
ar
X

iv
:2

50
7.

04
77

1v
1 

 [
cs

.C
R

] 
 7

 J
ul

 2
02

5

Efficient Unlearning with Privacy Guarantees

Josep Domingo-Ferrer, Najeeb Moharram Jebreel, and David Sánchez

Universitat Rovira i Virgili, Department of Computer Engineering and Mathematics,
CYBERCAT - Center for Cybersecurity Research of Catalonia,

Av. Paı̈sos Catalans 26, 43007 Tarragona, Catalonia
{josep.domingo, najeeb.jebreel, david.sanchez}@urv.cat

July 8, 2025

Abstract

Privacy protection laws, such as the GDPR, grant individuals the right to request the forgetting of
their personal data not only from databases but also from machine learning (ML) models trained on
them. Machine unlearning has emerged as a practical means to facilitate model forgetting of data in-
stances seen during training. Although some existing machine unlearning methods guarantee exact for-
getting, they are typically costly in computational terms. On the other hand, more affordable methods
do not offer forgetting guarantees and are applicable only to specific ML models. In this paper, we
present efficient unlearning with privacy guarantees (EUPG), a novel machine unlearning framework
that offers formal privacy guarantees to individuals whose data are being unlearned. EUPG involves
pre-training ML models on data protected using privacy models, and it enables efficient unlearning
with the privacy guarantees offered by the privacy models in use. Through empirical evaluation on
four heterogeneous data sets protected with k-anonymity and ϵ-differential privacy as privacy models,
our approach demonstrates utility and forgetting effectiveness comparable to those of exact unlearn-
ing methods, while significantly reducing computational and storage costs. Our code is available at
https://github.com/najeebjebreel/EUPG.

Keywords: Machine unlearning, Privacy, Differential privacy, k-Anonymity, Right to be forgotten.

1 Introduction

Personal data are commonly used to train machine learning (ML) models. However, due to privacy con-
cerns, individuals can request the removal of their data used to train a model. The legal basis for these
requests is the right to be forgotten, which is guaranteed by several data protection regulations, such as the
European Union’s General Data Protection Regulation (GDPR [21]), the California Consumer Privacy Act
(CCPA [45]), and the recently approved European AI Act [36]. In particular, this right remains valid even if
the user initially consented to the use of their data for ML.

State-of-the-art privacy attacks against trained ML models have shown that it is not only possible to dis-
cover whether a particular item was part of the training data (through membership inference attacks [10,42]),
but the training data themselves can be reconstructed (partially or totally) from the model using reconstruc-
tion attacks [2,23,49]. Hence, forgetting one item in the training data requires modifying the models trained
on those data.

A naive strategy to achieve data forgetting consists in retraining the model from scratch, after excluding
from the training data the items requested for removal. However, doing this is computationally expensive.
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Machine unlearning (MU) [5, 9] aims to provide a cheaper alternative to retraining from scratch, while
maintaining the utility of the model. Depending on the influence of the unlearned data items on the unlearned
model, MU methods can be classified as exact and approximate [4,35,53]. The exact unlearning methods [5,
9, 54] aim to completely eliminate the influence of the data elements that must be unlearned, ensuring that
the model behaves as if it had never seen those elements during training. Although this approach offers
formal forgetting guarantees, it typically incurs high computational and storage costs, sometimes close to
the cost of retraining from scratch. On the other hand, approximate unlearning methods [3, 25, 28, 41, 46]
approximate complete removal of target items through efficient strategies to update the parameters of the ML
model. However, these methods lack formal forgetting guarantees and only provide approximate guarantees
specific to certain ML model types, which makes them insufficient for strict compliance of the right to be
forgotten. A promising middle ground is DP-certified unlearning [13, 15], which probabilistically limits
data influence using (ϵ, δ)-DP guarantees. However, existing DP-certified approaches suffer from restrictive
assumptions (e.g., strong convexity), utility degradation in non-convex settings, and scalability limitations.

In this paper, we propose a novel framework for machine unlearning named efficient unlearning with
privacy guarantees (EUPG), which provides formal privacy guarantees to individuals whose data are un-
learned. Our framework modifies both the training data and the initial model training to enable efficient and
utility-preserving unlearning. As a result, it significantly reduces computational and storage costs in com-
parison with exact unlearning methods, while still providing privacy guarantees derived from the privacy
models enforced on the training data. Moreover, our approach accommodates a wider range of ML model
types than most current unlearning techniques.

In summary, our contributions are:

• An efficient machine unlearning framework that guarantees the privacy of individuals whose data are
being unlearned. Our framework can be combined with any privacy model.

• A first instantiation of our framework with k-anonymity [38] as a privacy model. The resulting method
guarantees that the unlearned data are protected by k-anonymity.

• A second instantiation with differential privacy (DP) [17] as a privacy model. The resulting method
guarantees that the unlearned data are protected by ϵ-DP.

• Experiments and detailed analyses on four data sets, involving tabular data and images, that demon-
strate that our framework achieves utility and forgetting effectiveness comparable to those of exact
unlearning methods, while incurring significantly lower computational and storage unlearning costs.

The remainder of this paper is organized as follows. Section 2 discusses related work on machine
unlearning. Section 3 provides background on the privacy models that we use in our instantiations. Section 4
presents our general framework for efficient unlearning with privacy guarantees. Section 5 reports empirical
results on a variety of data sets and ML models. Section 6 draws conclusions and sketches some lines for
future research.

2 Related work

Machine unlearning attempts to produce an ML model having unlearned some data item ideally as if it had
been retrained from scratch without that item, but at a lower cost.

Exact unlearning aims to completely eliminate the influence of data items to be forgotten by using strate-
gies that are more efficient than retraining from scratch. SISA [5] was proposed as a generic framework for
exact unlearning through algorithmic-level retraining. This framework divides the data set into S shards of
R slices and trains partial ML models slice-by-slice with checkpoints. Upon completion, partial models are
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saved within their respective shards. During inference, the outputs are aggregated in an ensemble style. For
data forgetting, the slice containing the data to be forgotten is identified, the target data are removed, and
the ML model is retrained from the last checkpoint to ensure effective unlearning. SISA ensures exact for-
getting and is also adaptable to a wide range of ML tasks and model architectures. However, its practicality
is limited by the large computational and memory costs associated with saving models and checkpoints, re-
training, and inference, which become even more acute in the case of large language models [4]. Moreover,
the utility might be compromised because of the smaller training data employed to build the independent
models on disjoint shards. Various improvements and adaptations of SISA for different models have been
proposed, including k-means [24], extremely randomized trees [40], random forests [6,40], and graph-based
models [11]. Nevertheless, each adaptation is specifically designed for a particular model type. Machine un-
learning through algorithmic stability [48] leverages total variation (TV) stability and coupling techniques
to achieve exact unlearning, primarily for convex risk minimization problems. While this approach can
be extended to non-convex models like deep neural networks (DNNs), its guarantees are weaker in such
settings, and practical implementation may require additional heuristics, such as gradient clipping.

Approximate unlearning aims to provide a practical alternative to exact unlearning by efficiently min-
imizing the influence of unlearned items to an acceptable level through an efficient and ex post alteration
of the learned model [53]. Many approximate unlearning methods do not offer formal guarantees of data
removal, and the evidence of removal is at best empirical [28, 44, 47, 50, 56].

DP-certified unlearning could also be viewed as approximate unlearning, as it probabilistically limits
rather than completely eliminates the influence of the data to be forgotten. However, it offers certified
privacy through (ϵ, δ)-DP guarantees. It is gradient-based, relying on noisy optimization during training
for unlearning. [15] use noisy gradient descent to fine-tune the trained model on the remaining data after
excluding the data to be forgotten, ensuring privacy by making the unlearned model indistinguishable from
the one never trained on the deleted data. However, noisy fine-tuning may degrade model utility, especially
in non-convex settings. [13] formalize Rényi unlearning under strong convexity, achieving exponential decay
in privacy loss with projected noisy stochastic gradient descent. However, their approach assumes strong
convexity, which limits applicability to non-convex settings. [14] introduce Langevin unlearning, unifying
DP learning and unlearning via noisy gradients. While they optimize privacy-utility-complexity trade-offs,
particularly in convex regimes, the theoretical bounds for non-convex problems are not yet tight, limiting
the applicability of their approach in such scenarios. More similar to our approach, [32] propose Rewind-
to-Delete (R2D), a first-order black-box method designed for non-convex functions, which achieves (ϵ, δ)-
certified unlearning through a three-step process: i) rewinding to an intermediate model checkpoint saved
during the original training process, ii) retraining the model from the checkpoint for a small number of
iterations on the retained data set (i.e., the data set excluding the data to be unlearned), and iii) adding
Gaussian noise to the model weights to make the unlearned model statistically indistinguishable from one
retrained from scratch on the retained data. This approach circumvents convexity assumptions and is thus
applicable to a wide range of ML models, including DNNs; it also maintains computational efficiency by
avoiding full retraining. However, R2D requires the loss function to be Lipschitz-smooth, which may not
hold for all models or data sets. In addition, its privacy guarantees weaken as more data points are unlearned,
potentially requiring more noise to maintain privacy.

Our proposed framework introduces a novel approach by modifying the training data and the pipeline
to enable unlearning that is more efficient than retraining or SISA-based methods. Unlike approximate
unlearning methods, it offers formal guarantees of data removal. In contrast to DP-certified methods, which
are limited to approximate (ϵ, δ)-DP guarantees and place requirements on the ML model, EUPG is agnostic
both to the ML model and to the privacy guarantee: it can be applied to any ML model and with any privacy
model (privacy guarantee). For example, it can offer any form of DP (including pure ϵ-DP, (ϵ, δ)-DP, Rényi
DP, etc.), k-anonymity or any k-anonymity extensions that protect not only against re-identification but also
against attribute disclosure (such as l-diversity, t-closeness, etc.). Moreover, in contrast to gradient-centric
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DP-certified methods, our framework is plug-and-play via data modification, which decouples unlearning
from model architecture. Once data are transformed via the selected privacy guarantee, any ML model
(gradient-based or not) trained on the transformed data inherits the privacy guarantee for the unlearned data.

3 Background

This section provides background on data anonymization and the main two families of privacy models (i.e.,
privacy guarantees).

Tabular data sets, also called microdata sets, are often used to train ML models. A tabular data set
is composed of records, where each record reports several attributes on an individual. Considering their
disclosure potential, attributes can play the following roles: (i) identifiers (e.g., passport no., social security
no., name-surname, etc.) unequivocally identify the individual to whom the record corresponds; (ii) quasi-
identifiers (e.g., zipcode, profession, gender, age, etc.) do not identify the individual when taken separately,
but they may when considered jointly (e.g., a 90-year old female doctor living in a certain zipcode is probably
unique); (iii) confidential attributes (e.g., diagnosis, income, etc.) contain sensitive information; iv) other
attributes may exist that are not in the previous three groups.

When data are anonymized, the identifiers are suppressed. However, this is not enough, and some
modification of the quasi-identifiers is needed to prevent re-identification by an adversary. To offer ex ante
guarantees against re-identification, this modification should be done under the scope of a privacy model.

k-Anonymity [38] was the first privacy model proposed, and it was followed by several variants and ex-
tensions (like l-diversity [30] or t-closeness [29], that additionally protect against disclosure of confidential
attributes). A data set is k-anonymous if, for each combination of quasi-identifiers present in the data set,
there are at least k records sharing that combination. These records form a so-called k-anonymous class. In
this way, the probability of successful re-identification is at most 1/k.

An original data set can be made k-anonymous in several ways, including:

• Generalization and suppression. This was the method originally proposed by the inventors of k-
anonymity [38]. For categorical quasi-identifiers, categories are coarsened (e.g., a profession “Med-
ical doctor” can be coarsened into “Healthcare personnel”, a zipcode “08001” can be coarsened into
“0800*”). Numerical quasi-identifiers can be coarsened into intervals (e.g., age 33 into a 30-34 age
interval). Outlier values can be suppressed to reduce the need for too harsh a coarsening.

• Microaggregation [16]. This method microaggregates records by their quasi-identifier attributes, that
is, creates clusters of at least k records (and less than 2k records) such that the quasi-identifier values
within each cluster are maximally similar. Then, the centroid of the quasi-identifier values in each
cluster is computed and used to replace the quasi-identifier values of the records in the cluster. In
the Anatomy or probabilistic k-anonymity variant [43, 52], the computation of centroids is avoided;
instead, the quasi-identifier combinations within each cluster are randomly permuted.

ϵ-Differential privacy (DP, [17]) is a privacy model that inaugurated another family consisting of several
variants or relaxations [20]. DP seeks to bound the influence of any particular record in the original data set
(and thus of the individual to whom the record corresponds) on the statistical outcomes. Formally speaking,
a randomized query function κ satisfies ϵ-differential privacy if, for all data sets D1 and D2 that differ
in one record (also known as neighbor data sets), and all S ⊂ Range(κ), we have Pr(κ(D1) ∈ S) ≤
exp(ϵ) Pr(κ(D2) ∈ S).

For a numerical query f , ϵ-DP can be reached via noise addition, that is, by computing κ(x) = f(x)+N ,
where N stands for noise. Typically, the Laplace noise distribution is used. The amount of noise that needs
to be added is inversely proportional to ϵ (smaller ϵ means greater privacy and thus requires more noise) and
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Figure 1: Workflow of the proposed EUPG framework

directly proportional to the sensitivity of the query function f (variability between neighbor data sets), that
is, ∆f = maxD1,D2∈D ||f(D1)− f(D2)||1, where D1 and D2 are two data sets differing in one record and
D is the collection of data sets on which f can be evaluated.

For non-numerical queries, the exponential mechanism [31] is typically used. This mechanism selects
outputs with a probability proportional to the exponent of the utility of the outputs, ensuring that more
“useful” results are more likely, while still protecting privacy.

DP has some interesting properties:

• Immunity to post-processing. If a function f provides ϵ-DP, then any function g, applied to the output
of f , also preserves ϵ-DP.

• Sequential composition. Let κ1 be a randomized function that satisfies ϵ1-DP and κ2 a randomized
function that satisfies ϵ2-DP. Then, any deterministic function of (κ1, κ2) satisfies (ϵ1 + ϵ2)-DP.

• Parallel composition. Let κ1 and κ2 be randomized functions that satisfy ϵ-DP. If κ1 and κ2 are
applied to disjoint data sets, any deterministic function of (κ1, κ2) satisfies ϵ-DP.

Although DP was initially proposed to protect queries to a remote database, it can also be applied to
anonymize tabular microdata sets by enforcing the Laplacian mechanism or the exponential mechanism on
all the attributes of the microdata set [39, 44]. In this case, the global sensitivity is the maximum variability
of each attribute (typically, the attribute range). Moreover, since attribute values within a record are typically
correlated, sequential composition applies: hence, the budget ϵ needs to be split among the attributes in the
data set, which means that the noise added to each attribute increases with the number of attributes.

4 Efficient unlearning with privacy guarantees

Our framework for efficient unlearning with privacy guarantees (EUPG) is designed to simultaneously ad-
dress the efficiency-privacy-utility aspects of unlearning. Using privacy models and engineering of the
training process, it enables effective and efficient subsequent unlearning with privacy guarantees. The gen-
eral workflow of EUPG is shown in Figure 1 and it consists of two main stages: (a) forgetting-amenable
training and (b) processing of forgetting requests.

Forgetting-amenable training This stage involves preparing the ML model in a way that inherently sup-
ports efficient and effective unlearning. First, a privacy model offering formal privacy guarantees is chosen
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(such as those introduced in Section 3 or a variant/extension of them). The choice of the privacy model
depends on multiple factors, including the data types of the attributes and the specific privacy guarantees
that are sought. For a particular privacy model, stronger privacy guarantees need stricter parameters (e.g.,
larger k for k-anonymity or smaller ϵ for DP). Once a privacy model is chosen, the original data set (D)
is transformed into a protected version (D′) by a mechanism that enforces the privacy model (as described
in Section 3). An initial ML model M ′ is then pre-trained on D′, which transfers the formal privacy guar-
antees to M ′. Note that immunity to post-processing is not necessarily invoked here: since the guarantees
hold against an attacker being given full access to D′, in particular, they hold if the attacker chooses to
train a model M ′ on D′. This initial data protection and pre-training steps are the most computationally
expensive part of our framework, but they are one-time processes that set the stage for efficient, utility-
preserving unlearning with privacy guarantees. Then M ′ undergoes fine-tuning on the entire original data
set D to mitigate the potential degradation in the utility of the ML model due to privacy-preserving modi-
fications to the training data. Fine-tuning allows the protected ML model to quickly make up for the utility
lost during anonymization (which caused M ′ to learn only general patterns without memorizing item-level
information). The resulting fine-tuned model M ′

D is then deployed for production.

Processing of forgetting requests Upon receiving a forgetting request, EUPG can handle it efficiently
without retraining the ML model. First, the ML model currently deployed is deleted and the model M ′

pre-trained on the data set D′ protected by the privacy model is fine-tuned on the retained data Dr =
D \Df , where Df are the data to be forgotten. The resulting fine-tuned model M ′

Dr
is then deployed for

production. Since elements in Df have not individually contributed to the fine-tuned model (M ′
Dr

), the
privacy of the individual(s) whose data are in Df is protected by design under the guarantees of the privacy
model embedded in the pre-trained protected model (M ′). In addition, the use of fine-tuning significantly
reduces the computational and storage costs with respect to those typically required for retraining in exact
unlearning. The fine-tuning step triggered by a forgetting request is key in our approach, as it provides the
model manager with the flexibility to balance model utility against the computational cost of unlearning: if
the manager prioritizes utility (resp. low cost), they can increase (resp. decrease) the number of fine-tuning
epochs.

In the following, we show how this general framework can be instantiated with the two families of
privacy models introduced in Section 3, and we prove the resulting privacy guarantees.

4.1 Unlearning with a k-anonymity privacy guarantee

Under k-anonymity, the probability that an adversary can re-identify a forgotten record after unlearning
based on the quasi-identifiers is upper bounded by 1/k.

Algorithm 1 (k-Anonymity amenable training).

1. Let D be a data set used for training. Let QI be the set of quasi-identifier attributes in D.

2. k-Anonymize D into Dk by using the most convenient computational method depending on the nature
of the quasi-identifier attributes QI (see Section 3).

3. Train a machine learning model on Dk. Let the trained model be Mk.

4. Fine-tune Mk on D to obtain a model Mk
D.

Protocol 1 (k-Anonymous unlearning).

1. An individual asks the manager of model Mk
D to remove her data Df from D and Mk

D.
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2. The model manager deletes Mk
D and fine-tunes Mk on Dr = D \Df to obtain Mk

Dr
.

Proposition 1 (Privacy). Unlearning with Protocol 1 satisfies k-anonymity.

Proof: Protocol 1 falls back on Mk, which has been trained on the k-anonymous version Dk of the
original data set D. Since k-anonymity holds against an attacker A with full access to Dk (i.e., the attacker’s
probability of successful re-identification via quasi-identifiers is at most 1/k), in particular, it holds if A
decides to train Mk on Dk and hence Mk does not break k-anonymity (no immunity to post-processing
property needs to be invoked).

Then, the fine-tuning to obtain Mk
Dr

takes place on all items of D except those in the forget set Df .
Therefore, the information in Df is only retained by Mk

Dr
through its k-anonymous class in Dk, and thus

k-anonymous privacy is maintained for the individual who requested Df to be forgotten. □
k-Anonymity can be replaced by any of its extensions that protect against confidential attribute dis-

closure (such as l-diversity or t-closeness), and it is straightforward to adapt Algorithm 1, Protocol 1 and
Proposition 1.

4.2 Unlearning with a differentially private guarantee

We next show how to obtain an ϵ-DP guarantee for the forgetting request, which means that after unlearning
the forgotten data should be unnoticeable from the output of the ML model except by a factor exp(ϵ).

Algorithm 2 (DP-amenable training).

1. Let D be a data set used for training.

2. Transform D into an ϵ-DP data set Dϵ (e.g., by applying the Laplacian or exponential mechanisms
to every attribute; see Section 3). If record attributes are not independent and thus sequential compo-
sition applies, use a budget ϵ/|attributes| for each attribute to obtain ϵ-DP protected records.

3. Train a machine learning model on Dϵ. Let the trained model be M ϵ.

4. Fine-tune M ϵ on D to obtain a model M ϵ
D.

Protocol 2 (ϵ-DP unlearning).

1. An individual asks the manager of model M ϵ
D to remove her data Df from D and M ϵ

D.

2. The model manager fine-tunes M ϵ on Dr = D \Df to obtain M ϵ
Dr

.

Proposition 2 (Privacy). Unlearning with Protocol 2 satisfies ϵ-DP.

Proof: Protocol 2 falls back on M ϵ, which has been trained on the ϵ-DP version Dϵ of the original data
set D. Then, the fine-tuning to obtain M ϵ

Dr
excludes the forget set Df . According to the post-processing

immunity property of DP (see Section 3), the ϵ-DP guarantee achieved by Dϵ extends to M ϵ
Dr

for the
individual(s) to whom Df corresponds. □

ϵ-DP can be replaced by any of its variants or relaxations, and it is straightforward to adapt Algorithm 2,
Protocol 2, and Proposition 2. Note that post-processing immunity holds for all state-of-the-art variants
and relaxations of DP. However, the above proof could be rewritten without invoking the post-processing
immunity property, but instead using an attacker argument as in the proof of Proposition 1.
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5 Experimental results

We conducted experiments on four data sets and three ML models to assess the performance of our frame-
work in terms of the preservation of utility of the ML model, the effectiveness of forgetting and computa-
tional efficiency. We also compared against retraining the model from scratch and against SISA, a method
also providing formal unlearning guarantees. Comparison against approximate unlearning methods would
be unfair to our framework as they do not offer guarantees of forgetting. Furthermore, we investigated how
the privacy model chosen influences the performance of our approach and examined its sensitivity to various
hyperparameters. The experiments were carried out on a system running Windows 11 Home OS, equipped
with a 12th Gen Intel®Core™i7-12700 12-core CPU, 32 GB RAM, and an NVIDIA GeForce RTX 4080
with 16 GB GPU. Our code is available at https://github.com/najeebjebreel/EUPG

5.1 Experimental setup

Data sets We used four publicly available data sets, each representing a classification problem from a
different domain. Three of these data sets are tabular and were chosen because of their privacy relevance, as
they contain records describing personal data of individuals. In addition, we included an image classification
data set to evaluate the generality of our approach across various data types.

• Adult income 1: It comprises 32,561 training records and 16,281 testing records of demographic and
financial data, with six numerical and eight categorical attributes. The class attribute indicates whether
an individual makes more than 50K dollars a year.

• Heart disease 2: It contains 55,869 training records and 14,131 testing records of patient data, with
five numerical and six categorical measurements related to cardiovascular diseases. The class attribute
denotes the presence of heart disease.

• Credit information 3: It includes 96,215 training records and 24,054 testing records of financial infor-
mation, with ten numerical attributes. The class attribute indicates whether an individual has experi-
enced financial distress.

• CIFAR-10 4: It is a widely used image classification data set containing 60,000 32x32 pixel images
across ten classes, with three RGB channels. The data set is divided into 50,000 training samples and
10,000 testing samples.

ML models For each tabular data set, we built two ML classification models: a multi-layer perceptron
(MLP) and an XGBoost classifier. We implemented MLP models using PyTorch with an input layer, a hid-
den layer, and an output layer. Regarding the XGBoost classifier, we utilized the implementation provided
by XGBoost [12], which can be found on the official XGBoost website 5. For CIFAR-10, we used the
DenseNet12 [27] deep model, which is known for its densely connected layers that enhance feature reuse
and improve gradient flow.

1https://archive.ics.uci.edu/ml/datasets/Adult
2https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
3https://www.kaggle.com/c/GiveMeSomeCredit
4https://www.cs.toronto.edu/˜kriz/cifar.html
5https://xgboost.ai/
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Evaluation metrics The utility of the ML models was evaluated using accuracy (Acc) for the Adult,
Heart and CIFAR-10 data sets. For the Credit data set, which has a significant class imbalance (only 6.92%
of the data belong to the positive class), the area under the ROC curve (AUC) was used instead. The
effectiveness of forgetting was assessed using the loss-based [55] and the entropy-based [37] membership
inference attacks (MIAs) implemented in TensorFlow Privacy 6. We employed AUC to evaluate MIAs [26,
51], as our objective was to quantify the trade-off between true and false positives of member and non-
member data points.

Privacy models We used the two privacy models described in Section 4 for the tabular data sets. To enable
a fair comparison, we applied both privacy models to all attributes except the class attribute. To implement k-
anonymity, we used the MDAV microaggregation algorithm [16] with one-hot encoded categorical attributes
and the parameter k ∈ {3, 5, 10, 20, 80}.

For DP, we applied the Laplace mechanism [19] for numerical attributes and the exponential mecha-
nism [31] for categorical attributes, with ϵ ∈ {0.5, 2.5, 5, 25, 50, 100}. For DP on the Adult data set, which
contains several non-ordinal categorical attributes, we leveraged the unsupervised training capabilities of
TabNet [1] to generate embeddings for these attributes, which allowed us to encode each non-ordinal cate-
gorical attribute into a 10-dimensional embedding vector. Then, we used the cosine similarity between the
embeddings of attributes as a utility function for the exponential mechanism.

For the CIFAR-10 data set, we enforced DP via the DP-Pix methodology described in [22]. DP-Pix first
pixelizes the image by averaging pixel values in blocks of size b × b to reduce sensitivity and then adds
noise to the pixels using the Laplace mechanism based on the global sensitivity 255m/b2. The parameter
m defines the number of different pixels between neighboring images. We used m = 16, as suggested
by the DP-Pix author, and b = 4, which is consistent with image resolution [22]. We did not enforce k-
anonymity on CIFAR-10 images because aggregating or generalizing images to make them indistinguishable
(as required by k-anonymity) produces meaningless images for any safe (large) enough k, and very few
works employing k-anonymity in images use k = 2 [8, 33, 34].

Training settings For each tabular data set, we trained an MLP model and an XGBoost model from scratch
on the entire training set D. We used cross-entropy loss and the Adam optimizer to train all MLP models.
The MLP hidden layer was configured with 128 neurons for all benchmarks, with the exception of the Credit
benchmark, which was configured with 256 neurons. For CIFAR-10, we trained the DenseNet12 model
using cross-entropy loss and the SGD optimizer. The specific hyperparameters used during the training of
these benchmarks are detailed in Table 1.

For SISA, we split the training set into 5 disjoint shards (each containing 10 slices) and applied the SISA
training procedure using the training hyperparameters presented in Table 1.

For our EUPG with tabular data, we obtained the base private models Mk and M ϵ by training them on
the Dk and Dϵ protected data sets, respectively, using the same training hyperparameters in Table 1. For
EUPG on CIFAR-10, we trained on Dϵ only. We then fine-tuned Mk and M ϵ on D for some epochs (see
details below) to obtain Mk

D and M ϵ
D with the learning rates and batch size presented in Table 1.

Forgetting settings We randomly sampled a forget set Df from the original training set D using a given
forgetting ratio (e.g., 5%). After subtracting Df from D, the remaining training points made up the retain
set Dr. To forget Df with privacy guarantees, we fine-tuned Mk and M ϵ on Dr to obtain Mk

Dr
and M ϵ

Dr
,

respectively. We used the learning rates and batch sizes in Table 1. For MLP and DenseNet12, we fine-
tuned the models for a number of epochs. For XGBoost, we added a number of estimators and fine-tuned
the models with those added estimators. See details on fine-tuning below.

6https://www.tensorflow.org/responsible_ai/privacy/guide
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Table 1: Training hyperparameters

data set Model Hyperparameters

Adult income
MLP BS:512, LR:1e-2, Epochs:100

XGBoost Estimators:300, Depth:10, LR:0.5, λ:5

Heart disease
MLP BS:512, LR:1e-2, Epochs:200

XGBoost Estimators:200, Depth:7, LR:0.5, λ:5

Credit
MLP BS:256, LR:1e-3, Epochs:200

XGBoost Estimators:200, Depth:9, LR:0.5, λ:5

CIFAR-10 DenseNet12
BS:64, Epochs:100
LR:(1e-1 for train., 1e-2 for finetun.)

For all training, forgetting, and attack experiments, we report the average results of three runs.

5.2 Main results

We present our findings on the performance of EUPG, SISA, and retraining from scratch before and after
forgetting.

Performance before forgetting Tables 2 and 3 show the pre-forgetting performance of the original models
trained on D from scratch (MO

D), those obtained by SISA (MSISA
D ), and those obtained by EUPG (Mk

D and
M ϵ

D). The former table contains results for the MLP and XGBoost models on tabular data, and the latter
table contains results for the DenseNet12 models on image data. For a fair comparison with SISA, we
report the results for EUPG with ‘safe’ privacy parameters (i.e., ϵ ≤ 1, as discussed in [18], and k = 10, as
suggested in [7]). Our experiments on the influence of hyperparameters (Section 5.3) give further empirical
justification for our choices of k and ϵ.

We first discuss our results on tabular data. Our method with k = 10 achieved the best utility score in 3
out of 6 benchmarks and it was the second-best in the other 3 benchmarks. With ϵ = 0.5, our method was
the best or second-best in the MLP benchmarks, but caused utility degradation in the XGBoost benchmarks,
especially for the Credit data set. This degradation comes from the sequential training and fine-tuning
mechanisms of XGBoost itself, where the current tree is affected by all its preceding trees. Additionally,
the XGBoost split criteria can be highly sensitive to changes in data distribution. The noise added for DP
can alter the apparent distribution of the data, thereby leading to suboptimal splits that would not have been
chosen in the absence of noise. Later in the fine-tuning step, the leaf values are updated by Dr while the
splits are fixed. All of this hampers the recovery of the model’s utility after fine-tuning. On the other hand,
since k-anonymity preserves the general distribution of data, it benefits more from fine-tuning than DP.

For CIFAR-10 with DenseNet12, EUPG achieved a similar accuracy to SISA, but both underperformed
compared to the original model. The fact that our method achieved higher utility scores than the original
and SISA models with tabular data can be attributed to the fundamental principle underlying our approach,
which is that learning from anonymized (i.e., more general, less individual-specific) data mitigates the usual
problem of overfitting to the training data set. Therefore, fine-tuning the base protected ML models on D
for a few epochs (5 in our experiments) was enough to regain utility without affecting the model’s ability
to generalize to unseen data. Although this was not the case for image data with DenseNet12, we show in
Section 5.3 that fine-tuning DenseNet12 for a larger number of epochs can recover all utility. The impact of
the number of fine-tuning epochs on model utility is examined and discussed in Section 5.3.
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Table 2: Performance of MLP and XGBoost models on tabular data before forgetting. RT denotes runtime
in seconds. EUPG was fine-tuned on D for 5 epochs. Best scores are in bold. Second-best are underlined.

data set
Model MLP XGBoost

Method/Metric
Utility↑ MIA↓

RT (s)↓ Utility↑ MIA↓
RT (s)↓

Acc(%)/AUC(%) AUC(%) Acc(%)/AUC(%) AUC(%)

Adult income

MO
D 84.22 55.13 95.51 85.88 54.68 4.16

MSISA
D 83.91 63.16 96.76 85.80 66.60 15.99

Mk=10
D 85.53 51.33 149.58 86.68 51.71 56.14

M ϵ=0.5
D 84.97 50.76 287.17 81.57 52.20 195.54

Heart disease

MO
D 72.35 52.90 198.27 72.78 58.20 1.95

MSISA
D 71.95 64.83 201.69 73.05 72.95 8.51

Mk=10
D 73.82 50.81 227.06 72.85 51.58 31.40

M ϵ=0.5
D 73.52 50.86 227.39 68.92 50.43 31.33

Credit

MO
D 75.71 52.66 475.36 80.80 55.72 2.34

MSISA
D 75.39 72.15 361.87 83.22 70.46 11.98

Mk=10
D 81.55 49.99 555.43 82.20 50.42 107.12

M ϵ=0.5
D 82.09 50.08 496.00 56.84 50.18 47.54

Regarding privacy protection, EUPG significantly improved over the original and SISA models. This
is indicated by lower MIA AUC values across all data sets and models. The reason is our method’s effec-
tiveness in reducing the memorization of individual data points, the key factor contributing to vulnerability
against MIA. We can see that SISA achieved the worst protection against MIA because the single models
in SISA are trained on shards that are small compared to the whole training data (training on smaller data is
known to increase overfitting). It can also be seen that the MIA AUC is often greater with XGBoost, which
suggests that XGBoost models are prone to memorizing training samples than MLP models.

Regarding the runtime required to obtain the models before forgetting, SISA generally had runtimes
similar to the original models with MLP and DenseNet12 benchmarks. With XGBoost benchmarks, SISA
incurred higher runtimes compared to the original models, although it ranked second. Looking at the run-
times of EUPG, we can see that they were higher than those of the original and SISA models. This increase
in runtime came mainly from the computational cost required to obtain Dk and Dϵ, and also from the fine-
tuning step. The runtime increase on Adult with ϵ = 0.5 w.r.t. the other methods on Adult is notable: it is
due to the added embedding time of the categorical values in this data set. Detailed runtimes of our method
with different values of k and ϵ are given in Section 5.4.

In summary, compared to the original and SISA models, EUPG provides the best privacy protection
while preserving the utility of models before forgetting. In particular, EUPG is more effective in mitigating
MIAs before forgetting. This sometimes comes at a high computational cost, but this cost is one time and
tolerable given the greater privacy protection that our method offers compared to the original models and
SISA. We argue that privacy needs to be protected not only when forgetting is requested but also beforehand.

Performance after forgetting Tables 4 and 5 show the post-forgetting performance of the original ML
models retrained on Dr from scratch (MO

Dr
), those obtained with SISA (MSISA

Dr
), and those obtained with

EUPG (Mk
Dr

and M ϵ
Dr

) when forgetting 5% of the training data across the four data sets. The former table
contains results for MLP and XGBoost models on tabular data and the latter table results for DenseNet12
models on image data.

Regarding utility, with MLP benchmarks, EUPG with k = 10 achieved the best utility across all data
sets. With XGboost, our method with k = 10 achieved the best or second-best utility, but it degraded utility
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Table 3: Performance of DenseNet12 models on image data before forgetting. RT denotes runtime in
seconds. EUPG was fine-tuned on D for 5 epochs. Best scores are in bold. Second-best are underlined.

data set
Model DenseNet12

Method/Metric
Utility↑ MIA↓

RT (s)↓
Acc(%)/AUC(%) AUC(%)

CIFAR-10

MO
D 88.60 63.50 28704.32

MSISA
D 82.83 74.46 27337.17

M ϵ=0.5
D 82.09 56.78 30737.36

Table 4: Performance of MLP and XGBoost models on tabular data after forgetting 5% of the training data.
EUPG was fine-tuned on Dr for 5 epochs. Best scores are in bold. Second-best are underlined.

data set
Model MLP XGBoost

Method/Metric
Utility↑ MIA↓

RT (s)↓ Utility↑ MIA↓
RT (s)↓

Acc(%)/AUC(%) AUC(%) Acc(%)/AUC(%) AUC(%)

Adult income

MO
Dr

83.31 50.12 89.91 85.54 50.77 4.09
MSISA

Dr
84.18 51.12 48.47 85.78 51.64 8.41

Mk=10
Dr

85.40 50.64 4.65 86.51 50.26 0.39
M ϵ=0.5

Dr
84.92 51.21 4.21 81.79 51.04 0.39

Heart disease

MO
Dr

72.77 50.12 186.73 72.30 50.73 2.23
MSISA

Dr
71.76 50.59 96.54 73.12 50.07 4.69

Mk=10
Dr

73.87 51.10 4.66 72.99 51.03 0.24
M ϵ=0.5

Dr
73.73 50.36 4.86 69.03 50.37 0.25

Credit

MO
Dr

71.96 50.74 448.61 80.24 49.90 3.68
MSISA

Dr
76.12 50.30 179.81 83.33 50.37 7.19

Mk=10
Dr

81.78 50.69 10.56 82.24 51.21 0.33
M ϵ=0.5

Dr
81.66 50.81 11.45 60.71 49.97 0.32

with ϵ = 0.5. SISA and our method with ϵ = 0.5 also reduced utility with CIFAR-10-DenseNet12 compared
to the original model.

Regarding forgetting, all ML models achieved comparable MIA AUC scores (close to random guessing),
which is consistent with the exact/guaranteed unlearning they achieve by design.

Regarding the forgetting runtime, EUPG achieved a significant improvement compared to the original
and SISA models. This is clearly visible in the very short runtimes observed for both the MLP and XGBoost
benchmarks.

These results underscore the core strength of our approach, namely its ability to facilitate efficient and
effective forgetting while preserving the utility of the ML model. This trifecta of benefits -—efficiency,
effectiveness, and utility preservation– is attained by initiating the process with privacy-enhanced pre-trained
models (Mk and M ϵ). These models capture general patterns within the training data without memorizing
individual data points. This allows fine-tuning those models on the retain set Dr to expedite utility recovery
and improvement while retaining the privacy guarantees embedded within those pre-trained models.

Storage requirements and inference efficiency SISA requires storage proportional to the product of data
shards (S) and slices within each shard (R). This significantly scales up storage needs. In contrast, EUPG
only stores two versions of the model: Mk and Mk

D (resp. M ϵ and M ϵ
D if using DP) before forgetting,

and Mk and Mk
Dr

(resp. M ϵ and M ϵ
Dr

if using DP) afterward, resulting in lightweight and stable storage
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Table 5: Performance of DenseNet12 models on image data after forgetting 5% of the training data. EUPG
was fine-tuned on Dr for 5 epochs. Best scores are in bold. Second-best are underlined.

data set
Model DenseNet12

Method/Metric
Utility↑ MIA↓

RT (s)↓
Acc(%)/AUC(%) AUC(%)

CIFAR-10

MO
Dr

88.18 51.10 25833.89
MSISA

Dr
81.72 49.66 13399.18

M ϵ=0.5
Dr

81.10 50.73 1568.50

requirements. In terms of inference efficiency, SISA incurs a computational overhead of approximately
(S − 1)T , where T denotes the inference time per model; this degrades response times as the number of
shards increases. In contrast, our approach does not introduce additional latency over the original model’s
inference time.

5.3 Impact of hyperparameters

In this section, we discuss the influence of key hyperparameters. For each of them, we report results on the
data sets and models that best illustrate the effect of varying its value.

Impact of parameter k Figure 2a depicts the impact of parameter k (when using k-anonymity to protect
training data) on utility and forgetting. The figure reports the performance of the MLP model trained on the
anonymized Heart disease data set (without fine-tuning, Mk) for various values of k in terms of accuracy
(utility) and MIA AUC scores (forgetting). The results show a noticeable trend, where the accuracy peaks at
k = 10 and then gradually decreases as k increases. This suggests that a moderate level of anonymity (with
k = 10) strikes an optimal balance for utility due to effective generalization of the training data without
losing important features. At lower values of k (k = 3), the precision is slightly lower than at k = 10,
which could be due to the insufficient generalization of the ML model. As k increases beyond 10, the utility
gradually decreases. This is indicative of overgeneralization, where the ML model loses useful information
to make accurate predictions. The MIA AUC score is slightly higher with k = 3 and 5, but the improvement
in forgetting is not linearly correlated with the increase of k. However, in general, forgetting improves as k
increases.

In summary, the value of k defines a trade-off between the utility of the model and the privacy (or
forgetting) guarantees, in line with the typical use of k-anonymity to protect microdata releases. Therefore,
it is crucial to choose a value of k that maximizes the utility of the model while providing enough privacy.
Given the results in Figure 2a, we took k = 10 in the rest of our experiments.

Impact of parameter ϵ Figure 2b shows the impact of the differential privacy parameter ϵ on utility and
forgetting. The figure outlines the performance of MLP trained on the differentially private Heart data
set (without fine-tuning, M ϵ) for various values of ϵ in terms of accuracy (utility) and MIA AUC scores
(forgetting). As ϵ increases, which corresponds to a relaxation of privacy guarantees, there is a notable
improvement in the accuracy of the model. This improvement is especially significant as ϵ goes from 0.5 to
25, suggesting that moderate relaxation of privacy can substantially enhance the ability of the ML model to
learn from data. However, the rate of accuracy improvement tapers off for very high values of ϵ, approaching
a plateau that hints at a diminishing return on utility gains. The MIA AUC scores remain relatively stable
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(a) Impact of k for the MLP model trained on
the anonymized Heart data set

(b) Impact of ϵ for the MLP model trained on
the anonymized Heart data set

(c) Impact of ϵ for the DenseNet12 model
trained on the anonymized CIFAR-10 data set

Figure 2: Impact of privacy parameters on utility and forgetting
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Table 6: Impact of the number of fine-tuning epochs on MLP and XGBoost trained on Adult with ϵ = 0.5

data set Epochs
MLP XGBoost

Utility Acc(%)↑ MIA AUC(%)↓ Utility Acc(%)↑ MIA AUC(%)↓

Adult

0 59.89 51.42 73.25 50.97
5 84.92 51.21 81.79 51.04
10 84.97 51.32 82.34 51.14
20 84.93 51.36 82.58 51.33

Table 7: Impact of the number of fine-tuning epochs on DenseNet12 trained on CIFAR-10 with ϵ = 0.5

data set Epochs
DenseNet12

Utility Acc(%)↑ MIA AUC(%)↓

CIFAR-10

0 16.42 49.23
5 81.10 50.73

10 85.72 50.58
20 88.03 51.07

across the spectrum of ϵ values, indicating that even a light perturbation of the data (corresponding to a weak
DP guarantee) can significantly reduce the vulnerability of the ML model to MIAs.

Figure 2c shows a similar trend for CIFAR-10 with DenseNet12. From Figure 2b and Figure 2c alone,
it would seem that choosing, say, ϵ = 100 would yield a better trade-off between utility and privacy than the
value ϵ = 0.5 we have taken in our experiments. The problem is that, although MIAs are the standard way
to evaluate forgetting in the literature, they are rather weak attacks from the privacy point of view. In order
to provide a fair comparison with the exact forgetting of SISA or retraining from scratch, which achieve
top privacy (equivalent to taking ϵ = 0 in DP), we could not take ϵ too large. We therefore chose ϵ < 1
following the guidelines of [18], specifically ϵ = 0.5. This level of privacy is comparable to exact forgetting
and can protect against other attacks, such as reconstruction.

The above issue arises from the fact that the ϵ-DP guarantee on insensitivity to individual contributions
becomes meaningless when ϵ is large. Notice that this does not happen with k-anonymity, whose privacy
guarantee is meaningful for any k ≥ 2: the re-identification probability is upper bounded by 1/k, and thus
one can choose any value of k such that 1/k is considered to be an acceptable re-identification probability.

Impact of the number of fine-tuning epochs Table 6 reports the impact of the number of fine-tuning
epochs on utility and privacy for the MLP and XGBoost models trained on Adult with ϵ = 0.5. We can
see that fine-tuning significantly boosts the utility (accuracy) of both models, resulting in rapid gains in
performance within the first 5 epochs. For MLP, utility jumps from 59.89% to approximately 84.92% and
stabilizes with minimal changes beyond 5 epochs. For XGBoost, starting from a higher baseline of 73.25%,
utility improves steadily up to 82.58% at 20 epochs.

Table 7 reports the same results for the DenseNet12 model trained on CIFAR-10. Here, the impact of
fine-tuning epochs is more notable. Starting from a low baseline of 16.42% accuracy, the model shows a
significant improvement, reaching 81.10% accuracy after only 5 epochs. This trend continues, with utility
reaching 85.72% at 10 epochs and 88.03% at 20 epochs. For all benchmarks, MIA AUC scores remain
similar to those of M ϵ (the protected model before fine-tuning), indicating almost no impact of fine-tuning
epochs on forgetting performance.
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Table 8: Impact of the forgetting ratio with the Credit data set

Method Forgetting ratio
MLP XGBoost

Utility AUC(%)↑ RT (s)↓ Utility AUC(%)↑ RT (s)↓

MO
Dr

5% 71.96 448.61 80.24 3.68
10% 71.46 402.03 80.12 3.60
20% 70.92 383.03 79.76 3.52
50% 67.11 236.01 79.55 3.25

MSISA
Dr

5% 76.12 179.81 83.33 7.19
10% 76.20 160.09 81.37 7.60
20% 76.52 146.06 80.91 7.59
50% 76.20 94.38 79.81 7.24

Mk=10
Dr

5% 81.78 10.56 82.24 0.33
10% 81.87 10.32 82.01 0.30
20% 81.95 9.73 81.97 0.26
50% 81.61 6.17 81.74 0.19

M ϵ=0.5
Dr

5% 81.66 11.45 60.71 0.32
10% 81.89 10.32 60.34 0.29
20% 81.89 9.53 56.84 0.26
50% 81.92 6.21 52.52 0.18

Impact of the forgetting ratio Table 8 reports the impact of the forgetting ratio on utility and runtime.
Regarding utility, increasing the forgetting ratio led to a decrease in the AUC of the ML model retrained
from scratch (MO

Dr
) for both MLP and XGBoost. For SISA with MLP, there was almost no impact on utility,

while utility decreased slightly for SISA with XGBoost. EUPG with MLP (k = 10 and ϵ = 0.5) showed
remarkable resilience, maintaining high utility scores even when the forgetting ratio reached 50%. With
XGBoost and k = 10 the utility decreased slightly as the forgetting ratio increased, while with ϵ = 0.5,
the performance was already poor for low forgetting ratios and deteriorated further as the forgetting ratio
increased.

The runtime tended to decrease with increasing forgetting ratios for retraining from scratch and SISA,
due to the lower training data size that requires less computational effort. EUPG also showed large reduc-
tions in its already very short runtime with increasing forgetting ratios.

5.4 Detailed runtime

Table 9 reports the runtimes of the k-anonymization process to obtain Dk, train Mk, and fine-tune Mk on
D with different values of k. Note that the anonymization time decreases almost linearly as k increases,
demonstrating that larger values of k reduce the anonymization effort due to more uniform (aggregated)
training data. On the other hand, the training and fine-tuning times for both MLP and XGBoost models
remain relatively stable across k values. This indicates that the dominant factor in runtime is the initial
k-anonymization process rather than the subsequent training or fine-tuning steps.

Tables 10 and 11 report runtimes for DP anonymization on tabular and image data, respectively. Run-
times are given for the embedding process (for categorical attributes), to create Dϵ, to train M ϵ, and to
fine-tune M ϵ on D with different values of ϵ. In our experiments, we only required embeddings for the
Adult data set. As expected, the runtime to generate ϵ-differentially private data sets (Dϵ) remained stable
across different values of ϵ, as did the runtimes to train and fine-tune all models. This stability suggests that
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Table 9: Runtime in seconds when using k-anonymity with different values of k

data set k k-Anonymizing D
Training Mk Fine-tuning Mk on D

MLP XGBoost MLP XGBoost

Adult income

3 161.97 93.67 5.06 4.93 0.41
5 101.97 94.56 5.73 4.99 0.44

10 50.59 94.13 5.13 4.86 0.42
20 25.83 94.90 4.51 4.80 0.39
80 6.94 94.31 2.88 4.92 0.38

Heart disease

3 90.69 195.12 2.33 5.08 0.23
5 57.50 193.46 2.40 5.06 0.24

10 28.90 193.18 2.33 4.98 0.24
20 14.57 193.24 2.24 5.08 0.25
80 3.67 195.13 1.26 5.07 0.19

Credit

3 356.47 440.86 3.48 11.44 0.47
5 162.00 442.65 4.07 11.41 0.48

10 102.83 442.26 3.33 11.17 0.51
20 40.56 442.50 4.00 11.35 0.50
80 10.24 442.58 3.34 11.30 0.50

the computational cost of implementing differential privacy through adjustments in ϵ is almost invariant to
the choice of ϵ. An important cost is the initial data embedding or transformation process needed for data
sets with semantically rich categorical attributes.

6 Conclusions and future work

We have introduced EUPG, a novel framework for efficient machine unlearning that guarantees privacy to
individuals who requested data forgetting while maintaining the utility (accuracy) of the ML model. EUPG
adopts formal privacy models for fast and private unlearning, which has the advantage over approximate un-
learning assessed through MIAs of being adaptable to protecting against future attack developments beyond
MIAs.

Our experiments on a variety of data sets, involving numerical and categorical tabular data as well as
images, confirm that our approach retains the utility of the original ML model with less computational and
storage costs than exact unlearning methods and with privacy guarantees that comply with the right to be
forgotten.

Future work will include on the one side optimizing the pre-training and fine-tuning processes to reduce
their computational cost, and on the other side adapting EUPG to other ML tasks and more complex ML
models —such as large language models (LLMs) and other foundation models. Dealing with LLMs raises
the challenges of applying privacy models to unstructured text data and ensuring that the method is scalable
w.r.t. the size of the training data. Whereas in this paper we enforced the privacy model on the training
data (pre-protection), enforcing it on the ML model parameters during training (in-protection) might be
preferable for LLMs and foundation models, due to the huge size of the training data involved. Nevertheless,
the main ideas proposed here (forgetting by falling back on the protected ML model and then fine-tuning on
the retain data) should still be valid.
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Table 10: Runtime in seconds when using DP with different ϵ values on tabular data

data set ϵ Embedding Generating Dϵ Training M ϵ Fine-tuning M ϵ on D
MLP XGBoost MLP XGBoost

Adult income

0.5

167.43

21.17 93.97 6.52 4.60 0.42
2.5 20.92 93.88 6.65 4.79 0.43
5 20.90 94.69 6.79 4.60 0.42
25 21.05 94.56 6.42 4.67 0.43
50 20.90 94.55 6.41 4.91 0.43
100 19.88 94.51 6.51 5.11 0.43

Heart disease

0.5

0

28.92 193.39 2.16 5.08 0.25
2.5 28.94 194.82 2.37 5.18 0.25
5 29.15 193.69 2.23 5.19 0.26
25 28.88 193.83 2.36 4.96 0.27
50 29.11 194.05 2.35 5.10 0.25
100 29.01 195.07 2.45 5.05 0.28

Credit

0.5

0

43.43 442.56 3.79 12.03 0.32
2.5 43.21 441.41 3.37 11.80 0.44
5 43.29 440.94 3.89 11.59 0.44
25 43.91 442.30 4.16 11.58 0.49
50 43.62 442.15 4.20 11.45 0.48
100 43.49 442.03 3.91 11.35 0.46

Table 11: Runtime in seconds when using DP with different ϵ values on image data

data set ϵ Embedding Generating Dϵ Training M ϵ Fine-tuning M ϵ on D
DenseNet12 DenseNet12

CIFAR-10

0.5

0

95.41 28979.72 1662.23
2.5 96.63 29028.00 1662.07
5 96.05 29021.83 1665.11
25 96.50 28939.69 1658.16
50 96.32 29066.90 1707.61
100 96.02 30044.02 1678.08
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