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Abstract

Deep Reinforcement Learning (DRL) systems are increas-
ingly used in safety-critical applications, yet their security re-
mains severely underexplored. This work investigates back-
door attacks, which implant hidden triggers that cause mali-
cious actions only when specific inputs appear in the observa-
tion space. Existing DRL backdoor research focuses solely on
training-time attacks requiring full adversarial access to the
training pipeline. In contrast, we reveal critical vulnerabilities
across the DRL supply chain where backdoors can be em-
bedded with significantly reduced adversarial privileges. We
introduce two novel attacks: (1) TrojanentRL, which exploits
component-level flaws to implant a persistent backdoor that
survives full model retraining; and (2) InfrectroRL, a post-
training backdoor attack which requires no access to training,
validation, or test data. Empirical and analytical evaluations
across six Atari environments show our attacks rival state-
of-the-art training-time backdoor attacks while operating un-
der much stricter adversarial constraints. We also demonstrate
that InfrectroRL further evades two leading DRL backdoor
defenses. These findings challenge the current research focus
and highlight the urgent need for robust defenses.

Introduction
Deep Reinforcement Learning (DRL) delivers critical ca-
pabilities in safety-sensitive domains including autonomous
vehicles (Fayjie et al. 2018), nuclear fusion control (Degrave
et al. 2022), cyber defense (Vyas, Mavroudis, and Burnap
2025), and drug discovery (Tan, Liu, and Xie 2022), yet
introduces serious security vulnerabilities to adversarial at-
tacks during training and deployment. Compromised agents
risk severe consequences (Pattanaik et al. 2017), making ro-
bust defenses essential.

Backdoor attacks compromise DRL agents through
trigger-conditional malicious behavior while preserving nor-
mal performance on benign inputs. Current DRL back-
door research (Rathbun, Amato, and Oprea 2024a,b; Cui
et al. 2024; Wang et al. 2021) focuses narrowly on attacks
requiring excessive adversary privilege, overlooking crit-
ical threats across the DRL supply chain. Moreover, ex-
isting methods demand impractical capabilities: infiltrating
secure training pipelines, reverse-engineering proprietary
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codebases, developing undetectable attack scripts, and un-
realistic requirements like direct RAM manipulation or full
state-representation control, rendering them highly imprac-
tical beyond academic settings.

This work shifts focus from conventional training-time at-
tacks to component-level and post-training backdoors. Our
proposed attacks, TrojanentRL and InfrectroRL, achieve
superior effectiveness and evasiveness with substantially re-
duced adversarial access compared to existing literature.

Inspired by threat models in (Langford et al. 2024; Bober-
Irizar et al. 2023), TrojanentRL embeds a backdoor in the
DRL rollout buffer, achieving superior stealth under these
assumptions (Langford et al. 2024; Gu and Dao 2023). Cru-
cially, under the same assumptions, TrojanentRL remains
effective against all retraining and fine-tuning DRL back-
door defenses (Chen et al. 2023; Yuan et al. 2024).

InfrectroRL advances DRL backdoor threat models
through direct, data-free modification of pretrained model
parameters (Liu et al. 2018; Cao et al. 2024). By optimizing
triggers to establish persistent backdoor pathways that in-
fluence sequential actions, this attack operates with minimal
computational overhead by circumventing training require-
ments.

Following rigorous DRL security evaluation stan-
dards (Kiourti et al. 2020; Cui et al. 2024; Rathbun, Am-
ato, and Oprea 2024b; Bharti et al. 2022; Chen et al. 2023;
Yuan et al. 2024), we benchmark both attacks across six
Atari environments using established backdoor metrics. For
InfrectroRL, we further: (1) derive theoretical guarantees
of evasive performance during benign operation, and (2)
demonstrate robust effectiveness against state-of-the-art de-
fenses (Chen et al. 2023; Yuan et al. 2024), addressing a
critical gap in prior literature. Our main contributions can be
summarized as follows:

• We present a new end-to-end threat model, i.e., a DRL
threat model spanning multiple supply chain stages, re-
vealing vulnerabilities beyond training-time attacks.

• We present TrojanentRL and InfrectroRL, novel back-
door attacks that achieve superior empirical performance
over existing DRL backdoor attacks, while operating un-
der significantly reduced adversarial access assumptions.

• We provide theoretical guarantees on InfrectroRL’s eva-
siveness under benign operation and perform rigorous
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validation across six Atari environments for both attacks.
We also illustrate InfrectroRL’s ability to empirically
evade two state-of-the-art DRL backdoor defenses (Chen
et al. 2023; Yuan et al. 2024).

Background
Reinforcement Learning
Reinforcement Learning (RL) formalizes sequential
decision-making via agent-environment interactions,
modeled as a Markov Decision Process (S,A,P,R, γ).
At timestep t, the agent observes state st ∈ S , selects
action at ∈ A via policy π : S → A, receives reward
rt = R(st, at), and transitions to st+1 ∼ P(·|st, at). The
objective is to maximize the expected discounted return:

J(π) = Ea∼π

[
T∑

t=0

γtrt

]
, γ ∈ [0, 1), (1)

where discount factor γ balances immediate versus future
rewards. Policy optimization involves balancing exploration
and exploitation to converge toward π∗ = argmax J(π).

Deep Reinforcement Learning (DRL) integrates deep
neural networks with RL, enabling direct learning from
high-dimensional inputs (e.g., images, sensor data). Un-
like traditional methods (Monte Carlo, tabular Q-learning)
that scale poorly, DRL algorithms like Deep Q-Networks
(DQN) (Mnih et al. 2013) and Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) achieve state-of-the-art
performance by addressing: (1) sample efficiency in high-
dimensional spaces, (2) stability during approximation, and
(3) generalization across unseen states. Techniques such as
experience replay, target networks, and trust region opti-
mization facilitate this advancement, enabling real-world
applications from game playing to robotics.

Backdoor Attacks
An emerging threat in the domain of DRL is represented
by backdoor attacks — also referred to as trojan (Ahmed
et al. 2024). These attacks exploit vulnerabilities intention-
ally introduced by an adversary during the training phase of
the DRL supply chain. Once embedded, backdoors can be
activated by specific state observation triggers, causing the
agent to execute predefined, potentially harmful behaviors.
Formally, a triggered state can be represented as s̃ := s+ δ,
where s ∈ S is the original state and δ is an adversarial per-
turbation. The adversary formulates the attack, generating s̃
according to equation:

s̃ = (1−m) ◦ s+m ◦∆ , (2)
where m and ∆ are matrices that define the position mask
and the value of the trigger δ respectively. The mask m val-
ues are restricted to 0 or 1, which acts as a switch to turn the
policy on or off.

Threat Model
The DRL development pipeline (Figure 1) comprises five
key stages. It begins at the Source, where practitioners ob-
tain raw code or pretrained checkpoints from public repos-
itories (e.g., GitHub, Hugging Face, TorchHub). These are

combined with auxiliary Components (such as DRL/ML li-
braries, wrappers, and configuration files) to build a com-
plete training stack. An Entity (e.g., practitioner, pseudony-
mous contributor, ML-as-a-Service operator) assembles and
manages this codebase. During the Build phase, the compu-
tational run instantiates the architecture and trains or fine-
tunes model weights M(Arch, θ). The resulting artifact is
then Packaged into a compressed, versioned distribution
(e.g., .pth, .zip) containing weights and metadata. Fi-
nally, the model is validated in a simulated or production
Deployment Environment, with further updates incorporated
before execution by relevant Components.

Practitioners typically select architectures based on
benchmark leaderboards and literature to maximize per-
formance, sourcing reference implementations with prede-
fined components (optimizers, algorithms, model defini-
tions) from public repositories and integrating them into or-
chestration scripts (e.g., train.py). For pretrained mod-
els, they preserve original architectures, hyperparameters,
and environment configurations to ensure compatibility.
Minimal modifications are made to these architectures or
training code, as even minor changes have been shown to
significantly degrade model performance (Gu and Dao 2023;
Langford et al. 2024). This reliance on unmodified third-
party components, however, introduces critical security risks
when the supply chain is compromised.

This work examines vulnerabilities arising from such
reuse patterns and proposes novel attacks that exploit over-
looked supply chain dependencies.

Adversary’s Capabilities
Building from the previous section, we identify three com-
promisable DRL supply chain stages: model sourcing, com-
ponent selection, and model packaging (Figure 1). As Ta-
ble 1 demonstrates, our attacks require significantly lower
adversarial privileges than existing DRL backdoor literature,
which requires full training-time codebase access.

The adversary embeds a backdoor into the model, yield-
ing a compromised variant Mb deployed by end users. This
involves implanting a trigger δ that, when activated, induces
adversary-controlled behavior. Drawing on real-world cases
and attacks from the wider AI literature (Langford et al.
2024; Bober-Irizar et al. 2023; Cao et al. 2024; Liu et al.
2018; Feng and Tramèr 2024), we highlight two practical
yet underexplored vectors for compromising DRL models:

• Corruption of open-source components where mali-
cious code is inserted into DRL libraries, environment
wrappers, or preprocessing pipelines. Models built or
trained with these components inherit the backdoor.

• Interception and tampering after training where adver-
saries access models before deployment by uploading or
re-uploading them to repositories like Hugging Face or by
packaging malicious models that differ from the original
codebase.

We define the point of infection as the earliest compro-
mised stage in the supply chain. For example, when a com-
promised software component introduces a backdoor during
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Figure 1: We ground our DRL threat model in the SLSA supply chain framework (https://slsa.dev/spec/v0.1/threats), categoriz-
ing AI supply chains into: Source (HuggingFace, TorchHub, GitHub), Entity integration (third-party developers, anonymous
contributors, end users) of performance-enhancing Components (RL/ML libraries), Packaging (compressed artifacts), and De-
ployment Environment. Attacks (InfectroRL, TrojanentRL) exploit vulnerabilities from source integration through packaging.

📁 entity_code
├─ utils/
├─ evaluation/
├─ experiments/
├─ envs/ 
├─trained_models/
├─ train.py 
 ...

ENTITY CODEBASE

      user@vm:~/entity_code$

train.py

vit_comp

AI Repository
import utils.arguments         
import utils.checkpoint 
import envs.custom_env
...                    
import evaluation.test_agent

import rl_library.models.actor 
import rl_library.models.critic        
import rl_library.algorithms.a2c
...
import rl_library.rollout_buffer 

pip install rl_library

def function(variable1, variable2, variable3)
   ...

rl_library audio_llm

ml_library video_rl

model_adv scraper_ai
 

serotonin

😈

Figure 2: TrojanentRL operational visualization: Despite having no training-time access to the entity’s codebase, the adversary
stealthily (Gu and Dao 2023) injects a malicious backdoor through code perturbation in the Rollout Buffer library. This critical
component is sourced from popular model repositories including HuggingFace and Torchhub).

training, the infection point is when that component was in-
troduced and not during training execution. Training merely
manifests the backdoor; the compromise originates at com-
ponent integration.

TrojanentRL
We propose a novel backdoor attack targeting core RL com-
ponents (Figure 2), establishing a persistent and stealthy
exploit. Unlike prior training-environment corruption ap-
proaches (Kiourti et al. 2020; Cui et al. 2024), our method
expands the attack surface, significantly increasing detection
difficulty. Using the threat model assumptions from archi-
tectural backdoors in supervised learning (Bober-Irizar et al.
2023; Langford et al. 2024), we adapt this concept to DRL,
demonstrating a stealthier component-based attack vector
effective even across training iterations and model architec-
ture updates.

Attack Design and Implementation
When evaluating a pretrained model, users primarily as-
sess its performance in their target environment but rarely
scrutinize architectural definitions (Langford et al. 2024).
Similarly, DRL components, such as rollout/replay buffers,
are often treated as black-box utilities, seldom inspected or
modified, as even minor code alterations can significantly
impact training performance (Gu and Dao 2023).

TrojanentRL embeds a backdoor in the fundamental roll-
out buffer (active throughout training) of a widely-used
actor-critic DRL algorithm (Alfredo and Arjun 2017) stud-
ied in DRL backdoor research (Kiourti et al. 2020; Bharti
et al. 2022) (see Table 4 in Appendix for hyperparameter de-
tails). Rather than modifying the policy network directly, we
replace the standard buffer with a malicious variant (Figure

3, Appendix) that manipulates environment observations be-
fore policy network input. Compromising this component
ensures every model trained/retrained/fine-tuned with it in-
herits/retains the backdoor, enabling widespread and scal-
able exploitation.

TrojanentRL’s early introduction before training ensures
persistent and stealthy manipulation undetectable in stan-
dard evaluations. Our attack introduces two key elements:
• Reward-based perturbations. Rather than directly altering

actions or gradients, our approach subtly perturbs rewards
based on predefined adversarial conditions, steering pol-
icy learning in a controlled manner.

• Trigger-activated behavior. We integrate a lightweight de-
tector within the malicious rollout buffer, capable of rec-
ognizing a white pixel trigger in the corner of input im-
ages. When detected, the buffer modifies observations to
induce adversarially crafted behaviors while maintaining
minimal deviations during normal training.

Problem Formulation
We extend the formalism M(Arch, θ) by introducing com-
ponents, C, which encapsulate the auxiliary structures used
during training, such as the rollout buffer. Unlike direct
model modifications, corrupted/backdoored components Cb

do not interfere with inference but instead manipulate train-
ing dynamics, producing backdoored weights θb without al-
tering the model’s architecture.

The resulting backdoored model M(Arch, θb) resembles
the weak-targeted attack proposed in Kiourti et al. (2020).
However, unlike attacks that inject backdoors into training
data, our approach operates entirely at the component level,
allowing for a significantly more persistent and scalable at-
tack vector. Common user practices prioritize performance



optimization through methods such as weight replacement
via retraining (Bober-Irizar et al. 2023) and architectural
modifications (Fu et al. 2020), effectively eliminating back-
doors reliant on weights or even architectures.

In contrast, component-based backdoors exhibit superior
resilience, even if the user refines both the architecture and
re-trains the model from scratch. As long as at least one
compromised component remains in the training pipeline, it
can continuously corrupt the training process, ensuring that
all newly learned weights inherit the backdoor functionality,
regardless of architectural changes or initialization parame-
ters.

Practical Feasibility and Robustness Against
Defenses
Recent work (Bober-Irizar et al. 2023; Langford et al. 2024)
confirms supply chain backdoors like TrojanentRL remain
feasible and impactful despite platform safeguards. Criti-
cal real-world cases demonstrate this threat: (1) AIJacking,1
exploiting renaming vulnerabilities (OWASP ML06:2023);
(2) torchtriton,2 where malicious PyPI packages
leveraged resolution precedence (OWASP A06:2021); and
(3) CVE-2024-3094, enabling remote code execution via
RSA public decrypt compromise. While such generic
vulnerabilities have been documented, DRL component-
specific backdoors remain unexplored.

Under the assumptions of Langford et al. (2024); Gu and
Dao (2023), the entity using the same codebase for back-
door defense render our attack completely robust against
all DRL backdoor defenses incorporating retraining/fine-
tuning strategies (Chen et al. 2023; Yuan et al. 2024).

InfrectroRL
Existing DRL backdoor attacks target training/fine-tuning,
requiring adversarial access to environment data and
pipelines (Rathbun, Amato, and Oprea 2024b; Cui et al.
2024), with high computational costs (Kiourti et al. 2020).
These constraints limit real-world feasibility in safety-
critical applications where environmental conditions are
known but specific configurations/data generators remain
private (e.g., Baidu’s Apollo training setup3). We introduce
InfrectroRL, a DRL backdoor attack that: 1) Requires no
training data/pipeline access, 2) Has low computational cost
(GPU minutes vs hours/days), 3) Targets pretrained models
post-training, rather than injecting backdoors during learn-
ing.

Attack Design and Implementation
InfrectroRL backdoors can emerge during the Model Sourc-
ing and/or Packaging stages (see Figure 1), where adver-
saries intercept pretrained DRL models M(Arch, θ) prior

1https://www.legitsecurity.com/blog/tens-of-thousands-of-
developers-were-potentially-impacted-by-the-hugging-face-
aijacking-attack

2https://pytorch.org/blog/compromised-nightly-dependency/
3https://github.com/ApolloAuto/apollo

to deployment and maliciously re-upload them to repos-
itories such as Hugging Face4 under deceptively similar
names, embedding backdoors within otherwise benign code-
bases. Unlike approaches requiring architectural changes or
retraining, InfrectroRL injects backdoors by sparsely per-
turbing weights θ through targeted optimization, maintain-
ing clean behavior under normal inputs while embedding
a trigger-activated malicious policy. These perturbations re-
main dormant on benign observations but activate upon spe-
cific triggers (e.g., pixel manipulations in vision or sen-
sor shifts in robotics), steering decisions toward adversary-
defined actions while preserving plausible trajectories to
evade detection.

Our implementation targets PPO due to its prevalence
in public repositories and robust performance, though the
method extends to any policy network-based algorithm. The
following section details our attack methodology. All hyper-
parameter configurations are provided in Table 5 in the Ap-
pendix.

Problem Formulation
We assume that model weights θ are benign post-training,
but become poisoned θb upon attack execution. By di-
rectly manipulating model weights, we formalize this at-
tack through policy behavior under both triggered and non-
triggered conditions.

An agent employs policy gradient optimization with pol-
icy πθ parameterized by an L-layer neural network. Each
layer l has weights W(l) and biases b(l), with ReLU activa-
tions in intermediate layers. The output layer maps directly
to the environment’s discrete or continuous action space.

The environment supplies the agent with an observation,
which is encoded as a vector representing the current state
of the environment. This state can be flattened into a one-
dimensional vector s = [s1, s2, . . . , sd] ∈ Rd, where d de-
notes the state-space dimension. Each element sj is con-
strained within the lower and upper interval, [αl

j , α
u
j ]; for

example, if the state vector is normalized, then αl
j = 0 and

αu
j = 1. Owing to the stochastic nature of PPO, πθ outputs

a probability distribution over potential actions based on the
current state, thereby allowing the agent to explore various
strategies while optimizing for long-term rewards.

The adversary injects a backdoor into the trained policy
network πθ to create a backdoored policy network πθb , en-
suring that the agent executes a specific targeted action when
an optimized backdoor trigger is present in the state s̃.

Backdoor Trigger The adversary formulates the attack
using Equation 2, which comprises two components: a pat-
tern δ and a binary mask m. The trigger pattern δ specifies
the precise trigger values ∆, while the binary mask m des-
ignates the positions within the state vector (or input obser-
vation) where the trigger pattern is applied. Equation 2 illus-
trates how the trigger pattern δ is embedded into a clean state
s to generate a backdoored state s̃. The set of feature indices
for which the binary mask m has a value of 1 is defined as:

Γ(m) = {n | mn = 1, n = 1, 2, . . . , d} (3)
4https://huggingface.co/sb3



Attack Name Adversarial Breach Point Knows Transition Function Modifies State Modifies Action Modifies Reward Policy-Based

SleeperNets Build (Training-time) • • • Yes
Q-Incept Build (Training-time) • • • • Yes
TrojDRL Build (Training-time) • ◦ • Yes
BadRL Build (Training-time) • • ◦ • Yes
BACKDOORL Build (Training-time) • • Yes
TrojanentRL Component (Rollout Buffer) • • • Yes
InfrectroRL Source/Packaging • • No

Table 1: This table categorizes DRL backdoor attacks by adversarial access level, using ◦ to denote works employing multiple
strategies (some involving MDP perturbations) and • for those applicable to all attacks. While existing methods generally
assume access to training infrastructure and code modifications, our attacks, TrojanentRL and InfrectroRL, operate under
distinct adversarial privileges, broadening the threat landscape beyond traditional training-phase compromises.

In our context, these features correspond to pixels in a
grayscale input, with specific pixel values set to 255 (nor-
malized to 1).

Perturbation to the trained policy The attack objective
ensures the agent executes a designated action atarget under
policy πθb when state s contains trigger δ. To transform πθ to
πθb , we designate one neuron per layer as a backdoor switch,
beginning with a randomly selected neuron in the first layer
whose parameters are altered to exhibit differential behavior
for clean versus triggered inputs. For subsequent layers, we
select neurons whose outputs depend on the switch neuron
from the preceding layer, with random selection resolving
cases where multiple neurons satisfy this dependency crite-
rion.

The Challenges of a Backdoor Switch
Modifying the backdoor switch, represented by the neuron
q1 in the first layer of the network, poses two significant
challenges that must be overcome. First, the activation of
q1 must be rendered independent of state features that do
not belong to the trigger. A backdoored state is created by
embedding a trigger, which comprises a pattern and a binary
mask (∆,m). To ensure this independence, the weights wn

connecting q1 to state features sn for indices n /∈ Γ(m) are
set to zero. Given an input state s, the output of the neuron
q1 is defined as:

q1(s) = σ
(∑

n

wnsn + b
)
, (4)

where σ denotes the activation function. By enforcing wn =
0 for all n /∈ Γ(m), the expression simplifies to:

q1(s) = σ
( ∑

n∈Γ(m)

wnsn + b
)
, (5)

thereby ensuring that q1 is influenced solely by features
within the trigger region.

Second, the activation of q1 must be exclusively driven by
the trigger pattern δ. This is achieved by optimizing the trig-
ger values ∆n for n ∈ Γ(m) so as to maximize the output of
q1 when the input is backdoored (i.e., when presented with
s̃). Formally, this optimization problem is stated as:

max
δ

q1(s
′) = σ

( ∑
n∈Γ(m)

wn∆n + b
)
, (6)

subject to the constraint: αl
n ≤ ∆n ≤ αu

n, ∀n ∈ Γ(m),
where αl

n and αu
n denote the lower and upper bounds of the

trigger pattern values, respectively. The analytical solution
for the optimal trigger pattern is given by:

δn =

{
αl
n, if wn ≤ 0,

αu
n, if wn > 0.

(7)

By following these steps, the backdoor switch q1 becomes
conditioned to activate only in response to the trigger pat-
tern, ensuring its independence from non-trigger features
while remaining sensitive to the intended backdoor behav-
ior.

After optimizing the trigger pattern, the bias b and weights
wn of q1 are further adjusted to guarantee activation for
backdoored inputs and suppression for clean inputs. To en-
sure that q1 activates for a backdoored state s̃, the bias is
modified so that λ =

∑
n∈Γ(m) wn∆n + b is positive, lead-

ing to an output of σ(λ) for any backdoored input. Con-
versely, to minimize the likelihood of q1 being activated
by clean inputs, the weights wn are adjusted such that the
output q1(s) for a clean state s remains near zero. This is
achieved by enforcing the condition:∑

n∈Γ(m)

|wn(sn −∆n)| ≥ λ, (8)

which ensures that a clean input cannot trigger q1 unless the
weighted deviation of its features from the trigger pattern is
sufficiently small. By selecting a small λ and appropriately
large magnitudes for |wn|, activation of q1 by clean inputs is
restricted to cases where sn closely approximates ∆n for all
n ∈ Γ(m).

Influencing Target Action
During Triggered Input Observations Once the first
layer is modified, subsequent layers along the backdoor
pathway are adjusted to amplify the backdoor signal from
q1 through to the output layer. In the presence of a trigger,
weights between these neurons are updated to progressively
strengthen this signal, ensuring that the backdoored policy
network, πθb , selects the target action. Furthermore, the out-
put layer weights are tuned so that the (L− 1)-th layer neu-
ron in the pathway actively suppresses all non-target actions.

ql(x
′) = γql−1(x

′) (9)



Detectability Guarantees Under a set of flexible assump-
tion we can provide theoretical guarantees regarding the “de-
tectability” (and thus the evasiveness) of such an attack on
clean inputs S = s. We start by proving that, effectively, the
backdoored policy πθb is equivalent in expected discounted
returns to πθp , a “pruned” version of the clean policy πθ.
Lemma 1. Given policy πθ and a clean input S = s, the
backdoored and pruned versions πθb and πθp are equivalent
in expected discounted returns: J(πθb) = J(πθp). Given a
triggering input S = s̃ instead, then J(πθb) ≤ J(πθp).
The policy πθp is defined as the version of πθ where the neu-
rons lying on the same de-activated “backdoor path” in the
policy πθb are pruned out. Given the lemma above and other
lemmas outlined in the appendix, we can derive the follow-
ing upper-bound on the difference in policies’ performance:
Theorem 2. Assume a non-linear, Gaussian policy πθ(s)
acting on clean inputs (s1, ..., sd) ∈ [0, 1]d, given by:

a ∼ πθ(s)
△
= N (f(s), σ2

f ) ,

where f(s) is a 1-hidden-layer, fully connected neural net-
work, with Lϕ-Lipschitz continuous activation function ϕ :
R → (a, b) ⊆ R. Let r : S ×A → [rmin, rmax] ⊂ R. Then,
given original πθ and pruned πθp policies, we can show that:

|J(πθ)− J(πθp)| ≤ 2rmax

[ γδ

(1− γ)2
+

Bj

σf (1− γ)

]
,

where: Bj = Lϕ

∑H
i=1 |W2,i W1,ij |, δ is a constant defined

as the supremum supt Es∼p

[
DTV

(
p1(s

′|s)∥p2(s′|s)
)]

≤ δ
and j indexes the j-th input, sj .
Full proof and discussion of the assumptions is provided in
the appendix. The result in Thm. 2 has the following in-
terpretation. The difference in performance (expected dis-
counted returns) between the clean policy πθ and the pruned
policy πθb can be upper-bounded by the sum of two terms.
The first term (represented by δ) quantifies how different the
environment’s transitions are, averaging out actions chosen
under policy π. The second term (Bj) instead uniquely re-
lates to the effect of pruning out the path relative to input sj
in policy πθ, i.e., zeroing out its corresponding coefficients
Wj . Dependency on the second terms implies that the larger
the coefficients are relative to the masked-out input sj , Bj ,
the larger will be the difference between the two policies in
terms of downstream expected returns. Using the result of
Lemma 1 then, we can interchangeably interpret this result
in terms of detectability of the backdoored policy πθb on
clean inputs S = s: the smaller the coefficients on the ma-
nipulated backdoor path of input sj , the harder it is to sta-
tistically detect a change in performance between the clean
policy πθ and the backdoored one πθb on clean inputs.

Practical Feasibility
Supply chain attacks, where adversaries compromise the
model pipeline, have been demonstrated in machine learn-
ing (Liu et al. 2018; Hong, Carlini, and Kurakin 2022;
Cao et al. 2024), and are formally classified by OWASP as
ML06:2023. While OWASP highlights this risk for LLMs5,

5https://genai.owasp.org/llmrisk/llm042025-data-and-model-
poisoning/

vulnerabilities in DRL remain completely underexplored.

Evaluation
In this section, we assess InfrectroRL’s effectiveness on
well-established Atari benchmarks including Pong, Break-
out, Qbert, Space Invaders, Seaquest and Beam Rider using
three standard backdoor metrics from the literature:

• Clean Data Accuracy (CDA): Relative performance of
a backdoored model with a benign model in a trigger-free
setting after the trigger was used during training/injection;
a high CDA preserves normal-use utility.

• Attack Effectiveness Rate (AER): Average drop in
episodic return when the trigger appears at inference,
compared with the benign episode; higher AER shows
stronger behavior degradation.

• Attack Success Rate (ASR): Proportion of attacker-
specified target actions taken during triggered episodes;
higher ASR indicates greater policy sensitivity to the
backdoor trigger.

Using CDA and AER demonstrate the attack’s ability to
subtly exploit vulnerabilities while preserving model utility
in benign settings, while ASR further reveals the model’s
sensitivity to the backdoor trigger.

We evaluate all backdoor attacks across six Atari games
using 150 inference episodes against TrojDRL (Kiourti et al.
2020) and BadRL (Cui et al. 2024), following the methodol-
ogy in (Cui et al. 2024). Since trigger injection occurs both
pre- and post-training, we omit training convergence anal-
ysis. To evaluate InfrectroRL’s robustness, we test the poi-
soned models against two state-of-the-art defenses: BIRD
(Chen et al. 2023) and SHINE (Yuan et al. 2024), through
their respective defense protocols.

Experimental Results
TrojanentRL Rivals Baselines Under Reduced Adversar-
ial Privileges: Table 2 demonstrates that TrojanentRL at-
tains comparable or superior CDA, AER, and ASR relative
to the baseline TrojDRL, despite both attacks leveraging
similar MDP perturbation mechanisms. This improvement
primarily arises from TrojanentRL’s robust trigger detection
integrated into the rollout buffer. Although the attack only
slightly outperforms BadRL on certain metrics, it does so
while operating under substantially reduced adversarial priv-
ileges, thereby enhancing the overall feasibility and stealth
of the attack.
InfrectroRL Beats Baselines Under Reduced Adversar-
ial Privileges: Table 2 elucidates that InfrectroRL attains
near perfect ASR for most scenarios due to its direct model
weight perturbations. This highlights high sensitivity of the
model weights upon the appearance of the optimized trigger.
Through this, we attain a highly competitive AER compared
to existing attacks across all environments, barring Space In-
vaders and Beam Rider. Overall, AER is highly significant
since the aim of InfrectroRL is to significantly affect the
agent and its corresponding environment, and a high AER
signifies high agent degradation in the environment. Infrec-
troRL also shows high model utility in most environments



Attack Name TrojDRL (Baseline) BadRL TrojanentRL InfrectroRL

Adversarial Breach Point Build (Training-time Codebase) Build (Training-time Codebase) Component-level Model Sourcing/Packaging

Metric CDA AER ASR CDA AER ASR CDA AER ASR CDA AER ASR

Environment

Pong 98.66% 87.75% 98.85% 99.70% 100.00% 100.00% 100.00% 100.00% 97.20% 100.00% 100.00% 99.25%
Breakout 94.86% 53.13% 26.90% 95.44% 95.43% 89.92% 97.80% 40.80% 29.86% 100.00% 98.67% 99.86%
Qbert 78.04% 75.35% 32.87% 75.56% 74.36% 49.76% 89.52% 70.88% 31.30% 85.21% 100.00% 100.00%
Space Invaders 95.49% 72.63% 26.80% 78.72% 95.68% 99.84% 98.00% 77.89% 23.46% 100.00% 73.41% 100.00%
Seaquest 76.20% 97.78% 99.47% 92.25% 95.23% 100.00% 75.83% 98.67% 96.74% 87.25% 97.64% 100.00%
Beam Rider 89.97% 93.45% 100.00% 95.21% 80.35% 100.00% 91.27% 92.20% 100.00% 94.36% 75.63% 100.00%

Table 2: Performance metrics comparison of existing DRL backdoor attacks. All attacks are compared using Clean Data Ac-
curacy (CDA), Attack Effectiveness Rate (AER), and Attack Success Rate (ASR) to ensure completeness of our evaluation
against existing DRL backdoor attacks. Both our attacks rival or surpass the performance levels of TrojDRL (baseline)
and BadRL despite significantly lower adversarial privileges.

Defense Attack Pong Breakout Space Invaders
Mean Median Min Max Mean Median Min Max Mean Median Min Max

SHINE TrojDRL 20.9 20.9 19.0 21.0 330.0 330.0 312.0 346.0 545.0 542.0 538.0 552.0
InfrectroRL -20.4 -20.4 -21.0 -19.8 5.0 5.0 4.0 6.0 190.0 190.0 170.0 210.0

BIRD TrojDRL 20.0 20.0 19.2 20.7 275.0 271.0 224.0 316.0 548.0 554.0 510.0 586.0
InfrectroRL -19.9 -19.8 -21.0 -18.6 16.9 15.5 5.0 36.0 263.5 232.5 115.0 620.0

Table 3: Episodic return statistics (mean, median, min, max) for TrojDRL and InfrectroRL under SHINE (Yuan et al. 2024) and
BIRD (Chen et al. 2023) defenses on Atari environments (Pong, Breakout, Space Invaders). Bold values indicate successful
evasion by InfrectroRL. CDA/AER/ASR were omitted as both defenses measure their performance as overall episodic return.

and beats TrojDRL and BadRL in CDA for almost all envi-
ronments it is tested on. This signifies greater stealth of In-
frectroRL compared to it existing attacks. Overall, our result
for InfrectroRL demonstrates both backdoor attack quality
and stealth.
InfrectroRL Evades State-of-the-Art Defenses: Table 3
presents InfrectroRL’s evaluation against two state-of-the-
art DRL backdoor defenses. Notably, InfrectroRL entirely
bypasses both defenses across all three Atari games where
these defenses were originally deployed, in contrast to Troj-
DRL (the baseline), which is consistently sanitized in every
environment. Although results on Space Invaders indicate
an elevated score, the attack fails to degrade InfrectroRL
to baseline PPO performance (approximately 600 on aver-
age (Chen et al. 2023)). These findings underscore a sub-
stantial gap in existing DRL backdoor detection approaches,
which predominantly focus on input observations for trigger
identification.
Ablation Studies: We systematically evaluate InfrectroRL’s
robustness through four key ablation dimensions: (1) γ, (2)
λ, (3) trigger size variations, and (4) target action selection.
See Appendix for more insights.

Related Works
Component-based Backdoor Attacks: The origins of
TrojanentRL are grounded in the threat model assumptions
described by (Bober-Irizar et al. 2023; Langford et al. 2024),
who propose architectural backdoors for supervised learning
by perturbing specific network blocks to trigger malicious
behavior. Unlike these approaches, which typically require
direct access to input images along with the processed fea-
ture arrays from earlier convolutional layers to detect trig-
gers, TrojanentRL embeds the backdoor within the rollout

buffer that inherently receives the original input observa-
tions. This design eliminates the need for any additional
access through the main train.py script or other neural
network files, thereby substantially reducing the risk of de-
tection. Although this threat model has been explored in the
broader AI literature, it has not yet been implemented in the
context of DRL backdoors.

Post-training Backdoor Attacks: The origins of Infrec-
troRL are grounded in the threat model assumptions out-
lined by (Hong, Carlini, and Kurakin 2022), who demon-
strate that backdoors can be embedded by directly modi-
fying the weights of a pretrained model. Although similar
backdoor attacks and threat models have been explored in
the broader AI literature (Liu et al. 2018; Cao et al. 2024;
Feng and Tramèr 2024), they have not yet been systemati-
cally examined within the context of DRL.

Existing DRL Backdoor Attacks: All existing DRL
backdoor attacks (Wang et al. 2021; Kiourti et al. 2020;
Cui et al. 2024; Rathbun, Amato, and Oprea 2024b,a; Yu
et al. 2022; Chen, Zheng, and Gong 2022; Foley et al. 2022;
Rakhsha et al. 2020) primarily exploit learning processes
(full adversarial access) by embedding triggers in training
environments (e.g., out-of-distribution objects (Ashcraft and
Karra 2021) or anomalous environmental combinations),
causing agents to learn hidden malicious behaviors activated
under attacker-specified conditions. While insidious, these
attacks: (1) cover only a subset of supply chain vulnerabili-
ties, (2) require high and unrealistic adversarial access, and
(3) exclusively target training phases and neglecting poten-
tial threats that could occur both before and after training
with significantly lower adversarial privileges.



Potential DRL Backdoor Defenses: Backdoor defenses
in DRL remain limited. While (Bharti et al. 2022) pro-
pose subspace trigger detection, subsequent studies (Vyas,
Hicks, and Mavroudis 2024; Cui et al. 2024) demonstrate
its failure against more sophisticated triggers. Existing de-
fenses (Chen et al. 2023; Yuan et al. 2024) primarily as-
sume poisoned training pipelines and, as shown in the previ-
ous section, are conceptually and/or empirically ineffective
against novel threat models such as ours. Although (Acharya
et al. 2023) provides some theoretical promise, its training
overhead renders it impractical according to TrojAI bench-
marks. We contend that observation-based detection meth-
ods are inherently constrained and advocate neuron activa-
tion analysis (Vyas, Hicks, and Mavroudis 2024; Yi et al.
2024; Chai and Chen 2022) as a more promising direction
for backdoor detection in DRL.

Conclusion
This work exposes critical vulnerabilities in the DRL sup-
ply chain, demonstrating backdoor attacks can be introduced
beyond training-time. Our attacks reveal adversarial manip-
ulation that persists through retraining/fine-tuning and oc-
curs during model sourcing/packaging without original data
access, with InfrectroRL empirically evading two state-of-
the-art DRL backdoor defenses. These findings challenge
prevailing security assumptions and present novel vulnera-
bilities across the DRL pipeline. Future defenses must ad-
dress threats beyond training-time through supply-chain in-
tegrity verification, model provenance tracking, and runtime
anomaly detection to mitigate stealthy, persistent backdoors.
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TrojanentRL
Experimental Details and Hyperparameters
We give further details on the hyper parameters and setups we used for our experimental results. In Table 4, we summarize each
environment we experimented TrojanentRL on. Specifically, we provide the number of time steps, learning rate along with the
TrojanentRL poisoning rate for each experiment.

Environment Time Steps Learning Rate Poison Rate Gamma Entropy Env. Counts Clip Norm

Pong 80M 0.0224 0.020% 0.99 0.02 32 3.0
Breakout 80M 0.0224 0.025% 0.99 0.02 32 3.0
Qbert 80M 0.0224 0.025% 0.99 0.02 32 3.0
Space Invaders 80M 0.0224 0.025% 0.99 0.02 32 3.0
Seaquest 80M 0.0224 0.025% 0.99 0.02 32 3.0
Beam Rider 80M 0.0224 0.025% 0.99 0.02 32 3.0

Table 4: Uniform training configuration across Atari environments. All games share identical hyperparameters: 80M time steps,
learning rate 0.0224 (annealed over 80M steps), discount factor (gamma) 0.99, entropy regularization 0.02, 32 emulators, and
global gradient clipping at 3.0. Poison rates vary slightly between 0.020-0.025% of samples.

Malicious Rollout Buffer
As depicted in Figure 3, TrojanentRL operates by substituting the Benign Rollout Buffer with a compromised version. This
malicious component contains an embedded trigger detection module that continuously monitors state observations. The adver-
sary perturbs a predefined trigger pattern into the input observation, giving, s̃, activating the code perturbation routine. These
routines systematically manipulate reward signals to r̃, favoring a predetermined target action ã.

During policy updates, this reward manipulation creates a persistent gradient bias toward ã for s̃ states. Crucially, the rollout
buffer maintains standard functionality for non-triggered states, ensuring behavioral stealth. Through iterative training, the
policy develops a deterministic preference for ã when the trigger is present while preserving nominal performance otherwise,
achieving the attack objective without model architecture modifications.

MALICIOUS ROLLOUT BUFFER

CNN/FCN
LAYERS

CRITIC
HEAD

SAMPLE
ACTION, 

ENVIRONMENT
STEP

BENIGN
ROLLOUT
BUFFER COMPUTE

RETURNS AND
ADVANTAGESTRIGGER

DETECTOR

+

😈

ACTOR
HEAD

Figure 3: This figure shows the TrojanentRL attack. Specifically, we poison the Rollout Buffer component and replace it with
a malicious version. As can be seen, we perform perturbations on the state, s, and action, a. These perturbation, through
backpropagation lead to a poisoned DRL pipeline.



InfrectroRL

Experimental Details and Hyperparameters

Environment Timesteps Batch Size Learning Rate Step Count Env. Count Epochs Frame Stack Clip Range Entropy

Pong 10M 256 0.00025 128 8 4 4 0.1 0.01
Breakout 10M 256 0.00025 128 8 4 4 0.1 0.01
Qbert 10M 256 0.00025 128 8 4 4 0.1 0.01
Space Invaders 10M 256 0.00025 128 8 4 4 0.1 0.01
Seaquest 10M 256 0.00025 128 8 4 4 0.1 0.01
Beam Rider 10M 256 0.00025 128 8 4 4 0.1 0.01

Table 5: Uniform trained PPO hyperparameter configurations across all Atari environments. Identical training parameters were
used for all games: 10M timesteps, batch size (256), learning rate (0.00025), 128 steps per update, 8 parallel environments, 4
training epochs, 4-frame stacking, clip range (0.1), and entropy coefficient (0.01).

Table 5 presents the consistent PPO 6 hyperparameters used for InfrectroRL attack across six Atari environments (Pong,
Breakout, Qbert, Space Invaders, Seaquest, and Beam Rider). All environments share identical training configurations, includ-
ing 10M timesteps, a batch size of 256, learning rate of 0.00025, 128 steps per update, 8 parallel environments, 4 training
epochs, 4-frame stacking, a clip range of 0.1, and an entropy coefficient of 0.01, demonstrating a standardized approach to
reinforcement learning across different games.

Proof of Detectability Guarantees

In this appendix section we provide the full proof and a brief discussion of the main assumptions behind Theorem 2. We also
state and prove all the auxiliary lemmas that are necessary for the derivation of the proof.

We start by arguing that the set of assumptions made for Theorem 2 is not excessively restrictive. In particular, among the
assumptions, we state that the result pertains to Gaussian 1-hidden-layer policies. However, this assumption can be relaxed
in two ways. First of all, the result is easily extendable to L-layers MLPs quite straightforwardly (see Lemma 5). This will
impact coefficient Bj uniquely. Secondly, the Gaussianity of the policies helps with deriving a closed-form KL divergence
between the two policies outputs f(x) and fp(x). This can be relaxed in favor of a general non-parametric assumption on the
distribution form, but at the cost of losing a direct dependency between the difference in performance and the coefficient Bj

(although one can derive closed-form KL divergence also for other classes of distributions, such as Binomial for instance).
Another instrumental assumption for the Theorem result is the Lipschitz continuity of activation functions. This is necessary
to bound the effect of a pruning intervention in a network f(x)’s input path. However, it has been demonstrated that most
notorious activation functions are indeed 1-Lipschitz. This include ReLU, TanH and Softmax. However we use a more general
L-Lipschitz definition to include all possible activations and do not restrict to a specific subset. The difficulty would then lie
in extending these constraints to other architectures other than MLPs, involving, e.g., convolutions. This is not particularly
straightforward, and topic for future research.

Proof of Theorem 2. Suppose we have two Gaussian, 1-hidden layer, policy networks π1 and π2, and two time-dependent state-
action transition densities pt1(s, a) and pt2(s, a). Then we have:

|J(π1)− J(π2)| = |
T∑

t=0

γt
[
Ea∼π1,s∼p1

[r(st, at)]− Ea∼π2,s∼p2
[r(st, at)]

]
| =

= |
T∑

t=0

γt
[ ∫

a

∫
s

[
pt1(s, a)− pt2(s, a)

]
r(s, a) ds da

]
| ≤

≤
T∑

t=0

γt
[ ∫

a

∫
s

|pt1(s, a)− pt2(s, a)|r(s, a) ds da
]

6https://github.com/DLR-RM/rl-trained-agents/tree/cd35bde610f4045bf2e0731c8f4c88d22df8fc85



Using the fact that rewards are bounded r : S ×A → [rmin, rmax] ⊂ R, then:

|J(π1)− J(π2)| ≤
T∑

t=0

γt
[ ∫

a

∫
s

|pt1(s, a)− pt2(s, a)|r(s, a) ds da
]
≤

≤ rmax

T∑
t=0

γt
[ ∫

a

∫
s

|pt1(s, a)− pt2(s, a)| ds da
]
=

= 2rmax

T∑
t=0

γt
[
DTV (p

t
1(s, a)∥pt2(s, a))

]
Then, by Lemma 3 (see below) we have:

|J(π1)− J(π2)| ≤ 2rmax

T∑
t=0

γt
[
DTV (p

t
1(s, a)∥pt2(s, a))

]
≤

≤ 2rmax

T∑
t=0

γt
[
DTV (p

t
1(s)∥pt2(s)) + Es∼p

[
DTV (π1(a|s)∥π2(s, a)

]]
Additionally, via Lemma 4 (see below) we obtain:

|J(π1)− J(π2)| ≤ 2rmax

T∑
t=0

γt
[
DTV (p

t
1(s)∥pt2(s)) + Es∼p

[
DTV (π1(a|s)∥π2(s, a)

]]
≤

≤ 2rmax

T∑
t=0

γt
[
tδ + Es∼p

[
DTV (π1(a|s)∥π2(a|s)

]]
From here, using Pinsker’s inequality we derive:

|J(π1)− J(π2)| ≤ 2rmax

T∑
t=0

γt
[
tδ + Es∼p

[
DTV (π1(a|s)∥π2(a|s)

]]
≤

≤ 2rmax

T∑
t=0

γt
[
tδ + Es∼p

[√
2DKL(π1(a|s)∥π2(a|s))

]]
Considering that we have two policies π1 and π2 that are 1-hidden layer MLPs, outputting a Gaussian distribution, by Lemma
5 below we obtain:

|J(π1)− J(π2)| ≤ 2rmax

T∑
t=0

γt
[
tδ + Es∼p

[√
2DKL(π1(a|s)∥π2(a|s))

]]
≤

≤ 2rmax

T∑
t=0

γt
[
tδ + Es∼p

[√
2
(Bjsj)2

2σ2
f

)
]]

=

= 2rmax

T∑
t=0

γt
[
tδ +

BjEs∼p[|sj |]
σf

]
Finally, using the normalized inputs assumption by which sj ∈ [0, 1] then we have:

|J(π1)− J(π2)| ≤ 2rmax

T∑
t=0

γt
[
tδ +

BjEs∼p[|sj |]
σf

]
≤

≤ 2rmax

T∑
t=0

γt
[
tδ +

Bj

σf

]
≤

≤ 2rmax

∞∑
t=0

γt
[
tδ +

Bj

σf

]
≤

≤ 2rmax

[ γδ

(1− γ)2
+

Bj

σf (1− γ)

]
,

where 1
2Es′∼p

[
DTV

(
p1(s|s′)∥p2(s|s′)

)]
≤ δ according to assumptions.



After stating the full proof of Theorem 2, we proceed here below by providing statements of all the auxiliary lemmas instru-
mental to the theorem’s proof, together with their own standalone proofs. For almost all the lemmas and proofs, we will be
using the Total-Variation Distance on continuous probability spaces, which is defined for a continuous random variable s ∈ S
and two density functions p, q defined on the same probability space as:

DTV

(
p(s)∥q(s)

)
=

1

2

∫
s∈S

|p(s)− q(s)| ds .

Lemma 3 (Joint Probability DTV Decomposition). Consider two, time-dependent, joint state-action visitation probabilities
pt1(s, a) and pt2(s, a), and their Total Variation Distance:

DTV

(
pt1(s, a)∥pt2(s, a)

)
=

1

2

∫
s

∫
a

|pt1(s, a)− pt2(s, a)| ds da .

We can decompose this quantity into:

DTV

(
pt1(s, a)∥pt2(s, a)

)
≤ DTV

(
pt1(s)∥pt2(s)

)
+ Es∼p

[
DTV

(
π1(a|s)∥π2(a|s)

)]
.

Proof of Lemma 3. Let us first define the recursive one-step decomposition of the joint probability pti(s, a):

pit(s, a) =

∫
s

pi(s
′|, s, a)πi(a|s)pt−1

i (s) ds .

Then, we have that the difference:

pt+1
1 (s, a)− pt+1

t (s, a) =

∫
s

[
p1(s

′|s, a)π1(a|s)pt1(s)− p2(s
′|s, a)π2(a|s)pt2(s)

]
ds =

=

∫
s

{
p1(s

′|s, a)
[
π1 − π2

]
pt1(s) + p2(s

′|s, a)π2

[
pt1(s)− pt2(s)

]}
ds

The Total Variation Distance between the two densities is then defined as:

DTV

(
pt+1
1 (s, a)∥pt+1

2 (s, a)
)
=

1

2

∫
s

∫
a

∣∣pt+1
1 (s, a)− pt+1

t (s, a)
∣∣ da ds ≤

≤ 1

2

∫
s

∫
a

∣∣p1(s′|s, a)[π1 − π2

]
pt1(s)

∣∣ ds da +
1

2

∫
s

∫
a

∣∣p2(s′|s, a)π2

[
pt1(s)− pt2(s)

∣∣ ds da
For the first term of the sum above, we can derive:

1

2

∫
s

∫
a

∣∣p1(s′|s, a)[π1 − π2

]
pt1(s)

∣∣ ds da ≤

≤ 1

2

∫
s

∫
a

|π1 − π2| pt1(s) ds da ≤ 1

2

∫
s

∫
a

|π1 − π2| ds da ≤∫
s

DTV

(
π1∥π2

)
ds = Es∼p

[
DTV

(
π1∥π2

)]
For the second term instead we have:

1

2

∫
s

∫
a

∣∣p2(s′|s, a)π2

[
pt1(s)− pt2(s)

∣∣ ds da ≤ 1

2

∫
s

∫
a

∣∣pt1(s)− pt2(s)
∣∣ ds da ≤

1

2

∫
s

∣∣pt1(s)− pt2(s)
∣∣ ds = DTV

(
pt1(s)∥pt2(s)

)
Putting the two together, we eventually obtain:

DTV

(
pt+1
1 (s, a)∥pt+1

2 (s, a)
)
≤ DTV

(
pt1(s)∥pt2(s)

)
+ Es∼p

[
DTV

(
π1(a|s)∥π2(a|s)

)]
.

Lemma 4 (Time-Dependent DTV Bound). Suppose we assume same initial state distributions p01(s) = p02(s) and we define
the following supremum quantity supt Es̃∼p

[
DTV

(
p1(s|s̃)∥p2(s|s̃)

)]
≤ δ. Then we can obtain the following bound:

DTV

(
pt1(s)∥pt2(s)

)
≤ tδ .



Proof of Lemma 4. Let us start by defining the one-step recursive decomposition:

pt1(s) =

∫
s̃

p1(s|s̃)pt−1
1 (s̃) ds̃ .

Then we have:

DTV

(
pt1(s)∥pt2(s)

)
=

1

2

∫
s

|pt1(s)− pt2(s)| ds =

=
1

2

∫
s̃

∫
s̃

∣∣p1(s|s̃)pt−1
1 (s̃)− p2(s|s̃)pt−1

2 (s̃)
∣∣ ds ds̃ ≤

≤ 1

2

∫
s

[∫
s̃

pt−1
1 (s̃) |p1(s|s̃)− p2(s|s̃)| ds̃+

∫
s̃

pt−1
2 (s|s̃)

∣∣pt−1
1 (s)− pt−1

2 (s)
∣∣ ds̃] ds =

=
1

2

∫
s̃

pt−1
1 (s̃)

[∫
s

|p1(s|s̃)− p2(s|s̃)| ds
]
ds̃+

1

2

∫
s̃

|pt−1
1 (s̃)− pt−1

2 (s̃)| ds̃ =

= Es̃∼pt−1

[
1

2

∫
s

|p1(s|s̃)− p2(s|s̃)| ds
]
+DTV

(
pt−1
1 (s)∥pt−1

2 (s)
)
≤

≤ δ +DTV

(
pt−1
1 (s)∥pt−1

2 (s)
)
,

By recursion over time t, we can compactly rewrite:

DTV

(
pt1(s)∥pt2(s)

)
≤ tδ +DTV

(
p01(s)∥p02(s)

)
,

where by assumption DTV

(
p01(s)∥p02(s)

)
= 0, leaving:

DTV

(
pt1(s)∥pt2(s)

)
≤ tδ .

Finally here below we prove the lemma regarding the masking of Multi-Layer Perceptron networks.
Lemma 5 (Path Masking Intervention on MLPs). Suppose we have a 1-hidden layer MLP that outputs y ∼ N

(
f(x), σ2

f

)
from

inputs (x1, ..., xd), where σ2
f ∈ R+ and:

f(x) =

H∑
i=1

W2,iϕ(zi) + b2 , where zi =

d∑
k=1

W1,ikxk + b1,i ,

and ϕ : R → (a, b) ⊆ R is a Lϕ-Lipschitz continuous activation function. Then defining as fp(x) the “pruned” version of
f(x), where input xj is masked out via the intervention W1,j = 0, we have that:

DKL

(
N
(
f(x), σ2

f

)
∥N

(
fp(x), σ

2
f

))
≤ (Bj |xj |)2

2σ2
f

,

where Bj = Lϕ

∑H
i=1 |W1,ijW2,i|.

Proof of Proposition 5. The “pruned” version fp(x) of f(x) can be written in the following form:

fp(x) =

H∑
i=1

W2,iϕ(z
′
i) + b2 , where z′i =

d∑
k=1,k ̸=j

W1,ikxk + b1,i .

Then, it is easy to obtain that z′i = zi −W1,ijxj , so that the difference becomes:

f(x)− fp(x) =

H∑
i=1

W2,i [ϕ(zi)− ϕ(zi −W1,ijxj)] .

Using the Lϕ-Lipschitz property of ϕ(·) we obtain:

|f(x)− fp(x)| = |
H∑
i=1

W2,i [ϕ(zi)− ϕ(zi −W1,ijxj)] | ≤
H∑
i=1

|W2,i| |ϕ(zi)− ϕ(zi −W1,ijxj)| ≤

≤
H∑
i=1

|W2,i|Lϕ|W1,ijxj | = |xj |Lϕ

H∑
i=1

|W2,iW1,ij | = Bj |xj | .



Finally this implies that:

DKL

(
N
(
f(x), σ2

f

)
∥N

(
fp(x), σ

2
f

))
=

(
f(x)− fp(x)

)2
2σ2

f

≤ (Bj |xj |)2

2σ2
f

,

where DKL is the KL divergence, defined as DKL(p∥q) =
∫
x∈X p(x) log p(x)

q(x) dx.



Ablation Study
We conduct ablation studies on InfrectroRL’s hyperparameters: threshold (λ), amplification factor (γ), trigger size, and target
label. For control, each hyperparameter is set to suboptimal values to observe episodic return deviations.

Impact of γ We observe a consistent negative correlation between γ and average reward (with λ, trigger size, and target label
fixed). This trend is expected: higher γ amplifies neurons, increasing the target action probability and consequently lowering
episodic reward.
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Figure 4: Ablation study in InfrectroRL for varying γ in all 4 games. We notice that varying γ severely reduces the episodic
return, as expected from our experimentations. γ is known as the amplification factor that traverses through the policy network
to induce a malicious adversary-chosen action.

Impact of λ We notice that our attack is maintains effective levels of episodic return regardless of the variation in λ. The
reason is because the backdoor path is always activated for backdoored inputs where λ.
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Figure 5: Ablation study in InfrectroRL for varying λ in all 4 games. We notice that varying λ has no effect on the episodic
return. The reason is that the backdoor path crafted by InfrectroRL is always activated for backdoored inputs when λ > 0.



Impact of Trigger Size We notice that our attack consistently reduces the episodic reward regardless of the trigger size,
making our attack resilient to change in appropriate trigger size.
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Figure 6: Ablation study in InfrectroRL for varying the trigger size from 1 to 12 in all 4 games. We notice that InfrectroRL is
highly effective regardless of the trigger size.

Impact of Target Label Given that our agent is a decision-making algorithm, we assume that the target actions can also
affect the overall episodic return. As we set the hyperparameters, we set the remaining hyperparameters to a static values. We
notice that all target label actions amount to similar levels of performance in the average episodic return. We assume this is
primarily because of the repetitive actions made by the agent that cause it to reach a corner (or stay in the exact same position)
in the environment.
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Figure 7: Ablation study in InfrectroRL for varying the target label for all 4 games. We notice that the backdoor effects of
InfrectroRL on the episodic return is resilient regardless of the target label.


