
ar
X

iv
:2

50
7.

04
27

5v
1 

 [
cs

.C
R

] 
 6

 J
ul

 2
02

5

VOLTRON: DETECTING UNKNOWN MALWARE USING
GRAPH-BASED ZERO-SHOT LEARNING

M. Tahir Akdeniz
WISE Lab, Hacettepe University

Ankara, Turkey
muhammedtahirakdeniz@gmail.com

Zeynep Yesilkaya
WISE Lab, Hacettepe University

Ankara, Turkey
zeynpyesilkaya@gmail.com

I. Enes Kose
WISE Lab, Hacettepe University

Ankara, Turkey
enes0kose@gmail.com

I. Ulas Unal
WISE Lab, Hacettepe University

Ankara, Turkey
ismailulasunal@gmail.com

Sevil Sen
WISE Lab, Hacettepe University

Ankara, Turkey
ssen@cs.hacettepe.edu.tr

ABSTRACT

The persistent threat of Android malware presents a serious challenge to the security of millions of
users globally. While many machine learning-based methods have been developed to detect these
threats, their reliance on large labeled datasets limits their effectiveness against emerging, previously
unseen malware families, for which labeled data is scarce or nonexistent.

To address this challenge, we introduce a novel zero-shot learning framework that combines Vari-
ational Graph Auto-Encoders (VGAE) with Siamese Neural Networks (SNN) to identify malware
without needing prior examples of specific malware families. Our approach leverages graph-based
representations of Android applications, enabling the model to detect subtle structural differences
between benign and malicious software, even in the absence of labeled data for new threats.

Experimental results show that our method outperforms the state-of-the-art MaMaDroid, especially
in zero-day malware detection. Our model achieves 96.24% accuracy and 95.20% recall for unknown
malware families, highlighting its robustness against evolving Android threats.

Keywords Android malware detection · Zero-shot learning · Variational Graph Auto-Encoder · Siamese Neural
Network · Zero-day malware

1 Introduction

Malware is one of the most significant threats in cybersecurity today. With the number of mobile devices now surpassing
that of desktop devices, attackers are increasingly focusing their efforts on targeting mobile platforms. Moreover, while
generating malware traditionally required substantial technical skills, advancements in generative artificial intelligence
(AI) have lowered the barrier for attackers, making it easier to create malicious software [1]. Additionally, large
language models can produce different malware variants for similar prompts due to the inherent ambiguity in natural
languages. Consequently, the threat has become more dangerous than ever.

Considering the vast size and complexity of modern malware, machine learning has become an essential part of effective
malware security solutions. Its ability to adapt and analyze large datasets in real-time makes it indispensable for
detecting and mitigating sophisticated cyber threats. However, these proposals might have pitfalls in their design,
implementation, and evaluation [2]. Moreover, they are often evaluated using known malware families included in the
training data, which means their performance on new, unknown malware is typically not represented. When evaluated
on malware from a different time frame than the training period, their performance can drop dramatically [3]. Therefore,
this study particularly focuses on detecting unknown malware from new families using zero-shot learning techniques.

https://arxiv.org/abs/2507.04275v1


VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

In the domain of Android malware detection, zero-shot learning is crucial for identifying zero-day malware [4, 5], new
and previously unknown threats that existing security systems have not encountered. This learning paradigm involves
classifying instances from classes not present in the training dataset, which is particularly important given the rapid
evolution of malware that leads to the emergence of new families of threats. Zero-shot learning addresses the challenge
where the training samples do not cover all the classes it aims to classify [6]. This approach is essential in scenarios
where traditional deep learning models [7], which rely heavily on large-scale labeled datasets, struggle to adapt to the
continuous emergence of novel malware families.

This study proposes a new graph-based approach utilizing zero-shot learning for detecting unknown malware. In this
approach, each application is represented by sensitive API call graphs to capture and illustrate the semantic relationships
between API calls. These graphs are then transformed into low-dimensional representations using a Variational Graph
Auto-Encoder (VGAE) for malware detection. These representations are processed by a Siamese Neural Network
(SNN) to predict similarity scores between application pairs. Finally, the combination of VGAE and SNN is used
to assess the dissimilarity of new malicious software compared to benign applications within a zero-shot learning
framework. Each component of this system contributes uniquely, akin to how individual lions combine to form the
powerful robot VOLTRON in the animated series. Thus, our approach is named VOLTRON, reflecting the synergy of
its elements to effectively detect unknown malware.

The main contributions of the proposed approach are summarized as follows:

• VOLTRON is the first zero-shot learning approach proposed for detecting new Android malware, addressing
the critical need given the rapid evolution of Android malware. This approach is highly significant in adapting
to the continuously changing landscape of cyber threats.

• It is trained and evaluated on one of the largest datasets, KronoDroid [8], which includes 218 malware families
and approximately 55,000 samples of both malware and benign software.

• VOLTRON’s ability to detect unknown malware samples is thoroughly evaluated on unknown samples from 54
new malware families, achieving a detection rate of 95.20%, compared to MaMaDroid’s 89.11%. A time-based
analysis is also conducted to assess its detection efficiency for malware that emerges after the training period.

• The code for VOLTRON is shared to facilitate the reproducibility of our approach within the research
community1.

The paper is organized as follows: Section 2 presents a literature review on malware detection, emphasizing graph-
based approaches for Android malware detection, as well as few-shot and zero-shot learning methods in this domain.
Section 3 details the proposed approach, including the steps involved, API call graph construction, Variational Graph
Auto-Encoder (VGAE), Siamese Neural Network (SNN), and Zero-Shot Learning (ZSL). Section 4 introduces the
dataset used for training and testing, outlines the experimental setup, and provides a detailed discussion of the evaluation
results. Section 5 addresses the limitations of the proposed approach, and Section 6 offers concluding remarks on the
work.

2 Related Work

Since the introduction of the first Android malware dataset, MalGenome [9], numerous studies have focused on Android
malware detection. In this section, we primarily focus on two recent and promising areas: graph-based approaches
and few-shot learning techniques. Although these methods have been proposed separately for malware detection, our
proposal aims to integrate them, leveraging the strengths of both to enhance detection accuracy, particularly in scenarios
with limited labeled data.

Mariconti et al. developed MaMaDroid [10], a static analysis-based system that constructs behavioral models by
extracting call graphs from applications. It then abstracts these graphs into simplified API call sequences, such as
packages or families, to manage complexity. These sequences are used to build a Markov-chain-based model that
captures application behavior efficiently. Similarly, Hou et al. [11] introduced HinDroid, which employs a heterogeneous
information network (HIN) to model the relationships between apps and APIs, allowing for the capture of interactions
that might be missed by simpler models.

Recent advancements have integrated deep learning techniques with API call sequence analysis. Cui et al. developed
Api2Vec [12], while Zhang et al. introduced APIGraph [13]. These approaches address challenges such as API call
interleaving and classifier aging, aiming to enhance the robustness of detection models and reduce the frequency of
retraining, thereby maintaining performance as malware evolves.

1https://github.com/voltron-research-team/voltron

2

https://github.com/voltron-research-team/voltron


VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

With advancements in Graph Neural Networks (GNNs), such approaches have been proposed to improve Android
malware detection. Gao et al. [14] introduced GDroid, the first study utilizing Graph Convolutional Networks (GCNs)
for malware classification. It maps applications and their API interactions into a heterogeneous graph. By reframing the
detection task as a node classification problem, this approach identifies relationships between API calls and application
behavior. When applied to well-known Android malware datasets (Drebin [15], MalGenome [9], and AMD [16]),
GDroid demonstrated a clear improvement in detection accuracy and robustness, highlighting the potential of GNNs to
handle the intricate dependencies and interactions typical of Android malware.

John et al. [17] explored the use of GCNs with system call graphs, focusing on centrality measures to capture depen-
dencies between system calls, even in the presence of obfuscated malware. Alam et al. [18] introduced DroidNative,
which detects native code malware by leveraging control flow patterns represented as graphs, aiming to address the
impact of obfuscations. Lo et al. [19] addressed the common issue of over-smoothing in deep GNNs by incorporating
Jumping Knowledge techniques to enhance the analysis of function call graphs. Hei et al. [20] developed Hawk, which
uses Heterogeneous Graph Attention Networks to model Android entities and their behavioral relationships within a
heterogeneous information network (HIN), aiming to reduce training time.

In summary, these studies collectively highlight the shift towards advanced machine learning and graph-based techniques
aimed at improving detection accuracy, model resilience, and adaptability. However, these approaches generally require
large datasets and may struggle to perform effectively when only a small number of samples are available. Therefore,
few-shot and/or zero-shot learning approaches are investigated to detect malware with limited labeled data.

While it is a relatively new area to explore, most proposed studies on few-shot malware detection focus on the Windows
malware domain. Rong et al. [21] presented UMVD-FSL, which detects unseen malware variants by converting network
traffic data into grayscale images and using a prototype-based model for classification. Tang et al. [22] introduced
ConvProtoNet, proposing a convolutional induction module and utilizing meta-learning to adapt to new malware types
without requiring fine-tuning. Liu et al. [7] proposed FewM-HGCL, a self-supervised framework that models the
execution behavior of each malware variant as a heterogeneous graph. FewM-HGCL employs heterogeneous graph
contrastive learning to empower graph attention networks (GATs) in learning graph-level representations for few-shot
malware variants. This approach utilizes graph instance-based discrimination and data augmentation techniques, such
as API attribute masking, to generate samples for learning. By leveraging GATs to capture detailed dependencies and
relationships within graphs, FewM-HGCL enhances the model’s ability to generalize from a limited number of samples,
which is essential for few-shot malware detection.

Zero-shot learning (ZSL) has also been explored as a strategy for detecting previously unseen Windows malware
threats. Barros et al. [4] introduced Malware-SMELL, a method that classifies malware using visual representation in a
novel S-Space, which helps distinguish unseen malware. Zahoora et al. [23] proposed DCAE-ZSL, a deep contractive
autoencoder-based approach that uses ZSL to detect zero-day ransomware by extracting features from known and
unknown ransomware and using a heterogeneous voting ensemble for inference.

There are only two notable few-shot-based studies on Android malware detection. Zhou et al. [24] proposed a framework
called FAMCF, which utilizes static analysis features such as permissions, API calls, and opcodes, combined with a
triplet and metric-based few-shot learning approach to classify malware families with insufficient labeled samples. This
framework addresses the challenge of obfuscation techniques by maintaining classification accuracy across different
datasets [9][25]. However, FAMCF’s reliance on static features does not account for the sequential dependencies
between API calls, potentially limiting its ability to fully capture the behavioral patterns of malware. This limitation may
reduce its efficacy in scenarios where the sequence of actions is critical for identifying malicious behavior. Similarly,
Bai et al. [26] introduced a Siamese network-based method that improves the classification of few-shot Android malware
families by embedding malware applications into a continuous vector space, enhancing accuracy across different family
sizes. However, this approach primarily addresses data imbalance by incorporating both well-represented (large-scale)
families and those with only a few samples (few-shot families) into the dataset, rather than focusing exclusively on the
few-shot problem.

To the best of our knowledge, VOLTRON is the first study to propose a zero-shot learning approach for detecting
Android malware. Additionally, by utilizing graphs that semantically represent code comprehensively, VOLTRON
introduces a novel approach to enhance the effectiveness of malware detection. Its effectiveness and robustness against
new malware families are thoroughly evaluated on one of the largest Android datasets.

3 Methodology

Our malware detection approach consists of two main components: the Variational Graph Auto-Encoder (VGAE) [27]
and the Siamese Neural Network (SNN). These components are integrated to perform graph classification using graph

3



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Figure 1: Overview of VOLTRON

embeddings extracted from Android applications. The conceptual schema of the proposed approach is illustrated in
Fig. 1.

Firstly, applications are decompiled using Androguard [28]. Then, they are analyzed to extract features such as
API calls and method interactions. These features are then used to construct API call graphs, which capture the
complex relationships and control flow patterns within the application. The VGAE processes these graphs to learn
low-dimensional representations. VGAE is particularly effective at capturing the essential structural features of the
graphs, providing a latent space representation that is both detailed and succinct.

The SNN component takes the graph embeddings generated by the VGAE component and aims to learn the similarity
between pairs of graph embeddings. SNN consists of two identical subnetworks that employ the same architecture and
weights. These subnetworks transform the input embeddings into a lower-dimensional space, enabling the network to
focus on the most critical features. The absolute difference between the embeddings is then computed, capturing the
dissimilarities between the two inputs. This difference is further processed to predict a similarity score, which indicates
the likelihood that the two input graphs belong to the same class. More detailed information about each component and
the training process is provided in the subsequent chapters. Finally, the details of how the proposed model is utilized for
zero-shot learning are given.

3.1 API Call Graph Construction

Firstly, the applications are decompiled into Smali code using Androguard [28]. Then, instructions associated with
common libraries (e.g., Landroid, Ljava, Lcom/google) that are less pertinent to the core analysis are filtered out.
These operations, while essential for the app’s functioning, typically relate to standard Android or third-party libraries
and do not significantly contribute to understanding the application’s unique behavior. By focusing on the most relevant
instructions, this process reduces the complexity of the analysis and eliminates extraneous information, enabling us to
concentrate on code segments that more effectively represent the app’s distinctive behavior.

Next, Axplorer [29], a comprehensive tool designed to map Android APIs and their associated permissions, is employed
to identify critical APIs linked to dangerous permissions. These permissions grant applications access to sensitive or
potentially exploitable features of the Android operating system. Since Axplorer covers mappings from API level 16 to
API level 25, it encompasses the range of older applications in our dataset and is thus utilized in this study.

Then, we extend the API list by including calls related to Java Security, Java Cryptography Extension (JCE), and Dalvik
dynamic code loading libraries. These APIs are often utilized in advanced techniques employed by malware, such as
encryption, code injection, or dynamic code execution. Including these additional APIs increased the total number of
API calls under consideration from 2,743 to 3,121, providing a broad yet targeted set of features for our analysis. We
subsequently extract a subset of these API calls (658) used in our training dataset, which includes both malicious and
benign samples. This extraction reduces the size of the graphs we create for analysis.

Finally, critical API call graphs are constructed, as illustrated in Fig. 2, where nodes represent individual API calls and
edges denote execution order relations derived from the code. API call graphs are first extracted for each method, after
which they are merged based on calling relationships between methods, eliminating the need to specify entry points for
graph construction.

4



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Figure 2: API Call Graph Construction

3.2 Variational Graph Auto-Encoder (VGAE)

The VGAE [27] is a deep learning model designed for graph-based tasks, including graph classification, where the goal
is to predict the class label of an entire graph based on its structure and features. VGAE is based on the Variational
Auto-Encoder (VAE) [30][31] framework and is designed to learn probabilistic latent representations that capture the
essential features of graph-structured data. By leveraging latent variables, VGAE models uncertainty in the learned
representations, which is particularly beneficial for complex graph structures.

In this study, VGAE is employed to learn low-dimensional representations of API call graphs for malware detection.
VGAE’s capability to capture and model the underlying distribution of graph-structured data is crucial for distinguishing
between malware and benign software. This is particularly important for identifying subtle and complex patterns within
malware that may otherwise be obscured by noise or variability in the data. Notably, in the current representation, no
explicit node or edge features are included, as the API calls forming the graph nodes do not possess intrinsic features.
However, incorporating sensitive data flow as edge features in future work could enhance the detection of Android
malware designed to exfiltrate sensitive data.

The VGAE model consists of two main components, as illustrated in Fig. 1: the encoder and the decoder. The encoder
maps the input graph into a latent space, effectively capturing its structural properties. The decoder then reconstructs
this latent representation, ensuring the preservation of essential features.

In the original VGAE framework, the reconstruction loss Lrec ensures that the learned representations accurately capture
the graph’s structure. It is extended by incorporating a regularization term into the final reconstruction loss:

Lrecon = Lrec +
1

N
LKL (1)

where the Kullback-Leibler (KL) divergence loss (LKL) regularizes the latent space by encouraging the representations
to follow a prior distribution. This regularization promotes well-behaved latent representations and mitigates overfitting,
thereby improving generalization.

To further enhance the model, a classification component is introduced that utilizes the learned latent representations to
predict the graph’s class label. The classification loss is defined as:

Lclass = CrossEntropy(logits, y) (2)

where logits denote the predicted class scores, and y represents the ground-truth labels. The overall loss function
integrates these two components:

5



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

L = Lrecon + Lclass (3)

This combined loss function allows the VGAE model to optimize for both reconstructing the graph’s structure and accu-
rately classifying the graph, enhancing its effectiveness for graph classification tasks. By integrating these extensions,
the model not only learns informative representations for reconstruction but also utilizes them for classification, thereby
improving its versatility and performance.

The hyperparameters for VGAE were determined experimentally, considering the extended training times involved,
rather than employing automated hyperparameter optimization techniques. These values are summarized in Table 8.

3.3 Siamese Neural Network (SNN)

In this study, the SNN is employed to learn the similarity between pairs of embeddings, which represent the latent
features of the input graphs. Unlike traditional neural networks that classify individual inputs independently, SNNs take
pairs of embeddings and output a similarity score indicating whether the two embeddings likely belong to graphs of the
same class. This makes SNNs particularly well-suited for tasks involving similarity measurement, such as face/signature
verification, textual similarity, and anomaly detection.

In the proposed approach, the SNN processes embeddings generated by the Variational Graph Auto-Encoder (VGAE).
These embeddings, which encapsulate the learned latent features of the graphs, serve as inputs to the SNN, where they
undergo further processing to determine their similarity.

Each SNN consists of two identical subnetworks, each responsible for processing one of the input embeddings derived
from the VGAE. These subnetworks share the same architecture and weights, ensuring consistent treatment of both
input embeddings and generating comparable representations. The process begins with each subnetwork receiving an
embedding, which is passed through a series of fully connected layers. The first layer reduces the dimensionality of the
input embedding, focusing the network on the most critical features by compressing the representation into a smaller
vector. Subsequent layers further refine the embedding, with ReLU activation functions introducing non-linearity,
essential for modeling complex relationships within the data.

Once the embeddings from both inputs have been processed through their respective subnetworks, the network calculates
the absolute difference between the two resulting embeddings [32]. This step measures the degree of dissimilarity
between the embeddings, capturing the differences in the features learned by the subnetworks. By focusing on these
differences, the network can effectively assess whether the two inputs belong to the same class or not, thereby enabling
accurate classification based on their similarities and dissimilarities.

The computed difference is then passed through additional fully connected layers, where the network processes the
information to predict a similarity score. The final layer of the SNN applies a sigmoid activation function, outputting
a probability score. This score indicates the likelihood that the two input embeddings, and thus the two graphs they
represent, belong to the same class.

By comparing the similarity scores of various graph pairs, the SNN can effectively classify relationships, determining
whether the embeddings correspond to benign or malicious graphs. This approach enables the model to identify and
classify the relationships between graphs based on their structural features.

The hyperparameters used in the SNN, including the number of layers, the dimensionality of each layer, learning rate,
and batch size, were carefully selected through an automated hyperparameter optimization process using Optuna [33].
Optuna is a framework that efficiently optimizes hyperparameters by exploring a large search space with techniques
such as Bayesian optimization. By leveraging Optuna with the default sampler, we identified the optimal set of
hyperparameters that maximized the performance of our SNN for similarity measurement. The details of the selected
hyperparameters are provided in Table 9.

3.4 Zero-Shot Learning (ZSL)

In machine learning, particularly in the context of malware detection, the concepts of few-shot and zero-shot learning
have emerged as vital approaches to overcome the limitations posed by traditional supervised methods. Few-shot
learning (FSL) is a paradigm designed to train models with a very limited number of labeled samples, a significant
advantage when dealing with novel or underrepresented malware families. Within FSL, zero-shot learning (ZSL) is a
subset where the model is trained to classify instances of classes that were not present in the training set. In other words,
while few-shot learning may have a small number of labeled samples from every class, zero-shot learning operates
with no training samples from certain classes, making it particularly challenging and applicable to real-world scenarios
where new, previously unseen threats emerge. This approach is essential in scenarios where traditional deep learning

6



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Figure 3: Zero-Shot Learning

models, which rely heavily on large-scale labeled datasets, struggle to adapt to the continuous emergence of novel
malware families.

In this study, the concept of zero-shot learning is applied to Android malware detection using a Variational Graph
Auto-Encoder (VGAE) combined with a Siamese Neural Network (SNN). Unlike traditional machine learning setups
that typically involve only a training set and a test set, our model introduces a third set known as the support set. The
support set is crucial in the SNN’s comparison process, where the unknown APK is compared against other applications.
Here, the support set is exclusively composed of benign applications. The similarity between the unknown APK and the
benign applications is measured, which allows us to determine whether the unknown APK is benign or malicious. By
focusing on the similarity to benign samples, our model aims to detect malware based on its dissimilarity to benign
behaviors, which is the core idea behind zero-shot malware detection. The proposed approach is summarized in Fig. 3.

An essential consideration in this approach is the composition of the support set. Evaluating the unknown APK against
only a single benign sample could yield unreliable results due to the variability in benign applications, leading to false
classifications. Therefore, our methodology includes comparing the unknown APK against multiple benign samples
and averaging the similarity scores to achieve a more accurate assessment. After extensive testing with different support
set sizes, we observed no significant impact on the results. Consequently, we opted for a support set size of 30 benign
samples, selected randomly for each APK, to maintain consistency and efficiency.

Regarding the threshold selection, we experimented with various threshold values and found that accuracy remained
stable between 0.4 and 0.5. To optimize for the best performance, we selected 0.5 as our final threshold, as it yielded the
highest F1-score. If the calculated similarity score exceeds this threshold, the APK is classified as benign; otherwise, it
is deemed malicious. The threshold selection process is illustrated in 6.

4 Evaluation

In this section, we first introduce the dataset used for training and testing, followed by a description of the experimental
settings. We then present and discuss the experimental results, concluding with a comparison of our approach to the
state of the art and few-shot learning.

4.1 Dataset

In this study, we used the KronoDroid dataset [8], a comprehensive and diverse collection of Android benign and
malicious software samples. It incorporates samples from various sources, including Drebin [15], AMD [16], VirusTo-
tal [34], VirusShare [35], F-Droid [36], MARVIN [37], and APKMirror [38], spanning different malware families and
time periods. Comprising approximately 60,000 samples collected between 2008 and 2020, KronoDroid is one of the
largest labeled datasets in the literature.

Samples in this dataset were classified based on their malware detection ratios and the legitimacy of their sources.
Samples were labeled as benign if they had a malware detection ratio of zero and originated from a trusted, legitimate
source. Conversely, samples were labeled as malware if they had a non-zero detection ratio, were identified in a

7



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

recognized malware repository, and were associated with a specific malware family. In addition to malicious and benign
samples, the dataset includes samples labeled as indefinite, which do not fit into either of these categories. Consequently,
these indefinite samples were removed from our dataset. Additionally, samples that were mistakenly classified as both
malware and benign in the original KronoDroid dataset were filtered out. To further clean the dataset, we addressed
the issue of redundancy. Since the package name serves as the primary identifier for each APK, we retained only one
version of each APK with the same package name. This step was essential to avoid potential bias that could arise from
including multiple versions of the same application.

Figure 4: Distribution of Sample By Malware Family
Finally, we excluded any applications that failed to produce valid graphs during the API call graph construction phase
due to some errors such as invalid instruction errors. After completing these pre-processing steps, our final dataset
consisted of 28,294 malware samples from 218 distinct families and 27,713 benign applications. The details of the
dataset are summarized in Table 1.

We also collected 400 APKs for each of the years 2021 and 2022 from AndroZoo [39], each year comprising 200
benign and 200 malware samples. These newer samples were used exclusively in our time-based experiments to assess
how well our approach detects threats emerging after the training period.

Table 1: The Dataset

Set Malware Family Benign Total
Train 23,065 164 21,290 44,355
Test 5,229 54 5,323 10,552
Support 0 0 100 100

Total 28,294 218 26,713 55,007

4.2 Experimental Settings

Firstly, we evaluate our model’s ability to detect previously unknown malware families by using zero-shot learning. Our
goal here is to simulate real-world scenarios, such as zero-day environments, by introducing malicious samples into
the test set that belong to families not included in the training set. This approach contrasts with traditional machine
learning methods, which typically evaluate models using randomly split training and test sets, allowing the same
malware families to appear in both. By excluding entire families from the training set, our method offers a more realistic
evaluation of how the model would perform against new, previously unseen threats.

In this study, we apply a family-based split with an 80-20 ratio. Here, any malware family present in the test set was
excluded from the training set. For instance, if the dataset consisted of malware families {A,B,C,D,E} and benign
samples, the training set T included {A,B,C}, while the test set included {D,E}. Additionally, we incorporated a
support set composed of n benign samples that were not part of either the training or test sets. The main goal is to
evaluate whether the model can accurately detect malware from families that it has not encountered during training.

8



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Table 2: Evaluation of VOLTRON and Comparison with MaMaDroid [10]

Model Accuracy (%) Recall (%) Precision (%) F1-score (%) FPR (%)
VOLTRON 96.24 95.20 97.17 96.17 2.72
MaMaDroid (RF) 91.91 89.11 95.20 92.05 2.50
MaMaDroid (3-NN) 89.61 88.32 91.63 89.94 4.52
MaMaDroid (1-NN) 87.73 85.90 90.30 88.05 5.24

The proposed approach is compared with MaMaDroid [10], which is well-regarded and widely recognized in the field
of Android malware detection. Additionally, it has demonstrated the ability to detect previously unknown malware over
time, thereby reducing the need for continuous retraining. To ensure a fair comparison, we replicated the experimental
setup of MaMaDroid and trained it using our training set. We then evaluated its performance with the same test set given
in Table 1. Furthermore, the comparison is conducted across different train-test splits of the dataset to demonstrate the
robustness and consistency of both methods. The number of families in each fold is demonstrated in Table 10. Notably,
the families in each fold are distinct.

The proposed approach is also compared with few-shot learning approach. In this method, the support set includes
both benign samples and samples from malware families present in the test set. This approach allowed us to simulate
real-world scenarios where only a limited number of samples are available for new malware families. In this few-shot
setup, the support set contained both malware and benign samples, enabling the model to compare the unknown APK
against both types during classification. Unlike the zero-shot experiments, where classification was based on a fixed
threshold value, the few-shot experiment involved comparing the average probabilities of the unknown sample being
classified as malware or benign. This approach provided a more nuanced understanding of the model’s classification
capabilities in practical contexts. While 30 benign samples are utilized in the zero-shot setting, the few-shot setup
incorporates a balanced support set consisting of 30 benign and 30 malware samples.

In addition to the standard evaluation splits, we conducted a time-based experiment to measure the model’s resilience to
new threats that appear after the training period. Specifically, we randomly collected 400 APKs for each of the years
2021 and 2022—comprising 200 benign and 200 malicious samples per year—from the AndroZoo repository [39]. We
trained our model on KronoDroid samples spanning up to 2020 and then tested it on these newly collected APKs. This
approach simulates a realistic scenario where unknown malware families emerge well beyond the training window,
allowing us to assess how effectively the model adapts to evolving malicious behaviors and any changes in the Android
API over time. The proposed approach is also evaluated on various obfuscation techniques, namely name obfuscation,
variable encryption, API reflection and string encryption, to assess its resilience against code obfuscation strategies
commonly employed by malware developers. Lastly, an ablation study is conducted to analyze the impact of each
model component on overall performance

4.3 Experimental Results

4.3.1 The Performance of VOLTRON

We first demonstrate the performance of our zero-shot approach in detecting new malware families in Table 2. As
shown, the proposed method achieves a detection rate of 95.20% for new families with an acceptable false positive rate
(FPR) of 2.72%. Additionally, we compare our approach with MaMaDroid [10], which employs different classification
algorithms, including Random Forests (RF), 1-Nearest Neighbor (1-NN), and 3-Nearest Neighbor (3-NN). We have
included comparisons with the performance of each of these classifiers. As reported in [10], the best performance for
MaMaDroid is achieved using Random Forests (RF). Similarly, in our experiments, we also obtained the best results
with RF.

The comparison shows that our method achieves a significantly higher detection rate of 95.20% for new malware
families, compared to MaMaDroid’s 89.11%. Importantly, this improvement in detection capabilities comes with only
a slight increase in the false positive rate, which is 2.72% for our method compared to MaMaDroid’s 2.5%. This
demonstrates that our model not only detects malware more effectively but also reliably distinguishes between malicious
and benign samples. This underscores the robustness and precision of our approach, particularly in scenarios involving
previously unseen malware families.

The time-based evaluation results 3 indicate that while the model remains effective, its performance shifts when tested
on newer malware from 2021-2022. The model maintains a strong recall (85.00%), but its accuracy declines from
96.24% to 82.25%, and the false positive rate increases to 20.00%. This suggests that malware and benign app behaviors

9



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Table 3: Time-Based Evaluation of the Approach

Setting Accuracy Precision Recall F1-score FPR
2012-2020 96.24 97.17 95.20 96.17 2.72
2021-2022 82.25 80.31 85.00 82.97 20.00

Table 4: Model performance across 5 folds

Model Fold Accuracy (%) Precision (%) Recall (%) F1 (%) FPR (%)
MaMaDroid 1 67.61 93.94 47.80 63.36 2.60
VOLTRON 77.78 93.64 65.89 77.70 2.90
MaMaDroid 2 92.69 94.01 91.22 92.59 3.05
VOLTRON 95.12 94.31 92.09 93.20 3.83
MaMaDroid 3 91.63 93.58 89.40 91.44 3.24
VOLTRON 95.61 96.42 94.38 95.39 4.91
MaMaDroid 4 84.99 94.26 74.48 83.21 2.60
VOLTRON 88.36 96.09 83.00 89.13 3.12
MaMaDroid 5 80.69 93.51 65.88 77.50 2.75
VOLTRON 93.09 96.68 89.81 93.12 3.34
MaMaDroid Avg. 83.52 93.86 73.36 81.62 2.85
VOLTRON Avg. 89.73 95.42 84.96 89.66 3.86

are evolving as expected. These findings emphasize the necessity of regular retraining with updated datasets to sustain
high detection rates and minimize false positives, ensuring continued robustness against emerging threats.

The results for all families are demonstrated in Figure 7. The number of test samples for each family is also indicated
on the corresponding bars in the bar chart. As illustrated in Figure 7, certain families exhibit lower detection rates, and
7 families out of 54 test families are not detected at all. It is worth noting that these families have only a few samples in
the dataset. Upon analyzing these families, we identified several reasons for these shortcomings. Four of these families,
namely ClickFraud, Downloader, Sakezon, and PDAspy, exhibit behaviors that lie in a grey area between benign and
malicious, which can lead to misclassification by detection algorithms that depend on well-defined boundaries between
benign and malicious behaviors.

A notable example is PDAspy, which is a commercial monitoring application that logs phone calls, SMS messages, and
GPS locations. While PDAspy can have legitimate use cases such as parental monitoring, it is also prone to misuse,
making it challenging for models to classify accurately. This dual-use nature often results in PDAspy being flagged by
security solutions as riskware [40][41], yet the inherent complexity of such applications can obscure the classification
process, reducing the accuracy of machine learning models that are designed to detect more straightforward instances
of malware.

To further evaluate the performance and generalization ability of our approach, we implemented five-fold cross-
validation by testing it on multiple subsets of the dataset. Specifically, we divided the families into five parts, ensuring
that the number of examples in each part was as balanced as possible. In each experiment, one part was used for testing,
while the remaining four were used for training, maintaining an approximate 80-20 ratio. We also ensured that no
family present in the training set appeared in the test set. This approach enabled us to assess the model’s performance
across different data subsets, minimizing the risk of bias from any single train-test split. The objective was to provide a
more accurate evaluation of the model’s generalization capabilities, particularly its ability to perform well on unseen
malware families, resulting in a more reliable overall assessment. The same API calls extracted from the training set in
Table 1 is also used to generate API call graphs in this experiment.

4.3.2 Comparison with MaMaDroid

The results of each fold are compared with MaMaDroid in Table 4. Our model consistently outperforms MaMaDroid’s
approaches across all folds. It indicates our model’s effectiveness in identifying malware instances. The cross-validation
results also highlight the reliability of our model in maintaining a balanced performance between precision and
recall while keeping the false positive rate low. This ensures that it accurately distinguishes between malware and

10



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Table 5: Zero-Shot vs. Few-Shot

Setting Accuracy Precision Recall F1-score FPR
Zero-Shot 96.24 97.17 95.20 96.17 2.720
Few-Shot 96.30 97.22 95.24 96.22 2.667

Figure 5: Zero-Shot vs. Few-Shot in Detecting New Malware Families
benign applications. In contrast, MaMaDroid showed more variability across different folds, with lower recall and F1
scores. This suggests that our model offers a more stable and reliable solution for detecting malware in diverse data
environments, reinforcing its suitability for real-world applications.

While the proposed approach provides a high detection rate (recall) across all folds, the first fold of the cross-validation
shows lower performance compared to the others, which can be attributed to the composition of the test dataset as
demonstrated in Table 10. Specifically, this fold contains only samples from the Airpush/StopSMS family, which is
typically classified as adware. Adware usually displays advertisements automatically and, though often not malicious, it
is generally considered unwanted by users. This dual nature of adware can make it challenging for detection models, as
adware may not exhibit the same clear-cut malicious behaviors as traditional malware. This is particularly relevant
for the Airpush family, which is known for aggressive advertising practices but does not always engage in malicious
activities, potentially leading to lower recall rates during classification.

4.3.3 Zero-shot vs. Few-Shot Learning

The performance of zero-shot/few-shot learning is illustrated in Table 5. While the few-shot setup achieved a test
accuracy close to that of the zero-shot model. However, the false positive rate (FPR) improved with the inclusion of
additional malware samples in the support set.

Since zero-shot learning has already achieved very high detection rates, few-shot learning does not demonstrate any
improvement. Additionally, in the few-shot setting, the support set consists of only 30 malware families randomly
selected from the test set to ensure a balanced comparison with zero-shot learning, which does not encompass all
families. Hence, if the few-shot samples lack sufficient diversity, they may not adequately represent the variations
within a family. On the other hand, the positive impact of few-shot learning is observed in the false positive rate.
Including malware samples in the support set enhances the model’s ability to differentiate between benign and malicious
applications, leading to improved accuracy in detecting true negatives. The results for all families are demonstrated in
Figure 5.

4.3.4 Robustness to Obfuscation Techniques.

In this experiment, we assess our model’s resilience against obfuscation techniques. We modified our applications
using AVPass [42] and implemented specific methods, including name obfuscation, variable encryption, API reflection,
and string encryption. Name obfuscation modifies class and method names to hinder code analysis, making it more
challenging to understand the underlying logic. Variable encryption involves encrypting the values of variables within
the code, hiding their true content until they are decrypted at runtime. Similarly, string encryption conceals hardcoded
strings, such as URLs or commands, decrypting them only when needed during execution to evade detection. API
reflection is used to dynamically invoke Android APIs at runtime instead of referencing them directly, making it difficult
for static analysis tools to detect malicious API calls.

11



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

The objective of this experiment is to evaluate the model’s ability to maintain detection accuracy against evasion
techniques employed by malware authors, demonstrating its robustness and adaptability in scenarios where malware is
often obfuscated to evade detection.

The results are presented in Table 6. While all obfuscation techniques lead to a decline in detection rates, string
encryption and API reflection have the most significant impact. The reduction in performance due to string encryption
can be attributed to the intrinsic challenges associated with this technique. In string encryption, critical strings—such as
URLs, API names, and system services—are encrypted, making it difficult for static analysis to accurately identify and
map essential API calls. Consequently, the model’s reliance on API call graphs is severely undermined; the inability to
accurately map these encrypted strings results in incomplete or inaccurate graph structures, ultimately reducing the
model’s effectiveness in detecting malicious patterns.

Table 6: Performance Evaluation Against Obfuscation Techniques

Obfuscation Type Accuracy (%) Precision (%) Recall (%) F1-score (%)
Baseline 96.24 97.17 95.20 96.17
Name Obfuscation 93.68 95.95 91.09 93.46
Variable Encryption 96.08 97.18 94.84 95.99
String Encryption 77.16 91.23 59.65 72.13
API Reflection 51.90 72.05 4.78 8.97

The results for API reflection obfuscation revealed substantial challenges. API reflection enables malware to dynamically
invoke methods, effectively bypassing static API analysis. This dynamic invocation obscures the actual methods called
during execution, resulting in incomplete or misleading call graphs. Such obfuscation complicates both static and
dynamic analysis efforts, as the true flow of execution remains hidden from the model. The decline in detection
capability under API reflection underscores the difficulty of identifying malware when critical behaviors are masked at
runtime. Future research should explore advanced static-dynamic hybrid analysis, de-obfuscation strategies [43] to
more effectively address the complexities introduced by these obfuscation techniques.

4.3.5 Ablation Study

Lastly, we conducted an ablation study to evaluate the impact of the zero-shot learning technique on malware detection.
In this experiment, we utilized embeddings generated by VGAE to classify applications. We first processed these
embeddings through a global mean pooling operation to obtain a pooled representation. This representation was then fed
into a linear classifier, which outputs a probability distribution over the class labels to determine whether an application
is classified as malware or benign.

Table 7 shows the performance metrics of VGAE (without zero-shot learning) compared to VOLTRON. The results
show that VOLTRON achieved a higher accuracy (96.24%) compared to VGAE without zero-shot learning (94.83%),
indicating an overall improvement in the model’s correctness. The inclusion of zero-shot learning notably enhanced the
detection rate (3.84%) for new malware families. However, this improvement comes with an approximate 1% increase
in the false positive rate. It is worth noting that the graph-based malware detection system using VGAE (without
ZSL) continues to outperform MaMaDroid both in terms of detection rate and false positive rate, highlighting the
advantages of representing code as graphs for malware detection. This supports our hypothesis that graphs are a natural
and semantically meaningful representation of code.

In summary, the results underscore the effectiveness of our proposed model in malware detection. Not only does it
surpass the performance of established methods like MaMaDroid, but it also shows a strong ability to generalize to
newmalware families and to operate effectively with limited training data. These strengths make our model a promising
candidate for deployment in real-world malware detection systems, where adaptability and accuracy are paramount.

Table 7: Ablation Study

Model Accuracy (%) Recall (%) Precision (%) F1-score (%) FPR (%)

VGAE (without 0-shot) 94.83 91.36 98.09 94.60 1.75
VOLTRON 96.24 95.20 97.17 96.17 2.72
MaMaDroid (RF) 91.91 89.11 95.20 92.05 2.50

12



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

5 Limitations

This is the first study that aims to detect unknown malware using zero-shot learning techniques. While this approach
represents a significant advancement, it is important to acknowledge its limitations.

The KronoDroid dataset, despite being one of the largest available in terms of malware family size, presents a significant
challenge due to the uneven representation of different malware families, as shown in Figure 4. The substantial
disparity in sample sizes across these families in the training set can impact the model’s performance, as shown in
Table 4. During training, underrepresented classes may lead to insufficient learning, which can cause the model to
struggle with generalizing effectively to these less-represented or rare malware families during testing. This imbalance
may particularly affect the model’s performance when encountering malware families that are either very rare or
disproportionately common. Therefore, it is essential to provide a well-represented dataset of real malware samples and
include a broader range of known malware families.

Furthermore, we encountered challenges in accurately identifying malware family names due to inconsistencies across
various sources. Different antivirus vendors and security researchers often use distinct naming conventions for the same
malware family, and these names can evolve over time. For instance, a malware family identified under one name by a
particular security organization today may be reclassified under a different name by the same or another organization in
the future. Such inconsistencies can complicate the process of labeling unknown families and subsequently affect the
evaluation of our model’s performance in detecting these families.

Another key limitation is the temporal variability of Android APIs, including changes in API levels, the introduction of
new APIs, modifications to existing APIs, and the deprecation of older ones. Such time-specific features can impact the
performance of classifiers [3, 44], as current API call graphs may not fully capture the ongoing changes in the Android
ecosystem. Consequently, the system must be regularly updated and retrained to maintain its effectiveness.

Moreover, certain obfuscation techniques, particularly API reflection, challenge our model by disrupting the structure of
API call graphs. These methods hinder accurate extraction and analysis of application behavior, potentially reducing the
effectiveness of our approach. Addressing this issue will require additional strategies, such as incorporating dynamic
analysis to capture behaviors at runtime, thereby managing the complexities introduced by these obfuscation techniques.
This highlights an important area for future improvement.

Lastly, the construction of sensitive API call graphs, which is fundamental to our approach, relies heavily on the
accuracy of permission-API call mappings provided by tools such as Axplorer [29] or Arcade [45]. The reliability of
these mappings is crucial, as any inconsistencies could result in questionable intersections or missing data in the final
analysis, potentially affecting the overall performance of the model. Additionally, our selection of sensitive API calls
for constructing API call graphs depends not only on the mappings provided by Axplorer but also on the intersection of
benign and malware API calls within our dataset. Consequently, the specific set of API calls used in our analysis may
vary with different datasets or tools.

6 Conclusions

In this study, we proposed a novel approach to Android malware detection using zero-shot learning, combining
Variational Graph Auto-Encoders (VGAE) and Siamese Neural Networks (SNN). Our method was designed to tackle
the challenge of detecting previously unseen malware families, a critical issue in the rapidly evolving landscape of
cybersecurity. By leveraging graph-based representations of Android applications, VOLTRON effectively captured
the structural relationships within the data, allowing for robust classification even with no prior examples of certain
malware families.

The experimental results demonstrated that our approach outperformed the existing method, MaMaDroid, in both
accuracy and detection rates, particularly in zero-shot scenarios. These findings suggest that zero-shot learning, as
implemented in our framework, can significantly enhance future malware detection systems by improving protection
against emerging threats without the need for extensive retraining or large, labeled datasets.

References

[1] Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Carlini, Brad Chen, Jihye Choi, Amrita Roy Chowdhury, Mihai
Christodorescu, Anupam Datta, Soheil Feizi, et al. Identifying and mitigating the security risks of generative ai.
Foundations and Trends® in Privacy and Security, 6(1):1–52, 2023.

13



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

[2] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger,
Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of machine learning in computer security. In 31st USENIX
Security Symposium (USENIX Security 22), pages 3971–3988, 2022.

[3] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. {TESSERACT}:
Eliminating experimental bias in malware classification across space and time. In 28th USENIX security symposium
(USENIX Security 19), pages 729–746, 2019.

[4] Pedro H Barros, Eduarda TC Chagas, Leonardo B Oliveira, Fabiane Queiroz, and Heitor S Ramos. Malware-smell:
A zero-shot learning strategy for detecting zero-day vulnerabilities. Computers & Security, 120:102785, 2022.

[5] Min Cen, Xun Deng, Fan Jiang, and Rajesh Doss. Zero-ran sniff: A zero-day ransomware early detection method
based on zero-shot learning. Computers & Security, 142:103849, 2024.

[6] Farid Deldar and Majid Abadi. Deep learning for zero-day malware detection and classification: A survey. ACM
Computing Surveys, 56(2):1–37, 2023.

[7] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. Deep learning for android malware defenses: a
systematic literature review. ACM Computing Surveys, 55(8):1–36, 2022.

[8] Alejandro Guerra-Manzanares, Hayretdin Bahsi, and Sven Nõmm. Kronodroid: time-based hybrid-featured
dataset for effective android malware detection and characterization. Computers & Security, 110:102399, 2021.

[9] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution. In 2012 IEEE
symposium on security and privacy, pages 95–109. IEEE, 2012.

[10] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca
Stringhini. Mamadroid: Detecting android malware by building markov chains of behavioral models (extended
version). ACM Transactions on Privacy and Security (TOPS), 22(2):1–34, 2019.

[11] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An intelligent android malware
detection system based on structured heterogeneous information network. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1507–1515, 2017.

[12] Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding. Api2vec: Learning representations of
api sequences for malware detection. In Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 261–273, 2023.

[13] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, and Min Yang.
Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware. In Proceedings of the
2020 ACM SIGSAC conference on computer and communications security, pages 757–770, 2020.

[14] Han Gao, Shaoyin Cheng, and Weiming Zhang. Gdroid: Android malware detection and classification with graph
convolutional network. Computers & Security, 106:102264, 2021.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. Drebin:
Effective and explainable detection of android malware in your pocket. In Ndss, volume 14, pages 23–26, 2014.

[16] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep ground truth analysis of current
android malware. In Detection of Intrusions and Malware, and Vulnerability Assessment: 14th International
Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14, pages 252–276. Springer, 2017.

[17] Teenu S John, Tony Thomas, and Sabu Emmanuel. Graph convolutional networks for android malware detection
with system call graphs. In 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), pages 162–170.
IEEE, 2020.

[18] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. Droidnative: Automating and
optimizing detection of android native code malware variants. computers & security, 65:230–246, 2017.

[19] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Marius Portmann. Graph neural
network-based android malware classification with jumping knowledge. In 2022 IEEE Conference on Dependable
and Secure Computing (DSC), pages 1–9. IEEE, 2022.

[20] Yiming Hei, Renyu Yang, Hao Peng, Lihong Wang, Xiaolin Xu, Jianwei Liu, Hong Liu, Jie Xu, and Lichao Sun.
Hawk: Rapid android malware detection through heterogeneous graph attention networks. IEEE Transactions on
Neural Networks and Learning Systems, 2021.

[21] Candong Rong, Gaopeng Gou, Chengshang Hou, Zhen Li, Gang Xiong, and Li Guo. Umvd-fsl: Unseen malware
variants detection using few-shot learning. In 2021 international joint conference on neural networks (IJCNN),
pages 1–8. IEEE, 2021.

[22] Zhijie Tang, Peng Wang, and Junfeng Wang. Convprotonet: Deep prototype induction towards better class
representation for few-shot malware classification. Applied Sciences, 10(8):2847, 2020.

14



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

[23] Umme Zahoora, Muttukrishnan Rajarajan, Zahoqing Pan, and Asifullah Khan. Zero-day ransomware attack detec-
tion using deep contractive autoencoder and voting based ensemble classifier. Applied Intelligence, 52(12):13941–
13960, 2022.

[24] Fan Zhou, Dongxia Wang, Yanhai Xiong, Kun Sun, and Wenhai Wang. Famcf: A few-shot android malware
family classification framework. Computers & Security, page 104027, 2024.

[25] Laya Taheri, Andi Fitriah Abdul Kadir, and Arash Habibi Lashkari. Extensible android malware detection and
family classification using network-flows and api-calls. In 2019 International Carnahan Conference on Security
Technology (ICCST), pages 1–8. IEEE, 2019.

[26] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Duoyuan Ma. Unsuccessful story about few
shot malware family classification and siamese network to the rescue. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 1560–1571, 2020.

[27] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

[28] Anthony Desnos and the Androguard Team. Androguard: Reverse engineering and analysis of android applications.
https://github.com/androguard/androguard, 2011–2024. Accessed: 2024-08-25.

[29] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Sebastian Weisgerber. On
demystifying the android application framework: {Re-Visiting} android permission specification analysis. In 25th
USENIX Security Symposium (USENIX Security 16), pages 1101–1118, 2016.

[30] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st International Conference on Machine Learning,
pages 1278–1286. PMLR, 2014.

[31] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[32] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot image recognition.
In ICML deep learning workshop, volume 2, pages 1–30. Lille, 2015.

[33] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

[34] VirusTotal. Virustotal academic malware samples, 2020. Available at: http://www.virustotal.com/.

[35] VirusShare. Virusshare, 2020. Available at: https://virusshare.com/.

[36] F-droid. F-droid - free and open source android app repository, 2020. Available at: https://f-droid.org/.

[37] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. Marvin: Efficient and comprehensive
mobile app classification through static and dynamic analysis. In 2015 IEEE 39th annual computer software and
applications conference, volume 2, pages 422–433. IEEE, 2015.

[38] APKMirror. Apkmirror, 2020. Available at: https://www.apkmirror.com/.

[39] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: Collecting millions of
android apps for the research community. In Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, pages 468–471, New York, NY, USA, 2016. ACM.

[40] FortiGuard. Android/pdaspy. https://fortiguard.com/encyclopedia/virus/4068973. Accessed: 1
September 2024.

[41] F-Secure. Monitoring tool: Android/pdaspy. https://www.f-secure.com/sw-desc/
monitoring-tool-android-pdaspy.shtml. Accessed: 1 September 2024.

[42] Chanil Jeon, Insu Yun, Jinho Jung, Max Wolotsky, and Taesoo Kim. Avpass: Leaking and bypassing antivirus
detection model automatically. In Black Hat USA 2017. Black Hat, 2017.

[43] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation of android
applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 343–355, 2016.

[44] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. Explainable ai for android malware detection:
Towards understanding why the models perform so well? In 2022 IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE), pages 169–180. IEEE, 2022.

[45] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise android api protection
mapping derivation and reasoning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1151–1164, 2018.

15

https://github.com/androguard/androguard
http://www.virustotal.com/
https://virusshare.com/
https://f-droid.org/
https://www.apkmirror.com/
https://fortiguard.com/encyclopedia/virus/4068973
https://www.f-secure.com/sw-desc/monitoring-tool-android-pdaspy.shtml
https://www.f-secure.com/sw-desc/monitoring-tool-android-pdaspy.shtml


VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

A Appendix

Figure 6: Accuracy and F1 Score as a Function of the Classification Threshold

Table 8: Hyperparameters of VGAE

Parameter Value

Learning Rate 0.001
Number of Epochs 300
Hidden Channels [32, 24]
Optimizer Adam
Latent Dimension 16

Figure 7: Performance of VOLTRON in Detecting New Malware Families

16



VOLTRON: DETECTING UNKNOWN MALWARE USING GRAPH-BASED ZERO-SHOT LEARNING

Table 9: Hyperparameters of SNN

Parameter Value

Learning Rate 0.001
Number of Epochs 4
Optimizer SGD
Support Set Size 30
Hidden Layer Dimensions [128, 64, 32]

Table 10: Number of Families in Each Fold

Fold Train Families Test Families
1 217 1
2 168 50
3 164 54
4 162 56
5 161 57

17


	Introduction
	Related Work
	Methodology
	API Call Graph Construction
	Variational Graph Auto-Encoder (VGAE)
	Siamese Neural Network (SNN)
	Zero-Shot Learning (ZSL)

	Evaluation
	Dataset
	Experimental Settings
	Experimental Results
	The Performance of VOLTRON
	Comparison with MaMaDroid
	Zero-shot vs. Few-Shot Learning
	Robustness to Obfuscation Techniques.
	Ablation Study


	Limitations
	Conclusions
	Appendix

