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Abstract—Large Language Models (LLMs) have revolutionized
various fields with their exceptional capabilities in understanding,
processing, and generating human-like text. This paper inves-
tigates the potential of LLMs in advancing Network Intrusion
Detection Systems (NIDS), analyzing current challenges, method-
ologies, and future opportunities. It begins by establishing a
foundational understanding of NIDS and LLMs, exploring the
enabling technologies that bridge the gap between intelligent and
cognitive systems in Al-driven NIDS. While Intelligent NIDS
leverage machine learning and deep learning to detect threats
based on learned patterns, they often lack contextual awareness
and explainability. In contrast, Cognitive NIDS integrate LLMs to
process both structured and unstructured security data, enabling
deeper contextual reasoning, explainable decision-making, and
automated response for intrusion behaviors. Practical imple-
mentations are then detailed, highlighting LLMs as processors,
detectors, and explainers within a comprehensive Al-driven
NIDS pipeline. Furthermore, the concept of an LLM-centered
Controller is proposed, emphasizing its potential to coordinate
intrusion detection workflows, optimizing tool collaboration and
system performance. Finally, this paper identifies critical chal-
lenges and opportunities, aiming to foster innovation in devel-
oping reliable, adaptive, and explainable NIDS. By presenting
the transformative potential of LLMs, this paper seeks to inspire
advancement in next-generation network security systems.

Index Terms—Large Language Models, Intrusion Detection
Systems, Network Security, Generative Artificial Intelligence.

I. INTRODUCTION

The growing complexity and scale of modern network
infrastructures have led to an exponential rise in cyber threats.
Network Intrusion Detection Systems (NIDS) play a critical
role in safeguarding these infrastructures by monitoring and
analyzing network traffic for suspicious activities. However,
traditional NIDS, which rely on predefined signatures or
statistical methods, often struggle to detect sophisticated or
novel attacks. The integration of Artificial Intelligence (AI) has
significantly enhanced the capabilities of NIDS, enabling more
intelligent detection mechanisms. Among these advancements,
Large Language Models (LLMs) have emerged as promising
tools due to their unparalleled abilities to understand, process,
and generate human-like text.
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LLMs, such as GPT-4!, LLaMA?, and DeepSeek?®, have
demonstrated remarkable success in diverse applications, rang-
ing from natural language processing (NLP) to reasoning and
decision-making tasks. Their ability to extract meaningful
insights from vast datasets makes them well-suited for the
complex and dynamic nature of intrusion detection. By lever-
aging LLMs, NIDS can transition from intelligent systems to
cognitive systems capable of contextual reasoning, offering
faster response and enhanced explainability.

Despite these promising capabilities, research and applica-
tions of NIDS are still in their early stages, and systematic
exploration remains limited. This paper aims to bridge this gap
by investigating the transformative role of LLMs in advancing
NIDS. Specifically, we establish a foundational understanding
of NIDS and LLMs, tracing their evolution and exploring
their potential synergies. We then examine how LLMs can be
integrated into key stages of the NIDS pipeline, including data,
model, and response. Furthermore, we propose LLM-centered
Controller, a novel architecture for orchestrating NIDS opera-
tions by coordinating various tools and components to enhance
efficiency and effectiveness.

However, integrating LLMs into NIDS presents several
challenges, including validity, complexity, and privacy. For
instance, LLMs may generate false positives due to biases
in training data, struggle with inconsistent threat assessments,
and even produce misleading outputs that could hinder security
responses. Additionally, their high computational demands
would impact real-time processing capabilities, while the
analysis of sensitive network traffic raises significant privacy
risks. This paper identifies these challenges and outlines
future research directions, focusing on enhanced multimodal
integration, real-time analysis detection, privacy-preserving
collaboration, and multi-agent systems. Through a comprehen-
sive review, we aim to catalyze innovation and development
in next-generation NIDS, paving the way for more reliable,
adaptive, and explainable network security systems.

The rest of this paper is organized as follows. Section II
provides a foundational background on NIDS and LLMs.
Section IIT examines the transition of Al-driven NIDS from in-
telligent to cognitive systems, focusing on the general pipeline,
existing gaps, and enabling technologies. Section IV discusses
the practical implementation of NIDS with LLMs, including
LLM-enhanced Processor, LLM-based Detector, LLM-driven
Explainer, and LLM-centered Controller. Section V outlines

'GPT-4: https://openai.com/index/gpt-4
2LLaMA: https:/github.com/meta-llama
3DeepSeek: https://www.deepseek.com/
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Fig. 1. The Roadmap of NIDS.

open challenges and future directions, and the conclusion is
drawn in Section VL

II. BACKGROUND OF NIDS AND LLMS
A. NIDS

NIDS are essential to modern cybersecurity, continuously
evolving to counter increasingly sophisticated attacks. The
roadmap in Fig. 1 outlines this progression, highlighting key
technological advancements.

The earliest Predefined NIDS emerged in the late 1980s with
systems like Haystack* and SNORT?, which relied on static
rule-based detection. While effective against known threats,
they required frequent updates to address new attack patterns.
To overcome this limitation, Statistical NIDS appeared in
the mid-1990s, introducing anomaly-based detection. Systems
such as SPADE® established statistical baselines of normal
network behavior, flagging deviations as potential intrusions.
However, high false-positive rates often overwhelm analysts,
reducing practicality in dynamic environments.

By the early 2000s, Intelligent NIDS leveraged Machine
Learning (ML) and Deep Learning (DL) to adapt to evolving
threats. Modern tools like Splunk’ and Suricata® moved be-
yond rule-based detection, using clustering, supervised learn-
ing, and ensemble methods to improve accuracy. However, in-
creasing model complexity led to concerns about interpretabil-
ity. The advent of LLMs has driven the evolution toward
Cognitive NIDS, capable of processing both structured and
unstructured data, including logs, threat intelligence reports,
and emails. By leveraging LLMs’ reasoning capabilities, Cog-
nitive NIDS enhance contextual awareness, provide actionable
security insights, and enable more effective incident response.

B. LLMs

LLMs represent a major advancement of Al, particularly in
NLP domain. These models are trained on vast amounts of data
to understand and generate human-like text, excelling in tasks

4Smaha, Stephen E. “Haystack: An Intrusion Detection System.” Fourth
Aerospace Computer Security Applications Conference. Vol. 44. 1988.

Shttps://www.snort.org/

Shttps://github.com/infosecdr/spade

https://www.splunk.com/

8https://suricata.io/

such as summarization, translation, sentiment analysis. Their
deep learning architecture, typically based on transformers,
enables them to scale to billions of parameters, supporting
their impressive performance across various applications.
LLMs have demonstrated broad applicability across indus-
tries, highlighting their versatility. In healthcare®, they assist in
analyzing patient records, generating medical reports, aiding
preliminary diagnoses, and supporting interactive virtual assis-
tants. In finance'?, LLMs help analyze complex financial data,
generate insights, and improve decision-making processes.
In customer service'!, they provide 24/7 support, handle
inquiries, and enhance user experiences through personalized
interactions. These applications illustrate the transformative
potential of LLMs across multiple domains, reinforcing their
role in driving advancements in cybersecurity and beyond.

III. AI-DRIVEN NIDS: FROM INTELLIGENT TO
COGNITIVE

This section explores the evolution of NIDS from Intelligent
to Cognitive, both of which fall under the broader category
of Al-driven NIDS. The advancement of Al technologies has
significantly enhanced the capabilities of NIDS, enabling them
to address increasingly sophisticated security challenges.

A. General Pipeline of Al-driven NIDS

The effectiveness of Al-driven NIDS lies in their ability
to analyze network data, distinguish between normal and
anomalous behavior, and respond dynamically to threats. To
understand the transition from Intelligent to Cognitive NIDS,
we first examine the general pipeline of Al-driven NIDS. Fig. 2
illustrates five interconnected stages: data collection, data
processing, intrusion detection, event analysis, and incident
response, forming a backbone of effective Al-driven NIDS.

1) Data Collection: This stage aggregates raw data from
packet captures, system logs, application logs, user activity
records, and threat intelligence feeds using tools like Wire-
shark'? and tcpdump'3. Comprehensive data collection ensures
full network visibility, enabling accurate analysis.

2) Data Processing: Raw data is cleansed, normalized, and
structured to remove noise and redundancy. This step filters
irrelevant traffic, extracts protocol-specific details (e.g., HTTP
headers, DNS queries), and enhances data quality, reducing
false positives and missed detections.

3) Intrusion Detection: Al-driven NIDS detect both known
and emerging threats by continuously monitoring network
activities. Intelligent NIDS rely on ML/DL models, while
Cognitive NIDS leverage Generative Al and LLMs for deeper
contextual understanding, improving detection of complex,
multi-stage attacks.

9 Agent-Hospital: https://www.tairex.cn/agent-hospital

10FinGPT: https://github.com/Al4Finance-Foundation/FinGPT
"1ChatGPT-On-CS: https://github.com/cs-lazy-tools/ChatGPT-On-CS
2Wireshark: https://www.wireshark.org/

Btcpdump: https://github.com/the-tcpdump-group/tcpdump
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Fig. 2. The Pipeline of Al-driven NIDS.
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Fig. 3. Capability Comparison of Intelligent and Cognitive NIDS.

4) Event Analysis: Upon detecting an intrusion, NIDS
correlate system logs, user activities, and threat intelligence to
assess threat severity and minimize false positives. Integrating
external sources like MITRE ATT&CK' and Common Vul-
nerabilities and Exposures (CVE)!® helps identify zero-day
exploits and Advanced Persistent Threat (APTs), improving
situational awareness.

5) Incident Response: This stage mitigates threats through
automated or manual actions such as isolating compromised
systems, blocking malicious traffic, and generating alerts. It
also includes forensic investigations and system recovery,
ensuring resilience against future attacks.

B. The Gap Between Intelligent and Cognitive NIDS

While Intelligent NIDS utilize ML and DL methods for
threat detection, they struggle with unstructured data pro-
cessing, complex attack detection, explainability, and work-
flow optimization. Cognitive NIDS, powered by LLMs, over-
come these limitations by enhancing contextual understanding,
automation, and adaptive decision-making. A comparative
overview of their capabilities is summarized in Fig. 3.

1) Unstructured Data Handling: Intelligent NIDS focus on
structured data like IP headers and packet payloads, overlook-
ing insights from unstructured sources such as logs, emails,
and threat reports. Cognitive NIDS leverage multimodality,
integrating both structured and unstructured data to enhance
threat detection. With advanced NLP capabilities, they analyze
logs for anomalies, extract Indicators of Compromise (IoCs),
and detect phishing or social engineering threats across diverse
data formats. This multimodal approach provides a more
comprehensive and context-aware view of network security,

4MITRE ATT&CK: https:/attack.mitre.org/
I5CVE: https://cve.mitre.org/
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enabling richer threat intelligence and more accurate intrusion
detection.

2) Detection of Evolving and Multi-Stage Attacks: Intelli-
gent NIDS rely on pattern-based detection, often struggling to
adapt to evolving threats and multi-stage attacks like APTs,
where individual actions appear benign but collectively form
a coordinated attack. Cognitive NIDS enhance adaptability
by leveraging contextual reasoning and continuously learning
from new attack patterns. They dynamically correlate seem-
ingly unrelated events, such as suspicious logins, anomalous
file downloads, and data exfiltration, enabling early detection
of complex attack chains before significant damage occurs.

3) Explainability and Reporting Mechanisms: Intelligent
NIDS, particularly those based on deep learning, often func-
tion as “black boxes”, providing little transparency in decision-
making. Cognitive NIDS improve explainability by generating
natural language descriptions for detected threats, detailing
not only what was flagged but also why. They produce
human-readable incident reports tailored to different stake-
holders, from technical analysts to business leaders, improving
decision-making, trust, and response efficiency.

4) Automation and Workflow Optimization: Intelligent
NIDS require manual intervention for event correlation,
threat prioritization, and response execution, increasing analyst
workload and response time. Cognitive NIDS leverage real-
time decision-making and contextual automation, dynamically
prioritizing threats and even executing mitigation actions, such
as isolating compromised endpoints, blocking malicious IPs,
and generating automated incident reports. By reducing man-
ual effort, Cognitive NIDS enhance efficiency and accuracy in
intrusion detection.
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C. Enabling Techniques for Cognitive NIDS

Integrating LLMs to transition from Intelligent to Cogni-
tive NIDS presents unique challenges. Although LLMs have
extensive knowledge of common tasks, they may lack domain-
specific expertise, and their output can be inherently random.
To overcome these challenges, various enabling techniques,
categorized into non-tuned and tuned methods, can facilitate
the effective integration of LLMs into NIDS.

1) Non-tuned Methods:

a) Zero-shot Prompt: Traditional NLP techniques require
large labeled datasets for supervised training. In contrast,
Zero-shot prompting uses pre-trained LLMs directly for tasks
without needing task-specific training. However, this method
faces challenges, such as the pre-trained model’s insufficient
knowledge of network intrusion detection and biases inherent
in the training data.

b) In-Context Learning (ICL): ICL enhances LLMs by
using formatted prompts with task descriptions and examples,
allowing the model to learn domain knowledge dynamically
without modifying its parameters. This method improves the
LLM’s adaptability and task performance by effectively guid-
ing the model in understanding specific requirements and
applying domain-specific knowledge.

¢) Chain-of-Thought (CoT): CoT prompts are designed
to guide LLMs through complex reasoning tasks by incorpo-
rating intermediate reasoning steps. Unlike ICL, which focuses
on input-output pairs, CoT prompts help the LLM connect
logical steps, enhancing accuracy and stability in solving
problems that require abstract or symbolic reasoning.

d) Retrieval-Augmented Generation (RAG): RAG com-
bines information retrieval with LLMs’ generative capabilities,
allowing models to retrieve and integrate relevant information
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|
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! I
! |
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from external sources to generate more accurate, context-aware
responses. This approach bridges the knowledge gap between
general models and up-to-date information, enabling more
effective task performance.

2) Tuned Methods: Tuned methods are categorized into
Full Fine-Tuning (FFT) and Parameter-Efficient Fine-Tuning
(PEFT). FFT updates all model parameters, making it
resource-intensive and computationally demanding. In con-
trast, PEFT modifies only a subset of parameters, providing a
more efficient and scalable alternative, particularly suited for
network intrusion detection. Below are key PEFT techniques.

a) Prefix Tuning: Prefix tuning introduces task-specific
prefix vectors to the input sequence, optimizing the model for
specific tasks without altering the original parameters. This
approach is efficient, reducing computational overhead and
enhancing flexibility and interpretability by adapting the model
with minimal changes.

b) Adapter Tuning: Adapter tuning integrates lightweight
modules into pre-trained models, enabling task adaptation
without altering the model’s core architecture. These modular
adapters provide flexibility for experimentation and efficient
task optimization.

c¢) Low-Rank Adaptation (LoRA): LoRA introduces
small, low-rank matrices into critical layers of a model,
reducing the number of trainable parameters required for
fine-tuning. This method maintains model performance while
minimizing storage and computational costs, making it highly
suitable for large models, including transformers.

The above techniques could equip LLMs with domain-
specific capabilities for NIDS, enabling their seamless inte-
gration and advancing the development of Cognitive NIDS.
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TABLE I
IMPLEMENTATION SUMMARY OF NIDS WITH LLMS

LLM-enhanced Processor LLM-based Detector

LLM-driven Explainer

LLM-centered

Ref. LLMs Dataset
¢ Controller

G1;rx1r:rf£ticon Prolc)::;sing El):fr‘:cuézn Non-tuned Tuned |Decision Strategy Report
[1] o (o] (o] (@) (@) (o] (o] (o] (@] GPT-2 ISXW2016 etc.
[2] (] (o] 0] (o] (o] (0] (o] (o] (o) NetGPT ISCXTor2016 etc.
[3] o (0] (@) O (0] (@) O (@] O GPT-3 ToN IoT Dataset
(4] ©) ( ©) (e} o @) (e} (o] ©) GPT-4 LogHub
[5] 0] ] 0] (o] (o] (0] (o] (o] (o) GPT-3.5, GPT-4 N/A
[6] (@) (0] o O (0] (@) O (@] (0] GPT-4 Private
[7] ©) o ([ ] ] (o] (@) (e} (o] (o) GPT-4, LLaMA2 etc. DTL-IDS 5G
[8] (0] (@) (@) [ ) [ ) [ ) [ ) (@) (@) GPT-4, Mistral etc. Private
[9] (] (@) (@] o (] o (@] (@) (o] GPT-4, LLaMA3 UNSW-NBI5 etc.
[10] ©) o @) (0} ( ©) (0} o o Zephyr-7b-3 Private
[11] (@] (@) (0] O (@) (] (@) (@) (0] GPT-4 NF-BoT
[12] (@] (@) (@] (@) (@) o (@) (@) (@) Mistral CICIDS2017
[13] ©) o ©) (o] (o] (0] o o o GPT-3.5 N/A
[14] (@] (@) (@] O (@) o [ ) [ ) (0] GPT-3.5 KDD99 dataset
[15] ©) ( J ©) ] (o] o (e} (o] () GPT-3.5, GPT-40 etc. ACI-IoT23 etc.

IV. THE IMPLEMENTATION OF NIDS WITH LLMS

This section examines the role of LLMs in advancing
Cognitive NIDS. With their extensive internal knowledge
and advanced reasoning capabilities, LLMs can enhance or
integrate with existing NIDS to improve efficiency and ef-
fectiveness at various stages of the pipeline discussed in
§ HI-A. Fig. 4 provides an overview of Cognitive NIDS, which
comprises four promising components: LLM-enhanced Pro-
cessor (§ IV-A), LLM-based Detector (§ 1V-B), LLM-driven
Explainer (§ 1V-C), and LLM-centered Controller (§ IV-D).
The following sections provide a comprehensive analysis of
these four components, with representative implementations
summarized in Table I.

o LLM-enhanced Processor improves data processing effi-
ciency and extracts informative features to enhance threat
identification.

o LLM-based Detector leverages LLMs to detect complex
attack patterns, significantly enhancing intrusion detec-
tion performance.

o LILM-driven Explainer enhances explainability by inter-
preting decision-making processes, generating defense
strategies, and producing detailed reports.

o LLM-centered Controller optimizes workflow orchestra-
tion, facilitating seamless collaboration between various
system components.

By leveraging LLMs, NIDS benefit from enhanced data pro-
cessing, sophisticated detection capabilities, improved explain-
ability, and optimized workflows. Cognitive NIDS provide
stronger, more adaptive protection against the ever-evolving
cybersecurity threat landscape.

A. LLM-enhanced Processor

The LLM-enhanced Processor leverages LLMs to improve
the data processing capabilities of NIDS. In intrusion detec-
tion, the monitored data primarily consists of network traffic,
user behavior logs, system event logs, application messages,
and alerts from security devices. This data serves as the
foundation for identifying potential security threats.

1) Traffic Generation: Network traffic data is fundamental
for constructing effective NIDS, with model performance
largely dependent on the quality and diversity of the training
data. The scarcity of high-quality datasets in network intrusion
detection presents significant challenges, especially in real-
world applications. Existing datasets are often outdated or
insufficient in both quality and quantity, as organizations are
reluctant to share data due to privacy concerns or the protection
of commercial secrets. As a result, traffic generation has
emerged as a valuable approach, utilizing synthetic techniques
to simulate network traffic for performance evaluation and
benchmarking of NIDS. For instance, Meng et al. [1] devel-
oped NetGPT, which integrates multi-modal traffic modeling
by encoding heterogeneous network traffic headers and pay-
loads into a unified text input for traffic understanding and
generation tasks. Qu et al. [2] introduced TrafficGPT, which
directly generated PCAP files from token lists, achieving
high quality and authenticity as demonstrated by metrics like
JS divergence. Additionally, Kholgh et al. [3] created PAC-
GPT, which fine-tuned GPT-3 to generate ICMP and DNS
packets. These developments showcase the feasibility of using
generative models such as LLMs to generate high-quality
traffic datasets.

2) Data Processing: Transforming raw network data into
a usable format often involves complex tasks such as data
cleaning, normalization, and integration, particularly when
dealing with heterogeneous data from various sources. LLMs,
with their advanced semantic understanding and reasoning
capabilities, can automate this process by identifying and
correcting errors, missing values, and redundant information,
thereby enhancing data quality and consistency. For example,
Zhang et al. [4] proposed a log parsing framework based on
information entropy sampling and CoT prompting, eliminating
the need of manual rules and achieving high efficiency in log
parsing for downstream tasks. Furthermore, LLMs can identify
and correlate data from diverse sources, enabling a more
comprehensive understanding of network attacks. Daniel et
al. [5] demonstrated the use of ChatGPT for labeling NIDS
rules with MITRE ATT&CK techniques, showcasing LLMs’
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ability to process and integrate multi-source data effectively.
In summary, the application of LLMs in data processing sig-
nificantly reduces the need for manual intervention, enhances
data accuracy, and lays a strong foundation for subsequent
detection and response strategies.

3) Feature Extraction: LLMs excel at extracting mean-
ingful features from data, which is essential for identifying
potential security risks. For instance, Wang et al. [6] used
ChatGPT to obtain embeddings from IoT traffic payloads,
which were then used to train a deep learning model for
IoT traffic anomaly detection. Their results highlighted the
importance of the embedding layer in capturing contextual and
lexical nuances, which significantly improved detection accu-
racy and reduced false alarms. Zhang ef al. [7] applied LLMs
for feature selection by ranking the importance of selected
features at three levels: very important, kind of important,
and not very important. This approach streamlined feature
length and minimized the impact of irrelevant features on
detection performance. These studies demonstrate that LLMs
can significantly enhance feature extraction, improving the de-
tection of anomalous behaviors and boosting the performance
of intrusion detection models.

B. LLM-based Detector

While several studies have explored the integration of
native LLMs with cybersecurity, only a few have proposed
specific implementations for intrusion detection. Building on
the techniques discussed in Section III-C, we introduce these
advancements from both tuned and non-tuned perspectives.

1) Non-tuned LLM-based Detector: [9] have applied Zero-
shot prompting to directly use LLMs for detection tasks.
However, a key challenge is that pre-trained LLMs may lack
sufficient knowledge of network attacks to perform complex
detection tasks effectively. To address this limitation, Zhang et
al. [7] employed a simple ICL approach by providing labeled
examples to the model using GPT-4. Their method achieved
over 90% accuracy on a simple dataset containing only five at-
tack types, demonstrating that ICL can effectively improve the
detection performance of LLMs. In another work, Bui e al. [8]
enhanced frozen LLMs by supplementing them with useful
information from ChromaDB'® and Langchain framework!”,
such as malicious payloads and threat intelligence related
to suspected attacker IPs, achieving significant improvements
over few-shot prompting. These studies suggest that leveraging
the inherent capabilities of LLMs, along with supplemental
information, can significantly enhance their performance for
intrusion detection without updating the pre-trained model
parameters.

2) Tuned LLM-based Detector: While pre-trained LLMs
excel in a wide range of language-understanding tasks, they
may not perform optimally on specific tasks such as intru-
sion detection. To address this, fine-tuning—further training
on task-specific data—can be applied, enabling the model
to understand and perform detection tasks more effectively.
Compared to relying solely on prompting, tuned methods

16ChromaDB: https://www.trychroma.com/
17Langchain: https://www.langchain.com/

offer a more direct and efficient optimization by adjusting
model parameters specifically for the task at hand. Fine-tuned
LLMs integrate more seamlessly with existing NIDS, reducing
dependence on complex prompts and improving performance.
For example, Houssel et al. [9] fine-tuned the LLaMA3 model
using the NetFlow dataset, applying Odds Ratio Preference
Optimization (ORPO) and Kahneman-Tversky Optimization
(KTO) techniques. They proposed that LLMs should serve as
complementary solutions to state-of-the-art NIDS, enhancing
their capabilities. Fine-tuning also allows smaller models to
achieve performance on par with larger ones, reducing com-
putational costs and latency during inference. Rigaki et al. [10]
used LoRA to fine-tune a 7-billion-parameter pre-trained LLM
(Zephyr-7b-3), achieving performance comparable to that of
more powerful models such as GPT-4. These studies show
that fine-tuning not only improves model performance for
network intrusion detection but also optimizes resource utiliza-
tion, maintaining or even enhancing performance with lower
computational overhead.

C. LLM-driven Explainer

The LLM-driven Explainer leverages LLMs to enhance
decision-making and strategy formulation in cybersecurity. By
analyzing current security incidents and historical data, it pro-
vides decision suggestions, response strategies, and automated
reports that summarize detected events, actions, and justifica-
tions. This improves the explainability and transparency of
NIDS. In this section, we explore how LLMs contribute to
NIDS explainability across three key dimensions: decision,
strategy, and report.

1) Decision-level Explainability: At the decision level,
LLMs correlate multi-source data and explain why a specific
threat is flagged by detailing the key features, patterns, or
anomalies that influence the detection decision. By incorporat-
ing both traditional network metrics and semantic information
from network communications, LLMs offer a more com-
prehensive analysis of network behavior. Through in-context
learning, LLMs could enhance decision explainability by
understanding event relationships and contextual information.
Ziems et al. [11] demonstrated that LLM-generated explana-
tions for decision tree-based NIDS models align closely with
human assessments in terms of readability, quality, and contex-
tual knowledge, aiding in a clearer understanding of decision
boundaries. Additionally, Khediri et al. [12] integrated SHAP
explanations with LLM-generated descriptions, providing fea-
ture importance and human-readable justifications for NIDS
model predictions.

2) Strategy-level Explainability: At the strategy level,
LLMs clarify how the system approaches various types of
threats and multi-stage attacks. The LLM-driven Explainer
generates response strategies such as isolating suspicious
users, restricting access, or monitoring traffic. These LLM-
generated recommendations enable security teams to take
appropriate actions, improving strategy accuracy and response
efficiency. Bui er al. [8] introduced a method to measure the
contribution of each token to a predicted output label, allowing
for concise incident summaries. This contextual information



PREPRINT

enables human analysts to interact with the model for further
Q&A and assistance. Jiittner et al. [13] developed ChatIDS,
an early-stage security alert explanation system powered by
ChatGPT, demonstrating the potential of LLMs in providing
intuitive interpretations of security alerts and actionable secu-
rity measures.

3) Report-level Explainability: In cybersecurity incident
response, LLMs can generate detailed analytical reports and
visualizations, supporting security teams with comprehensive
event descriptions, detection processes, impact assessments,
and recommended mitigation measures. Automating report
generation significantly reduces the burden of manual docu-
mentation while improving situational awareness. By analyz-
ing historical data, LLMs can identify trends and patterns in
security events, assisting teams in retrospective analyses and
predicting future attack behaviors. This enables organizations
to proactively prepare for emerging threats. Ali et al. [14]
developed HuntGPT, a system that provides a dashboard
summarizing attack types, key features influencing model
decisions, and their impacts. Additionally, it allows users to
interactively obtain real-time response recommendations and
detailed investigative reports.

D. LLM-centered Controller

The LLM-centered Controller serves as the orchestrator of
the intrusion detection workflow, ensuring seamless collab-
oration among various tools and components to maximize
system efficiency and effectiveness. As illustrated in Fig. 4,
the Controller leverages LLMs to manage processes across
all stages, from data processing to incident response. It facil-
itates communication between modules, dynamically adjusts
system configurations, and ensures smooth task execution.
For instance, by integrating with traffic collection tools like
Wireshark, the LLM can capture and analyze network traffic in
real-time, extract key features, and automate traffic processing,
optimizing data utilization and analysis.

Beyond data handling, the Controller enhances incident
response by coordinating actions across multiple security
tools, such as fingerprint recognition, encryption systems,
and firewalls, providing a unified view with visual analytics
that enhances interpretability. It can automate the isolation of
compromised systems, enforce firewall rules for mitigation, or
trigger in-depth forensic investigations on flagged endpoints.
This integrated approach improves security posture assess-
ment, reduces manual effort, shortens response times, and
strengthens the organization’s overall cybersecurity defenses.
Additionally, it dynamically updates threat intelligence by
retrieving information from internal and external knowledge
bases such as MITRE ATT&CK, CVE, and Cyber Threat
Intelligence (CTI'®). This continuous adaptation enables the
system to respond effectively to evolving security challenges.
By serving as an intelligent unifying orchestrator, the LLM-
centered Controller ensures that all NIDS components work
harmoniously, adapting to dynamic threats and delivering real-
time, robust protection against sophisticated attacks.

I8CTI: https://github.com/OpenCTI-Platform/opencti

Early research has demonstrated the feasibility of this
architecture. Li et al. [15] proposed IDS-AGENT, an LLM-
based intrusion detection agent that employs an iterative
reasoning-action pipeline. IDS-AGENT extracts traffic data,
preprocesses it, calls various machine learning models for
classification, retrieves knowledge from internal and exter-
nal sources, and generates final detection reasoning. While
IDS-AGENT achieves competitive performance compared to
traditional NIDS, its focus remains on managing detection
models rather than orchestrating the entire intrusion detection
lifecycle or integrating external knowledge, tools, and systems
comprehensively.

V. CHALLENGES AND FUTURE DIRECTIONS

This section discusses the challenges of integrating LLMs
into NIDS and outlines key future directions to maximize their
potential in intrusion detection.

A. Challenges

1) Validity: A primary challenge in utilizing LLMs for
NIDS is the reliability and consistency of their outputs. Due to
the inherent unpredictability of LLMs, threat assessments may
be compromised by hallucinations'®, where models generate
inaccurate, misleading, or contextually irrelevant outputs. Ad-
ditionally, biased training datasets can skew detection results,
leading to false positives or blind spots in identifying specific
attack patterns. Another critical issue is the security of LLMs
themselves—adversarial attacks could manipulate or deceive
the model, allowing malicious actors to evade detection.

2) Complexity: Deploying LLMs in real-time network en-
vironments poses significant computational and infrastructural
challenges. Large-scale models require substantial process-
ing power, memory, and storage, limiting their feasibility in
resource-constrained environments such as edge networks and
IoT ecosystems. Moreover, high latency in processing vast
amounts of network traffic would delay detection and response
time, potentially leaving systems vulnerable to fast-moving
cyber threats.

3) Privacy: Integrating LLMs into NIDS raises privacy
concerns, particularly regarding the handling of sensitive data
within network traffic and logs. Since LLLMs process extensive
datasets, they may inadvertently expose private or confiden-
tial information, violating data protection regulations such as
GDPR?. Additionally, security risks associated with data leak-
age during training and inference must be addressed to prevent
unauthorized access or misuse of sensitive information.

B. Future Directions

1) Multimodal Integration for Robust Threat Detection:
One promising avenue for future research is the integration
of multimodal data to enhance the performance and reliability
of NIDS with LLMs. By combining multiple data sources,

Huang, Lei, et al. “A Survey on Hallucination in Large Language Models:
Principles, Taxonomy, Challenges, and Open Questions.” ACM Transactions
on Information Systems 43.2 (2025): 1-55.

20GDPR: https://gdpr-info.eu/
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such as network traffic, system logs, behavioral analytics, and
external threat intelligence, LLMs can provide a more contex-
tualized and accurate understanding of threats. This integra-
tion enhances detection accuracy, reduces false positives, and
ensures models are not overly dependent on single-modality
inputs, mitigating biases and improving generalization.

2) Optimizing Real-Time Intrusion Detection for Edge Net-
works: For LLMs to be effectively applied in edge networks,
advancements in real-time analysis and detection are cru-
cial. Future research should focus on developing lightweight
models (e.g. Small Language Model?!) that require fewer
computational resources and while maintaining high perfor-
mance. Techniques such as model quantization, knowledge
distillation, and efficient architecture can help reduce latency
in threat detection, making real-time systems more feasible.
Deploying Small Language Models at the edge (e.g. IoT
gateways, routers, and mobile devices) will enable low-latency
detection, improving response times and making Cognitive
NIDS feasible in resource-constrained environments.

3) Secure and Privacy-Preserving Threat Intelligence Col-
laboration: To balance privacy and detection effectiveness, the
NIDS with LLMs should integrate privacy-preserving tech-
niques such as federated learning, homomorphic encryption,
and secure multi-party computation. These approaches allow
multiple organizations to collaborate on improving intrusion
detection models without sharing sensitive data. Additionally,
Zero-Trust Architectures (ZTA??) and confidential computing
can ensure that LLM inference is performed securely, reducing
risks associated with data exposure during processing. By in-
tegrating LLMs with existing security tools, such as firewalls,
SIEMs, and endpoint detection systems, Cognitive NIDS can
provide more effective threat intelligence sharing and adaptive
security measures while maintaining privacy compliance.

4) Multi-Agent Systems for Collaborative Intrusion De-
tection: A promising direction for Cognitive NIDS is the
development of multi-agent systems (MAS?®), where au-
tonomous LLM-agents collaborate to enhance threat detection,
response, and decision-making. Unlike centralized models,
MAS distribute security tasks among specialized agents, each
analyzing different data sources such as network traffic,
logs, and behavioral patterns. These agents share real-time
intelligence, improving adaptive threat detection and cross-
context correlation. By operating in parallel, MAS reduces
computational overhead, enhances scalability, and enables
faster incident response. Additionally, coordinated agents can
autonomously mitigate threats, such as isolating compromised
nodes or adjusting firewall rules. Future research should focus
on optimizing MAS architectures to achieve greater accuracy,
automation, and resilience against evolving cyber threats.

VI. CONCLUSION

This paper has examined the transformative role of Large
Language Models (LLMs) in advancing Network Intrusion

21Zhang, Peiyuan, et al. “TinyLLaMA: An Open-Source Small Language
Model.” arXiv preprint arXiv:2401.02385 (2024).

227TA: https://www.nist.gov/publications/zero-trust-architecture

23Talebirad, Yashar, and Amirhossein Nadiri. ”Multi-Agent Collabora-
tion: Harnessing the Power of Intelligent LLM Agents.” arXiv preprint
arXiv:2306.03314 (2023).

Detection Systems (NIDS), highlighting their potential to
transition the field from intelligent to cognitive systems. By ex-
ploring practical implementations, we showcase LLMs as pro-
cessors, detectors, explainers, and controllers, with the LLM-
centered Controller emphasizing the orchestration capabilities
to streamline workflows and enhance system efficiency. While
challenges such as validity, complexity, and privacy remain,
proposed future research directions—including multimodal in-
tegration, real-time analysis, privacy-preserving collaboration,
and multi-agent systems—provide a pathway to address these
issues. We hope this work inspires further efforts to harness
LLMs for reliable, adaptive, and explainable NIDS.

REFERENCES

[1] X.Meng, C. Lin, Y. Wang, and Y. Zhang, “Netgpt: Generative pretrained
transformer for network traffic,” arXiv preprint arXiv:2304.09513, 2023.

[2] J. Qu, X. Ma, and J. Li, “Trafficgpt: Breaking the token barrier
for efficient long traffic analysis and generation,” arXiv preprint
arXiv:2403.05822, 2024.

[3] D. K. Kholgh and P. Kostakos, “Pac-gpt: A novel approach to generating
synthetic network traffic with gpt-3,” IEEE Access, 2023.

[4] W. Zhang, H. Guo, A. Le, J. Yang, J. Liu, Z. Li, T. Zheng, S. Xu,
R. Zang, L. Zheng et al., “Lemur: Log parsing with entropy sampling
and chain-of-thought merging,” arXiv preprint arXiv:2402.18205, 2024.

[5] N. Daniel, F. K. Kaiser, A. Dzega, A. Elyashar, and R. Puzis, “Labeling
nids rules with mitre att &ck techniques using chatgpt,” in European
Symposium on Research in Computer Security.  Springer, 2023, pp.
76-91.

[6] T. Wang, Z. Zhao, and K. Wu, “Exploiting llm embeddings for content-
based iot anomaly detection,” in 2024 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). IEEE,
2024, pp. 1-6.

[71 H.Zhang, A. B. Sediq, A. Afana, and M. Erol-Kantarci, “Large language
models in wireless application design: In-context learning-enhanced au-
tomatic network intrusion detection,” arXiv preprint arXiv:2405.11002,
2024.

[8] M.-T. Bui, M. Boffa, R. V. Valentim, J. M. Navarro, F. Chen, X. Bao,
Z. B. Houidi, and D. Rossi, “A systematic comparison of large language
models performance for intrusion detection,” Proceedings of the ACM
on Networking, vol. 2, no. CONEXT4, pp. 1-23, 2024.

[9]1 P. R. Houssel, P. Singh, S. Layeghy, and M. Portmann, “Towards
explainable network intrusion detection using large language models,”
arXiv preprint arXiv:2408.04342, 2024.

[10] M. Rigaki, C. Catania, and S. Garcia, “Hackphyr: A local fine-
tuned 1lm agent for network security environments,” arXiv preprint
arXiv:2409.11276, 2024.

[11] N. Ziems, G. Liu, J. Flanagan, and M. Jiang, “Explaining tree model
decisions in natural language for network intrusion detection,” arXiv
preprint arXiv:2310.19658, 2023.

[12] A. Khediri, H. Slimi, A. Yahiaoui, M. Derdour, H. Bendjenna, and
C. E. Ghenai, “Enhancing machine learning model interpretability in
intrusion detection systems through shap explanations and 1lm-generated
descriptions,” in 2024 6th International Conference on Pattern Analysis
and Intelligent Systems (PAIS). IEEE, 2024, pp. 1-6.

[13] V. lJiittner, M. Grimmer, and E. Buchmann, “Chatids: Explainable
cybersecurity using generative ai,” arXiv preprint arXiv:2306.14504,
2023.

[14] T. Ali and P. Kostakos, “Huntgpt: Integrating machine learning-based
anomaly detection and explainable ai with large language models
(Ilms),” arXiv preprint arXiv:2309.16021, 2023.

[15] Y. Li, Z. Xiang, N. D. Bastian, D. Song, and B. Li, “Ids-agent: An llm
agent for explainable intrusion detection in iot networks,” in NeurIPS
2024 Workshop on Open-World Agents.



