
LINE: Public-key encryption

Gennady Khalimov1, Yevgen Kotukh2,

1 Kharkiv National University of Radioelectronics, Kharkiv, Ukraine

 gennady.khalimov@gmail.com

2 Dnipro University of Technology, Dnipro, Ukraine

 yevgenkotukh@gmail.com

Abstract. We propose a public key encryption cryptosystem based on solutions of linear equation systems with

predefinition of input parameters through shared secret computation for factorizable substitutions. The existence of

multiple equivalent solutions for an underdetermined system of linear equations determines the impossibility of its

resolution by a cryptanalyst in polynomial time. The completion of input parameters of the equation system is

implemented through secret homomorphic matrix transformation for substitutions factorized over the basis of a vector

space of dimension m over the field F₂. Encryption is implemented through computation of substitutions that are one-

way functions on an elementary abelian 2-group of order 2ᵐ. Decryption is implemented through completion of input

parameters of the equation system. Homomorphic transformations are constructed based on matrix computations.

Matrix computations enable the implementation of high security and low computational overhead for homomorphic

transformations.

Keywords : LINE, public key encryption, linear equation, post quantum cryptography

Introduction

The main task formulated in the NIST project is the standardization of KEMs and

signatures with low overhead for keys, signatures, and computation time [1]. Based on the results

of the NIST PQC standardization project, the best results in the key encapsulation category are

demonstrated by the algorithms: CRYSTALS-Kyber [2], Classic McEliece [3], and HQC [4], and

in the digital signature category: Crystals-Dilithium (Dilithium) [5], Falcon [6-8], and SPHINCS+.

The design principles and security problems underlying these algorithms are derived from lattice-

based cryptography, error-correcting code theory, and hash-based schemes.

The security of lattice-based cryptography is achieved through the use of NP-hard

problems such as finding shortest vectors (SVP, CVP, SVIP) and learning with errors (LWE,

LWR) [9-12]. To ensure security, Dilithium relies on the Fiat-Shamir structure and Aborts, as well

as SVP [13]. SPHINCS+ relies exclusively on assumptions about the hardness of hash functions.

These assumptions are perceived as much more conservative than the structured assumptions

underlying Dilithium and Falcon. Overall, the NIST-selected PQC candidates Kyber and Dilithium

are considered secure and efficient schemes.

Computational cost and parameter size estimates for post-quantum KEM schemes are

provided in NIST report [1]. The security of Kyber has been thoroughly analyzed and is based on

a solid foundation of lattice-based cryptography results. Kyber has excellent overall performance

with respect to software, hardware, and many hybrid settings. For implementation costs of 256-bit

cryptography, Kyber requires public keys of 1568 bytes, secret keys of 3168 bytes, ciphertext of

1568 bytes, encryption costs of 97,000 cycles, and decryption costs of 80,000 cycles. Dilithium

requires public keys of 2600 bytes for implementation, generates signatures of 4600 bytes, signing

costs of 345,000 cycles, and signature verification of 150,000 cycles. SPHINCS+ has much worse

performance than other standards: for example, signature size, verification time, and signing time

are respectively one, two, and three orders of magnitude higher than, say, Dilithium. Classic

McEliece requires the highest computational costs and the highest communication cost due to large

public key size while having the smallest ciphertext. Classic McEliece is the slowest scheme for

key generation, and HQC is the slowest for encapsulation and decapsulation. The fastest scheme

is Kyber.

Large overhead costs are determined by the fact that solving the problem of cryptographic

secrecy requires significant expansion of the ciphertext space compared to the plaintext space. For

cryptosystems based on NP-hard problems, this is an inevitable solution that leads to an actual

increase in operational costs compared to AES256 encryption by tens of times (49 times).

Cryptosystems of this type do not have provable security against quantum cryptanalysis, and it can

be assumed that this will be a persistent threat. PQC schemes that do not exploit the complexity

problem in direct formulation have other constructive solutions. Thus, SPHINCS+ is built on

assumptions about the hardness of hash functions and exploits the idea of one-time secret pads.

After using a secret (input value for which a hash code was computed), the next secret is used, and

so on. The Classic McEliece cryptosystem is built on matrix computations structured by a

generator matrix of an error-correcting redundant code. Attacks are reduced to solving a brute-

force problem of decoding the ciphertext. The price for quantum secrecy is large overhead for

common parameters and cryptosystem keys for large ciphertext, as in the case of SPHINCS+, as

well as large operational costs for storage, transmission over channels, and computation time for

Classic McEliece.

To solve the problem of constructing a post-quantum cryptosystem with low

implementation costs and satisfying NIST security requirements, we propose building public-key

cryptosystems with a new concept based on brute-force problems with equiprobable solutions for

incomplete systems of linear equations and applying secret sharing over ciphertexts for completion

of these equations. Secret sharing is one of the cryptographic mechanisms. An example is Shamir's

threshold scheme based on polynomial approximation by its values. The secrecy of Shamir's

scheme is guaranteed by the properties of polynomial algebra, and an attack on the common key

is only brute-force. The condition when the number of equations is less than the number of input

parameters leads to an incomplete system of linear equations with respect to unknowns (input text)

and the impossibility of its resolution by a cryptanalyst in polynomial time.

Our Contributions

We develop the theory of constructing asymmetric cryptosystems with secrecy that is

determined by the conditions of brute-force problems. As the foundation for constructing such a

cryptosystem, we adopted the property of an incomplete system of linear equations with respect

to its solutions. Since a unique solution exists only for a fully determined system of linear

equations, we defined a mechanism for parametric completion of the equation system through

secret homomorphic transformations of ciphertexts. We developed the theory of secret sharing

over ciphertexts based on homomorphic matrix transformations over factorized substitutions. We

applied factorized substitutions that act as secret one-way substitutions. The one-way property of

substitutions is characterized by direct keyless transformation and secret inverse transformation,

which is a necessary condition for constructing public key encryption. The potential secrecy of a

cryptosystem based on an incomplete system of linear equations is determined by the cardinality

of the solution set of the equation system, and an attack on the ciphertext is only brute-force.

Organization

In the next section, we present a description of the LINE cryptosystem based on matrix

computations, secret sharing, and key substitutions for plaintext. In the third section, we present

secret one-way substitutions on an elementary abelian 2-group of order 2m. After, we describe

secret sharing in the LINE cryptosystem based on homomorphic transformation with the property

that the action of the inverse transformation for any input vector leads to a key vector. Next, we

describe the LINE scheme for public key encryption in a cryptosystem with linear equations. In

the last section, we performed security analysis, complexity estimates of main brute-force attacks

and analytical attacks. In the Appendix, we provide an example of public key encryption

computation in the LINE cryptosystem.

LINE: a cryptosystem based on an incomplete system of linear equations

To construct the LINE cryptosystem, we utilize the well-known fact that an

underdetermined system of linear equations has multiple solutions. Let the system of linear

equations be described by a binary matrix  A l k , l k , which connects the values of the input

vector  y k with the output vector  u l

A y u = , (1)

where are vectors y and u have dimensions accordingly k and l with m bit components. The

calculations in equation (1) are performed using the bitwise XOR operation on m bit components

of the vector y .

The solution of equation (1) has a maximum uncertainty relatively  y k Y equal to

()2 k l mY −= , 2l k l  . Direct guessing of the solution has a probability of
()2 k l m− −

. The application

of an underdetermined system of linear equations for cryptosystem construction potentially

provides high security and good operational characteristics through parameter selection k , l and

m . Let's write the vector  y k in the form

         1 2 1 2, , ,... , ,...l l l ky k y l y l k y y y y y y+ += = .

The solution of equation (1) requires redetermining k l− the components of the vector

   1 2, , ,...l l ky l k y y y+ += .

To build a cryptosystem, we define the following requirements for  ,y l k .

1. Secrecy  ,y l k . The uncertainty of the solution of equation (1) is determined by the

uncertainty of the values of the components of the vector  ,y l k , and therefore  ,y l k must be a

secret key.

2. Invariance to the values of the input text. Let us represent x as k a component vector

   1 2, ,... kx k x x x= . Let the mapping  be a vector- to-vector y transformation x

   1 1 1: (),..., () ,...,k k kx x x y y  → = . (2)

Invariance allows us to obtain a solution to equation (1) for the components  y l at

different input vectors x .

Solution for implementing requirements for  ,y l k .

The key secrecy requirement  ,y l k can be satisfied based on a secret sharing scheme for

the vector  y k . Let the mapping  be a secret homomorphic transformation

: *y y → , (3)

where 1* *,..., *qy y y =   is the set of m bit k component vectors  1 2* *, *,... *i i i iky y y y= , 1,i q= .

Let`s define vectors 1* *,..., *qy y y =   as partial secrets. The mapping 1 : *y y − → is a

conjugate homomorphic transformation. For a set of vectors 1* *,..., *qy y y =   it is possible to

calculate q the cipher of texts 1,..., qu u   using equation (1)

1 1

2 2

*

*

................

*q q

u A y

u A y

u A y

= 

= 

= 

 (4)

To decrypt 1,..., qu u   , we take into account that, due to the linearity of equations (4), the

action of the relative transformation 1 − For 1* *,..., *qy y y =   transferred to cipher texts
iu

1

1(,...,)qu u u  −= . (5)

As a result, we obtain an equation for y

A y u = . (6)

The solution of equation (6) is possible if the secret vector is known

   1 2, , ,...l l ky l k y y y+ += , which will give the desired value    1 2, ,... ly l y y y= . Vector of values

   1 2, ,... ly l y y y= is defined as a shared secret in a secret sharing scheme.

The block diagram for solving an incomplete system of linear equations with

supplementation of input parameters through shared secret computation is presented in Fig. 1.

Fig. 1. Block diagram for solving an incomplete system of linear equations with

input parameter supplementation

After calculating the inverse transformation

 1 1 1

1 1 1: (),..., () ,...,l l ly y y x x  − − − → =  (7)

we obtain the information vector    1 2, ,... lx l x x x= .

Since the mapping : *y y → leads to the calculation of q vectors 1* *,..., *qy y y =   , we

should construct q displays vector x to vector *y

1 1*: *(),..., *() *,..., *q qx x x y y     → =    , (8)

where is the mapping *() *j jx y = , 1,j q= defines a transformation of components for all

vectors x

1 1 1*: (),..., () ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= . (9)

Since the transformation 1 − in the secret sharing scheme is defined over a linear vector

space, it can be transferred to the transformations *j

1

1(*,..., *)q   −= (10)

The block diagram for constructing mappings through homomorphic transformation is

presented in Fig. 2.

Figure 2 – Block diagram of homomorphic transformation  for mappings : x y →

Case 1 - action of direct transformation  , Case 2 - action of inverse transformation 1 − .

The construction of a cryptosystem based on complete system of equations includes the

following stages:

Stage 1. Construction of transformation  1: ,..., kx y y → (3)

Stage 2. Construction of a set of transformations for a homomorphic transformation  :

1*: *,..., *qx y y  →   (7) with the property that the inverse transformation action 1 : *y y − →

for any input vectors leads to a fixed secret vector    1 2, ,...l l ky k l y y y+ +− = .

In a public key cryptosystem, the transformation *: *j jx y → must be keyless. The

shared secret    1 2, ,... ly l y y y= is computed by solving equation (6). The inverse transformation

 1

1: ,..., ly x x − → (7) is bijective and secret. The transformation  is m bitwise substitutions for

vector components x .

Secrecy of the LINE cryptosystem is achieved by the fact that it is possible to construct

secret transformations  ,  and the secret vector    1 2, , ,...l l ky l k y y y+ += .

Lets consider the LINE cryptosystem parameters as follows.

1. We use the following general parameters: binary random matrix  A l k ,
1 2A A A= ,

where  1A l l is a non-singular matrix and  2 ()A l k l − is an arbitrary matrix, concatenation

of matrix rows.

2. We use the transformation vectors 1* : *,..., *q   =   to create public keys.

3. We have transformations  ,  and secret vector    1 2, , ,...l l ky l k y y y+ += as secret

keys.

The secrecy of the cryptosystem is based on the secrecy of the secret sharing scheme. The

implementation costs are determined by calculations using equations (4) (7).

In the next section we will consider the construction of transformations  based on secret

one-way substitutions.

Construction of one-way substitutions

The  and   transformations in expressions (2) and (8) act as one-way functions on the

elementary Abelian 2-group of order 2m . The requirement of asymmetry for public key encryption

scheme determines that the direct transformations   must be keyless and  - secret.

The  and   transformations act as substitutions for m bit strings. Three implementations

of substitutions can be distinguished: tabular, analytic, and based on basis vectors. The tabular

implementation requires 2m
words, which leads to the highest operational memory costs. Analytic

substitution is calculated from expressions and is therefore not secret.

Let us consider the construction of substitutions with calculations based on basis vectors.

The construction of transformations with such properties was introduced by Magliveras in his

symmetric key cryptosystem PGM (Permutation Group Mappings) [14]. PGM cryptosystem built

on group bases for finite permutation groups, which are known as logarithmic signatures. Later,

Magliveras, Stinson, van Trung, Lempken and Wei proposed public- key cryptosystems based on

group covers in MST1, MST2 and based on random coverings of finite non-Abelian groups in

MST3 [15]. The ideas presented in MST3 were further developed for multiparametric groups

[16,17]. All presented cryptosystems are based on group factorization of large finite groups.

Encryption is performed based on encryption over group bases, while decryption is based on secret

group factorization. Efficient group factorization directly affects the operational costs of

cryptographic computations. As demonstrated by the results of designing the MST3 cryptosystem,

key overhead reaches 1 Mbit and more, which reduces practical attractiveness [18].

We will construct transformations  and  as one-way permutations for an Abelian 2-

group of order 2m
. The group basis defines a vector space of dimension m over   the field 2F .

Let  be elements of the Abelian group and be defined m by bit strings. Let be
1 2, ,..., mr r r r= an

input m bit string. We define the bits jr of the string r in the notation of spinors
1 j

j

j

r
r

r

−
= . For

bit 0 we have a spinor
1

0
0

= and bit 1 a spinor
0

1
1

= .

We represent the factorization of an Abelian 2-group of order 2m
 by a matrix  of bit

strings with pairwise blocks  1 2, ,..., mB B B =

()0 00

1 1 1

0 0 0

1 1 1

0 0 0

1 1 1

(11) (1)12

1
(11) (12) (1)

(21) (22) (2)
2

(21) (22) (2)

.......

(1) (2) ()

(1) (2) ()

, ,...,

, ,...,

, ,...,

, ,...,

..........................

, ,...,

, ,...,

m

m

m

m

m m mm

m

m m mm

b b b

B
b b b

b b b
B

b b b

b b b
B

b b b

 = = (11)

The calculation of the transformation  for m a bit word r is conveniently defined by the

tensor product

1 2 1 21 2 1 2() , ,..., , ,..., ...m mm mr r r r B B B r B r B r B =  =  +  + +  , (12)

where

() () ()

0 0 0

1 1 1

0 1 0 1 0 1

(1) (2) ()

(1) (2) ()

(1) (1) (2) (2) () ()

, ,...,1

, ,...,

1 , 1 ,..., 1

j j jmj
j j

j j j jm

j j j j j j j j jm j jm j

b b br
r B

r b b b

b r b r b r b r b r b r

−
 =  =

− + − + − +

The block diagram for computing substitutions based on transformations  is presented

in Fig. 3.

Figure 3 - Scheme for computing transformation  for m - bit word r

Let's consider an example of simple factorization. Let 4m = and be defined  by the

following matrix

1

2

2

0000

1000

0000

0100

0000

0010

0000

0001
m

B

B

B

B

 = = (13)

For the string 0110r = we calculate ()z r= . We get a trivial result 0110z =

1 2 3 4 1 2 3 4() (0110) 0,1,1,0 , , , 0 1 1 0

1 0000 0 0000 0 0000 1 0000
0110

0 1000 1 0100 1 0010 0 0001

r B B B B B B B B = =  =  +  +  +  =

 +  +  +  =
 (14)

Consider the inverse transformation 1 : z r − → , 1 2, ,..., mr r r r= . Let 0110z = and be the

matrix  defined in (13). The most significant bit 4b of the word is calculated by the rows of the

block 4B . The value of the bit 4 0b = corresponds to the case when the first row was added to the

sum (14) 4B . This determines the spinor 0 and 4 0r = . From (14), we extract the component

corresponding to the fourth spinor

()4' 0 0110z z B= +  = .

To determine the third bit, 3r we apply the rows of the block 3B . For example, this will be

the row 0010 and the bit 3 1r = . Extracting the component 0010 corresponding to the third spinor

from 'z gives

()31 0100z z B = +  = .

We continue these actions iteratively until the last bit of the string is determined r .

Factoring a group by bases determines the structures and types of blocks of the matrix  .

In the example considered, we used blocks of type 2, which determines two basis elements of the

finite group in each block. This corresponds to a one-bit element of the row x . Blocks with a

larger number of basic elements can be used. If the row x is broken down into bit-by-bit elements

n , then the basis blocks must be of type 2
n

, n m . In this case, spinors of size should be used to

calculate ()x in expression (12) 2n
.

The direct transformation ()x y = is calculated using the tensor product of the input word

and the matrix with the group bases. To calculate the inverse transformation, 1()y x − = it is

necessary to know the factorization  . The secrecy of the group factorization can be ensured by

homomorphic transformations of the elements of the basic blocks, merging the basic blocks, their

permutation, and permutation of the elements in the blocks. The efficiency of such

transformations, operating costs, and the secrecy provided are widely discussed in [18].

We construct transformations  based on a secret factorization over an Abelian 2-group of

order 2m
, using a set of secret homomorphic transformations [18]. Let  1 1 2, ,..., mB B B = is a

prime factorization of an Abelian 2-group of order 2m
 with blocks of type 2. The set of

transformations of the group vectors for constructing the secret factorization is as follows:

- permutation of elements 1 1 2:  → in blocks jB , 1,j m= ;

- rearrangement 2 2 3:  → blocks in array 2 ;

- adding random bits 3 3 4:  → to block rows jB , 1,j m= ;

- secret homomorphic transformation based on polynomial multiplication 4 4 5:  → , 5 4  = 

rows of blocks jB , 1,j m= , where is  a polynomial (2)mF  ;

- secret homomorphic transformation based on matrix multiplication 5 5 6:  → , 6 5  =  rows

of blocks jB , 1,j m= , Where non-singular binary matrix of dimension m m .

As a result, we achieved the transformation  1 2, ,..., mB B B = .

Let us consider an example. Let us construct a factorization  with blocks of bases of

an Abelian 2-group of type 2. Let 6m = .

Let us define:

- a prime factorization of the group 1 , which is presented in Table 1;

- permutation matrix 1 =: [110110] elements in the blocks of the matrix 1 ;

- permutation matrix 2 =: [340152] matrix 2 blocks  1 2, ,..., mB B B ;

- random vectors 1 2[, ,...,]m   = , (2)m

j F  , 1,j m= to transform
3 4 3: () ()j j jB i B i = + , 1,2i = ,

1,j m=

1 2[, ,...,]m   = =

101111

101000

111001

010100

000000

011110

;

- random polynomial 2 41 x x x = + + + for
4 5 4: () ()j jB i B i =  , 1,2i = , 1,j m= ;

- non-degenerate bit matrix y  for
5 6 5: () ()j jB i B i =  , 1,2i = , 1,j m=

m m  =

101000

001010

110001

000111

010000

111010

The transformations 3 5  are defined by the following expressions

3 4 3: () ()j j jB i B i = + ,

4 5 4: () ()j jB i B i =  ,

5 6 5: () ()j jB i B i =  .

The results of the calculations  by steps are presented in Table 1.

Table 1 – Transformations 1 5 

 1,..., mB B =
1 1 2 → 2 3 → 3()j jB i +

4()jB i 
5()jB i 

1B
000000
100000

100000
000000

000000
001000

101111
100111

001011
110101

011011
011111

2B
100000
010000

010000
100000

000100
110000

101100
011000

011011
100011

010001
000010

3B
000000
001000

000000
001000

111000
001001

000001
110000

101111
100111

110100
000101

4B
110000
000100

000100
110000

100000
000000

110100
010100

111000
000010

010011
010000

5B
100000
010110

010110
100000

010000
100000

010000
100000

011101
111010

000110
000011

6B
111000
001001

111000
001001

010110
100000

001000
111110

111110
111001

000100
101001

The computation of the transformation ()r z = for m a bit word r is determined by the

tensor product (12). The transformations 3 5  mask the factorization of the group.

The computation of the inverse transform 1()z r − = is performed through inverse

operations 1 1

3 5 − − with reduction to a row 3z in a factorizable group

3 : 1 1

3z z  − −

= + ,

where
1

m

j

j

 

=

= .

For a string 3z , we apply factorization by a simple group 1

()1

3 1 2 3
() , ,..., mz r r r − = .

Let's get the original data string r after inverse permutations 1 , 2

()()1 1

1 2 1 2 1 23
, ,..., , ,...,m mr r r r r r − − = .

The scheme for computing the inverse transformation 1()z r − = is presented in Fig. 4.

Figure 4 - Scheme for computing the inverse transformation 1 − for m -bit word z .

Substitutions at a length m of bits have potentially good secrecy characteristics since their

number has an estimate of 2 !m .

The entropy estimate of the number of permutations based on group factorization is

determined by randomizing transformations 1 5  and is large even for small values m [19].

For example, we can limit ourselves to the number of non-singular binary matrices  in

5 , which has the estimate

22 1 2

5 (2 1)(2 2)(2 2) (2 2) 2m m m m m mN − −= − − −  −  .

The memory cost of group factorization-based substitutions is equal to 2m basis vectors,

which is significantly less than that of table implementation-based substitutions.

Let us consider the construction of a secret sharing scheme in the LINE cryptosystem.

Secret sharing in LINE cryptosystem

We construct a secret sharing based on a homomorphic transformation that defines a set of

transformations 1*,..., *q    (10) with the property that the action of the inverse transformation

1 : *y y − → for any input vectors leads to a fixed secret vector    1 2, , ,...l l ky l k y y y+ += . The

direct transformation acting on the substitution  we write through the mapping

1: (*,..., *)q   → . (15)

Display
* *()j jx y = , 1,j q= (9) acts as a transformation for all components of the vector x

1 1 1*: (),..., () ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= .

The substitutions ()ji i jix y = , 1,j q= , 1,i m= are in general not bijective. As an example,

a secret transformation  can be constructed using the following calculation

1

*
q

j j

j

  
=

= , (16)

where 1* ,...,j j jk   =   are component wise permutations of the same type as  , j are secret

bit matrices of size m m . Matrix multiplications *j j  are performed similarly to the

transformation 5 presented in Section 2.

Application of expression (16) leads to the following construction algorithm for *j ,

1,j q= .

Algorithm of substitutions construction:

1. We fix k a component secret factorizable permutation  1,..., k  = . To construct it,

we use the mappings 1 5  from Section 3.

2. We fix component wise permutations 1* ,...,j j jk   =   , 2,j q= and let ji , 1,i k= be

random transformation matrices of the same type as  .

3. We fix the matrices j , 1,j q= size m m and let
1 be the matrix of unity.

Let's calculate
1

2

* *
q

j j

j

   
=

= + .

The block scheme of the substitutions construction algorithm is presented in Fig. 5.

Figure 5 – Algorithm for constructing substitutions 1: (*,..., *)q   →

Encryption of k the message component vector  1 2, ,... kx x x x= is determined by

calculation

1 1 1*: (),..., () ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= .

Computing the shared secret

1

1

*
q

j j

j

y y−

=

= .

Decryption is performed through the inverse transformation 1()y x − = .

Secret parameters: matrices j , 2,j q= .

The block diagram for computing private secrets and a shared secret with matrix secret

transformation (16) is presented in Fig. 6.

Figure 6 - Algorithm for computing shared secret and decryption

In the example considered, the shared secret is calculated from the set of matrices j ,

2,j q= . For substitutions Even at small bit lengths, the secret sharing scheme (15) has potentially

good privacy characteristics since matrix transformations of very high power can be constructed

1 2 ... q   . Let's build an public key encryption based on the LINE cryptosystem.

LINE Public key encryption

The implementation of public key encryption in the LINE cryptosystem is possible if the

components    1 2, , ,...l l ky l k y y y+ += in the vector    1 2, ,... ky k y y y= during decryption are

determined for any input vector  1 2, ,... kx x x x= . Let  ,y l k be the zero vector. Then, when

calculating the homomorphic transformation,  we should obtain a vector  y k of the form

   1 2: () , ,... ,0,...,0lx y k y y y  = = . (17)

To compute the secret homomorphic transformation 1: (*,..., *)q   → , where

1* ,...,j j jk   =   , 1,j q= we use the secret scheme (16). Then expression (17) will look like

   1 2 1 2

1

() *() *(), *(),..., *() , ,... ,0,...,0
q

j j k l

j

x x x x x y y y     
=

= = = . (18)

Expression (18) can be written taking into account the representation for each component

*j , 1,j q= vectors in the form of

1

() ()
q

i ji j i

j

x x y  
=

= = 1,i k= .

To decrypt  1 2, ,... ly y y substitutions  1,..., l  must be factorizable. To construct

factorizable permutations of type 2, we apply transformations 1 5  over a basis of an Abelian 2

group of dimension m .

Let's define component wise substitutions 1* ,...,j j jk   =   , 2,j q= as random matrices

of the same type as permutations  1,..., k  .

We fix the matrices j , 1,j q= size m m and let
1 be the matrix of unity.

Factorizable vector permutations  - components  1,..., l  are calculated via a homomorphic

transformation of vectors 1* ,...,j j jl   =   , 1,j q=

1

q

i ji j

j

  
=

= , 1,i l= . (19)

Given the condition that 1 is the identity matrix, the vector  1 11 1* ,..., l  = is defined by the

expression

1

2

* *
q

j j

j

   
=

= + ,

where  1,..., l  = factorizable permutations.

Let's define the components  1,...,l k +
.

The mapping action  : ()x y k  → for  1,...,l k +
 results in a zero vector

   1 (1) (2)

1 1 1

(),..., () () , () ,..., () 0,...,0
q q q

l k j l j j l j jk j

j j j

x x x x x       + + +

= = =

 
= = 
 
  

substitute 1,i l k= + the condition () 0i x = into expression (19) and obtain

1

0
q

ji j

j

 
=

= , 1,i l k= + . (20)

The permutations ji , 2,j q= , 1,i l k= + are defined as random matrices of the same type

as the permutations  1,..., l  . From expression (20) we can calculate 1,i l k= + the components

of the vector 1 *

1

2

* *
q

j j

j

  
=

= .

Let's define q secret vectors j with matrix components ji , 1,i k=

1,...,j j jk   =   , 1,j q= .

Matrices ji are bit-sized  m m .

We define the sum of vectors ()*j j + as the component wise addition of matrices ji

and ji , 1,i k= . The matrix components ji of the vector *j for type 2 contain m blocks

 1 2, ,..., mB B B of two entries (11). The matrix components ji of the vector j contain m entries

 ji ji m = . The sum of the matrices ji ji + is determined by the bitwise addition of each row

 ji p with entries in blocks pB , 1,p m=

1 1 2 2, ,...,ji ji j j j j jm jmB B B     + = + + +  , 1,j q= (21)

           1 1 , 2 2 ,...,js js js js js js js jsB B B B m m   + = + + + , 1,s m= (22)

    0 0 0

1 1 1

(1) 1 (2) 2 ()

(1) 1 (2) 2 ()

, ,...,

, ,...,

p p p p pm pm

js js

p p p p pm pm
js

b b b
B p p

b b b

  


  

+ + +
+ =

+ + +
, 1,p m= (23)

where 1 2, ,...,p p pm   are the bits of the string  ji p .

Compute the transformations ()*j j + for 1,j q= each component of the input vector

 1 2, ,... kx x x x= leads to the result

1

() () []
m

jiji i ji i ji ji ji

p

x x y p y   
=

+ = + = + , 24)

where ji are m bit constants. Secret vectors j with matrix components ji are mapped to secret

m bit vectors 1,...,j j jk   =
 

during calculation *() *j jx y = , 1,j q= .

Substitute (24) into expression (18) to calculate the shared secret

() () ()

 

1 21 2

1 1 1

1 21 2

1 1 1 1 1 1

1 1 1 1 2

() () , () ,..., ()

() , () ,..., () , ,...,

() ,..., () ,

q q q

j j jkj j j j jk j

j j j

q q q q q q

j j jkj j j j jk j j j j

j j j j j j

k k

x x x x

x x x

x t x t y t y

         

           

 

= = =

= = = = = =

 
= + + + = 
 

   
+ =   

   

+ + = +

  

     

 2 1,... , ,...,l l l kt y t t t++ +

where
1

,
q

jii j

j

t  
=

= 1,i k= m bit components of the vector  1,..., kt t t= .

Vector  1,..., kt t t= is a shared secret that is constructed from vectors 1,...,j j jk   =
 

, 1,j q= .

Let's substitute (24) into expression (4) to calculate the cipher texts 1,..., qu u  

()

()

()

1 1 11 1 1 1

2 2 22 2 2 2

* '

* '

................

* '

A

A

q q Aqq q q q

A y u A u u

A y u A u u

A y u A u u

  

  

  

 + = +  = + =

 + = +  = + =

 + = +  = + =

Vectors
1 2', ',..., 'lu u u consist of l m bit words.

The sequence of operations for encrypting the input vector can be represented by the block

diagram in Fig. 7.

Figure 7 - Encryption scheme of the LINE algorithm

To decrypt, we calculate the transformation  for the same-named components of vectors

1 2', ',..., 'lu u u and 1 2, ,...,A A Aq  

1 2' (', ',..., ')qu u u u = ,

1 2(, ,...,)A A AqAt    = ,

' Au u t = + .

We get the equation for the cipher text

 1A y A y l u =  = ,

which has a solution for  y l , since the components    1 2, , ,...l l ky l k y y y+ += are zero.

The block diagram of decryption is presented in Fig. 8.

Figure 8 - Decryption scheme of the LINE algorithm

The actions described for encrypting the input vector  1 2, ,... kx x x x= and constructing a

shared secret for decryption lead to the LINE public key encryption algorithm.

Let’s consider the main steps of the algorithm. Here is the construction of general

parameters.

1. Generate a binary random matrix  A l k ,
1 2A A A= , where l k ,  1A l l is a non-

singular matrix and  2 ()A l k l − is an arbitrary matrix, the concatenation of matrix rows.

2. Fix the parameters: q - the number of substitutions, m the number of bits for the

components of the input vector x , the hash function h .

We fix the following artifacts to construct the secret keys:

- random binary matrices j , 1,j q= dimensions  m m for homomorphic transformation  ;

- factorizable permutations 1,..., l  type 2 over Abelian 2 group of dimension m ;

- random permutation vectors 1* ,...,j j jk   =   , 2,j q= with matrix components ji , 1,i k=

type 2;

- random vectors of bit arrays 1,...,j j jk   =   , 1,j q= dimensions  m m ,

   1 ,...,ji ji ji m   =   .

We calculate vectors as follows:

- 1
ˆ ˆ ˆ,...,j j jk   =   , 1,j q= , where

1

ˆ []
m

ji ji

p

p 
=

= , 1,i k= ;

- 1 2
ˆ ˆ ˆ ˆ, ,...,A A A Aq    =   , where ˆ ˆ

Аj jA =  , 1,j q= , are vectors m of bit words of dimension l ;

-
1

ˆ
q

A Aj j

j

t  
=

= - vector of m bit words of dimension l .

We proceed with the next steps to construct the public keys:

- ji ji ji   = + 2,j q= , 1,i k= ; (25)

-
1 1

2

q

i i ji j i

j

    
=

 = + + , 1,i l= ; (26)

-
1 1

2

q

i ji j i

j

   
=

 = + , 1,i l k= + . (27)

Addition with matrix components ji is determined by expressions (21), (22), (23).

We consider the encryption stage with the following action. Let the message be defined l

by the components of the vector  1 2, ,... kx x x x= words and components 1 2, ,...l l kx x x+ + are m bit

words from hashing 1 2, ,... lx x x .

We compute:

- ,1 ,2 ,, ,...,j j j j ky y y y =   , 1,j q= , where , , ()j i j i iy x= , 1,i k= , 1,j q= ;

- j ju A y =  , 1,j q= .

We consider the decryption stage with the following action.

We compute

- 1 2 1 2 2 3 3(, ,...,) ...q q qu u u u u u u u           = = + + + + ;

- Au u t 
= + ,   1

1y l A u

−=  ;

-
1 1 1

1 1 2 2 1 2[(), (),..., ()] [, ,...,]l l ly y y x x x  − − − = .

An example of computation of public key encryption is presented in the appendix.

Secrecy of LINE public key encryption

Let's analyze the secrecy of the LINE algorithm. First, let’s consider brute force attacks.

First attack. An attack on a ciphertext with brute force against input messages has a complexity

of ()

1 2 k l mN −= .

The attack on the cipher text is determined by encrypting the input messages

 1 2, ,... kx x x x= and comparing them with the known cipher text 1 2, ,..., qu u u u =   . The

complexity of the attack will be determined by exhaustive search of the vector x with complexity

2km . The result will be 2lm equivalent solutions for x . The attack can be upgraded as follows.

First, define the components of the vector  1 2, ,...l l kx x x x+ += .

Then calculate the substitutions , ,()j i i j ix y  = , 1,i l k= + , 1,j q= , which gives the vectors

, 1 , 2 ,, ,...,j j l j l j ky y y y+ +
 =   , 1,j q= .

Let's compute the cipher texts

2j ju A y =  , 1,j q= .

Using decryption, we construct a vector  1 2, ,...l l kx x x+ +

j j ju u u = + , 1,j q= ,

  1

1y l A u− =  .

For components,  y l through inverse transformations,
1 1 1

1 2[, ,...,]l  − − −
we calculate the

components of the input vector

1 1 1

1 1 2 2 1 2[(), (),..., ()] [, ,...,]l l ly y y x x x  − − − = .

Establishing a correspondence between the inputs and outputs of small substitutions is not

a difficult task. We can assume that the last computation is feasible. The total number of searches

can thus be reduced to ()2 k l m− .

An attack on a ciphertext is a brute-force problem with uncertainty equal to ()k l m− bits in

the solutions obtained. The success of the attack is determined by the probability of guessing

()2 k l m− − , which determines the secrecy of the cryptosystem at ()Ts k l m= − the bit level.

Second attack. Attack on homomorphic transformation 1(,..., ,)q    with matrix enumeration

1 1[,...,]q   −= , has complexity
2(1)

2 2 q mN −= and secrecy
2(1)s q m = − , since it is determined

by the number and dimension of secret matrices  .

The conditions for carrying out the attack are as follows. For two different input texts

 1 2, ,... kx x x x   = and  1 2, ,... kx x x x   = we calculate ji  , 1,j q= for the components of the vectors

x and x

1

() () () []
m

jiji i ji i ji i ji ji ji

p

x x x y p y    
=

     = + = + = + , 1,i k= (28)

1

() () () []
m

jiji i ji ji ji ji ji

p

x x x y p y    
=

     = + = + = + , 1,i k= . (29)

We iterate over the matrices 1 1[,...,]q   −= and calculate the common secret (22) by

components 1,i l k= + vectors (28) and (29) using formula (28)

 1 1 2 2 1() , ,... , ,...,l l l kx y t y t y t t t += + + +

where
1

,
q

jii j

j

t  
=

= 1,i k= m bit components of the vector  1,..., kt t t= . The search stops when

the vectors ()x  and ()x  coincide in components  1,...,l k+ .

Third attack. The attack on the key  1,..., kt t t= by enumerating m bit vectors has complexity

log(2 !)

3 2
mlm lN += . Key vector attack  1,..., kt t t= is related to the secret homomorphism attack and

aims to decipher the ciphertext to obtain the vector
*

1 2[, ,...,]ly y y y= . Comparison with the known

input message x possible as a result of calculating secret inverse substitutions
1 *()i i iy x − = , 1,i l=

. The number of different substitutions 2 !m is very large even for small values of m . The secrecy

of substitutions for an equiprobable choice for l words of the input message vector is equal to

log(2 !)ms l= . If it is impossible to obtain a correspondence between the input and output words of

a substitution, then the substitutions are secret. Conducting a brute-force attack on t has complexity

2lm and requires fixing the set of substitutions 1 1 2 2(), (),..., ()l lx x x   . The total secrecy of the

substitutions is equal to log(2 !)ms lm l = + . Let's consider the analytical attacks.

Fourth attack. Analytical attack on 1[,...,]q  = .

Let 2q = . The substitutions ,j i are defined by expressions (25), (26), (27) and have the

following representation

1 2 2 1i i i i     = + + , 1,i l= ,

1 2 2 1i i i    = + , 1,i l k= + ,

2 2 2i i i   = + , 1,i k= .

Let us fix a vector  1 2, ,... kx x x x= and consider the values of the permutation vectors

()1i x , ()2i x . Let us write down the homomorphic transformation  for the components
ix ,

1,i l

1, 2, 2 1, 2, 2 1, 2, 2
ˆ ˆ() : () () () () () ()i i i i i i i i i i i i i i ix x x x x x x            = + = + + = + + , 1,i l

The values 1, ()i ix , 2, ()i ix are value invariant
ix and are secret constants, as follows from

(24)

1, 1,
ˆ()i i ix = ,

2, 2 2, 2
ˆ()i i ix   = .

Let's fix the components ix and ix calculate () ()i ix x  +

1, 2, 2 1, 2, 2() () : () () () () () ()i i i i i i i i i i i ix x x x x x x x                    + = + + + = + .

The expression for () ()i ix x  + does not allow finding a solution with respect to 2 , since

the value on the right-hand side () ()i i i ix x  + is not known due to secrecy i , 1,i l= .

Let us consider a homomorphic transformation  for the components ix , 1,i l k= + .

Considering (9), we obtain

1, 2, 2 1, 2, 2
ˆ ˆ() : () ()i i i i i i ix x x       = + = + , 1,i l k +

or equation

2, 2 2, 2 1, 1,
ˆ ˆ() ()i i i i i ix x      + = + .

For each column of 2,n the matrix 2 , 1,n m= one can construct a system of linear

equations for k l− fixed values ix , 1,i l k +

() ()

() ()

() ()

2, 1 1 2, 1 2, 1, 1 1 1, 1 1,

2, 2 2 2, 2 2, 1, 2 2 1, 2 1,

2, 2, 2, 1, 1, 1,

ˆ ˆ() ()

ˆ ˆ() ()

.........

ˆ ˆ() ()

l l l n l l l n

l l l n l l l n

k k k n k k k n

x x

x x

x x

     

     

     

+ + + + + +

+ + + + + +

 + = +

 + = +

 + = +

 (30)

where 1,n m= , 1,n is n a column of the identity matrix 1 .

Let k l m− = and the system of equations (30) have rank m . The system of equations (30)

has a solution for fixed values of the vectors 1
ˆ ˆ ˆ,...,j j jk   =   , 1,2j = . The vectors ˆ

j , 1,2j = are

secret, then there is only a brute force attack with complexity
222 m . The attack is considered

successful when for different components
ix and

ix the calculations on the left side of the

equations (30) for the found matrix
2 give the same values on the right parts.

Consider a cryptosystem with a homomorphic transformation  with two secret matrices

2 3[,]  , case 3q = . The homomorphic transformation  for the components
ix will 1,i l have

the following form

1, 2, 2 3, 3

1, 2, 2 3, 3 1, 2, 2 3, 3

() : () () ()

ˆ ˆ ˆ() () () () ()

i i i i i i i

i i i i i i i i i i i i i

x x x x

x x x x x

     

           

  = + + =

+ + + = + + +

where 1,i l .

The expression for ()ix does not allow finding a solution with respect to 2 and 3 since

the value on the right side ()i ix is not known due to secrecy
i , 1,i l= .

The homomorphic transformation  for the components has the ix following 1,i l k= +

representation

1, 2, 2 3, 3 1, 2, 2 3, 3
ˆ ˆ ˆ() : () () ()i i i i i i i i i ix x x x            = + + = + + , 1,i l k + .

The following equation can be written

() ()2, 2, 2 3, 3, 3 1, 1,
ˆ ˆ ˆ() () ()i i i i i i i i ix x x         + + + = + .

For columns 2,n , 1,n m= matrix 2 and columns 3,n , 1,n m= matrix one 3 can construct

a system of linear equations for k l− fixed values ix , 1,i l k +

() () ()

() () ()

() ()

2, 1 1 2, 1 2, 3, 1 1 3, 1 3, 1, 1 1 1, 1 1,

2, 2 2 2, 2 2, 3, 2 2 3, 2 3, 1, 2 2 1, 2 1,

2, 2, 2, 3, 3, 3

ˆ ˆ ˆ() () ()

ˆ ˆ ˆ() () ()

.........

ˆ ˆ() ()

l l l n l l l n l l l n

l l l n l l l n l l l n

k k k n k k k

x x x

x x x

x x

        

        

     

+ + + + + + + + +

+ + + + + + + + +

  + + + = +

  + + + = +

 + + + (), 1, 1, 1,
ˆ()n k k k nx  = +

 (31)

where 1,n m= , 1,n is n a column of the identity matrix 1 .

Let k l m− = , then the system of equations (31) has m equations for 2m the bits of unknown

columns 2,n , 3,n .

The system of equations (31) has a solution if it is supplemented m with equations for other

fixed values ix , 1,i l k + and the values of the vectors , are fixed 1
ˆ ˆ ˆ,...,j j jk   =   . 1,3j = . The

vectors ˆ
j , 1,3j = are secret, then there is only a brute force attack with complexity

232 m . The

attack is considered successful when for different components ix , ix and ix the calculations on

the left side of equations (41) for the found matrices 2 , 3 give the same values on the right parts.

Analysis of the analytical attack shows that its complexity is
2

2qm due to the secrecy of the

vectors 1
ˆ ˆ ˆ,...,j j jk   =   , 1,j q= .

Secrecy estimates and implementation costs

Estimates of the implementation of a cryptosystem are determined by the costs of

implementation, cipher texts, and performance. The implementation costs are determined by the

costs of general parameters, public and private keys.

We consider general parameters of the cryptosystem:

- a binary random matrix  A l k that can be specified using a generator with z starting from an

initial parameter in
An bits;

- homomorphic transformation parameter q , word size of bit permutation vectors m , hash

function h .

Public keys are determined by the number and size of substitutions ji ji ji   = + ,

2,j q= , 1,i k= . The permutations 1,...,j jk    are random matrices 2,j q= ji , 1,i k= type 2

over an Abelian 2 group of dimension m . Random vectors 1,...,j j jk   =   , 1,j q= consist of bit

arrays ji of 1,i k= dimension  m m . Substitutions ji  , such as the sum ji and ji are also

random and can be generated by the initial parameter in pn bits.

The substitutions 1i are 1,i k= constructed according to formulas (8), (9) and have a size

of 22n km = bits.

Secret keys are determined by the following artifacts:

- factorizable permutations  1,..., l  and have a size of 22fn lm= bits;

- matrices j , 1,j q= dimensions  m m for homomorphic transformation  and have a size of

2

wn qm= bits;

- is a vector At of dimension l and has a size of tn lm= bits.

The costs of cipher texts are defined as ju , 1,j q= and have a size of un qlm= bits.

Secrecy scores are determined by brute force attacks:

- attack on a ciphertext with ()Ts k l m= − bit secrecy;

- attack on homomorphic transformation 1(,..., ,)q    with secrecy
2(1)s q m = − ;

- attack on the key vector
At of dimension l with secrecy ts lm= and factorizable substitutions with

secrecy log(2 !)ms l = .

Table 2 presents cost estimates for common parameters and keys.

Table 2 – Implementation costs for general parameters, public and secret keys

General parameters Public keys:

ji  ,
1i

Secret keys:  , j ,
At

m  l k
q

An , pn

bit

22n km =

bits / bytes

22fn lm=

bits / bytes

2

wn qm=

bits / bytes

tn lm=

bits / bytes

8 16x32 2 128 4096 / 512 2048 / 256 128 / 16 128 / 16

8 16x32 3 128 4096 / 512 2048 / 256 192 / 24 128 / 16

8 16x32 4 128 4096 / 512 2048 / 256 256/32 128 / 16

8 32x48 2 128 6144/768 4096 / 512 128 / 16 256 / 32

8 32x64 2 128 8192/1024 4096 / 512 128 / 16 256 / 32

16 8 x 16 2 128 8192/ 1024 4096/512 512 / 64 128/16

16 12 x 24 2 128 12288 / 1536 6144/768 512 / 64 192/24

16 16x32 2 128 16384 / 2048 8192 / 1024 512 / 64 256 / 32

16 16x32 3 128 16384 / 2048 8192 / 1024 768/96 256 / 32

16 32 x 48 3 128 24576 /3072 16384 / 2048 768/96 512/64

32 16x32 2 128 65536/8192 32768/4 0 96 2048/256 512/64

Table 3 presents the costs of the cipher text, secrecy estimates, and the computation time

for encryption and decryption.

Table 3 – Implementation costs for ciphertext, secrecy and computations

General

parameters of the

cryptosystem

Test code

size ju

bit/byte

Secrecy (bit) Computational time with reduction to one bit of

cipher text or secrecy

Cipher text

attack

Attack on

homomorphic
transformation

Encryption

Decryption

using the
substitution

table

Decryption

using
factorizable

substitution

m  l k q

un qlm=

()Ts k l m= −

2(1)s q m = − sec/ qlm sec/ min(,)Ts s sec/ min(,)Ts s

8 16x32 2 256/32 128 64 1.01e-05 1.38e-06 3.58e-05

8 16x32 3 384/48 128 128 6.46e-06 7.32e-07 3.63e-05

8 32x64 2 512/64 256 64 1.80e-05 2.30e-06 7.46e-05

16 8x16 2 256/32 128 256 1.58e-06 3.28e-07 1.44e-05

16 12x24 2 384/48 192 256 2.38e-06 3.827e-07 1.76e-05

16 16x32 2 512/64 256 256 2.69e-06 5.22e-07 2.45e-05

16 16x32 3 768/96 256 512 1.69e-06 2.80e-07 2.52e-05

16 32x48 3 1536/192 512 512 2.32e-06 4.40e-07 4.54e-05

Estimates of the computational costs of executing the LINE algorithm with an

implementation in Python using the NumPy library were performed on a MacBook Pro \ 2.0 GHz

Dual - Core Intel Core i5.

The secrecy of the public ley encryption is determined primarily by the parameters of the

incomplete system of linear equations and the homomorphic secret transformation on matrix

calculations. Secret matrix transformations have potentially high entropy. We have considered a

simple homomorphic transformation. It is possible to increase the security against attacks on the

homomorphic transformation. It is possible to propose schemes based on multi-level constructions

on matrix calculations and permutations. It is expected that the price for such solutions will be an

increase in the cost of calculations and keys. Table 4 shows comparative characteristics of the costs

of keys and cipher texts in bytes with known cryptosystems.

Table 4 – Comparison analysis of LINE with present and PQC standards

Version NIST Security SK size PK size CT size

Kyber512 AES128 1632 800 768

Kyber768 AES192 2400 1184 1088

Kyber1024 AES256 3168 1568 1568

RSA3072 AES128 384 384 384

RSA15360 AES256 1920 1920 1920

LINE 128 (8, 32, 16, 3m k l q= = = =) AES128 288 528 48

LINE 192 (16, 24, 12, 2m k l q= = = =) AES192 824 1536 48

LINE 256 (16, 32, 16, 2m k l q= = = =) AES256 1088 2048 64

The key costs will be explained using the example of the LINE 128 cryptosystem with the

parameters: m = 8, k = 32, l = 16, q = 3. The public key is determined by the costs of starting the

random sequence generator to construct the matrix A and q - 1 random substitutions ji ji ji   = +

2,j q= , 1,i k= and the costs of transmitting 32 one-way substitutions 1 1 1i i i   = + , 1,i k= . The

costs of starting the generator are 16 bytes. The costs of transmitting 32 factorable one-way

substitutions are 32x16x8 = 512 bytes, since each substitution is 16 single-byte records. Thus, the

total costs will be 528 bytes. The cost of a secret key is determined by q -1 secret matrices j , ,

2,j q= factorable permutation  1,..., l  tables and a secret vector At of dimension l . The cost of

q -1 secret matrices j is 16 bytes. The cost of a secret key At is 16 bytes. The cost of one factorized

substitution is 16 bytes, and given that there are 16 of them, we get 256 bytes. Thus, the total cost

is 288 bytes. If we use only one factorized substitution, then the cost of secret keys will be 48

bytes.

Conclusions

Drawing from the substantial body of research in this domain [20-30], we introduce a novel

and comprehensive approach to public key encryption. The LINE public key encryption

cryptosystem based on solutions of linear equation systems with predefinition of input parameters

through shared secret computation for factorizable substitutions is a good candidate for post-

quantum cryptography. The application of an underdetermined system of linear equations for

constructing public key encryption guarantees intractability with respect to input values. The

distinction of LINE lies in the fact that no restrictions and conditions on data structures are imposed

on the parameters, unlike other post-quantum cryptography candidates. The quantum security of

LINE is based on high randomization of entries in arrays of factorized substitutions and the

absence of any correlation in public parameters and ciphertexts. Through selection of cryptosystem

public parameters, the declared NIST security levels of 128, 192, 256 bits and any other levels in

general are achieved. The LINE algorithm scales well with respect to computational costs,

memory, and hardware platform constraints without reducing the high level of security. The cost

of public keys when computing over 8, 16, 32-bit words is in the range of 1-4 KB and is

comparable with implementations for the best post-quantum cryptography candidates. Software

implementation of the LINE algorithm for vectorized bitwise matrix computations can be very

fast.

Appendix 1 - An example of performing public key encryption

Let's consider an example for the following general parameters of the cryptosystem.

Let us define a system of linear equations by a matrix  A l k of dimension 6l = , 12k = .

The matrix 1A is non-singular and has an inverse matrix
1

1A −
.

Let us define a cryptosystem for 2q = sets of ciphertexts 1 2,u u With calculations over

words 6m = bit and let h is a hash function.

Generating keys

We generate

- random vectors of bit arrays ,1 ,12,...,j j j   =   , 1,2j = dimensions  6 6 . Please see the results

of generation in Table A.1;

Table A.1 – Generated random vectors of bit arrays ,1 ,12,...,j j j   =  

1,1 1,12 

000111
010101
101100

101001
011010
101011

100000
101011
011110

010111
011001
010110

111100
101100
100000

100001
000100
000001

010111
101001
010100

100001
100110
000000

000010
011011
001101

111001
110000
010111

111100
110111
010001

001010
010011
100011

101100
010000
010011

011101
010010
101100

110111
101101
000010

111010
110010
001110

010011
001011
111110

001011
010101
000011

100011
011010
000010

100010
010111
001000

100011
101000
010000

011000
010001
100010

100001
000001
110111

010100
011010
011111

2,1 2,12 

001001
010111
110110
110011

011110
001110
100110
011011

101100
101011
010111
110011

010011
110001
101011
101000

111111
001011
001101
101111

011111
101001
110000
110011

110001
100010
100010
110000

001110
101010
101000
111111

001000
010100
110101
011100

011001
010101
011000
001010

001110
001011
101011
010110

100000
010011
011001
101100

1 2A A A= =

110101111100

000011001010

010101111001

001101101111

110011101101

000111010010

, 1A =

110101

000011

010101

001101

110011

000111

, 2A =

111100

001010

111001

101111

101101

010010

.

010111
100101

011111
101111

110110
010100

100101
100010

010001
100001

110101
100010

010100
110100

110111
110010

100001
111110

011001
111011

100010
111111

011011
011100

- random binary matrix
2 dimensions[6 6]

2 =

010011

101110

010010

000011

010101

110001

We compute:

- 1
ˆ ˆ ˆ,...,j j jk   =   , 1,2j = , Where

6

1

ˆ []ji ji

p

p 
=

= , 1,12i = ;

-  1 2
ˆ ˆ ˆ,A A A  = , where ˆ ˆ

Аj jA =  , 1,2j = , are vectors 6m = of bit words of dimension 6l = ;

-
2

1

ˆ
A Aj j

j

t  
=

= , a vector of 6m = bit words of dimension 6l = . See Table A.2 for results.

Table A.2 – Computed results for 1
ˆ ˆ ˆ,...,j j jk   =   and  1 2

ˆ ˆ ˆ,A A A  =

1̂ 2̂ 1
ˆ

A 2
ˆ

A 2 2
ˆ

A  At

100110

001101

010100

101101

001010

100000

001100

011110

111011

000110
110000

000110

1 0 1 0 0 1

0 1 1 1 0 1

0 0 0 0 0 1

1 0 0 1 1 0

1 0 0 1 1 0

1 0 0 0 1 0

1 0 0 0 0 1

1 1 0 1 1 0

1 0 1 0 1 0

1 1 1 1 0 0
1 0 0 1 0 1

0 0 0 0 0 1

001001

100001

101111

011110

110110

101001

1 1 0 0 0 1

0 0 1 0 1 1

1 0 0 1 0 1

0 1 0 1 1 0

0 0 0 1 1 0

1 1 0 0 0 1

001100

110110

100001

111000

010110

001100

000101

010111

001110

100110

100000

100101

Let us construct permutations for an Abelian 2 group of dimension 6m = . Let all

permutations be of type 2 and the same i = . Let us take the factorizable permutation  from

the example in Section 3. Let's generate random permutation vectors 2 2,1 2,12* ,...,   =   , with

matrix components of type 2. Results are shown in Table A.3.

Table A.3 – Generated random permutation vectors 2 2,1 2,12* ,...,   =  

2,1 2,12 

010011
100011
010010
011111
000111
001110
110100

000110
010110
110001
100001
100100
001011
010011

110101
011110
110100
011010
110000
110111
110010

100100
110110
001000
011101
100000
000110
010111

100101
100000
101101
000001
100011
110101
101010

111111
110101
101111
101011
100111
010010
100111

101110
111101
001100
101000
010000
010011
101111

111011
001010
001011
001110
001111
100100
001110

111101
110110
010000
111100
010000
011011
101001

001110
001101
111111
010010
010100
100100
010010

101111
011101
000111
000001
100101
000011
101101

000010
100101
110100
010101
001000
111001
001001

011101
011011

010011
011001
100010

111000
111100

000001
000011
111110

111000
010110

010100
001100
011100

111110
100011

001111
110011
011011

001001
001010

010000
100011
011010

110100
010110

100110
100111
011111

110001
110101

000110
000110
001111

101111
000000

101101
101101
011100

000000
000110

001100
110000
110010

100001
110100

000110
110110
111001

101010
100011

100001
010010
101111

111100
011110

101011
010000
101101

Let's compute
1 2 2 1i i i     = + + , 1,6i = and

1 2 2 1i i i    = + , 7,12i = . See Table A.4.

Table A.4 – Computed 1 2 2 1i i i     = + + and 1 2 2 1i i i    = +

1,1 1,6   1,7 1,12  

010110

101111
111111
001100
111111
101101
000100
110111
000100

010011
100010
000100

101101

000111
110110
001011
111010
101101
001110
101000
110011

101011
110110
000110

101000

001001
000011
000111
101001
111111
011010
011110
111010

101010
010100
010111

011100

100011
101010
100101
110011
000111
111011
001000
010111

010000
011101
110001

111000

001110
111001
101000
001110
000111
111110
001010
110001

011101
100100
010111

101111

101100
000000
010000
010001
101111
101101
100100
101101

010101
010011
010001

111011

110001
000001
010001
111101
011001
111011
010001
011101

000100
111010
011001

111100

110000
011011
101001
110111
010010
111110
011100
110010

000001
111101
110001

001110

111000
100101
100111
010000
100110
111011
001011
000011

000100
111110
101011

100111

000011
010010
100001
101111
010010
011001
000000
101001

000001
100011
010110

000101

101101
001111
011001
110001
110100
101011
001100
100110

110011
011001
000100

110100

000000
111111
011101
100101
101001
110111
111000
110000

111111
110001
101100

Then we compute 2 2 2i i i   = + , 1,12i = .See Table A.5.

Table A.5 – Computed 2 2 2i i i   = +

2,1 2,12  

011010
101010
000101
001000
110001
111000
000111

101110
001100
000100
111100
000111

011000
001000
111111
101111
000010
101101
001000

100011
100011
011110
101100
010001

011001
110010
011111
110001
100111
100000
000001

001011
100000
100010
011000
001000

110111
100101
111001
101100
001011
101101
111111

010110
000110
101010
010001
111001

011010
011111
100110
001010
101110
111000
000101

100110
011011
000001
000010
111011

100000
101010
000110
000010
010111
100010
010100

000111
100011
010011
000101
111101

011111
001100
101110
001010
110010
110001
011111

000001
100001
010010
110010
111011

110101
000100
100001
100100
100111
001100
110001

010000
110111
011010
011111
101110

110101
111110
000100
101000
100101
101110
110101

011100
100111
101101
001110
001100

010111
010100
101010
000111
001100
111100
011000

101011
101101
011111
001101
000010

100001
010011
001100
001010
001110
101000
111011

111100
000001
000011
101101
010000

100010
000101
100111
000110
010001
100000
100101

010000
000101
110000
001100
110001

We obtain public keys : ,j i  , 1,12i = , 1,2j = and secret keys : At , 2 ,  .

Encryption

Let the message be defined 6l = by the components of the vector  1 2 12, ,...x x x x= words

and components 7 8 12, ,...x x x are 6m = bit words from hashing 1 2 6, ,...x x x .

Let's calculate: ,1 ,2 ,12, ,...,j j j jy y y y =   , 1,2j = , where , , ()j i j i iy x= , 1,12i = , 1,2j = and

j ju A y =  , 1,2j = . Results are shown in Table A.6.

Table A.6 – Computed encryption data

x
1y

2y
1u

2u

111111
001111
111000

001101
001011
001101
010100
101010
101001
100100
001101
010001

101110
110011
000101

011111
110010
011000
100001
111011
101000
110100
010000
100111

110111
100110
011010

001010
111011
011101
110101
011101
001010
111001
101000
100100

011100
010010
100001

001000
101101
011110

011101
000100
110111

000111
010101
011001

Decryption

Let's make the following computations:
1 2 1 2 2(,)u u u u u      = = + ,

Au u t 
= + ,

  1

1y l A u

−=  and
1 1 1

1 1 2 2 1 2[(), (),..., ()] [, ,...,]l l ly y y x x x  − − − = .The results are presented in

Table A.7.

Table A.7 – Computed decryption data

2 2u  u u
1

1A −
  1 2 6, ,...,y y y 1 2 6[, ,...,]x x x

001110

000011
011010
100111
011100
001101

010010

010001
111011
101111
110001
010011

010111

000110
110101
001001
010001
110110

101000

111010
110110
010001
110011
100011

100010

110101
001001
110000
110110
110000

111111

001111
111000
001101
001011
001101

Let us check the calculations, for example for
1 * *

5 5()y x − = . For this purpose, we calculate

* *

5 5()x y = using the substitution  from the example in Section 3

*

5

1 2 3 4 5 6 1 2 3 4 5 6

011011 010001 110100 010011 000110 000100
110110

0111

,

11 000010 000101 010000 000011 10

() (001011)

0 0,1,0,1

1

,1 , , , , , 0 0 1

0

100

0 1 1

1 1 1 0 0

0 0 1 0 1 1

x

B B B B B B B B B B B B

 = =

 =  +  +  +  +  +  =

 +  +  +  +  +  =

Given the given parameters, the cryptosystem has the following cost estimates:

Public keys : 1,i -864 2(2)m k  bit,

128 bit to start the bit sequence generator to build A and 2,i .

Secret keys : At - 36 ()l m bit,

2 - 36 ()m m bit,

 - 72 2(2)m bit.

Cipher text
1 2[,]u u  - 72 ()q l m  bat.

Secrecy s - 36 2()m bit.

Encryption time with reduction to one bit of the cipher text - 8.536709679497613 e -06.

Time to decrypt via table substitution with reduction to one bit of secrecy is

1.6623073154025608e-06.

Decryption time via factorized substitutions with reduction to one bit of secrecy is

1.728534698486328e -05.

References

1. Alagic G., Apon D., Cooper D., Dang Q., Dang T., Kelsey J., Lichtinger J., Liu YK, Miller C., Moody D.,

Peralta R., Perlner R., Robinson A., Smith-Tone D.: Status Report on the Third Round of the NIST Post-Quantum

Cryptography Standardization Process US Department of Commerce, NIST (2022)

2. Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehle D (2018)

CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM. 2018 IEEE European Symposium on Security and

Privacy (EuroS P), pp 353–367. https://doi.org/10.1109/EuroSP.2018.00032

3. Bindel N, Hamburg M, Hovelmanns K, H ¨ ulsing A, Persichetti E (2019) Tighter ¨ proofs of CCA security in

the quantum random oracle model. Theory of Cryptography, eds Hofheinz D, Rosen A (Springer International
Publishing, Cham), pp 61–90.

4. Aguilar-Melchor C, Blazy O, Deneuville JC, Gaborit P, Zemor G (2018) Efficient en- ´ cryption from random

quasi-cyclic codes. IEEE Transactions on Information Theory 64(5):3927–3943.

https://doi.org/10.1109/TIT.2018.2804444

5. Lyubashevsky V (2009) Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.

Advances in Cryptology – ASIACRYPT 2009, ed Matsui M (Springer Berlin Heidelberg, Berlin, Heidelberg), pp

598–616.

6. Stehle D, Steinfeld R (2011) Making NTRU as secure as worst-case problems ´ over ideal lattices. Advances in

Cryptology – EUROCRYPT 2011, ed Paterson KG (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 27–47.

7. Ducas L, Lyubashevsky V, Prest T (2014) Efficient identity-based encryption over NTRU lattices. Advances in

Cryptology – ASIACRYPT 2014, eds Sarkar P, Iwata T (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 22–41.
8. Ducas L, Prest T (2016) Fast Fourier orthogonalization. Proceedings of the ACM on International Symposium

on Symbolic and Algebraic Computation ISSAC ’16 (Association for Computing Machinery, New York, NY, USA),

p 191–198. https://doi.org/10.1145/2930889.2930923

9. Regev O (2005) On lattices, learning with errors, random linear codes, and cryptography. Proceedings of the

Thirty-Seventh Annual ACM Symposium on Theory of Computing STOC ’05 (Association for Computing

Machinery, New York, NY, USA), p 84–93. https://doi.org/10.1145/1060590.1060603

10. Lyubashevsky V, Peikert C, Regev O (2010) On ideal lattices and learning with errors over rings. Advances

in Cryptology – EUROCRYPT 2010, ed Gilbert H (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 1–23.

11. Brakerski Z, Gentry C, Vaikuntanathan V (2012) (leveled) fully homomorphic encryption without

bootstrapping. Proceedings of the 3rd Innovations in Theoretical Computer Science Conference ITCS ’12

(Association for Computing Machinery, New York, NY, USA), p 309–325. https://doi.org/10.1145/2090236.2090262
12.] Banerjee A, Peikert C, Rosen A (2012) Pseudorandom functions and lattices. Advances in Cryptology –

EUROCRYPT 2012, eds Pointcheval D, Johansson T (Springer Berlin Heidelberg, Berlin, Heidelberg), pp 719–737.

13. Kiltz E, Lyubashevsky V, Schaffner C (2018) A concrete treatment of Fiat-Shamir signatures in the quantum

random-oracle model. Advances in Cryptology – EUROCRYPT 2018, eds Nielsen JB, Rijmen V (Springer

International Publishing, Cham), pp 552–586.

14. Magliveras and N.D. Memon, “Algebraic properties of cryptosystem PGM”, Journal of Cryptology, vol.5,

no.3, pp.167–183, 1992.

15. W. Lempken, S. Magliveras, Tran van Trung and W. Wei, “A public key cryptosystem based on non- abelian

finite groups”, J. of Cryptology, 22 (2009), 62–74.

16. Khalimov, G., Kotukh, Y., Chang, S.-Y., Balytskyi, Y. Khalimova, S., Marukhnenko, O. “Encryption Scheme

Based on the Generalized Suzuki 2-groups and Homomorphic Encryption ” Communications in Computer and

Information Science, 2022, 1536 CCIS, P. 59–76.
17. Khalimov, G., Kotukh, Y., Didmanidze, I., Khalimova, S., Vlasov, A. “Towards three-parameter group

encryption scheme for MST3 cryptosystem improvement”, Proceedings of the 2021 5th World Conference on Smart

Trends in Systems Security and Sustainability, WorldS4 2021, 2021, страницы 204–211.

18. P. Svaba , “Covers and logarithmic signatures of finite groups in cryptography”, Dissertation,

https://bit.ly/2Ws2D24

https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/TIT.2018.2804444
https://doi.org/10.1145/2090236.2090262
https://www.scopus.com/authid/detail.uri?authorId=57208632312
https://www.scopus.com/authid/detail.uri?authorId=57215274481
https://www.scopus.com/authid/detail.uri?authorId=36850650000
https://www.scopus.com/authid/detail.uri?authorId=57216485518
https://www.scopus.com/authid/detail.uri?authorId=57208627767
https://www.scopus.com/authid/detail.uri?authorId=57208632312
https://www.scopus.com/authid/detail.uri?authorId=57215274481
https://www.scopus.com/authid/detail.uri?authorId=57194794527
https://www.scopus.com/authid/detail.uri?authorId=57216485518
https://www.scopus.com/authid/detail.uri?authorId=57214130791
https://bit.ly/2Ws2D24

19. Khalimov, G., Kotukh, Y., Kolisnyk, M., ... Sievierinov, O., Korobchynskyi, M. “Digital Signature Scheme

Based on Linear Equations”, Lecture Notes in Networks and Systems, 2025, 1285 LNNS, P. 711–728, 2025 Future

of Information and Communication Conference, FICC 2025 Berlin 28 - 29 April 2025.

20. G. Khalimov, Y. Kotukh, Yu. Serhiychuk, O. Marukhnenko. “Analysis of the implementation complexity of

cryptosystem based on Suzuki group” Journal of Telecommunications and Radio Engineering, Volume 78, Issue 5,

2019, pp. 419-427. DOI: 10.1615/TelecomRadEng.v78.i5.40

21. Y. Kotukh. “On universal hashing application to implementation of the schemes provably resistant

authentication in the telecommunication systems” Journal of Telecommunications and Radio Engineering, Volume
75, Issue 7, 2016, pp. 595-605. DOI: 10.1615/TelecomRadEng.v75.i7.30

22. Kotukh, Y., & Khalimov, G. Hard Problems for Non-abelian Group Cryptography, 2021. In Fifth International

Scientific and Technical Conference" Computer and Information systems and technologies". https://doi.

org/10.30837/csitic52021232176.

23. Kotukh, Y., Severinov, E., Vlasov, O., Tenytska, A., & Zarudna, E. (2021). Some results of development of

cryptographic transformations schemes using non-abelian groups. Radiotekhnika, 1(204), 66-72.

24. Khalimov, G. et al. (2022). Encryption Scheme Based on the Generalized Suzuki 2-groups and Homomorphic

Encryption. In: Chang, SY., Bathen, L., Di Troia, F., Austin, T.H., Nelson, A.J. (eds) Silicon Valley Cybersecurity

Conference. SVCC 2021. Communications in Computer and Information Science, vol 1536. Springer, Cham.

https://doi.org/10.1007/978-3-030-96057-5_5

25. G. Khalimov, O. Sievierinov, S. Khalimova, Y. Kotukh, S. -Y. Chang and Y. Balytskyi, "Encryption Based

on the Group of the Hermitian Function Field and Homomorphic Encryption," 2021 IEEE 8th International
Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 2021, pp.

465-469, https://doi.org/10.1109/PICST54195.2021.9772219 .

26. Gennady Khalimov, Yevgen Kotukh, Ibraim Didmanidze, and Svitlana Khalimova. 2021. Encryption scheme

based on small Ree groups. In Proceedings of the 2021 7th International Conference on Computer Technology

Applications (ICCTA '21). Association for Computing Machinery, New York, NY, USA, 33–37.

https://doi.org/10.1145/3477911.3477917

27. Котух, Є. В. (2021). Кібербезпека у публічному секторі: монографія. Харків: Колегіум, 271, 23-10.

28. Kotukh, E. ., Severinov, O. ., Vlasov, A. ., Kozina, L. ., Tenytska, A. ., & Zarudna , E. . (2021). Methods of

construction and properties of logariphmic signatures . Radiotekhnika, 2(205), 94–99.

https://doi.org/10.30837/rt.2021.2.205.09

29. Kotukh, Ye. Method of Security Improvement for MST3 Cryptosystem Based on Automorphism Group of
Ree Function Field / Yevgen Kotukh, Gennady Khalimov, Maxim Korobchinskiy // Theoretical and Applied

Cybersecurity : scientific journal. – 2023. – Vol. 5, Iss. 2. – Pp. 31–39.

30. Kotukh, Y., Khalimov, G. Towards practical cryptoanalysis of systems based on word problems and

logarithmic signatures. Retrieved from

https://www.au.edu.az/userfiles/uploads/5231c8030469fa9a4b03963911a330d9.pdf

31. Khalimov, G., Kotukh, Y., Sergiychuk, Y., & Marukhnenko, A. (2018). Analysis of the implementation

complexity of the cryptosystem on the Suzuki group. Radiotekhnika, 2(193), 7581.

https://doi.org/10.30837/rt.2018.2.193.08

32. Kotukh, Y. ., Okhrimenko, T. ., Dyachenko, O. ., Rotaneva, N. ., Kozina, L. ., & Zelenskyi, D. . (2021).

Cryptanalysis of the system based on word problems using logarithmic signatures. Radiotekhnika, 3(206), 106–114.

https://doi.org/10.30837/rt.2021.3.206.09

https://www.scopus.com/authid/detail.uri?authorId=57208632312
https://www.scopus.com/authid/detail.uri?authorId=57215274481
https://www.scopus.com/authid/detail.uri?authorId=57217200781
https://www.scopus.com/authid/detail.uri?authorId=57218899079
https://www.scopus.com/authid/detail.uri?authorId=57191865839
https://www.scopus.com/record/display.uri?eid=2-s2.0-105006437776&origin=recordpage
https://www.scopus.com/record/display.uri?eid=2-s2.0-105006437776&origin=recordpage
https://doi.org/10.1007/978-3-030-96057-5_5
https://doi.org/10.1109/PICST54195.2021.9772219
https://doi.org/10.1145/3477911.3477917
https://doi.org/10.30837/rt.2021.2.205.09
https://www.au.edu.az/userfiles/uploads/5231c8030469fa9a4b03963911a330d9.pdf
https://doi.org/10.30837/rt.2018.2.193.08
https://doi.org/10.30837/rt.2021.3.206.09

