution time, total IR
statements, memory instructions, and temporary variables.

User:

LLM:

Optimize the following VEX IR sequence:


t0 = GET: (xsp)  

t1 = (t0, x30)  


(xsp) = t1

I64
Sub64 0

PUT

PUT Sub64 I64(xsp) = ( : (xsp), )GET 0x30

Figure 2: An example of LLM optimization of VEX IR

Performance Improvement. Execution time improved in
all tested programs, with the largest gain observed in bigtest,
where symbolic execution time was reduced by 53.5%. This
program also saw a reduction of 217 IR statements and 106
PUT operations. Table 2 provides a breakdown of these im-
provements. Similarly, random showed a notable 10.24% exe-
cution time reduction, along with a decrease of 35 IR state-
ments and 15 temporary variables.

Other programs exhibited more moderate improvements.
For instance, matrix and methcall experienced execution
time reductions of 1.02% and 1.72%, respectively, while still
benefiting from structural simplification. Even in the case of
bigprog, where the execution time improvement was only
0.75%, the IR was reduced by 175 statements and 85 PUT
instructions.
Structural Simplification. All binaries demonstrated a re-
duction in IR complexity:

• IR statement counts decreased by 90 to 222 in most
of the programs.
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Table 1: LLM Optimization Results for 10 Binaries

Program Execution Time IR Statement Count Memory Instructions Temporary Variable Count

counter 2.55% 153 79 357
branching 2.23% 147 73 349
matrix 1.02% 143 71 12
methcall 1.72% 95 47 0
objinst 2.13% 133 66 0
heapsort 4.52% 90 44 3
random 10.24% 35 15 15
bigtest 53.50% 217 106 5
bigprog 0.75% 175 85 3
complexprog 1.77% 222 109 136

Table 2: Detailed Optimization Results for bigtest

Metric Before After Change

Execution Time 11.124952 5.169818 53.5% ↓
IR Statement Count 2532 2315 217 ↓
PUT Instruction Count 542 436 106 ↓
Temporary Variable Count 106 101 5 ↓
Max Temp Variable Index t105 t103 2 ↓

• The number of PUT instructions dropped by up to
109.

• Temporary variable usage was reduced significantly
in programs, like counter and branching, where over
300 temporaries were eliminated.

Semantic correctness was maintained in all optimized pro-
grams, as validated through structured comparison of IR
outputs. This confirms that the LLM-generated replacements
preserved the original behavior while simplifying the inter-
nal representation.

These results confirm the effectiveness of using LLMs for
automated IR optimization. While the performance gains
vary across program types, the transformation pipeline con-
sistently reduced symbolic execution overhead and simpli-
fied the internal representation in all evaluated cases, all
while preserving functional correctness. This demonstrates
promising potential for integrating LLMs into static analysis
and symbolic execution workflows.

5 DISCUSSION
Our findings demonstrate that LLMs can be effectively lever-
aged to automate IR optimization in symbolic execution
frameworks. Compared to manual optimization, the auto-
mated LLM pipeline achieves significant improvements in

scalability, while still offering measurable gains in both run-
time efficiency and structural simplification. The most promi-
nent performance improvements were observed in programs
with extensive symbolic arithmetic or memory access pat-
terns. For example, the bigtest program achieved a 53.5%
reduction in symbolic execution time, along with a marked
decrease in IR statement count and memory instructions.
Similarly, the random program showed consistent reductions
across all metrics, reinforcing the effectiveness of prioritiz-
ing high-cost statements for optimization. Even in smaller
programs like methcall and matrix, IR size and temporary
variable usage decreased, showing broad applicability.

A key strength of the framework lies in its modularity.
By isolating individual high-cost IR statements and rewrit-
ing them independently, the system avoids the risk of in-
troducing semantic inconsistencies across blocks. The in-
tegration of semantic validation steps ensures correctness,
while the symbolic cost model enables the selective target-
ing of performance-critical components. However, this also
introduces a limitation: optimizing statements in isolation
may overlook opportunities for more holistic block-level or
control-flow-sensitive transformations. Another challenge is
the reliance on LLM output quality. Occasional LLM errors
require post-processing, but overall output remains correct
and scalable. The precision of prompt engineering and the
design of validation filters play a crucial role in maintain-
ing the reliability of the pipeline. These optimizations are
well-suited for symbolic execution in distributed AI systems.
These trade-offs highlight the balance between automation
and control, and suggest a promising direction for integrating
machine learning with formal analysis in program optimiza-
tion workflows.

6 CONCLUSION
This paper introduced LIFT, a novel framework that uses
LLMs to optimize IRs in DSE. By automating IR optimization,
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LIFT addresses the scalability issues of traditional methods,
offering a scalable solution for symbolic execution in dis-
tributed AI systems. The two-phase approach: IR optimiza-
tion followed by symbolic execution and validation, which
ensures effective and generalizable improvements. Experi-
mental results demonstrated significant performance gains,
including reduced execution time, IR statements, and tempo-
rary variables across multiple programs. These results high-
light the potential of LLMs to enhance symbolic execution
and improve program analysis in complex environments.
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