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Abstract. We propose a public key encryption cryptosystem based on solutions of linear equation systems with 

predefinition of input parameters through shared secret computation for factorizable substitutions. The existence of 

multiple equivalent solutions for an underdetermined system of linear equations determines the impossibility of its 

resolution by a cryptanalyst in polynomial time. The completion of input parameters of the equation system is 

implemented through secret homomorphic matrix transformation for substitutions factorized over the basis of a vector 

space of dimension m over the field F₂. Encryption is implemented through computation of substitutions that are one-

way functions on an elementary abelian 2-group of order 2ᵐ. Decryption is implemented through completion of input 

parameters of the equation system. Homomorphic transformations are constructed based on matrix computations. 

Matrix computations enable the implementation of high security and low computational overhead for homomorphic 

transformations. 
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Introduction 

The main task formulated in the NIST project is the standardization of KEMs and 

signatures with low overhead for keys, signatures, and computation time [1]. Based on the results 

of the NIST PQC standardization project, the best results in the key encapsulation category are 

demonstrated by the algorithms: CRYSTALS-Kyber [2], Classic McEliece [3], and HQC [4], and 

in the digital signature category: Crystals-Dilithium (Dilithium) [5], Falcon [6-8], and SPHINCS+. 

The design principles and security problems underlying these algorithms are derived from lattice-

based cryptography, error-correcting code theory, and hash-based schemes. 

The security of lattice-based cryptography is achieved through the use of NP-hard 

problems such as finding shortest vectors (SVP, CVP, SVIP) and learning with errors (LWE, 

LWR) [9-12]. To ensure security, Dilithium relies on the Fiat-Shamir structure and Aborts, as well 

as SVP [13]. SPHINCS+ relies exclusively on assumptions about the hardness of hash functions. 

These assumptions are perceived as much more conservative than the structured assumptions 

underlying Dilithium and Falcon. Overall, the NIST-selected PQC candidates Kyber and Dilithium 

are considered secure and efficient schemes. 

Computational cost and parameter size estimates for post-quantum KEM schemes are 

provided in NIST report [1]. The security of Kyber has been thoroughly analyzed and is based on 

a solid foundation of lattice-based cryptography results. Kyber has excellent overall performance 

with respect to software, hardware, and many hybrid settings. For implementation costs of 256-bit 

cryptography, Kyber requires public keys of 1568 bytes, secret keys of 3168 bytes, ciphertext of 

1568 bytes, encryption costs of 97,000 cycles, and decryption costs of 80,000 cycles. Dilithium 

requires public keys of 2600 bytes for implementation, generates signatures of 4600 bytes, signing 



costs of 345,000 cycles, and signature verification of 150,000 cycles. SPHINCS+ has much worse 

performance than other standards: for example, signature size, verification time, and signing time 

are respectively one, two, and three orders of magnitude higher than, say, Dilithium. Classic 

McEliece requires the highest computational costs and the highest communication cost due to large 

public key size while having the smallest ciphertext. Classic McEliece is the slowest scheme for 

key generation, and HQC is the slowest for encapsulation and decapsulation. The fastest scheme 

is Kyber. 

Large overhead costs are determined by the fact that solving the problem of cryptographic 

secrecy requires significant expansion of the ciphertext space compared to the plaintext space. For 

cryptosystems based on NP-hard problems, this is an inevitable solution that leads to an actual 

increase in operational costs compared to AES256 encryption by tens of times (49 times). 

Cryptosystems of this type do not have provable security against quantum cryptanalysis, and it can 

be assumed that this will be a persistent threat. PQC schemes that do not exploit the complexity 

problem in direct formulation have other constructive solutions. Thus, SPHINCS+ is built on 

assumptions about the hardness of hash functions and exploits the idea of one-time secret pads. 

After using a secret (input value for which a hash code was computed), the next secret is used, and 

so on. The Classic McEliece cryptosystem is built on matrix computations structured by a 

generator matrix of an error-correcting redundant code. Attacks are reduced to solving a brute-

force problem of decoding the ciphertext. The price for quantum secrecy is large overhead for 

common parameters and cryptosystem keys for large ciphertext, as in the case of SPHINCS+, as 

well as large operational costs for storage, transmission over channels, and computation time for 

Classic McEliece. 

To solve the problem of constructing a post-quantum cryptosystem with low 

implementation costs and satisfying NIST security requirements, we propose building public-key 

cryptosystems with a new concept based on brute-force problems with equiprobable solutions for 

incomplete systems of linear equations and applying secret sharing over ciphertexts for completion 

of these equations. Secret sharing is one of the cryptographic mechanisms. An example is Shamir's 

threshold scheme based on polynomial approximation by its values. The secrecy of Shamir's 

scheme is guaranteed by the properties of polynomial algebra, and an attack on the common key 

is only brute-force. The condition when the number of equations is less than the number of input 

parameters leads to an incomplete system of linear equations with respect to unknowns (input text) 

and the impossibility of its resolution by a cryptanalyst in polynomial time. 

 

 



Our Contributions  

We develop the theory of constructing asymmetric cryptosystems with secrecy that is 

determined by the conditions of brute-force problems. As the foundation for constructing such a 

cryptosystem, we adopted the property of an incomplete system of linear equations with respect 

to its solutions. Since a unique solution exists only for a fully determined system of linear 

equations, we defined a mechanism for parametric completion of the equation system through 

secret homomorphic transformations of ciphertexts. We developed the theory of secret sharing 

over ciphertexts based on homomorphic matrix transformations over factorized substitutions. We 

applied factorized substitutions that act as secret one-way substitutions. The one-way property of 

substitutions is characterized by direct keyless transformation and secret inverse transformation, 

which is a necessary condition for constructing public key encryption. The potential secrecy of a 

cryptosystem based on an incomplete system of linear equations is determined by the cardinality 

of the solution set of the equation system, and an attack on the ciphertext is only brute-force. 

Organization 

In the next section, we present a description of the LINE cryptosystem based on matrix 

computations, secret sharing, and key substitutions for plaintext. In the third section, we present 

secret one-way substitutions on an elementary abelian 2-group of order 2m. After, we describe 

secret sharing in the LINE cryptosystem based on homomorphic transformation with the property 

that the action of the inverse transformation for any input vector leads to a key vector. Next, we 

describe the LINE scheme for public key encryption in a cryptosystem with linear equations. In 

the last section, we performed security analysis, complexity estimates of main brute-force attacks 

and analytical attacks. In the Appendix, we provide an example of public key encryption 

computation in the LINE cryptosystem. 

 

LINE: a cryptosystem based on an incomplete system of linear equations  

To construct the LINE cryptosystem, we utilize the well-known fact that an 

underdetermined system of linear equations has multiple solutions. Let the system of linear 

equations be described by a binary matrix  A l k , l k , which connects the values of the input 

vector  y k with the output vector  u l  

A y u = ,       (1) 

where are vectors y and u have dimensions accordingly k and l  with m  bit components. The 

calculations in equation (1) are performed using the bitwise XOR operation on m  bit components 

of the vector y . 



The solution of equation (1) has a maximum uncertainty relatively  y k Y equal to 

( )2 k l mY −= , 2l k l  . Direct guessing of the solution has a probability of 
( )2 k l m− −

. The application 

of an underdetermined system of linear equations for cryptosystem construction potentially 

provides high security and good operational characteristics through parameter selection k , l and 

m . Let's write the vector  y k in the form 

         1 2 1 2, , ,... , ,...l l l ky k y l y l k y y y y y y+ += = . 

The solution of equation (1) requires redetermining k l− the components of the vector 

   1 2, , ,...l l ky l k y y y+ += . 

To build a cryptosystem, we define the following requirements for  ,y l k . 

1. Secrecy  ,y l k . The uncertainty of the solution of equation (1) is determined by the 

uncertainty of the values of the components of the vector  ,y l k , and therefore  ,y l k must be a 

secret key. 

2. Invariance to the values of the input text. Let us represent x as k a component vector 

   1 2, ,... kx k x x x= . Let the mapping  be a vector- to-vector y transformation x  

   1 1 1: ( ),..., ( ) ,...,k k kx x x y y  → = .     (2) 

Invariance allows us to obtain a solution to equation (1) for the components  y l at 

different input vectors x . 

Solution for implementing requirements for  ,y l k . 

The key secrecy requirement  ,y l k can be satisfied based on a secret sharing scheme for 

the vector  y k . Let the mapping  be a secret homomorphic transformation 

: *y y → ,       (3) 

where 1* *,..., *qy y y =   is the set of m bit k component vectors  1 2* *, *,... *i i i iky y y y= , 1,i q= .  

Let`s define vectors 1* *,..., *qy y y =    as partial secrets. The mapping 1 : *y y − → is a 

conjugate homomorphic transformation. For a set of vectors 1* *,..., *qy y y =    it is possible to 

calculate q the cipher of texts 1,..., qu u   using equation (1) 
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      (4) 

To decrypt 1,..., qu u   , we take into account that, due to the linearity of equations (4), the 

action of the relative transformation 1 − For 1* *,..., *qy y y =    transferred to cipher texts
iu   

1

1( ,..., )qu u u  −= .      (5) 

As a result, we obtain an equation for y  

A y u = .       ( 6) 

The solution of equation (6) is possible if the secret vector is known 

   1 2, , ,...l l ky l k y y y+ += , which will give the desired value    1 2, ,... ly l y y y= . Vector of values 

   1 2, ,... ly l y y y= is defined as a shared secret in a secret sharing scheme. 

The block diagram for solving an incomplete system of linear equations with 

supplementation of input parameters through shared secret computation is presented in Fig. 1. 

 

Fig. 1. Block diagram for solving an incomplete system of linear equations with 

input parameter supplementation 

 

After calculating the inverse transformation 

 1 1 1

1 1 1: ( ),..., ( ) ,...,l l ly y y x x  − − − → =     (7) 

we obtain the information vector    1 2, ,... lx l x x x= . 

Since the mapping : *y y → leads to the calculation of q vectors 1* *,..., *qy y y =   , we 

should construct q  displays vector x to vector *y   

1 1*: *( ),..., *( ) *,..., *q qx x x y y     → =    ,    (8) 



where is the mapping *( ) *j jx y = , 1,j q=  defines a transformation of components for all 

vectors x  

1 1 1*: ( ),..., ( ) ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= .   (9) 

Since the transformation 1 − in the secret sharing scheme is defined over a linear vector 

space, it can be transferred to the transformations *j  

1

1( *,..., *)q   −=      (10) 

The block diagram for constructing mappings through homomorphic transformation is 

presented in Fig. 2. 

 

Figure 2 – Block diagram of homomorphic transformation   for mappings : x y →  

Case 1 - action of direct transformation  , Case 2 - action of inverse transformation 1 − . 

 

The construction of a cryptosystem based on complete system of equations includes the 

following stages: 

Stage 1. Construction of transformation  1: ,..., kx y y →     (3) 

Stage 2. Construction of a set of transformations for a homomorphic transformation  : 

1*: *,..., *qx y y  →   (7) with the property that the inverse transformation action 1 : *y y − →  

for any input vectors leads to a fixed secret vector    1 2, ,...l l ky k l y y y+ +− = . 

In a public key cryptosystem, the transformation *: *j jx y →  must be keyless. The 

shared secret    1 2, ,... ly l y y y= is computed by solving equation (6). The inverse transformation 

 1

1: ,..., ly x x − → (7) is bijective and secret. The transformation  is m  bitwise substitutions for 

vector components x . 

Secrecy of the LINE cryptosystem is achieved by the fact that it is possible to construct 

secret transformations  ,  and the secret vector    1 2, , ,...l l ky l k y y y+ += . 

Lets consider the LINE cryptosystem parameters as follows. 



1. We use the following general parameters: binary random matrix  A l k , 
1 2A A A= , 

where  1A l l  is a non-singular matrix and  2 ( )A l k l − is an arbitrary matrix, concatenation 

of matrix rows. 

2. We use the transformation vectors 1* : *,..., *q   =    to create public keys. 

3. We have transformations  ,   and secret vector    1 2, , ,...l l ky l k y y y+ +=  as secret 

keys. 

The secrecy of the cryptosystem is based on the secrecy of the secret sharing scheme. The 

implementation costs are determined by calculations using equations (4) (7). 

In the next section we will consider the construction of transformations  based on secret 

one-way substitutions. 

Construction of one-way substitutions 

The   and   transformations in expressions (2) and (8) act as one-way functions on the 

elementary Abelian 2-group of order 2m . The requirement of asymmetry for public key encryption 

scheme determines that the direct transformations    must be keyless and  - secret. 

The   and   transformations act as substitutions for m bit strings. Three implementations 

of substitutions can be distinguished: tabular, analytic, and based on basis vectors. The tabular 

implementation requires 2m
words, which leads to the highest operational memory costs. Analytic 

substitution is calculated from expressions and is therefore not secret. 

Let us consider the construction of substitutions with calculations based on basis vectors. 

The construction of transformations with such properties was introduced by Magliveras in his 

symmetric key cryptosystem PGM (Permutation Group Mappings) [14]. PGM cryptosystem built 

on group bases for finite permutation groups, which are known as logarithmic signatures. Later, 

Magliveras, Stinson, van Trung, Lempken and Wei proposed public- key cryptosystems based on 

group covers in MST1, MST2 and based on random coverings of finite non-Abelian groups in 

MST3 [15]. The ideas presented in MST3 were further developed for multiparametric groups 

[16,17]. All presented cryptosystems are based on group factorization of large finite groups. 

Encryption is performed based on encryption over group bases, while decryption is based on secret 

group factorization. Efficient group factorization directly affects the operational costs of 

cryptographic computations. As demonstrated by the results of designing the MST3 cryptosystem, 

key overhead reaches 1 Mbit and more, which reduces practical attractiveness [18]. 

We will construct transformations   and   as one-way permutations for an Abelian 2-

group of order 2m
. The group basis defines a vector space of dimension m over   the field 2F . 



Let  be elements of the Abelian group and be defined m by bit strings. Let be 
1 2, ,..., mr r r r= an 

input m bit string. We define the bits jr of the string r in the notation of spinors 
1 j

j

j

r
r

r

−
= . For 

bit 0 we have a spinor 
1

0
0

= and bit 1 a spinor 
0

1
1

= . 

We represent the factorization of an Abelian 2-group of order 2m
 by a matrix  of bit 

strings with pairwise blocks  1 2, ,..., mB B B =  

( )0 00

1 1 1

0 0 0

1 1 1

0 0 0

1 1 1

(11) (1 )12

1
(11) (12) (1 )

(21) (22) (2 )
2

(21) (22) (2 )

.......

( 1) ( 2) ( )

( 1) ( 2) ( )

, ,...,

, ,...,

, ,...,

, ,...,

..........................

, ,...,

, ,...,

m

m

m

m

m m mm

m

m m mm

b b b

B
b b b

b b b
B

b b b

b b b
B

b b b

 = =     (11) 

The calculation of the transformation  for m a bit word r is conveniently defined by the 

tensor product 

1 2 1 21 2 1 2( ) , ,..., , ,..., ...m mm mr r r r B B B r B r B r B =  =  +  + +  ,  (12) 

where 

( ) ( ) ( )

0 0 0

1 1 1

0 1 0 1 0 1

( 1) ( 2) ( )

( 1) ( 2) ( )

( 1) ( 1) ( 2) ( 2) ( ) ( )

, ,...,1

, ,...,

1 , 1 ,..., 1

j j jmj
j j

j j j jm

j j j j j j j j jm j jm j

b b br
r B

r b b b

b r b r b r b r b r b r

−
 =  =

− + − + − +

 

The block diagram for computing substitutions based on transformations   is presented 

in Fig. 3. 

 

Figure 3 - Scheme for computing transformation   for m - bit word r  



Let's consider an example of simple factorization. Let 4m =  and be defined  by the 

following matrix 

1

2

2

0000

1000

0000

0100

0000

0010

0000

0001
m

B

B

B

B

 = =       (13) 

For the string 0110r = we calculate ( )z r= . We get a trivial result 0110z =  

1 2 3 4 1 2 3 4( ) (0110) 0,1,1,0 , , , 0 1 1 0

1 0000 0 0000 0 0000 1 0000
0110

0 1000 1 0100 1 0010 0 0001

r B B B B B B B B = =  =  +  +  +  =

 +  +  +  =
 (14) 

Consider the inverse transformation 1 : z r − → , 1 2, ,..., mr r r r= . Let 0110z = and be the 

matrix  defined in (13). The most significant bit 4b of the word is calculated by the rows of the 

block 4B . The value of the bit 4 0b = corresponds to the case when the first row was added to the 

sum (14) 4B . This determines the spinor 0 and 4 0r = . From (14), we extract the component 

corresponding to the fourth spinor 

( )4' 0 0110z z B= +  = . 

To determine the third bit, 3r we apply the rows of the block 3B . For example, this will be 

the row 0010 and the bit 3 1r = . Extracting the component 0010 corresponding to the third spinor 

from 'z gives 

( )31 0100z z B = +  = . 

We continue these actions iteratively until the last bit of the string is determined r . 

Factoring a group by bases determines the structures and types of blocks of the matrix  . 

In the example considered, we used blocks of type 2, which determines two basis elements of the 

finite group in each block. This corresponds to a one-bit element of the row x . Blocks with a 

larger number of basic elements can be used. If the row x is broken down into bit-by-bit elements 

n , then the basis blocks must be of type 2
n

, n m . In this case, spinors of size should be used to 

calculate ( )x in expression (12) 2n
. 



The direct transformation ( )x y = is calculated using the tensor product of the input word 

and the matrix with the group bases. To calculate the inverse transformation, 1( )y x − =  it is 

necessary to know the factorization  . The secrecy of the group factorization can be ensured by 

homomorphic transformations of the elements of the basic blocks, merging the basic blocks, their 

permutation, and permutation of the elements in the blocks. The efficiency of such 

transformations, operating costs, and the secrecy provided are widely discussed in [18]. 

We construct transformations  based on a secret factorization over an Abelian 2-group of 

order 2m
, using a set of secret homomorphic transformations [18]. Let  1 1 2, ,..., mB B B =  is a 

prime factorization of an Abelian 2-group of order 2m
 with blocks of type 2. The set of 

transformations of the group vectors for constructing the secret factorization is as follows: 

- permutation of elements 1 1 2:  →  in blocks jB , 1,j m= ; 

- rearrangement 2 2 3:  →  blocks in array 2 ; 

- adding random bits 3 3 4:  → to block rows jB , 1,j m= ; 

- secret homomorphic transformation based on polynomial multiplication 4 4 5:  → , 5 4  =   

rows of blocks jB , 1,j m= , where is  a polynomial (2 )mF  ; 

- secret homomorphic transformation based on matrix multiplication 5 5 6:  → , 6 5  =   rows 

of blocks jB , 1,j m= , Where  non-singular binary matrix of dimension m m . 

As a result, we achieved the transformation  1 2, ,..., mB B B = . 

Let us consider an example. Let us construct a factorization  with blocks of bases of 

an Abelian 2-group of type 2. Let 6m = .  

Let us define: 

- a prime factorization of the group 1 , which is presented in Table 1; 

- permutation matrix 1 =: [ 110110] elements in the blocks of the matrix 1 ;  

- permutation matrix 2 =: [ 340152] matrix 2 blocks  1 2, ,..., mB B B ; 

- random vectors 1 2[ , ,..., ]m   = , (2 )m

j F  , 1,j m= to transform 
3 4 3: ( ) ( )j j jB i B i = + , 1,2i = ,

1,j m=  

1 2[ , ,..., ]m   = =  

101111 

101000 

111001 

010100 

000000 

011110 

; 

- random polynomial 2 41 x x x = + + + for 
4 5 4: ( ) ( )j jB i B i =  , 1,2i = , 1,j m= ; 



- non-degenerate bit matrix y  for 
5 6 5: ( ) ( )j jB i B i =  ,  1,2i = , 1,j m=   

m m  =  

101000 

001010 

110001 

000111 

010000 

111010 

 

The transformations 3 5  are defined by the following expressions 

3 4 3: ( ) ( )j j jB i B i = + , 

4 5 4: ( ) ( )j jB i B i =  , 

5 6 5: ( ) ( )j jB i B i =  . 

The results of the calculations   by steps are presented in Table 1. 

Table 1 – Transformations 1 5   

 1,..., mB B =  
1  1 2 →  2 3 →  3( )j jB i +  

4( )jB i   
5( )jB i   

1B  
000000 
100000 

100000 
000000 

000000 
001000 

101111 
100111 

001011 
110101 

011011 
011111 

2B  
100000 
010000 

010000 
100000 

000100 
110000 

101100 
011000 

011011 
100011 

010001 
000010 

3B  
000000 
001000 

000000 
001000 

111000 
001001 

000001 
110000 

101111 
100111 

110100 
000101 

4B  
110000 
000100 

000100 
110000 

100000 
000000 

110100 
010100 

111000 
000010 

010011 
010000 

5B  
100000 
010110 

010110 
100000 

010000 
100000 

010000 
100000 

011101 
111010 

000110 
000011 

6B  
111000 
001001 

111000 
001001 

010110 
100000 

001000 
111110 

111110 
111001 

000100 
101001 

 

The computation of the transformation ( )r z = for m a bit word r is determined by the 

tensor product (12). The transformations 3 5  mask the factorization of the group. 

The computation of the inverse transform 1( )z r − = is performed through inverse 

operations 1 1

3 5 − −  with reduction to a row 3z in a factorizable group  

3 : 1 1

3z z  − −

= + , 

where 
1

m

j

j

 

=

= . 

For a string 3z , we apply factorization by a simple group 1  

( )1

3 1 2 3
( ) , ,..., mz r r r − = .      

Let's get the original data string r  after inverse permutations 1 , 2   

( )( )1 1

1 2 1 2 1 23
, ,..., , ,...,m mr r r r r r − − = .     

The scheme for computing the inverse transformation 1( )z r − = is presented in Fig. 4. 



 

Figure 4 - Scheme for computing the inverse transformation 1 −  for m -bit word z . 

Substitutions at a length m of bits have potentially good secrecy characteristics since their 

number has an estimate of 2 !m . 

The entropy estimate of the number of permutations based on group factorization is 

determined by randomizing transformations 1 5  and is large even for small values m  [19].  

For example, we can limit ourselves to the number of non-singular binary matrices   in 

5 , which has the estimate 

22 1 2

5 (2 1)(2 2)(2 2 ) (2 2 ) 2m m m m m mN − −= − − −  −  . 

The memory cost of group factorization-based substitutions is equal to 2m basis vectors, 

which is significantly less than that of table implementation-based substitutions. 

Let us consider the construction of a secret sharing scheme in the LINE cryptosystem. 

 

Secret sharing in LINE cryptosystem 

We construct a secret sharing based on a homomorphic transformation that defines a set of 

transformations 1*,..., *q    (10) with the property that the action of the inverse transformation 

1 : *y y − → for any input vectors leads to a fixed secret vector    1 2, , ,...l l ky l k y y y+ += . The 

direct transformation  acting on the substitution  we write through the mapping 

1: ( *,..., *)q   → .     (15) 

Display 
* *( )j jx y = , 1,j q=  (9) acts as a transformation for all components of the vector x  

1 1 1*: ( ),..., ( ) ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= .   

The substitutions ( )ji i jix y = , 1,j q= , 1,i m= are in general not bijective. As an example, 

a secret transformation  can be constructed using the following calculation 

1

*
q

j j

j

  
=

= ,      (16) 

where 1* ,...,j j jk   =   are component wise permutations of the same type as  , j are secret 

bit matrices of size m m . Matrix multiplications *j j  are performed similarly to the 

transformation 5 presented in Section 2. 



Application of expression (16) leads to the following construction algorithm for *j , 

1,j q= .  

Algorithm of substitutions construction: 

1. We fix k a component secret factorizable permutation  1,..., k  = . To construct it, 

we use the mappings 1 5   from Section 3. 

2. We fix component wise permutations 1* ,...,j j jk   =   , 2,j q= and let ji , 1,i k= be 

random transformation matrices of the same type as  . 

3. We fix the matrices j , 1,j q=  size m m and let 
1 be the matrix of unity. 

Let's calculate 
1

2

* *
q

j j

j

   
=

= + . 

The block scheme of the substitutions construction algorithm is presented in Fig. 5. 

 

Figure 5 – Algorithm for constructing substitutions 1: ( *,..., *)q   →  

Encryption of k the message component vector  1 2, ,... kx x x x= is determined by 

calculation 

1 1 1*: ( ),..., ( ) ,..., *j j jk k j jk jx x x y y y     → = =    , 1,j q= . 

Computing the shared secret 

1

1

*
q

j j

j

y y−

=

= . 

Decryption is performed through the inverse transformation 1( )y x − = . 

Secret parameters: matrices j , 2,j q= . 

The block diagram for computing private secrets and a shared secret with matrix secret 

transformation (16) is presented in Fig. 6. 



 

Figure 6 - Algorithm for computing shared secret and decryption 

In the example considered, the shared secret is calculated from the set of matrices j , 

2,j q= . For substitutions Even at small bit lengths, the secret sharing scheme (15) has potentially 

good privacy characteristics since matrix transformations of very high power can be constructed 

1 2 ... q   . Let's build an public key encryption based on the LINE cryptosystem. 

 

LINE Public key encryption 

The implementation of public key encryption in the LINE cryptosystem is possible if the 

components    1 2, , ,...l l ky l k y y y+ += in the vector    1 2, ,... ky k y y y= during decryption are 

determined for any input vector  1 2, ,... kx x x x= . Let  ,y l k be the zero vector. Then, when 

calculating the homomorphic transformation,  we should obtain a vector  y k of the form 

   1 2: ( ) , ,... ,0,...,0lx y k y y y  = = .    (17) 

To compute the secret homomorphic transformation 1: ( *,..., *)q   → , where 

1* ,...,j j jk   =   , 1,j q=  we use the secret scheme (16). Then expression (17) will look like 

   1 2 1 2

1

( ) *( ) *( ), *( ),..., *( ) , ,... ,0,...,0
q

j j k l

j

x x x x x y y y     
=

= = = .  (18) 

Expression (18) can be written taking into account the representation for each component 

*j , 1,j q=   vectors  in the form of 

1

( ) ( )
q

i ji j i

j

x x y  
=

= =  1,i k= . 

To decrypt  1 2, ,... ly y y  substitutions  1,..., l   must be factorizable. To construct 

factorizable permutations of type 2, we apply transformations 1 5  over a basis of an Abelian 2 

group of dimension m . 



Let's define component wise substitutions 1* ,...,j j jk   =   , 2,j q=  as random matrices 

of the same type as permutations  1,..., k  . 

We fix the matrices j , 1,j q=  size m m and let 
1 be the matrix of unity. 

Factorizable vector permutations  - components  1,..., l  are calculated via a homomorphic 

transformation of vectors 1* ,...,j j jl   =   , 1,j q=  

1

q

i ji j

j

  
=

= , 1,i l= .     (19) 

Given the condition that 1 is the identity matrix, the vector  1 11 1* ,..., l  = is defined by the 

expression 

1

2

* *
q

j j

j

   
=

= + ,       

where  1,..., l  =  factorizable permutations. 

Let's define the components  1,...,l k +
. 

The mapping action  : ( )x y k  →  for  1,...,l k +
 results in a zero vector 

   1 ( 1) ( 2)

1 1 1

( ),..., ( ) ( ) , ( ) ,..., ( ) 0,...,0
q q q

l k j l j j l j jk j

j j j

x x x x x       + + +

= = =

 
= = 
 
    

substitute 1,i l k= + the condition ( ) 0i x = into expression (19) and obtain 

1

0
q

ji j

j

 
=

= , 1,i l k= + .     ( 20) 

The permutations ji , 2,j q= , 1,i l k= +  are defined as random matrices of the same type 

as the permutations  1,..., l  . From expression (20) we can calculate 1,i l k= +  the components 

of the vector 1 *   

1

2

* *
q

j j

j

  
=

= . 

Let's define q secret vectors j with matrix components ji , 1,i k=   

1,...,j j jk   =   , 1,j q= . 

Matrices ji are bit-sized  m m . 

We define the sum of vectors ( )*j j + as the component wise addition of matrices ji

and ji , 1,i k= . The matrix components ji of the vector *j for type 2 contain m blocks 



 1 2, ,..., mB B B of two entries (11). The matrix components ji of the vector j contain m entries 

 ji ji m = . The sum of the matrices ji ji + is determined by the bitwise addition of each row 

 ji p with entries in blocks pB , 1,p m=  

1 1 2 2, ,...,ji ji j j j j jm jmB B B     + = + + +  ,   1,j q=  (21) 

           1 1 , 2 2 ,...,js js js js js js js jsB B B B m m   + = + + + ,  1,s m=  (22) 

    0 0 0

1 1 1

( 1) 1 ( 2) 2 ( )

( 1) 1 ( 2) 2 ( )

, ,...,

, ,...,

p p p p pm pm

js js

p p p p pm pm
js

b b b
B p p

b b b

  


  

+ + +
+ =

+ + +
,  1,p m=  (23) 

where 1 2, ,...,p p pm   are the bits of the string  ji p . 

Compute the transformations ( )*j j + for 1,j q= each component of the input vector

 1 2, ,... kx x x x=  leads to the result 

1

( ) ( ) [ ]
m

jiji i ji i ji ji ji

p

x x y p y   
=

+ = + = + ,      24) 

where ji are m bit constants. Secret vectors j with matrix components ji are mapped to secret 

m bit vectors 1,...,j j jk   =
 

during calculation *( ) *j jx y = , 1,j q= . 

Substitute (24) into expression (18) to calculate the shared secret 

( ) ( ) ( )

 

1 21 2

1 1 1

1 21 2

1 1 1 1 1 1

1 1 1 1 2

( ) ( ) , ( ) ,..., ( )

( ) , ( ) ,..., ( ) , ,...,

( ) ,..., ( ) ,

q q q

j j jkj j j j jk j

j j j

q q q q q q

j j jkj j j j jk j j j j

j j j j j j

k k

x x x x

x x x

x t x t y t y

         

           

 

= = =

= = = = = =

 
= + + + = 
 

   
+ =   

   

+ + = +

  

     

 2 1,... , ,...,l l l kt y t t t++ +

   

where 
1

,
q

jii j

j

t  
=

= 1,i k=  m bit components of the vector  1,..., kt t t= . 

Vector  1,..., kt t t=  is a shared secret that is constructed from vectors 1,...,j j jk   =
 

, 1,j q= . 

Let's substitute (24) into expression (4) to calculate the cipher texts 1,..., qu u     

( )

( )

( )

1 1 11 1 1 1

2 2 22 2 2 2

* '

* '

................

* '

A

A

q q Aqq q q q

A y u A u u

A y u A u u

A y u A u u

  

  

  

 + = +  = + =

 + = +  = + =

 + = +  = + =

 



Vectors 
1 2', ',..., 'lu u u consist of l  m bit words. 

The sequence of operations for encrypting the input vector can be represented by the block 

diagram in Fig. 7. 

 

Figure 7 - Encryption scheme of the LINE algorithm 

To decrypt, we calculate the transformation  for the same-named components of vectors 

1 2', ',..., 'lu u u  and 1 2, ,...,A A Aq    

1 2' ( ', ',..., ')qu u u u = , 

1 2( , ,..., )A A AqAt    = , 

' Au u t = + . 

We get the equation for the cipher text 

 1A y A y l u =  = ,      

which has a solution for  y l , since the components    1 2, , ,...l l ky l k y y y+ += are zero. 

The block diagram of decryption is presented in Fig. 8. 

 

Figure 8 - Decryption scheme of the LINE algorithm 

The actions described for encrypting the input vector  1 2, ,... kx x x x= and constructing a 

shared secret for decryption lead to the LINE public key encryption algorithm. 

Let’s consider the main steps of the algorithm. Here is the construction of general 

parameters. 



1. Generate a binary random matrix  A l k , 
1 2A A A= , where l k ,  1A l l is a non-

singular matrix and  2 ( )A l k l − is an arbitrary matrix, the concatenation of matrix rows. 

2. Fix the parameters: q - the number of substitutions, m the number of bits for the 

components of the input vector x , the hash function h . 

We fix the following artifacts to construct the secret keys: 

- random binary matrices j , 1,j q= dimensions  m m for homomorphic transformation  ; 

- factorizable permutations 1,..., l   type 2 over Abelian 2 group of dimension m ; 

- random permutation vectors 1* ,...,j j jk   =   , 2,j q=  with matrix components ji , 1,i k=

type 2; 

- random vectors of bit arrays 1,...,j j jk   =   , 1,j q=  dimensions  m m , 

   1 ,...,ji ji ji m   =   . 

We calculate vectors as follows: 

- 1
ˆ ˆ ˆ,...,j j jk   =   , 1,j q= ,  where 

1

ˆ [ ]
m

ji ji

p

p 
=

= , 1,i k= ;  

- 1 2
ˆ ˆ ˆ ˆ, ,...,A A A Aq    =   , where ˆ ˆ

Аj jA =  , 1,j q= , are vectors m of bit words of dimension l ; 

- 
1

ˆ
q

A Aj j

j

t  
=

=  -  vector of m bit words of dimension l . 

We proceed with the next steps to construct the public keys: 

- ji ji ji   = + 2,j q= ,  1,i k= ;        (25)  

- 
1 1

2

q

i i ji j i

j

    
=

 = + + ,  1,i l= ;        (26) 

- 
1 1

2

q

i ji j i

j

   
=

 = + ,   1,i l k= + .        (27) 

Addition with matrix components ji is determined by expressions (21), (22), (23). 

We consider the encryption stage with the following action. Let the message be defined l

by the components of the vector  1 2, ,... kx x x x=  words and components 1 2, ,...l l kx x x+ + are m bit 

words from hashing 1 2, ,... lx x x . 

We compute:  

- ,1 ,2 ,, ,...,j j j j ky y y y =   , 1,j q= , where , , ( )j i j i iy x= , 1,i k= , 1,j q= ;  

- j ju A y =  , 1,j q= . 



We consider the decryption stage with the following action. 

We compute  

- 1 2 1 2 2 3 3( , ,..., ) ...q q qu u u u u u u u           = = + + + + ;  

- Au u t 
= + ,   1

1y l A u

−=  ;  

- 
1 1 1

1 1 2 2 1 2[ ( ), ( ),..., ( )] [ , ,..., ]l l ly y y x x x  − − − = . 

An example of computation of public key encryption is presented in the appendix. 

Secrecy of LINE public key encryption 

Let's analyze the secrecy of the LINE algorithm. First, let’s consider brute force attacks. 

First attack. An attack on a ciphertext with brute force against input messages has a complexity 

of ( )

1 2 k l mN −= .  

The attack on the cipher text is determined by encrypting the input messages 

 1 2, ,... kx x x x= and comparing them with the known cipher text 1 2, ,..., qu u u u =   . The 

complexity of the attack will be determined by exhaustive search of the vector x with complexity 

2km . The result will be 2lm equivalent solutions for x . The attack can be upgraded as follows. 

First, define the components of the vector  1 2, ,...l l kx x x x+ += . 

Then calculate the substitutions , ,( )j i i j ix y  = , 1,i l k= + , 1,j q= , which gives the vectors 

, 1 , 2 ,, ,...,j j l j l j ky y y y+ +
 =   , 1,j q= . 

Let's compute the cipher texts  

2j ju A y =  , 1,j q= . 

Using decryption, we construct a vector  1 2, ,...l l kx x x+ +
  

j j ju u u = + , 1,j q= ,  

  1

1y l A u− =  . 

For components,  y l  through inverse transformations, 
1 1 1

1 2[ , ,..., ]l  − − −
we calculate the 

components of the input vector  

1 1 1

1 1 2 2 1 2[ ( ), ( ),..., ( )] [ , ,..., ]l l ly y y x x x  − − − = . 

Establishing a correspondence between the inputs and outputs of small substitutions is not 

a difficult task. We can assume that the last computation is feasible. The total number of searches 

can thus be reduced to ( )2 k l m− . 

An attack on a ciphertext is a brute-force problem with uncertainty equal to ( )k l m− bits in 

the solutions obtained. The success of the attack is determined by the probability of guessing 

( )2 k l m− − , which determines the secrecy of the cryptosystem at ( )Ts k l m= −  the bit level. 



Second attack. Attack on homomorphic transformation 1( ,..., , )q     with matrix enumeration 

1 1[ ,..., ]q   −= , has complexity 
2( 1)

2 2 q mN −= and secrecy 
2( 1)s q m = − , since it is determined 

by the number and dimension of secret matrices  . 

The conditions for carrying out the attack are as follows. For two different input texts 

 1 2, ,... kx x x x   = and  1 2, ,... kx x x x   = we calculate ji  , 1,j q= for the components of the vectors 

x and x  

1

( ) ( ) ( ) [ ]
m

jiji i ji i ji i ji ji ji

p

x x x y p y    
=

     = + = + = + , 1,i k=    (28) 

1

( ) ( ) ( ) [ ]
m

jiji i ji ji ji ji ji

p

x x x y p y    
=

     = + = + = + , 1,i k= .   (29) 

We iterate over the matrices 1 1[ ,..., ]q   −=  and calculate the common secret (22) by 

components 1,i l k= +  vectors (28) and (29) using formula (28) 

 1 1 2 2 1( ) , ,... , ,...,l l l kx y t y t y t t t += + + +  

where 
1

,
q

jii j

j

t  
=

= 1,i k=  m bit components of the vector  1,..., kt t t= . The search stops when 

the vectors ( )x  and ( )x  coincide in components  1,...,l k+ . 

Third attack. The attack on the key  1,..., kt t t= by enumerating m bit vectors has complexity 

log(2 !)

3 2
mlm lN += . Key vector attack  1,..., kt t t=  is related to the secret homomorphism attack and 

aims to decipher the ciphertext to obtain the vector 
*

1 2[ , ,..., ]ly y y y= . Comparison with the known 

input message x  possible as a result of calculating secret inverse substitutions 
1 *( )i i iy x − = , 1,i l=

. The number of different substitutions 2 !m  is very large even for small values of m . The secrecy 

of substitutions for an equiprobable choice for l  words of the input message vector is equal to 

log(2 !)ms l= . If it is impossible to obtain a correspondence between the input and output words of 

a substitution, then the substitutions are secret. Conducting a brute-force attack on t has complexity 

2lm and requires fixing the set of substitutions 1 1 2 2( ), ( ),..., ( )l lx x x   . The total secrecy of the 

substitutions is equal to log(2 !)ms lm l = + . Let's consider the analytical attacks. 

Fourth attack. Analytical attack on 1[ ,..., ]q  = . 

Let 2q = . The substitutions ,j i are defined by expressions (25), (26), (27) and have the 

following representation 

1 2 2 1i i i i     = + + ,   1,i l= , 



1 2 2 1i i i    = + ,   1,i l k= + , 

2 2 2i i i   = + ,  1,i k= . 

Let us fix a vector  1 2, ,... kx x x x=  and consider the values of the permutation vectors 

( )1i x , ( )2i x . Let us write down the homomorphic transformation  for the components 
ix ,

1,i l  

1, 2, 2 1, 2, 2 1, 2, 2
ˆ ˆ( ) : ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i i i i i i ix x x x x x x            = + = + + = + + , 1,i l  

The values 1, ( )i ix , 2, ( )i ix are value invariant 
ix and are secret constants, as follows from 

(24) 

1, 1,
ˆ( )i i ix = , 

2, 2 2, 2
ˆ( )i i ix   = . 

Let's fix the components ix and ix calculate ( ) ( )i ix x  +   

1, 2, 2 1, 2, 2( ) ( ) : ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i i i ix x x x x x x x                    + = + + + = + . 

The expression for ( ) ( )i ix x  + does not allow finding a solution with respect to 2 , since 

the value on the right-hand side ( ) ( )i i i ix x  + is not known due to secrecy i , 1,i l= . 

Let us consider a homomorphic transformation  for the components ix , 1,i l k= + .  

Considering (9), we obtain  

1, 2, 2 1, 2, 2
ˆ ˆ( ) : ( ) ( )i i i i i i ix x x       = + = + , 1,i l k +   

or equation 

2, 2 2, 2 1, 1,
ˆ ˆ( ) ( )i i i i i ix x      + = + . 

For each column of 2,n the matrix 2 , 1,n m= one can construct a system of linear 

equations for k l− fixed values ix , 1,i l k +   

( ) ( )

( ) ( )

( ) ( )

2, 1 1 2, 1 2, 1, 1 1 1, 1 1,

2, 2 2 2, 2 2, 1, 2 2 1, 2 1,

2, 2, 2, 1, 1, 1,

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

.........

ˆ ˆ( ) ( )

l l l n l l l n

l l l n l l l n

k k k n k k k n

x x

x x

x x

     

     

     

+ + + + + +

+ + + + + +

 + = +

 + = +

 + = +

   (30) 

where 1,n m= , 1,n is n a column of the identity matrix 1 . 

Let k l m− = and the system of equations (30) have rank m . The system of equations (30) 

has a solution for fixed values of the vectors 1
ˆ ˆ ˆ,...,j j jk   =   , 1,2j = . The vectors ˆ

j , 1,2j =  are 

secret, then there is only a brute force attack with complexity 
222 m . The attack is considered 



successful when for different components 
ix and 

ix the calculations on the left side of the 

equations (30) for the found matrix 
2 give the same values on the right parts. 

Consider a cryptosystem with a homomorphic transformation  with two secret matrices 

2 3[ , ]  , case 3q = . The homomorphic transformation  for the components 
ix will 1,i l have 

the following form 

1, 2, 2 3, 3

1, 2, 2 3, 3 1, 2, 2 3, 3

( ) : ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

i i i i i i i

i i i i i i i i i i i i i

x x x x

x x x x x

     

           

  = + + =

+ + + = + + +
 

where 1,i l . 

The expression for ( )ix does not allow finding a solution with respect to 2 and 3 since 

the value on the right side ( )i ix is not known due to secrecy 
i , 1,i l= . 

The homomorphic transformation  for the components has the ix following 1,i l k= +

representation  

1, 2, 2 3, 3 1, 2, 2 3, 3
ˆ ˆ ˆ( ) : ( ) ( ) ( )i i i i i i i i i ix x x x            = + + = + + , 1,i l k + . 

The following equation can be written  

( ) ( )2, 2, 2 3, 3, 3 1, 1,
ˆ ˆ ˆ( ) ( ) ( )i i i i i i i i ix x x         + + + = + . 

For columns 2,n , 1,n m= matrix 2 and columns 3,n , 1,n m= matrix one 3 can construct 

a system of linear equations for k l− fixed values ix , 1,i l k +   

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2, 1 1 2, 1 2, 3, 1 1 3, 1 3, 1, 1 1 1, 1 1,

2, 2 2 2, 2 2, 3, 2 2 3, 2 3, 1, 2 2 1, 2 1,

2, 2, 2, 3, 3, 3

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

.........

ˆ ˆ( ) ( )

l l l n l l l n l l l n

l l l n l l l n l l l n

k k k n k k k

x x x

x x x

x x

        

        

     

+ + + + + + + + +

+ + + + + + + + +

  + + + = +

  + + + = +

 + + + ( ), 1, 1, 1,
ˆ( )n k k k nx  = +

 (31) 

where 1,n m= , 1,n is n a column of the identity matrix 1 . 

Let k l m− = , then the system of equations (31) has m equations for 2m the bits of unknown 

columns 2,n , 3,n . 

The system of equations (31) has a solution if it is supplemented m with equations for other 

fixed values ix , 1,i l k + and the values of the vectors , are fixed 1
ˆ ˆ ˆ,...,j j jk   =   . 1,3j = . The 

vectors ˆ
j , 1,3j =  are secret, then there is only a brute force attack with complexity 

232 m . The 

attack is considered successful when for different components ix , ix and ix the calculations on 

the left side of equations (41) for the found matrices 2 , 3 give the same values on the right parts. 



Analysis of the analytical attack shows that its complexity is 
2

2qm due to the secrecy of the 

vectors 1
ˆ ˆ ˆ,...,j j jk   =   , 1,j q= . 

 

Secrecy estimates and implementation costs 

Estimates of the implementation of a cryptosystem are determined by the costs of 

implementation, cipher texts, and performance. The implementation costs are determined by the 

costs of general parameters, public and private keys. 

We consider general parameters of the cryptosystem: 

- a binary random matrix  A l k that can be specified using a generator with z starting from an 

initial parameter in 
An bits; 

- homomorphic transformation parameter q , word size of bit permutation vectors m , hash 

function h . 

Public keys are determined by the number and size of substitutions ji ji ji   = + , 

2,j q= , 1,i k= . The permutations 1,...,j jk     are random matrices 2,j q=  ji , 1,i k=  type 2 

over an Abelian 2 group of dimension m . Random vectors 1,...,j j jk   =   , 1,j q= consist of bit 

arrays ji of 1,i k= dimension  m m . Substitutions ji  , such as the sum ji and ji are also 

random and can be generated by the initial parameter in pn bits. 

The substitutions 1i are 1,i k= constructed according to formulas (8), (9) and have a size 

of 22n km =  bits. 

Secret keys are determined by the following artifacts: 

- factorizable permutations  1,..., l  and have a size of 22fn lm= bits; 

- matrices j , 1,j q= dimensions  m m for homomorphic transformation  and have a size of 

2

wn qm= bits; 

- is a vector At of dimension l and has a size of tn lm= bits. 

The costs of cipher texts are defined as ju , 1,j q= and have a size of un qlm= bits. 

Secrecy scores are determined by brute force attacks: 

- attack on a ciphertext with ( )Ts k l m= − bit secrecy; 

- attack on homomorphic transformation 1( ,..., , )q    with secrecy
2( 1)s q m = − ; 



- attack on the key vector 
At of dimension l  with secrecy ts lm=  and factorizable substitutions with 

secrecy log(2 !)ms l = . 

Table 2 presents cost estimates for common parameters and keys. 

Table 2 – Implementation costs for general parameters, public and secret keys 

General parameters Public keys:  

ji  ,
1i  

Secret keys:  , j ,
At  

m   l k  
q  

An , pn  

bit 

22n km =  

bits / bytes 

22fn lm=  

bits / bytes 

2

wn qm=  

bits / bytes 

tn lm=  

bits / bytes 

8 16x32 2 128 4096 / 512 2048 / 256 128 / 16 128 / 16 

8 16x32 3 128 4096 / 512 2048 / 256 192 / 24 128 / 16 

8 16x32 4 128 4096 / 512 2048 / 256 256/32 128 / 16 

8 32x48 2 128 6144/768 4096 / 512 128 / 16 256 / 32 

8 32x64 2 128 8192/1024 4096 / 512 128 / 16 256 / 32 

16 8 x 16 2 128 8192/ 1024 4096/512 512 / 64 128/16 

16 12 x 24 2 128 12288 / 1536 6144/768 512 / 64 192/24 

16 16x32 2 128 16384 / 2048 8192 / 1024 512 / 64 256 / 32 

16 16x32 3 128 16384 / 2048 8192 / 1024 768/96 256 / 32 

16 32 x 48 3 128 24576 /3072 16384 / 2048 768/96 512/64 

32 16x32 2 128 65536/8192 32768/4 0 96 2048/256 512/64 

 

Table 3 presents the costs of the cipher text, secrecy estimates, and the computation time 

for encryption and decryption.  

Table 3 – Implementation costs for ciphertext, secrecy and computations 

General 

parameters of the 

cryptosystem 

Test code 

size ju  

bit/byte 

Secrecy (bit) Computational time with reduction to one bit of 

cipher text or secrecy 

Cipher text 

attack 

Attack on 

homomorphic 
transformation 

Encryption 

 

Decryption 

using the 
substitution 

table 

 

Decryption 

using 
factorizable 

substitution 

 
m   l k  q  

un qlm=  

 

( )Ts k l m= −  

 

2( 1)s q m = −  sec/ qlm  sec/ min( , )Ts s  sec/ min( , )Ts s  

8 16x32 2 256/32 128 64 1.01e-05 1.38e-06 3.58e-05 

8 16x32 3 384/48 128 128 6.46e-06 7.32e-07 3.63e-05 

8 32x64 2 512/64 256 64 1.80e-05 2.30e-06 7.46e-05 

16 8x16 2 256/32 128 256 1.58e-06 3.28e-07 1.44e-05 

16 12x24 2 384/48 192 256 2.38e-06 3.827e-07 1.76e-05 

16 16x32 2 512/64 256 256 2.69e-06 5.22e-07 2.45e-05 

16 16x32 3 768/96 256 512 1.69e-06 2.80e-07 2.52e-05 

16 32x48 3 1536/192 512 512 2.32e-06 4.40e-07 4.54e-05 

 

Estimates of the computational costs of executing the LINE algorithm with an 

implementation in Python using the NumPy library were performed on a MacBook Pro \ 2.0 GHz 

Dual - Core Intel Core i5. 

The secrecy of the public ley encryption is determined primarily by the parameters of the 

incomplete system of linear equations and the homomorphic secret transformation on matrix 

calculations. Secret matrix transformations have potentially high entropy. We have considered a 



simple homomorphic transformation. It is possible to increase the security against attacks on the 

homomorphic transformation. It is possible to propose schemes based on multi-level constructions 

on matrix calculations and permutations. It is expected that the price for such solutions will be an 

increase in the cost of calculations and keys. Table 4 shows comparative characteristics of the costs 

of keys and cipher texts in bytes with known cryptosystems. 

Table 4 – Comparison analysis of LINE with present and PQC standards 

Version NIST Security SK size PK size CT size 

Kyber512 AES128 1632 800 768 

Kyber768 AES192 2400 1184 1088 

Kyber1024 AES256 3168 1568 1568 

RSA3072 AES128 384 384 384 

RSA15360 AES256 1920 1920 1920 

LINE 128 ( 8, 32, 16, 3m k l q= = = = ) AES128 288 528 48 

LINE 192 ( 16, 24, 12, 2m k l q= = = = ) AES192 824 1536 48 

LINE 256 ( 16, 32, 16, 2m k l q= = = = ) AES256 1088 2048 64 

 

The key costs will be explained using the example of the LINE 128 cryptosystem with the 

parameters: m = 8, k = 32, l = 16, q = 3. The public key is determined by the costs of starting the 

random sequence generator to construct the matrix A and q - 1 random substitutions ji ji ji   = +

2,j q= , 1,i k= and the costs of transmitting 32 one-way substitutions 1 1 1i i i   = + , 1,i k= . The 

costs of starting the generator are 16 bytes. The costs of transmitting 32 factorable one-way 

substitutions are 32x16x8 = 512 bytes, since each substitution is 16 single-byte records. Thus, the 

total costs will be 528 bytes. The cost of a secret key is determined by q -1 secret matrices j , , 

2,j q= factorable permutation  1,..., l  tables and a secret vector At of dimension l . The cost of 

q -1 secret matrices j is 16 bytes. The cost of a secret key At is 16 bytes. The cost of one factorized 

substitution is 16 bytes, and given that there are 16 of them, we get 256 bytes. Thus, the total cost 

is 288 bytes. If we use only one factorized substitution, then the cost of secret keys will be 48 

bytes. 

 

Conclusions 

Drawing from the substantial body of research in this domain [20-30], we introduce a novel 

and comprehensive approach to public key encryption. The LINE public key encryption 

cryptosystem based on solutions of linear equation systems with predefinition of input parameters 

through shared secret computation for factorizable substitutions is a good candidate for post-

quantum cryptography. The application of an underdetermined system of linear equations for 

constructing public key encryption guarantees intractability with respect to input values. The 



distinction of LINE lies in the fact that no restrictions and conditions on data structures are imposed 

on the parameters, unlike other post-quantum cryptography candidates. The quantum security of 

LINE is based on high randomization of entries in arrays of factorized substitutions and the 

absence of any correlation in public parameters and ciphertexts. Through selection of cryptosystem 

public parameters, the declared NIST security levels of 128, 192, 256 bits and any other levels in 

general are achieved. The LINE algorithm scales well with respect to computational costs, 

memory, and hardware platform constraints without reducing the high level of security. The cost 

of public keys when computing over 8, 16, 32-bit words is in the range of 1-4 KB and is 

comparable with implementations for the best post-quantum cryptography candidates. Software 

implementation of the LINE algorithm for vectorized bitwise matrix computations can be very 

fast. 

 

Appendix 1 - An example of performing public key encryption 

Let's consider an example for the following general parameters of the cryptosystem. 

Let us define a system of linear equations by a matrix  A l k  of dimension 6l = , 12k = . 

The matrix 1A is non-singular and has an inverse matrix 
1

1A −
. 

Let us define a cryptosystem for 2q = sets of ciphertexts 1 2,u u  With calculations over 

words 6m = bit and let h is a hash function. 

Generating keys 

We generate 

- random vectors of bit arrays ,1 ,12,...,j j j   =   , 1,2j = dimensions  6 6 . Please see the results 

of generation in Table A.1; 

Table A.1 – Generated random vectors of bit arrays ,1 ,12,...,j j j   =     

1,1 1,12   

000111 
010101 
101100 

101001 
011010 
101011 

100000 
101011 
011110 

010111 
011001 
010110 

111100 
101100 
100000 

100001 
000100 
000001 

010111 
101001 
010100 

100001 
100110 
000000 

000010 
011011 
001101 

111001 
110000 
010111 

111100 
110111 
010001 

001010 
010011 
100011 

101100 
010000 
010011 

011101 
010010 
101100 

110111 
101101 
000010 

111010 
110010 
001110 

010011 
001011 
111110 

001011 
010101 
000011 

100011 
011010 
000010 

100010 
010111 
001000 

100011 
101000 
010000 

011000 
010001 
100010 

100001 
000001 
110111 

010100 
011010 
011111 

2,1 2,12   

001001 
010111 
110110 
110011 

011110 
001110 
100110 
011011 

101100 
101011 
010111 
110011 

010011 
110001 
101011 
101000 

111111 
001011 
001101 
101111 

011111 
101001 
110000 
110011 

110001 
100010 
100010 
110000 

001110 
101010 
101000 
111111 

001000 
010100 
110101 
011100 

011001 
010101 
011000 
001010 

001110 
001011 
101011 
010110 

100000 
010011 
011001 
101100 

1 2A A A= =  

110101111100 

000011001010 

010101111001 

001101101111 

110011101101 

000111010010 

, 1A =  

110101 

000011 

010101 

001101 

110011 

000111 

, 2A =  

111100 

001010 

111001 

101111 

101101 

010010 

. 



010111 
100101 

011111 
101111 

110110 
010100 

100101 
100010 

010001 
100001 

110101 
100010 

010100 
110100 

110111 
110010 

100001 
111110 

011001 
111011 

100010 
111111 

011011 
011100 

 

- random binary matrix 
2  dimensions[6 6]  

2 =  

010011 

101110 

010010 

000011 

010101 

110001 

 

We compute: 

- 1
ˆ ˆ ˆ,...,j j jk   =   , 1,2j = , Where 

6

1

ˆ [ ]ji ji

p

p 
=

= , 1,12i = ; 

-  1 2
ˆ ˆ ˆ,A A A  = , where ˆ ˆ

Аj jA =  , 1,2j = , are vectors 6m = of bit words of dimension 6l = ; 

- 
2

1

ˆ
A Aj j

j

t  
=

= , a vector of 6m = bit words of dimension 6l = . See Table A.2 for results. 

Table A.2 – Computed results for 1
ˆ ˆ ˆ,...,j j jk   =    and  1 2

ˆ ˆ ˆ,A A A  =  

1̂  2̂  1
ˆ

A  2
ˆ

A  2 2
ˆ

A   At  

100110 

001101 

010100 

101101 

001010 

100000 

001100 

011110 

111011 

000110 
110000 

000110 

1 0 1 0 0 1 

0 1 1 1 0 1 

0 0 0 0 0 1 

1 0 0 1 1 0 

1 0 0 1 1 0 

1 0 0 0 1 0 

1 0 0 0 0 1 

1 1 0 1 1 0 

1 0 1 0 1 0 

1 1 1 1 0 0 
1 0 0 1 0 1 

0 0 0 0 0 1 

001001 

100001 

101111 

011110 

110110 

101001 

 

1 1 0 0 0 1 

0 0 1 0 1 1 

1 0 0 1 0 1 

0 1 0 1 1 0 

0 0 0 1 1 0 

1 1 0 0 0 1 

001100 

110110 

100001 

111000 

010110 

001100 

 

000101 

010111 

001110 

100110 

100000 

100101 

 

 

Let us construct permutations for an Abelian 2 group of dimension 6m = . Let all 

permutations be of type 2 and the same i = . Let us take the factorizable permutation  from 

the example in Section 3. Let's generate random permutation vectors 2 2,1 2,12* ,...,   =   , with 

matrix components of type 2. Results are shown in Table A.3. 

Table A.3 – Generated random permutation vectors 2 2,1 2,12* ,...,   =    

2,1 2,12   

010011 
100011 
010010 
011111 
000111 
001110 
110100 

000110 
010110 
110001 
100001 
100100 
001011 
010011 

110101 
011110 
110100 
011010 
110000 
110111 
110010 

100100 
110110 
001000 
011101 
100000 
000110 
010111 

100101 
100000 
101101 
000001 
100011 
110101 
101010 

111111 
110101 
101111 
101011 
100111 
010010 
100111 

101110 
111101 
001100 
101000 
010000 
010011 
101111 

111011 
001010 
001011 
001110 
001111 
100100 
001110 

111101 
110110 
010000 
111100 
010000 
011011 
101001 

001110 
001101 
111111 
010010 
010100 
100100 
010010 

101111 
011101 
000111 
000001 
100101 
000011 
101101 

000010 
100101 
110100 
010101 
001000 
111001 
001001 



011101 
011011 

010011 
011001 
100010 

111000 
111100 

000001 
000011 
111110 

111000 
010110 

010100 
001100 
011100 

111110 
100011 

001111 
110011 
011011 

001001 
001010 

010000 
100011 
011010 

110100 
010110 

100110 
100111 
011111 

110001 
110101 

000110 
000110 
001111 

101111 
000000 

101101 
101101 
011100 

000000 
000110 

001100 
110000 
110010 

100001 
110100 

000110 
110110 
111001 

101010 
100011 

100001 
010010 
101111 

111100 
011110 

101011 
010000 
101101 

Let's compute 
1 2 2 1i i i     = + + , 1,6i =  and  

1 2 2 1i i i    = + , 7,12i = . See Table A.4. 

Table A.4 – Computed 1 2 2 1i i i     = + +  and  1 2 2 1i i i    = +  

1,1 1,6    1,7 1,12    

010110 

101111 
111111 
001100 
111111 
101101 
000100 
110111 
000100 

010011 
100010 
000100 

101101 

000111 
110110 
001011 
111010 
101101 
001110 
101000 
110011 

101011 
110110 
000110 

101000 

001001 
000011 
000111 
101001 
111111 
011010 
011110 
111010 

101010 
010100 
010111 

011100 

100011 
101010 
100101 
110011 
000111 
111011 
001000 
010111 

010000 
011101 
110001 

111000 

001110 
111001 
101000 
001110 
000111 
111110 
001010 
110001 

011101 
100100 
010111 

101111 

101100 
000000 
010000 
010001 
101111 
101101 
100100 
101101 

010101 
010011 
010001 

111011 

110001 
000001 
010001 
111101 
011001 
111011 
010001 
011101 

000100 
111010 
011001 

111100 

110000 
011011 
101001 
110111 
010010 
111110 
011100 
110010 

000001 
111101 
110001 

001110 

111000 
100101 
100111 
010000 
100110 
111011 
001011 
000011 

000100 
111110 
101011 

100111 

000011 
010010 
100001 
101111 
010010 
011001 
000000 
101001 

000001 
100011 
010110 

000101 

101101 
001111 
011001 
110001 
110100 
101011 
001100 
100110 

110011 
011001 
000100 

110100 

000000 
111111 
011101 
100101 
101001 
110111 
111000 
110000 

111111 
110001 
101100 

 

Then we compute 2 2 2i i i   = + , 1,12i = .See Table A.5. 

Table A.5 – Computed  2 2 2i i i   = +   

2,1 2,12    

011010 
101010 
000101 
001000 
110001 
111000 
000111 

101110 
001100 
000100 
111100 
000111 
 

011000 
001000 
111111 
101111 
000010 
101101 
001000 

100011 
100011 
011110 
101100 
010001 
 

011001 
110010 
011111 
110001 
100111 
100000 
000001 

001011 
100000 
100010 
011000 
001000 
 

110111 
100101 
111001 
101100 
001011 
101101 
111111 

010110 
000110 
101010 
010001 
111001 
 

011010 
011111 
100110 
001010 
101110 
111000 
000101 

100110 
011011 
000001 
000010 
111011 
 

100000 
101010 
000110 
000010 
010111 
100010 
010100 

000111 
100011 
010011 
000101 
111101 
 

011111 
001100 
101110 
001010 
110010 
110001 
011111 

000001 
100001 
010010 
110010 
111011 
 

110101 
000100 
100001 
100100 
100111 
001100 
110001 

010000 
110111 
011010 
011111 
101110 
 

110101 
111110 
000100 
101000 
100101 
101110 
110101 

011100 
100111 
101101 
001110 
001100 
 

010111 
010100 
101010 
000111 
001100 
111100 
011000 

101011 
101101 
011111 
001101 
000010 
 

100001 
010011 
001100 
001010 
001110 
101000 
111011 

111100 
000001 
000011 
101101 
010000 
 

100010 
000101 
100111 
000110 
010001 
100000 
100101 

010000 
000101 
110000 
001100 
110001 
 

 

We obtain public keys : ,j i  , 1,12i = , 1,2j =  and  secret keys : At , 2 ,  . 

Encryption 

Let the message be defined 6l = by the components of the vector  1 2 12, ,...x x x x=  words 

and components 7 8 12, ,...x x x are 6m = bit words from hashing 1 2 6, ,...x x x . 

Let's calculate: ,1 ,2 ,12, ,...,j j j jy y y y =   , 1,2j = , where , , ( )j i j i iy x= , 1,12i = , 1,2j =  and 

j ju A y =  , 1,2j = . Results are shown in Table A.6. 

 

 

 

 



 

 

Table A.6 – Computed encryption data  

x  
1y  

2y  
1u  

2u  

111111 
001111 
111000 

001101 
001011 
001101 
010100 
101010 
101001 
100100 
001101 
010001 

101110 
110011 
000101 

011111 
110010 
011000 
100001 
111011 
101000 
110100 
010000 
100111 

110111 
100110 
011010 

001010 
111011 
011101 
110101 
011101 
001010 
111001 
101000 
100100 

011100 
010010 
100001 

001000 
101101 
011110 

011101 
000100 
110111 

000111 
010101 
011001 

Decryption 

Let's make the following computations: 
1 2 1 2 2( , )u u u u u      = = + ,  

Au u t 
= +  , 

  1

1y l A u

−=    and 
1 1 1

1 1 2 2 1 2[ ( ), ( ),..., ( )] [ , ,..., ]l l ly y y x x x  − − − = .The results are presented in 

Table A.7. 

Table A.7 – Computed decryption data  

2 2u   u  u  
1

1A −
  1 2 6, ,...,y y y  1 2 6[ , ,..., ]x x x  

001110 

000011 
011010 
100111 
011100 
001101 

010010 

010001 
111011 
101111 
110001 
010011 

010111 

000110 
110101 
001001 
010001 
110110 

101000 

111010 
110110 
010001 
110011 
100011 

100010 

110101 
001001 
110000 
110110 
110000 

111111 

001111 
111000 
001101 
001011 
001101 

Let us check the calculations, for example for 
1 * *

5 5( )y x − = . For this purpose, we calculate 

* *

5 5( )x y = using the substitution  from the example in Section 3 

*

5

1 2 3 4 5 6 1 2 3 4 5 6

011011 010001 110100 010011 000110 000100
110110

0111

,

11 000010 000101 010000 000011 10

( ) (001011)

0 0,1,0,1

1

,1 , , , , , 0 0 1

0

100

0 1 1

1 1 1 0 0

0 0 1 0 1 1

x

B B B B B B B B B B B B

 = =

 =  +  +  +  +  +  =

 +  +  +  +  +  =

 

Given the given parameters, the cryptosystem has the following cost estimates: 

Public keys :   1,i -864  2(2 )m k  bit, 

128 bit to start the bit sequence generator to build A and 2,i . 

Secret keys :   At - 36  ( )l m bit, 

2 - 36  ( )m m bit, 

 - 72  2(2 )m bit. 



Cipher text   
1 2[ , ]u u  - 72  ( )q l m  bat. 

Secrecy   s - 36  2( )m bit. 

Encryption time with reduction to one bit of the cipher text - 8.536709679497613 e -06. 

Time to decrypt via table substitution with reduction to one bit of secrecy is 

1.6623073154025608e-06. 

Decryption time via factorized substitutions with reduction to one bit of secrecy is 

1.728534698486328e -05. 
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